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1 Introduction

We would like to thank the editor and the reviewers for their helpful comments, which will contribute

to improving the paper.

2 Reviewer 1

1. About the numerical experiments and results5

1.1 For the proposed method to be considered as a serious alternative to others, its performance

must be compared to others, like the standard EnKF (or ETKF), the SIR filter, on a systematic basis.

See for example the works of Oke, Sakov, Bocquet, to cite only a few names.

The present method consists of introducing a stochastic solver inside 4DVAR, which is defined as

minimizing an objective function, so we evaluate how close its performance is to 4DVAR in terms of10

that objective function. We also verify that the approximate solver still results in good performance

overall. It was not our objective to repeat the studies comparing variational methods with sequential

filters. We will clarify the objective of the computational tests. We will also run a similar comparison

in terms of RMSE as in Bocquet and Sakov (2013, Fig. 6) and Goodliff et al. (2015) for Lorenz 63 to

assess the overall performance of the method.15

1.2 The diagnostics must be statistically robust. According to the authors cited previously, and

also based on my personal experience (Metref et al., 2014), the diagnostics of DA with the Lorenz

63 system are robust if they are based on 100,000 assimilation steps at least, excluding spin-up.

We will run the assimilation on Lorenz 63 longer as indicated.

1.3 For the QG experiments, I find it quite reductive to limit the diagnostics to the value of the20

objective function.
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The purpose of measuring the objective function was to assess how close the method is to 4DVAR.

We will measure also RMSE to assess the overall performance.

1.4 Several statements are not motivated, unclear, or inaccurate: p.882: why choosing 8 iterations?

p. 882, lines 23-25: "the objective function decreases with iterations". Not for τ = 0.1 and 0.01 where25

the function increases at the last iteration. What happens with more iterations? This requires further

investigations. p.883, line 8: "for the first iteration, the best decrease in objective function is obtained

when τ=1": actually, it increases from 1 to 2. Is the first iteration before that? What is the initial value

of the objective function?

p. 882 lines 23-25 refer to Table 2. After a small number of iterations (about 6) the value of the30

objective function stopped decreasing (essentially, convergence was reached) and its values varied

randomly around a limit value forever (this is a randomized method). This is similar to what happens

in iterative methods when the rounding precision is reached: the error stops decreasing and then it

only varies due to rounding.

883 line 8 is a conclusion drawn from Fig. 4 Larger τ was somewhat better early in the iterations35

but mainly it prevented the minimum from being reached in later iterations. τ = 1 should be

τ = 10−2.

We will clarify what happens for a larger number of iterations as stated above. Fig. 4 will be only

used to draw the conclusion that τ needs to be small enough.

2. About the presentation of the method40

2.1 More must be said about the computational complexity and the implementation complexity.

Of particular importance is the increment of work from an EnKF, for example. And what are the

assets of the method, compared with others?

The cost is (ensemble size + 1)∗ (times the number of iterations)∗ (lag)+(ensemble size)∗ (lag)

in each analysis cycle. For comparison, the cost of the EnKF is ensemble size evaluations of the45

model in each analysis cycle.

The main advantages of the new method compared with the literature are as follows:

– The method asymptotically approaches 4DVAR for small τ and large ensemble size, which

can be proved rigorously (Bergou et al., 2014), thus it inherits (in the limit) the advantages of

4DVAR.50

– The implementation of the Levenberg-Marquard reqularization as additional observation is

statistically correct, because the EnKS is used to solve only the linear least squares.

– The ensemble of increments is generated fresh in every iteration, which prevents the

minimization from being restricted to the span of a single fixed ensemble, as in, e.g., Bocquet

and Sakov (2012, Algorithm 3).55

2.2 Algorithm 3: If I understand it well, the algorithm consists in: - compute the full model

trajectory from x0; - Apply an EnKS on z, which dynamics are governed by the model linearized
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at the previously computed trajectory; - update the trajectory, re-linearize the model (and H), and

iterate. I understand that the method is proposed as an improvement (or another way to solve the

inner loop) of the incremental 4DVar. But I do not see where the "variational" part of the algorithm60

is, other than in the perturbations z used for the EnKS. Meteorologists and oceanographers are used

to speak about variational methods when the objective function is explicitly minimized to reach

the solution. Here, it seems that the calculation of the objective function is not essential to solve the

problem, but is only used as a diagnostic. To me, it looks more like a hybrid of a "two-step" smoother

and an EnKS (see for example Cosme et al. (2011), but I do not request you to cite my work). Could65

you clarify that?

