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General responses: 
 
    
  I would like to thank the reviewers and Editor for their valuable comments. One of the 

major concerns raised by both reviewers is how new modes were selected to derive the 6DLM. 

Here, I would like to emphasize (1) that based on the analysis of the Jacobian term, 𝐽 𝜓,𝜃 , new 

modes are selected to extend the nonlinear feedback loop that can provide additional nonlinear 

feedback to stabilize or destabilize solutions; and (2) that our approach, using incremental 

changes in the number of Fourier modes, is to help trace their individual and/or collective impact 

on the solution stability as well as the extension of the nonlinear feedback loop.  To facilitate 

discussions, we have (a) created two tables which list the Fourier models used to construct 

different higher-order Lorenz models and the corresponding critical values of the normalized 

Rayleigh parameter for the onset of chaos; and (b) finished a pdf file with a brief summary on the 

mathematical analysis of the nonlinear feedback loop in the 3DLM and its extension in the 

5DLM and 6DLM. The tables are included in the end of this response file, while the pdf file will 

be uploaded separately as supplemental materials.  In the following, specific responses are given 

with the aid of the supplemental materials.   
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(A) Responses to Reviewer I’s comments:  
 

 

Thanks for your comments.  The minor issues have been corrected in the revised manuscript 

accordingly. Detailed responses to the specific comments are given below.  

 

In this study, the hypothesis to be verified and question to be addressed is stated in the 

introduction as follows: 

``Shen14 hypothesized that system’s stability in the LMs, with a finite number of modes, can be 

improved with additional modes that provide negative nonlinear feedback associated with 

additional dissipative terms.’’ 

`` However, since new modes can also introduce additional heating term(s), the competing role 

of the heating term(s) with nonlinear terms and/or with dissipative terms deserves to be 

examined so that the conditions under which solutions become more stable or chaotic can be 

better understood.’’ 

`` Results obtained from work described here and the work of Shen (2014a) are used to address 

the following question: for generalized LMs, under which conditions can the increased degree of 

nonlinearity improve solution stability?’’ 

In fact, our studies have been performed to help achieve the ultimate goal of determining 

under which conditions increasing resolutions can improve the predictions in weather/climate 

models. In our first papers (Shen 2014a and this manuscript), we found that a nonlinear feedback 

loop in the baseline model (e.g., 3DLM) plays an important role in determining the predictability 

and its extension may help provide negative nonlinear feedback to improve the predictability. 

After identifying the impacts of new modes in the 5DLM (which contains the negative nonlinear 

I carefully read the paper several times. The principle question is: Why was this paper written, in 
principle, and what basic problem[s] is [are] discussed here? The author attempts to discuss a 
problem of stability of an expanded Lorenz model through the Lyapunov exponent analysis. 
There are no grammatical errors in the paper, except small ones (e.g., “Model” in capitals in the 
title, the capture for Figure 7). However there are several problems which should be discussed 
before the paper is considered for publication 
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feedback) and in the 6DLM (which including an additional heating term), we currently extend 

these studies to examine the role of the extended nonlinear feedback loop and additional heating 

terms in the solution’s stability for 7D, 8D and 9D LMs (Yoo and Shen, 2015, in preparation). 

 

 

In the following, I will use Table 1 (derived from Roy and Musielak, 2007) and Table 2 to 

show that our 6DLM is the same as the one in Kennamer (1995), which is not a subset of the the 

aforementioned 8DLM. More importantly, we want to point out that higher-order LMs display 

the dependence of rc on the selections of Fourier modes (e.g., Table 1), and that proper selections 

of Fourier modes, based on the analysis of Jacobian term 𝐽 Ψ,𝜃 , can help extend the nonlinear 

feedback loop that can provide negative nonlinear feedback to stabilize solutions (e.g., 5D, 6D 

and 7D LMs). 

 

Table 1, which is included near the end of this response file, provides a list of high-order 

Lorenz models, including two 6D LMs and 8DLM, and the corresponding Fourier modes used to 

construct the LMs. It is shown that the 6DLM by Kennamer is not a subset of the 8DLM. As 

mentioned in the manuscript, our 6DLM is the same as the one from Prof. Musielak’s group.  

