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Abstract

Almost all climate time series have some degree of nonstationarity due to external
driving forces perturbations of the observed system. Therefore, these external driving
forces should be taken into account when reconstructing the climate dynamics. This
paper presents a new technique of combining the driving force of a time series obtained5

using the Slow Feature Analysis (SFA) approach, then introducing the driving force into
a predictive model to predict non-stationary time series. In essence, the main idea of
the technique is to consider the driving forces as state variables and incorporate them
into the prediction model. To test the method, experiments using a modified logistic
time series and winter ozone data in Arosa, Switzerland, were conducted. The results10

showed improved and effective prediction skill.

1 Introduction

Studies have addressed the fact that the essential behavior of the climate system is
non-stationary (Trenberth, 1990; Tsonis, 1996; Yang and Zhou, 2005; Boucharel et al.,
2009). However, lacking of any general theory for predicting non-stationary processes15

has become one of the main barriers in climate prediction theories. To unravel this
issue, in recent years, increasing effort has been devoted to devising methods to an-
alyze and predict nonstationary time series (e.g. Hegger et al., 2000; Verdes et al.,
2000; Wan et al., 2005; Wang and Yang, 2005; Yang et al., 2010). The basic idea used
in such studies was to remove or reduce the nonstationarity of the predicted system20

using some mathematical techniques, thereby improving the prediction.
In fact, the nonstationarity is generated because of the fact that the driving forces

perturbations of the observed system change with time (Manuca and Savit, 1996).
Consequently, the most effective way to remove the nonstationarity may be to incorpo-
rate all the driving forces in the reconstructed dynamical system, considering them as25

the state variables of that system when establishing a prediction equation with general
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circulation models (GCM). Based on this principle, lately a compatible modeling path
to GCM given by data-driven technique was proposed to predict several artificial non-
stationary time series with known external forces and achieved success in improving
predictions when driving forces were included in some ideal or climate systems, such
as the Lorenz system, a logistic model, or global temperature over seasonal timescales5

including the North Atlantic Oscillation (NAO), the Pacific Decadal Oscillation (PDO),
the El Niño/Southern Oscillation (ENSO), and the North Pacific Index (NPI) variability
(Wang et. al., 2012, 2013). However, a shortcoming of this technique is that it joins
the assumed driving forces in the predictive model. Therefore, in the present study we
considered the extraction of driving forces from the time series itself and established10

a predictive model by incorporating the reconstructed driving forces. As a result, the
extraction of driving forces became the principal contradiction.

In recent years, one of the techniques called Slow Feature Analysis by Wiskott (2003)
for extracting driving forces has been presented, this technique has been applied to
non-stationary time series with some success (Wiskott, 2003; Berkes and Wiskott,15

2005; Gunturkun, 2010; Konen and Koch, 2011). In this paper, by using the Slow
Feature Analysis (SFA) approach developed by Wiskott (2003), we reconstructed the
driving force of a given time series, and then established predictive models that incor-
porated the driving forces. This paper is organized as follows: a brief description of
the predictive technique is presented in the following section. In Sect. 3, results are20

reported from applying the approach to a modified logistic time series and the total
ozone data of Arosa, Switzerland. A summary is provided in Sect. 4.

2 Methodology

SFA is a method for extracting slowly varying driving forces from a quickly varying non-
stationary time series. In this section we provide an introduction to the improvement25

of a predictive model, including a brief overview of SFA and its use in the extraction
and reconstruction of the driving force from the time series. Let us assume that we
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have a single variable time series {x(t)}t=1,2,...,n from a dynamical system, the principle
of SFA is presented in Wiskott (2003), but the basic steps of the technique are also
provided here for convenience and completeness:

1. Embed the above time series into anm-dimensional space (also named the length
of the m window), a phase trajectory in the m-dimensional space denoted as5

X (t) = {x(t),x(t−1), . . .,x(t− (m−1))}t=1,...,N or

X (t) = {x1(t),x2(t), . . .,xm(t)}t=1,...,N
(1)

where N = n−m+1.

2. Generate an expanded signal H(t) for a quadratic expansion, all monomials of
degree one and two including mixed terms are used:

H(t) =
{
x1(t), . . .,xm(t),x2

1(t), . . .,x1(t)xm(t), . . .

. . .x2
m−1(t),xm−1(t)xm(t),x2

m(t)
}
t=1,...,N

,
(2)10

where H(t) is an k ×N matrix and k =m+m (m+1)/2.