The present method is set as Gauss-Newton (or Levenberg-Marquardt, when regularization is

added) for the minimization problem in 4DVAR. With a large enough ensemble, and small enough τ ,

it becomes asyptotically incremental 4DVAR, as proved in Bergou et al. (2014). That is, the objective

function is explicitly minimized – even if the objective function or its gradient are not actually used70

in the algorithm. This is in fact an important motivation of this method.

2.3 Algorithm 3: Following the previous point, if I am right and if you agree, the name “EnKS-

4DVar” should be modified.

We would prefer to keep the same name. Also, other related methods use names with various

combinations of "En" and "Var", so it is an established nomenclature.75

2.4 I wrote earlier that the presentation was clear and concise, and I like it. But it requires a

significant amount of background in data assimilation to understand the paper. Perhaps the authors

could guide the reader toward some appropriate references for his/her self-education if necessary

(more than in the present version).

We would like to thank the reviewer for kind words. We will recommend Evensen (2009) and80

Kalnay (2003) for background material.

3. Minor comments, typos, etc p.872, Beginning of section 3: the notation z for the states (line 5)

is confusing after notation x in the previous section. Perhaps you can anticipate this by stating shortly

why you adopt this notation (a short statement in brackets should be enough). When we understand

the rationale of this notation (later in the text) Equation 5 becomes all the more confusing because it85

involves a nonlinear model. I am sure the authors will find a smart way to make things a bit clearer.

We went back and forth few times on this before. At one point we tried δx instead of z. Algorithm

1, where Eq. 5 resides, serves double duty: first it is the linear tangent equation for the increments z,

then it is the reference statement for the nonlinear EnKF which is further developed in the smoother

in Algorithm 4. The reference statement is needed so that one can formulate Theorem 1, namely,90

the method with τ = 1 becomes the nonlinear EnKS. We had tried to duplicate the algorithms in a

previous version but since then we have streamlined the paper. We will explain the reason for the

nonlinear M in eq. 5 and the notation z as above.
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Equation 6, 19, and elsewhere: I know it is common to perturb the observations y, but the usual

observation equation (y = h(x) + ε) says that h(x) should be perturbed instead, as in the model95

equation. This reverses the sign of the perturbation. Of course, it is equivalent with centered and

symmetric noise as it is here. Since it is (unfortunately) common to present things that way, this

changes of sign is not a strong requirement.

We would like to leave it as is.

Introduction and almost everywhere: Although the Kalman filter is indeed due to Kalman (1960),100

optimal linear smoothers are not. "Kalman smoothers" should be replaced by "Smoothers based on

Kalman’s hypotheses". But I agree this is quite cumbersome. If the authors does not find an easy

way around this, I do not make it a strong requirement.

We would like to leave it as is. “Kalman smoother” is the commonly used term, even if, as the

reviewer points out, it may not be quite right..105

Equations 14 and before 11: should the first x be replaced by a z?

Yes, replaced.

p.875, first line: perhaps a reference to Eq. 4 rather than Eq. 2 would be more appropriate.

Agreed, replaced.

Figures 4 and 5 are not used in the discussion. They could be removed.110

Reference to these figures was inadvertently omitted in the discussion on p. 883, see the response

to 1.4 above.

p.887, lines 16-17: "it is capable of handling strongly nonlinear problems". I tend to disagree with

this statement. The Lorenz 63 system fully observed every 25 steps is considered "weakly nonlinear"

(Sakov et al., 2012; Verlaan and Heemink, 2001; Metref et al., 2014) and the QG model with grid115

meshes of 300 km and observed with a ratio 1/32 is probably not very nonlinear (I do not have a

reference for this).

We will use observations of Lorenz 63 as in Bocquet and Sakov (2013, Fig. 6) and Metref et al.