[Prof. Musielak is Kennamer’s advisor. Kennamer published the 6DLM in his/her master thesis, 

which is not available to the author. The first literature listing the 6DLM of Kennamer is 

Musielak, Musielak and Kenamer, 2005, which was cited in the manuscript.]. Specifically, the 

M4, M5 and M6 modes in our 6DLM are exactly the same as 𝜓! 1,3 , Θ!(1,3) and Θ! 0,4   in 

the 6DLM by Kennamer, respectively. However, we derived the 6DLM independently. In 

addition, we provided the analysis of the Jacobian term, 𝐽 Ψ,𝜃 , to show how the 6DLM is 

constructed to be an “extension” of the 5DLM. Namely, the former is a superset of the latter. In 

the supplementary materials, we provide more detailed discussions on the linkage between the 

3DLM, 5DLM and 6DLM. In the manuscript, we discuss the impact of additional heating term 

First, I suppose that the model, which was used for the analysis, should be in the form…. 
 
For simplicity, coefficients in Eqs (1)-(8) have been omitted to understand the structure of this 
system. The author used another model. Why? How that model was obtained? It is necessary to 
explain how that model corresponds to Eqs (1)-(8). 
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on solution’s stability and the conservation laws for the 6DLM in the dissipationless limit, the 

latter of which were only partially discussed by Prof. Musielak’s group.  

 

Table 2 lists the Fourier modes used to construct our higher-order LMs (e.g., Shen 2014a, 

2015), the 14DLM by Curry (1978) and the one by Lucarini and Fraedrich (2009). In addition, it 

also lists the critical value of the normalized Rayleigh parameter (rc) for the onset of chaos. In 

the 5DLM, we first showed that the nonlinear feedback loop can be extended through the 

inclusion of M5 and M6 (which are the same as Θ!(1,3) and Θ! 0,4 , respectively). Compared 

to the 5DLM, the 6DLM includes an additional mode M4, (i.e., 𝜓! 1,3 ), and has a comparable 

rc. Currently, based on the analysis of nonlinear feedback loop, we add two modes, Θ!(1,5) and 

Θ! 0,6  to extend the nonlinear feedback loop of the 5DLM, which becomes the 7DLM with a 

much larger rc (e.g., rc~116.9 in Table 2). To be more consistent, additional modes with 𝜓! 1,3  

and 𝜓! 1,5  are being added to derive the 8DLM and 9DLM. All of the three LMs, 7D-9DLMs, 

have the rc greater than 100. More detailed analyses with the eLE calculation are being 

performed (e.g., Yoo and Shen, 2015, in preparation). 

 

It is worth noting that the 14DLM, which was shown to be not conservative in the 

disppiationless limit, is a superset of the 6DLM. However, the vertical wavenumbers in both 

6DLM and 14DLM are the same and their critical values of the normalized Raleigh parameter 

are comparable. In contrast, our 7D-9D LMs include modes with higher wavenumbers, such as 

5m and 6m in Θ!(1,5) and Θ! 0,6 , to extend the nonlinear feedback loop, which can stabilize 

solutions and lead to a larger rc (e.g., Table 2).  

 
 

The dependence of the solution’s stability over a range of the normalized Rayleigh parameter 

(r) and the Prandtl number (σ) is discussed in Figure 7 of section 3.4 in the manuscript. We do 

Second, independently from the used model the principle problem for systems like (1)-(8) is not 
their stability but how different dynamical regimes are realized in such a model. For example, 
how the regime changes for increasing Ra, where Ra is Rayleigh number. In general, system 
(1)-(8) was early studied by numerical methods and it has been demonstrated that there are 
several interesting effects. For example, a 3D attractor does not develop because another 
attractor with a higher dimensionality exists. 
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observe the dependence of rc on the Prandtl number in the LMs. However, given a value of σ, 

the 6DLM (as well as the 5DLM) is always more predictable than the 3DLM. 

 

From a perspective of weather/climate prediction, our ultimate goal is to apply what we can 

learn from the idealized high-order LMs to understanding and improving the predictability of the 

weather and/or climate models. Specifically, it is important to understand if and how the 

increased resolutions in the weather/climate models can suppress or enhance chaotic responses, 

because high-resolution global modeling, which is a current trend, requires tremendous 

computing resources. To achieve our goal, we started examining the impact of increased degree 

of nonlinearity on solution’s stability in the 3DLM and higher-order LMs, and trying to 

implement suitable methods (e.g., trajectory separation method) into the weather/climate models 

to perform stability analysis (e.g., calculations of Lyapunov exponent). More details in our 

modeling approach with the higher-order LMs are provided below.  