To simplify Eq. (2) as

H(t) = {h1(t),h2(t). . .,hk(t)}t=1,...,N . (3)

The general objective of SFA is to extract slowly varying features from the
time series {x(t)}t=1,2,...n, in other words, to find a set of coefficients, W ∗ =15

(w∗1,w∗2, . . .,w∗K ), to make the output signal y∗(t) =W ∗ ·H(t) satisfy

(ẏ∗ẏ∗T ) = min
k

{(
ẏk ẏ

T
k

)}
. (4)

Here, ẏk is first-order derivative, calculated by ∆yk(ti ) = yk(ti+1)− yk(ti ).
100
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3. Normalize the expanded signal H(t), by an affine transformation to generate H′(t)
with zero mean and unit covariance matrix:

H′(t) = {h′1(t),h′2(t). . .,h′k(t)}t = 1, . . .,N (5)

Where h
′
j = 0, h′jh

′T
j = 1, h′j (t) = (hj (t)−hj )/S, and S = 1

k

√
k∑
j=1

(
hj (t)−h

)2

4. By means of the Schmidt algorithm, the function space Eq. (5) is orthogonalized5

as

z1(t) = h′1(t)

zj (t) = h
′
j (t)−

j−1∑

i=1

h′i+1(t) · zi (t)
‖zi‖

zi (t) (j = 2, . . .,K )
(6)

which is also denoted as Z(t) = {z1(t),z2(t). . .,zk(t)}t=1,...N . Here, zi (t) · zj (t) =
0(i 6= j ) and it guarantees that every variable of the output is uncorrelated.

5. Establish the covariance matrix of Z(t), denoted as B = (ŻŻT)K×K . The k eigen-10

vectors with smallest eigenvalues, λK , yield the normalized weight vectors with
λ1 ≤ λ2 ≤ . . .. . . ≤ λk , which can be easily found by principle component analy-
sis. The smallest eigenvalue, λ1, corresponding to the eigenvector W 1 can satisfy
Eq. (4), which represents the weight coefficient of the slowest varying component.
Here, W 1 has a free scale factor (presented as r), and then the slowest varying15

variable, or the driving forcing, can be obtained by the following equation:

y1(t) = rW 1 ·Z(t)+c, (7)

Where c is a given constant and {y1(t)} is the output signal of the slowest driving
force obtained by Eq. (7).
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Above is the main principle for SFA, following we started a test with a logistic map

st+1 = µtst(1− st) (8)

with a given driving force parameter

µt = 3.5−0.45cos(3πt/1600)exp(−t/2500) (9)

To test the ability of reconstructing the driving force from this modified logistic map, we5

took a time series consisting of 5000 data points from this map. Utilizing the SFA algo-
rithm on this time series with the embedding dimension chosen as 3, we constructed
the driving force shown in Fig. 1, in which the dotted line represents the true driving
force given by Eq. (9) and the solid line the reconstructed driving force with the SFA
approach. As can be seen, both the true and constructed driving force fit very well, and10

the correlation coefficient between the true and extracted driving force reached 0.998.
This suggests that SFA was able to extract the driving force from the observed time
series in an unsupervised manner.

So far we have two time series, one is original time series {x(t)}, the other one is the
slowest driving force {y1(t)}, next we demonstrate how to establish a predictive model15

that includes the driving force reconstructed by the SFA procedure described above.
We present the basic principle to build the prediction model, for convenience, we as-
sume a non-stationary process composed of two series, {x(t)}t=1,2,...n and {y1(t)}, with
the former being the state variable time series and the latter for the reconstructed
external driving force obtained through the SFA approach. The two time series were20

embedded in an m1 +m2 dimensional phase space with a selected time lagτ. The re-
constructed phase trajectory using the embedding theorem of Takens (1981) is shown
as:

E(t) ={x(t),x(t− τ), . . .,x(t− (m1 −1)τ); y1(t),y1(t− τ), . . .,
y1(t− (m2 −1)τ)}t=1,2,...,N (10)25
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Here, m1 and m2 are the given embedding dimensions for {x(t)} and {y1(t)}, respec-
tively, and N = n− (max(m1,m2)−1)τ is the number of phase points on the trajectory.

Based on this trajectory, a predictive model to predict the future state of the system
can be established as:

x(t+p) = f̂p
(
x(t);y1(t)

)
+ε(t) (11)5

Where p is the prediction time step (considered as 1 in the present study), ε(t) is the
fitting error, and f̂ is assumed to be a quadratic polynomial in this study. The Tak-
ens embedding theorem is appropriate only for an autonomous dynamical system,
we followed the method of Stark (1999) to embed the driving forces in the same
state space for a nonstationary system. The next task is to find the cost function10

η =
∑N
t=1[f (x(t),y1(t))−x(t+1)]2 when it reaches its minimum value. For more details,

refer to the studies of Farmer and Sidorowich (1987) and Casdagli (1989).