(2014). For QG model we run the experiments for 10 days where we can see that nonlinearity is

increasing (Fisher et al., 2011, Fig. 2). We will mention this more clearly.120

p.888, lines 2-5: the advantages of using varying τ ’s are only speculative from the results

presented. They are not shown.

We will make clear that we are only suggesting it as a possibility in the discussion, rather than

actually doing it.

p.888, line 7: the QG model is one of the simplest models of the atmospheric circulation. It cannot125

be considered standard, because it is rarely used for meteorological applications.

We have rephrased as “one of the widely used model in theoretical atmospheric studies, since

it is simple enough for numerical calculations and it adequately captures an important aspect of

large-scale dynamics in the atmosphere.”
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3 Anonymous Reviewer 2130

1 General impression

I believe the paper is interesting. In particular, the use of the EnKS to solve the inner loop problem

is the real novelty of the paper worth investigating. I am less pleased with the treatment of the

literature. Some contributions need to be mentioned. Others are discussed and mentioned but not

properly described, or part of the results relevant to this paper omitted. Grey literature is mentioned.135

In theory it should not. I personally don’t mind but then you should also mention other non peer-

reviewed contributions of other colleagues.

Moreover, there are a few unjustified statements. For instance, the standard EnKS as presented

as if it was a novelty. Also, the paper does not truly deliver on the promise, especially at the end of

Section 5. The numerics is technically fine, but not entirely convincing. Overall I would ultimately140

recommend the publication of this paper, but on the condition that the following remarks are properly

addressed.

Main comments

1. (a) page 869, l.11-41: This passage has wrong statements, and uses gray and peer-reviewed

literature in a biased way. First of all, let me say that the IEnKF/IEnKS is quite complementary to145

your idea of using the EnKS to solve the inner loop problem. It has always been claimed (Bocquet

and Sakov, 2012, 2013, 2014) that the IEnKS/IEnKS could use a different optimizer (on the shelf,

Quasi-Newton, Levenberg-Marquart, etc.). Quasi-Newton and Levenberg-Marquart methods have

indeed also been used in those papers. The IEnKS could easily incorporate your idea and use the

EnKS to to solve the inner loop problem, which would make a nice blending!150

(b) "Additional work appeared after the first version of this paper was written (Mandel et al.,

2013). Bocquet and Sakov (2014) extend the method of Bocquet and Sakov (2012) to 4DVAR..." :

This chronology is biased and incorrect for these reasons:

– If you use gray literature then you should mention: http://www.meteo.fr/cic/meetings/2012/

ensemble.conference/presentations/session04/1.pdf155

– Bocquet and Sakov (2014) appeared online in final form with a doi number in 2013.

– Please also cite Bocquet and Sakov (2013), which additionally offers a comparison with a

(fully cycled) 4D-Var.

We will not mention the preprint of this paper, but we still need to cite Bergou et al. (2014), which

is submitted and in review, and important for the argument here.160

(c) Sakov et al. (2012); Bocquet and Sakov (2012, 2013, 2014) not only use finite-differences

but also an ensemble transform approach without rescaling which proved to lead to very similar

performances. Finite-difference/bundle is interesting in that it mimics the tangent linear, although
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the ensemble transform is more elegant. This is of direct relevance to your discussion of τ in Section

4. Please mention it.165

We will add something like: It is interesting that the ensemble transform approach in Sakov et al.

(2012); Bocquet and Sakov (2012, 2013, 2014) corresponds to our τ = 1, but it does not seem to

reduce to the standard EnKS.

(d) "However, Bocquet and Sakov (2014) nest the minimization loop for the 4DVAR objective

function inside a square root version of the EnKS and minimize over the span of the ensemble,170

rather than nesting EnKS as a linear solver inside the 4DVAR minimization loop over the full state

space as here." This sentence seems nice but it is partially misleading in at least two ways: (i) the

IEnKS is more than what is implicit here as it incorporates cycling which is one of the main results of

Bocquet and Sakov (2014). So the sentence should start with something like "Focusing only on the

variational analysis..." (ii) Bocquet and Sakov (2012, 2013, 2014) emphasized that the minimization175

can be performed differently opening the way to many consistent variant in the variational analysis.

Using your idea of the EnKS for solving would actually be a nice addition to the IEnKS.

We provide the response to (d)-(3) after (3) below.