 

Our approach by incrementally changing the number of modes can help examine the 

individual and combined impact of resolved processes by the new modes. For example, the 

5DLM was used to examine the impact of the negative nonlinear feedback (from the additional 

nonlinear and dissipative terms in association with the two new modes, M5 and M6 modes), 

while the 6DLM with the inclusion of M4 mode, which is a superset of 5DLM, allows us to 

examine the competing impact of an additional heating term and dissipative terms on the 

solution’s stability. We then suggest that negative nonlinear feedback associated with new modes 

(M5 and M6) in the 6DLM as well as 5DLM can stabilize solutions, and that the additional 

heating term with the M4 mode in the 6DLM can destabilize solutions.  

 

 

The principle problem is how to use systems like (1)-(8) and of higher dimensionality for the 
practical analysis. In any case, the dimensionality larger than 6-8 is required to discuss a reality. 
 
My suggestion is that the editor should decide if this paper is suitable for publication at NPG. In 
my opinion, it needs a major revision before being considered for publication. In its present 
form, the manuscript does not fit the journal scope because NPG is not a pure mathematical 
journal. 
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Our ultimate goal is to examine the impact of increased resolution on the predictability of the 

real-world weather/climate models (e.g., Shen et al., 2006a). We have been working to 

implement the trajectory separation (TS) method into our global model for the eLE calculation.  

In addition, we still continue to improve our understanding of the nonlinear feedback loop in 

higher-dimensional LMs. For example, since the Spring semester of 2015, I have supervised one 

master student to derive the 7D, 8D and 9D LMs by analyzing the nonlinear Jacobian term, 

𝐽 𝜓,𝜃 ,  and  selecting new modes (M7, M8 and M9 modes in Table 2) that can extend the 

nonlinear feedback loop. With that being said, we believe that the related discussions on the role 

of different physical processes (i.e., dissipative and heating processes) in solution’s stability meet 

the goal of the NPD journal: (submissions that) apply nonlinear analysis methods to both models 

and data. 
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Table 1:  Fourier modes selected to construct the 3DLM and higher-order LMs, which is from 

Table 1 of Roy and Musielak (2007c). The critical values of the normalized Raleigh parameter, 

shown in red, are derived from Table 2 of Roy and Musielak (2007c). 

 
 
  

rc~24.75 
rc~22.50 
 
n/a 
 
rc~40.15 
 
rc~35.60 
 
rc~40.50 
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Table 2: Fourier modes used in our high-order LMs (e.g., Shen 2014a, 2015; Yoo and Shen, 

2015) and the models by Curry (1978) and Lucarini and K. Fraedrich  (2009). Note that  𝑀! =

𝜓! 1,3 , 𝑀! = Θ!(1,3), and 𝑀! = Θ!(0,4). 

 

 

 
  

model Ψ Θ Θ rc References 

5DLM 𝜓! 1,1  

 

Θ! 1,1 , 

Θ!(1,3) 

Θ! 0,2 , 

Θ!(0,4) 

42.9 Shen (2014) 

6DLM 𝜓! 1,1 , 

𝜓! 1,3 , 

Θ!(1,1) 

Θ!(1,3) 

Θ! 0,2  

Θ!(0,4) 

41.1 Shen(2015) 

7DLM 𝜓! 1,1  Θ! 1,1 , 

Θ!(1,3), 

Θ!(1,5) 

Θ! 0,2 , 

Θ! 0,4 , 

Θ! 0,6 , 

~116.9 Yoo and Shen 

(2015, in 

preparation) 

8DLM 𝜓! 1,1 , 

𝜓! 1,3  

Θ! 1,1 , 

Θ!(1,3), 

Θ!(1,5) 

Θ! 0,2 , 

Θ! 0,4 , 

Θ! 0,6  

~105 (TBD 

with the eLE 

analysis) 

Yoo and Shen 

(2015) 

9DLM 𝜓! 1,1 , 

𝜓! 1,3 , 

𝜓! 1,5  

Θ! 1,1 , 

Θ!(1,3), 

Θ!(1,5) 

Θ! 0,2 , 

Θ! 0,4 , 

Θ! 0,6  

~105 (TBD 

with the eLE 

analysis) 

Yoo and Shen 

(2015) 