(e) "Their method is tied to the use of the sample covariance matrix of the state without localization

of the covariance and to strong-constraint 4DVAR": This is partially incorrect for the second180

statement and plain wrong for the first. Please remove entirely this sentence. I agree that (Bocquet

and Sakov, 2014) strongly rely on the strong-constraint hypothesis (which is not the case for Bocquet

and Sakov (2013)). As for localization, it seems that it was not used in Bocquet and Sakov (2014) on

purpose. But it was not claimed it is not possible to use it, only that this is not as simple as with the

EnKF. Actually, localization can be used in the IEnKS. Preliminary results were reported early in185

2013 http://das6.umd.edu/program/das6_program.html in the largest international data assimilation

conference. Please mention clearly that localization has been shown to be possible with the IEnKS.

(f) "However, limiting the EnKF to linear combinations only does not allow common approaches

to localization (Sakov and Bertino, 2011)." This is wrong. Please remove the sentence. Local

analysis/domain analysis which limits the EnKF to local linear combinations, is extensively used190

in data assimilation, notably, but not only, via the popular LETKF (Ott et al., 2004). Please read

Sakov and Bertino (2011); Nerger et al. (2012). That is why it is rather straightforward to implement

localization in the IEnKS. It seems to me that you try to create an opposition that does not exist.

(g) "Ensemble methods for the solution of the 4DVAR nonlinear least squares problem in the

weak constraint 4DVAR, or ensemble methods for this problem which allow localization, do not195

seem to have been developed before.": I disagree. There are published papers (not to mention gray

literature) that already discuss the issue in an ensemble variational context, some of them being

difficult to ignore for the readership of Nonlinear Processes in Geophysics. For instance: Chen and

Oliver (2013); Desroziers et al. (2014); Lorenc et al. (2014) to quote just a few.
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We wil add something like: In principle, methods that work in the span of the ensemble can be200

developed into localized method by the use of local linear combinations (e.g., Ott et al., 2004), or by

the Schur product, and methods that rely on Gauss-Newton can be regularized to become Levenberg-

Marquardt. The impact on computational cost can vary. For related methods with localization, see,

e.g., Chen and Oliver (2013); Desroziers et al. (2014); Lorenc et al. (2014).

2. Implementing Levenberg-Marquardt in the solution of an EnVar problem has been considered205

first, tested and validated in Bocquet and Sakov (2012) and Chen and Oliver (2013). Surprisingly the

authors mentioned "and Bocquet and Sakov (2012), who added regularization" but not the fact that

this regularized is based on the Levenberg-Marquardt scheme... Please mention those references, and

make it clear. Bocquet and Sakov (2012) did not find any convergence problem with their application,

but rather use it as a faster convergence method, as an adaptive method between steepest descent and210

Gauss-Newton.

Here are quotations from (Bocquet and Sakov, 2013, 2014):

“One has a choice of minimization scheme: for instance, Sakov et al. (2012) used a Gauss-Newton

scheme whereas Bocquet and Sakov (2012) advocated the use of the Levenberg-Marquardt scheme

(Levenberg, 1944; Marquardt, 1963) for strongly nonlinear systems. In this article we shall use215

a Gauss-Newton scheme, because the emphasis is not specifically on strongly nonlinear systems

and the number of iterations for convergence in the experiments below is rather limited for most

experiments.” “The Gauss-Newton minimization scheme shown in Eq. (2) can easily be replaced by

a quasi-Newton scheme that avoids the computation of the Hessian, or by a Levenberg-Marquardt

algorithm that guarantees convergence of the minimization. These alternatives have been suggested220

and successfully tested in Bocquet and Sakov (2012).”

3. page 868, l.23-26. “Gradient methods in the span of the ensemble for one analysis cycle (i.e.,

3DVAR) includeZupanski (2005); Sakov et al. (2012) (with square root EnKF as a linear solver in

Newton method), and Bocquet and Sakov (2012)” This is wrong. The iterative ensemble Kalman

filter in Sakov et al. (2012) and Bocquet and Sakov (2012) is already a 4D ensemble variational225

method as it has a temporal variational analysis. It coincides with the iterative ensemble Kalman

smoother with only one batch of observations. It can be seen as a one-lag smoother. Actually your

method essentially coincides with the IEnKF in the lag-one case (modulo some irrelevant details

such as the use of stochastic perturbations or not)! Note that Sakov et al. (2012) actually compared

two variants of the IEnKF (lag-one smoother): one with the tangent linear model and one with the230

nonlinear model, which is of direct relevance to your discussion of τ .