14DLM 𝜓! 1,1 , 

𝜓! 1,3 , 

𝜓! 2,2 , 

𝜓! 2,4 , 

𝜓! 3,1 , 

𝜓! 3,3  

Θ! 1,1 , 

Θ! 1,3 , 

Θ! 2,2 , 

Θ! 2,4 , 

Θ! 3,1 , 

Θ! 3,3  

Θ! 0,2 , 

Θ! 0,4  

 

rc~43 Curry (1978) 

10EQs 𝜓! 1,1  

𝜓! 2,2  

 

Θ! 1,1 , 

Θ!(2,2) 

Θ! 0,2 , 

Θ!(0,4) 

n/a Lucarini and 

K. Fraedrich  

(2009) 
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Table 3: Lorenz models with different Fourier modes. 3DLM and 5DLM are discussed in the 

manuscript, while the 6DLM will be discussed in a companion paper.  6DLM_HK is referred to 

as the 6DLM proposed by Howard and Krishnamurti (1986). 7DLM_TH and 7DLM_Hetal are 

referred as the 7DLMs proposed by Thiffeault and Horton (1995) and Hermiz et al. (1995), 

respectively. The one denoted as ‘8DLM (suggested)’ was suggested by Thiffeault and Horton 

(1995) who did not derive the 8DLM nor discuss its characteristics. Only one horizontal wave 

number was used in the first several Lorenz models. cos(2lx) was used in the 8DLM by Roy and 

Musielak (2007c), denoted as 8DLM_RM. M1-M6 are defined in the manuscript. Ma-Md are 

defined as sin(mz), cos(lx)sin(2mz), sin(lx)sin(2mz), and sin(3mz), respectively. In the studies 

by Howard and Krishnamurti (1986) and Hermiz et al. (1995), the symbol ‘α’ is equivalent to ‘a’ 

in our study, which is equal ‘l/m’, namely α=a=l/m. 
1 3DLM --ψ sin(lx)sin(mz)     
                θ cos(lx)sin(mz) sin(2mz)    

2 5DLM --ψ sin(lx)sin(mz)     
                θ cos(lx)sin(mz) sin(2mz) cos(lx)sin(3mz) sin(4mz)  

3 6DLM --ψ sin(lx)sin(mz) sin(lx)sin(3mz)    
                θ cos(lx)sin(mz) sin(2mz) cos(lx)sin(3mz) sin(4mz)  

4 6DLM_HK --ψ sin(lx)sin(mz) sin(mz) cos(lx)sin(2mz)   
                   θ cos(lx)sin(mz) sin(2mz) sin(lx)sin(2mz)   

5 7DLM_TH-- ψ sin(lx)sin(mz) sin(mz) cos(lx)sin(2mz)   
                   θ cos(lx)sin(mz) sin(2mz) sin(lx)sin(2mz) sin(4mz)  

6 7DLM_Hetal -- ψ sin(lx)sin(mz) sin(mz) cos(lx)sin(2mz) sin(3mz)  
                   θ cos(lx)sin(mz) sin(2mz) sin(lx)sin(2mz)   
7 8DLM (suggested) sin(lx)sin(mz) sin(mz) cos(lx)sin(2mz) sin(3mz)  

                   θ cos(lx)sin(mz) sin(2mz) sin(lx)sin(2mz) sin(6mz)  
8 8DLM_RM---- ψ sin(lx)sin(mz) sin(lx)sin(2mz)   sin(2lx)sin(mz) 

  cos(lx)sin(mz) sin(2mz) cos(lx)sin(2mz) sin(4mz) cos(2lx)sin(mz) 
 
1 3DLM --ψ M1     
                θ M2 M3    

2 5DLM --ψ M1     
                θ M2 M3 M5 M6  

3 6DLM --ψ M1 M4    
                θ M2 M3 M5 M6  

4 6DLM_HK --ψ M1 Ma Mb   
                   θ M2 M3 Mc   

5 7DLM_TH-- ψ M1 Ma Mb   
                   θ M2 M3 Mc M6  

6 7DLM_Hetal -- ψ M1 Ma Mb Md  
                   θ M2 M3 Mc   
7 8DLM (suggested) M1 Ma Mb Md  

                   θ M2 M3 Mc sin(6mz)  
8 8DLM_RM---- ψ M1 sin(lx)sin(2mz)   sin(2lx)sin(mz) 
  M2 M3 cos(lx)sin(2mz) M6 cos(2lx)sin(mz) 
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1 Introduction