The reviewer’s understanding of the related work is clearly much deeper than ours and we would

like to thank the reviewer for valuable insights. With the reviewer’s permission, we would like to

use some of them in the paper. We will provide brief synopses like the following, based on our fresh

reading of those papers, and the reviewers’ comments. They are in separate paragraphs for clarity235

of this response, but they may be more in flowing text in the revised paper.
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– Zupanski (2005), Maximum Likelihood Ensemble Filter (MLEF): iterative minimization of the

3DVAR cost function in the span of the ensemble in eache analysis cycle, with preconditioning

by approximate Hessian computed as in ensemble square root filter (ESRF), the ETKF variant.

– Sakov et al. (2012), IEnKF: minimization the 3DVAR cost function in each assimilation cycle240

in the span of the ensemble by Newton’s method with ETKF as linear solver. Rescaling of the

ensemble spread to approximate the tangent is used, similar to the the τ here, rather than a

finite-spread approximation.

– Bocquet and Sakov (2012) combined the IEnKF method of Sakov et al. (2012) with an

inflation-free approach, and Levenberg-Marquard method by adding a diagonal regularization245

to the Hessian. The present method essentially coincides with the IEnKF in the lag-one

case, except for the use of random perturbations and implementation of the regularization

as additional observation.

– Bocquet and Sakov (2013), extended IEnKF to smoother (IEnKS) with fixed-lag and moving

window and noted that Gauss-Newton can be replaced by Levenberg-Marquard. The method250

is formulated in terms of the composite model operator Mk←0, i.e., with strong constraints.

– Bocquet and Sakov (2014) incorporate cycling and minimize over the span of the ensemble,

nesting the minimization loop for the 4DVAR objective function inside a square root version

of the EnKS.

– Chen and Oliver (2013): Levenberg-Marquardt-ensemble randomized maximum likelihood255

(LM-EnRML) is an incremental method variational methos with square-root smoother

as linear solver, with localization of the covariance by a Schur product (term-by-term

multiplication).

– Lorenc et al. (2014) provides a comparison of the hybrid 4DEnVAR and hybrid 4DVAR for

operational weather forecasts. “Hybrid” refers to a combination of a fixed climatological260

model of the background error covariances and localised covariances obtained from

ensembles. 4DVAR is the traditional variational method whereas 4DEnVAR is a variational-

ensemble method in which the localised linear combination of an ensemble of nonlinear

forecasts is used for the minimization. This is similar to the case τ = 1, plus the localization.

– Desroziers et al. (2014) use the Gauss-Newton method for the solution of the weak-constraint265

4DVAR minimization problem, with the inner loop performed by ensemble Kalman smoother.

For adjoint computations they also use τ = 1.

4. What you called the nonlinear EnKS (Algorithm 4) is actually the standard EnKS as

implemented by the geophysical data assimilation community! You will find many variants

(depending on the flavor of the EnKF, perturbed observations or not, with or without model error,270
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with or without localization), but they strictly follow the same smoothing principle: an EnKF pass

operated with the nonlinear model, and a backward smoothing pass.

As as far as the EnKS is concerned (the question is richer in the IEnKS context, and could be

in your section 5), the question of using the tangent linear model or not only appears in the EnKF

pass and it has been discussed over 20 years. This is what is commonly refereed to the reduced rank275

Kalman filter approach (RRSQRT) versus the EnKF which differ by the use of the tangent linear or

the full model in the propagation. The reason why the nonlinear model is preferred is because it is

simpler and natural and capture some nonlinear effects (which turns out to be often more precise).

Hence, what you call the nonlinear EnKS (which in light of the previous comment is a pleonasm)

is what is actually used in Evensen (2009); Cosme et al. (2010); Nerger et al. (2014); Bocquet and280

Sakov (2012, 2013) and several others (see also Cosme et al. (2011)). This should be stated clearly.

On page 877, we say “we recover the standard EnKS applied directly to the nonlinear problems...

Algorithm 4,” which is labeled “Nonlinear EnKS”. We’ll clarify this and label the algorithm

consistently “Standard EnKS.”

5. As mentioned earlier the novel and appealing idea of this manuscript is the use of the EnKS to285

solve the inner loop problem of a nonlinear problem. Almost up the to end of section 5, the discussion

is on the reformulation of known methods and techniques, and the expectation of the reader is great

at this point. But, the final theoretical piece of the study does not seem to be given. Where do you

describe the full algorithm with the regularization? It is necessary that you give it, because this

should stand as the essential piece of the paper and one might think that there is nothing essentially290

new without it. Besides, this is where nonlinear ensemble variational methods gets trickier. Please,

explain precisely how you solve Eq. (23) and give us the complete algorithm. This is critical for the

paper.

The final algorithm is Algorithm 3 EnKS-4DVAR on p. 876, and it incorporates the previously

specified components that build up to it, Algorithms 1 and 2 by reference, much like calling a295

function in code. Algorithm 4 Nonlinear EnKS is called standard EnKS in the text on the same

page. It is needed only to show what happens when τ = 1. We will remove the “nonlinear”. The

regularized eq. (23) was solved also by EnKS using the penalty as additional observation following

Johns and Mandel (2008), as shown in the text. The description is informal rather than stated as an

algorithm, but we think in sufficient detail to program. We did not want to repeat significant parts300

of Johns and Mandel (2008) and burden the paper with more complicated notation. We will provide

the final algorithm in a complete form now, withough relying on references to equations and verbal

descriptions.

6. The numeric is technically fine and using the OOPS QG model offers a nice illustration. But

it is not entirely convincing. This seems a mere check of consistency. Some of the early claims of305

the paper are not supported, because, for instance, of the absence of localization and cycling (the

latter being critical in ensemble methods). The use of localization could have made this paper a
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bit different from other contributions. I would suggest you to be more caution and state that these

experiments offer a partial assessment of the scheme.

We will state that this is only a partial assessment. Localization in the QG model is a project in310

itself beyond the scope of this paper. We leave it to future work.

Minor points or comments related to the major points

1. page 867, l.5-7: "However, Gauss-Newton iterations may not converge, not even locally." Yes,

it is important that you mention it. However, in practice (which is also important for this journal),

for a well designed system failures to converge are rare.315

The QG problem in 6.3.3 diverges without regularization, which shows that divergence of the

Gauss-Newton method can appear outside of artificially contrived examples. We will note that

divergence of Gauss-Newton method is in practice rare. Perhaps the absence of divergence is one of

the attributes that define what a well designed system is.

2. page 868, l.7 "work is relatively cheap": The EnKS is wonderful as it is computationally cheap.320

But in high-dimensional systems, it has a huge storage requirement which has been warned against

(Cosme et al. (2010) and earlier references).

We will be more specific, esp. about the storage of the ensemble over a large time lag.

We will rephrase and mention storage requirement for high-dimensional systems

3. page 867, l.17-18: "It is well known that weak constraint 4DVAR is equivalent to the Kalman325

smoother in the linear case." This is only true for the analysis within the data assimilation window.

We will note that.

4. page 880-886: I believe the discussion on the impact of the hyper-parameters should also depend

on the outcome of a long cycling of the experiment. You may not have to achieve a high precision

minimization to address properly the nonlinear effects within the data assimilation window and330

propagate later the ensemble (hence the errors) through the window.

5. page 887, l.17: “and have shown that it is capable of handling strongly nonlinear problems”: in

the absence of cycling, it is difficult to really conclude. Cycling is important for the L63 and the QG

model. That said, the numerical experiments are convincing enough for the case of a single nonlinear

minimization. Please mitigate your statements.335

We will run some more experiments with cycling for Lorenz 63, as also requested by Reviewer 1.

We will state that this is only a partial assessment.