This report, which documents the mathematical analysis on the extensions of the nonlinear

feedback loop in the 5DLM and 6DLM as well as higher-dimensional Lorenz models, is

provided as supplementary materials to the manuscript entitled “ Nonlinear feedback in the

six-dimensional Lorenz model: impact of an additional heating term. by Shen (2015).” In

the following, we briefly introduce the three-dimensional (3D) Lorenz model (3DLM, Lorenz,

1963) and its Fourier modes, and identify the nonlinear feedback loop of the 3DLM by

analyzing the nonlinear Jacobian term J(ψ,θ). We then discuss how the analysis of J(ψ,θ)

can help select new modes to extend the nonlinear feedback loop in higher-dimensional LMs.

Our approach, using incremental changes in the number of Fourier modes, can help trace

their individual and/or collective impact on the solution stability as well as the extension

of the nonlinear feedback loop. To avoid repeated definitions, we use the same symbols as

those in Shen (2014) and Shen (2015).

2 The Nonlinear Feedback Loop and its Extensions in the Lorenz Models

To derive the 3DLM, we use the following three Fourier modes:

M1 =
√
2sin(lx)sin(mz), M2 =

√
2cos(lx)sin(mz), M3 = sin(2mz), (1)

here l and m are defined as πa/H and π/H, representing the horizontal and vertical

wavenumbers, respectively. And, a is a ratio of the vertical scale of the convection cell

to its horizontal scale, i.e., a= l/m. H is the domain height, and 2H/a represents the

domain width. With the three modes in Eq. (1), the streamfunction ψ and the temperature

perturbation θ can be represented as:

ψ = C1

(

XM1

)

, (2)

θ = C2

(

YM2 −ZM3

)

, (3)

here, C1 and C2 are constants (Shen 2014). (X,Y,Z) represent the amplitudes of (M1,M2,M3),

respectively. The modes in the 3DLM include one horizontal wavenumber (i.e., l) and two

vertical wavenumbers (i.e., m and 2m). After the derivations, the 3DLM is written as:

dX

dτ
=−σX +σY, (4)

dY

dτ
=−XZ + rX −Y, (5)
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dZ

dτ
=XY − bZ. (6)

In the following, we will show that the two nonlinear terms, −XZ and XY , appear in

association with the nonlinear advection of temperature (J(ψ,θ)), and illustrate that these

two terms form a nonlinear feedback loop in the 3DLM. Then, we discuss how new modes are

selected to extend the nonlinear feedback loop in the higher-dimensional LMs. To facilitate

discussions below, the additional modes that have been used in the higher-dimensional LMs

(Shen, 2014, 2015; Yoo and Shen, 2015) are defined as follows:

M4 =
√
2sin(lx)sin(3mz), M7 =

√
2sin(lx)sin(5mz), (7)

M5 =
√
2cos(lx)sin(3mz), M6 = sin(4mz), (8)

M8 =
√
2cos(lx)sin(5mz), M9 = sin(6mz). (9)

2.1 The nonlinear feedback loop in the 3DLM

In this section, we first discuss the characteristics of nonlinearity associated with the Jaco-

bian term represented by a finite number of Fourier modes. With Eqs. (2-3), we have

J(ψ,θ) = C1C2

(

XY J(M1,M2)−XZJ(M1,M3)

)

. (10)

J(ψ,θ) is now expressed in terms of the summation of two nonlinear terms, J(M1,M2)

and J(M1,M3) whose coefficients are XY and −XZ, respectively. Through straightforward

derivations, we obtain

J(M1,M2)≈ 2mlsin(mz)cos(mz) =mlM3, (11)

and

J(M1,M3)≈
√
2mlcos(lx)

(

sin(3mz)+ sin(−mz)
)

. (12)

The vertical wave number of 3m is not used in the 3DLM, so the sin(3mz) is neglected.

Thus, Eq. (12) becomes

J(M1,M3)≈
√
2mlcos(lx)sin(−mz) =−mlM2. (13)

From Eqs. (11) and (13), a loop can be identified as follows. As Eq. (13) gives M2 ≈
−J(M1,M3)/(ml), we can plug the M2 into Eq. (11) to have

J(M1,J(M1,M3)) =−(ml)2M3.

Similarly, we can derive

J(M1,J(M1,M2) =−(ml)2M2.
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Therefore, with the inclusion of the M3, a loop with M2 →M3 →M2 is introduced in the

3DLM. More importantly, downscale and upscale transfer processes can be identified using

Eqs. (11) and (13). M2 and M3 have vertical wave numbers of m and 2m, respectively.

Eq. (11) suggests that the nonlinear interaction between M1 and M2 leads to a downscale

transfer (to the M3 mode), while Eq. (13) suggests that the nonlinear interaction between

M1 and M3 leads to a upscale transfer (to the M2). However, as sin(3mz) is not included,

the approximation using Eq. (13) neglects a downscale transfer (from the M5 mode with

sin(2mz) to the mode with sin(3mz), which will discussed in details in section 2.2.

Next, we illustrate the role of the nonlinear feedback loop in the “nonlinear” 3DLM.

Without the inclusion of the nonlinear terms −XZ and XY , Eqs. (4-6) of the 3DLM reduce

to
dX

dτ
=−σX +σY, (14)

dY

dτ
= rX −Y, (15)

dZ

dτ
=−bZ. (16)

Equations (14-15), which are decoupled with Eq. (16), form a forced dissipative system with

only linear terms. The system has only a trivial critical point (X = Y = 0) and produces

unstable normal-mode solutions (i.e., exponentially growing with time) as r > 1. Therefore,

our analysis indicates that the inclusion ofM3 introduces Eq. (16) and the enabled feedback

loop (i.e., Eqs. 11 and 13) couples Eq. (16) with Eqs. (14-15) to form the (nonlinear) 3DLM

(Eqs. 4-6) which enables the appearance of convection solutions. From a perspective of total

energy conservation, the inclusion of the M3 mode can help conserve the total energy in the

dissipationless limit, which is discussed in Appendix A of Shen (2014). Mathematically, the

feedback loop with the nonlinear terms in Eqs. 5 and 6 (i.e., −XZ and XY ) leads to the

change in the behavior of the system’s solutions; the (nonlinear) 3DLM system produces non-

trivial critical points, which may be stable (e.g., for 1< r < 24.74) or ”unstable” (chaotic)

(e.g., for r > 25). In the next sections, we discuss how the nonlinear feedback loop in the

3DLM can be extended through proper selections of new modes.

2.2 An extension of the nonlinear feedback loop in the 5DLM

The increased degree of nonlinearity in the 5DLM, which has been discussed in Fig. 1 of

Shen (2014), is briefly summarized below. In the derivation of the 3DLM, the mode with

sin(3mz) in Eq. (12) was neglected. Therefore, it is natural to include
√
2cos(lx)sin(3mz)
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as the M5 mode (Eq. 8). Thus, Eq. (12) can be written as

J(M1,M3)≈
√
2mlcos(lx)

(

sin(3mz)+ sin(−mz)
)

=ml(M5 −M2). (17)

From a perspective of nonlinear interaction, the above mode-mode interaction in Eq. (17)

indicates the route of the downscale and upscale energy transfer to the M5 and M2 modes,

respectively. The M5 mode can further interact with the M1 mode to provide feedback to

the M3 mode through

J(M1,M5)≈ml

(

2sim(4mz)− sin(2mz)

)

= 2mlM6 −mlM3. (18)

The processes in Eqs. (17-18) add a new loop (e.g., M3 →M5 →M3) which is connected

to the (existing) feedback loop (e.g., M2 →M3 →M2) of the 3DLM. Therefore, the feed-

back loop in the 3DLM is extended with the inclusion of the M5 mode in the 5DLM. The

original feedback loop and new feedback loop may be viewed as the main trunk and branch,

respectively. Note that the term ”extension of the nonlinear feedback loop” indicates the

linkage between the existing loop and the new loop. It was reported that inclusion of new

modes could produce additional equations that are not coupled with the 3DLM, leading to a

generalized LM with the same stability as the 3DLM (e.g., Eqs. 11-16 of Roy and Musielak

(2007a)). In this case, the original nonlinear feedback loop (of the 3DLM) is not extended

with the new modes.