4 Letter from the editor

Dear Prof. Mandel,

You must have seen the reports of the two referees of your paper. You must also have received a340

message from Copernicus Publications asking you to send your own response to the referees’ reports

by 2 September next. That same message must also mention the possibility of your submitting a new
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version of the paper after you have responded to the referees. I as Editor encourage you (if you

have not already done so) to start preparing without delay a new version of your paper. And, in

order to save time, I want to send you now my comments on the referees’ reports, as well as my345

suggestions and requests for the new version. The two referees are qualified experts on assimilation

of observations, and especially on Kalman filters and smoothers. Referee 1, who has let his name

known, is E. Cosme from Grenoble University. Both referees consider your paper contains material

that deserves publication, but both also consider that it requires major revisions. Referee 1 has

comments on both the general presentation of the method you use, and on your numerical results.350

Concerning the method, he questions in particular the use of the word ‘variational’ for qualifying it

(his comments 2.2 and 2.3). Concerning your results, he asks for comparison with other assimilation

algorithms (his comment 1.1). He also considers that it is insufficient to use only the value of the

objective function as diagnostic for the quality of the assimilation performed with the QG model (his

comment 1.3). Concerning this last point, you know the ‘true’ field at all gridpoints and timesteps,355

and there is fundamentally a circular argument in evaluating the accuracy of the reconstructed fields

by their fit to the observations that have been used in the assimilation. Referee 2 strongly stresses that

you have not in his/her opinion given proper credit to recent works on ensemble Kalman filtering

and smoothing (main comments 1 to 3). He/she also asks for a more detailed description of your

implementation of algorithm 3 (main comment 5) and, as Referee 1, says he/she is not convinced by360

your numerical results concerning the QG model (main comment 6).

I as Editor also have a few comments. I mention two at this stage.

1. You refer to Algorithms 3 and 4 (statement of Theorem 1, Section 4) without having described

what they are, nor even mentioning the Tables in which the corresponding equations are given. These

algorithms must be described in the text before they are discussed.365

In the discussion style, pages are short and the algorithm environment became floats. The floats got

placed more in the back, since only one float fits per page. This was not a problem in the manuscript

with normal-sized pages, and it should not be a problem in the final paper format. We will employ

the usual techniques to place floats, or replace them by text.

2. The setting of the QG experiments (independently of their validation) should be described370

in more detail. For instance, the sentence The vertical correlation function value was taken as 0.2

(subsection 6.3.2, about three lines before end of penultimate paragraph) does not make much sense

(in which unit is the value 0.2 expressed ?).

This should have been “The vertical correlation is assumed to be constant over the horizontal

grid and the correlation coefficient value between the two layers was taken as 0.5. We will add more375

detail to make the computations more reproducible.”

And how do you ‘non-dimensionalise’ the parameter β (2 lines after Eq. 26; it is somewhat

inconsistent to keep a dimensional Coriolis parameter f0, and then to non-dimensionalise its spatial

derivative) ?
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We have added more information to the text regarding the non-dimensionalisation: “The non-380

dimensional equations (Fandry and Leslie, 1984; Pedlosky, 1979) can be derived as follows:

t= t̃
Ū

L
, x=

x̃

L
, y =

ỹ

L
,

u=
ũ

Ū
, v =

ṽ

Ū
, β = β0

L2

Ū
,

where t denotes time, Ū is a typical velocity scale, x and y are the eastward and northward

coordinates respectively, u and v are the horizontal velocity components, β0 is the northward385

derivative, and the tilde notation refers to the dimensionalized parameters . . . For the experiments

in this paper, we choose L= 106 m, Ū = 10 ms−1, H1 = 6000 m, H2 = 4000 m, f0 = 10−4 s−1,

β0 = 1.5× 10−11 s−1 m−1.”

Please revise your paper according to the comments and suggestions of the two referees, as well as

to mine. Concerning the referees’ requests, that may require additional diagnostics or even numerical390

experiments. As requested by Copernicus Publications, give a point-by-point answer to all these

comments and suggestions (including mine). Should you disagree with one particular comment, or

decide not to follow one particular suggestion, please state precisely your reasons for that. As far

as I am concerned, your response can be submitted in the open discussion, or in a letter attached to

your revised version.395

Both referees have stated they would be willing to review your paper again, and I will send your

revised version to both of them.

I thank you for having submitted your paper to Nonlinear Processes in Geophysics, and look

forward to receiving a new version.

Olivier Talagrand400

Editor, Nonlinear Processes in Geophysics
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