With the inclusion ofM5, J(M1,M5) provides not only upscaling feedback to theM3 mode

but also a downscale energy transfer to a smaller-scale wave mode that, in turn, requires

the inclusion of the sin(4mz) mode (i.e., M6 mode) (Eq. 18). As discussed in Appendix A

of Shen (2014), the M6 mode is required to conserve the total energy in the dissipationless

limit. The feedback loop is further extended to M5 →M6 →M5 through J(M1,M5) and

J(M1,M6), as shown in Table 2 of Shen (2014) and discussed in section 3.1 of Shen (2015).

In summary, the two modes (M5 and M6) with higher vertical wavenumbers are added to

improve the presentation of vertical temperature, and, therefore, the accuracy of the vertical

advection of temperature, as shown:

θ = C2

(

YM2 −ZM3 +Y1M5 −Z1M6

)

, (19)

J(ψ,θ) = C1C2

(

XY J(M1,M2)−XZJ(M1,M3)+XY1J(M1,M5)−XZ1J(M1,M6)

)

. (20)

While the inclusion of M3 forms a feedback loop in the 3DLM, the inclusion of M5 and M6

in the 5DLM extends the original feedback loop.
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2.3 An extended nonlinear feedback loop in the 6DLM

As discussed in the previous sections, the inclusion of M5 and M6 modes is not only to

improve the representations of the temperature perturbation and the nonlinear advection

of temperature, but also to to extend the original nonlinear feedback loop. In this section,

we discuss the selection of M4 that is in association with the M5 mode. The appearance

of ∂M5/∂x associated with the linear term ∂θ/∂x of Eq. (1) of Shen (2014,2015) requires

the inclusion of an M4 mode and the ∂M4/∂x associated with △T∂ψ/∂x of Eq. (2) of

Shen (2014,2015) provides feedback to the M5 mode (in Table 1 of Shen, 2014). The M4

mode shares the same horizontal and vertical wave numbers as the M5 but has a different

phase (i.e., sin(lx) vs. cos(lx) in Eqs. 7-8 or in Eq. 4 of Shen 2015). Alternatively, via the

∂θ/∂x and △T∂ψ/∂x, the M4 and M5 modes are linked, as discussed in section 3.1 in the

submitted manuscript (Shen 2015).

When M4 is included, it improves the representation of the streamfunction and thus the

advection of temperature, as shown:

ψ = C1

(

XM1 +X1M4

)

, (21)

J(ψ,θ) = C1C2

(

J(XM1 +X1M4, Y M2 +Y1M5 −ZM3 −Z1M6)

)

, (22)

here X1 represents the amplitude of the mode M4. Now, the Jacobian term includes

J(XM1,Y M2+Y1M5−ZM3−Z1M6) and J(X1M4,Y M2+Y1M5−ZM3−Z1M6). The for-

mer was first discussed in the 5DLM by Shen (2014), while the latter is discussed using the

6DLM in this study. While the M4 mode introduces linear forcing term (e.g., rX1), it also

extends the nonlinear feedback loop with J(X1M4,Y M2), J(X1M4,Y1M5), J(X1M4,ZM3),

and J(X1M4,Z1M6). The outcome of each of these Jacobian terms can be found in the

Table 2 of Shen (2014), and the impact of M4 is discussed in Shen (2015).

2.4 Further extensions of the nonlinear feedback loop in Higher-order LMs

To examine the role of the nonlinear feedback loop in the solution stability of higher-order

LMs, we have derived the following higher-dimensional Lorenz models, including 7D, 8D and

9D LMs. These models give a larger critical value of the normalized Rayleigh parameter

for the onset of chaos, as compared to the 3D, 5D and 6D Lorenz models. A manuscript

is being prepared for publication (Yoo and Shen, 2015). Here, a brief description for the

higher-order LMs is given as follows:

1. 7DLM includes all modes in the 5DLM and the M8 and M9 modes (Eq. 9) that can

improve the representation of θ and J(ψ,θ) and to extend the nonlinear feedback loop

to provide negative nonlinear feedback;
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2. 8DLM contains all modes in the 7DLM and the M4 mode (Eq. 7) that can improve

the representation of ψ and J(ψ,θ);

3. 9DLM includes all modes in the 8DLM and an additional modeM7 (Eq. 7) to improve

the representation of ψ and J(ψ,θ).

Note that M8 with sin(5mz) is selected based on the analysis of J(M1,M6) as shown in

the Table 2 of Shen (2014). M9 is added to enable the downscale transfer from J(M1,M8).

Similar to the inclusion of M4, M7 is introduced to have a different phase to that of M8.
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