3 Experiments

We applied the prediction technique introduced above to perform some prediction ex-
periments using several given non-stationary time series. The first experiment was15

performed with data from the modified logistic model given above.

3.1 Prediction experiments for ideal time series

Subsequent prediction experiments were based on 5000 data points from the above
verified logistic map (Eq. 8) with the assumed driving force (Eq. 9). The preceding
4800 data points were applied to establish the predictive model, and the subsequent20

200 data points were used to test the prediction and estimate the correlation coefficient
between the actual and predicted values as a function of the prediction time step. The
embedding dimension of the verified logistic time series, named m1, took values from
2 to 3, and the embedding dimension of the driving force time series, named m2, was
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set to either 0 (the driving force was not taken into account, and is referred to as
the “stationary model” hereinafter) or 1 (the driving force extracted from the verified
logistic map by SFA was taken into account, and is referred to as the “forcing model”
hereinafter). The time lag τ was always taken to be 1. Figure 2 shows the prediction skill
with and without the influence of the driving force, which was extracted with the SFA5

approach. As can be seen, the forcing model excelled over the stationary model, for the
fourth prediction step, the correlation coefficients was below 0.2 in the stationary model
and still above 0.6 in the forcing model, the average correlation over the prediction time
step was improved, indicating that introducing the driving force extracted through the
SFA approach into the prediction model improved can yield an obvious improvement in10

their accuracy.

3.2 Prediction experiment for total ozone

Many studies have sought to explain the variables involved in ozone dynamics, such as
the Quasi-Biennial Oscillation (QBO), the 11 year solar cycle, and volcanic eruptions,
El Niño Southern Oscillation ENSO, North Atlantic Oscillation NAO (e.g., Brasseur and15

Granier, 1992; Hood, 1997; Schmidt et al., 2010; Rieder et al., 2010). In this paper we
focused on prediction experiments with total ozone data. The total ozone data were
from Arosa, Switzerland, which has the world’s longest total ozone record. Homoge-
nized total ozone data from 1927 to 2007 were obtained from the World Ozone and
Ultraviolet Radiation Data Centre (WOUDC; http://www.woudc.org).20

By using the SFA technique on Arosa’s daily total ozone data in winter (from January
to March) for the period 1927 to 2007, we obtained the first output of the driving force
{y1} when the embedding dimension was chosen as 3, 5, 7, 9, 11, respectively (shown
in Fig. 3). Note that the result did not change significantly with different embedding
dimension values.25

We established a prediction model introduced above for winter ozone data by incor-
porating the driving force constructed by SFA. The prediction was based on 7305 data
points. Out of the 7305 data points, the first 7125 data points were used to build the
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predictive model, and the last 180 data points were used to test the prediction using
root-mean-square error (RMSE) and the correlation coefficient between actual and pre-
dicted values. The time lag τ was taken to be 1, the embedding dimension of the total
ozone data m1 took values from 3 to 5, and the embedding dimension of the driving
force time series m2 was set to either 0 for the stationary model or 3 to 5 for the forcing5

model.
The experimental results for this case are listed in Table 1, Figs. 4 and 5. From Ta-

ble 1, it can be seen that all RMSE values given by the forcing model were much lower
than those by the stationary model. Figure 4 presents the correlation coefficients be-
tween the actual and predicted values, the forcing model excelled over the stationary10

model, especially on the first two steps. For the first prediction step, the correlation
coefficients reached 0.61 in the stationary model but 0.91 in the forcing model. For the
8th prediction step, the correlation coefficients reached 0.39 in the stationary model,
but still 0.45 in the forcing model. For the 12th prediction step, the correlation coeffi-
cients reached 0.22 in the stationary model, but 0.33 in the forcing model. Clearly, when15

the input of the reconstructed driving force is introduced prediction is dramatically im-
proved. The average correlation over the prediction time step range is improved 50 %
when the driving force extracted through SFA technique is included. Figure 5 illustrates
the error between the prediction and observation. It can be seen that all the prediction
errors for the forcing model were lower than those for the stationary model. All these20

results indicate that the inclusion of the driving force constructed by the SFA approach
into the prediction model largely improved the predictive skill of winter total ozone in
Arosa. Some sensitivity analysis with different training/verifying lengths do not alter the
conclusions.

4 Discussion25

In this study, we first reconstructed the driving forces of a time series based on the
SFA approach, and then these driving forces were introduced into a predictive model.
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In doing so, we extend the study of Wang et. al. (2012, 2013) and present a novel tech-
nique by incorporating driving forces reconstructed by SFA to predict non-stationary
time series. Unlike the former works by Wang et. al. (2012, 2013), whose driving forces
were assumed, in this study the driving force were extracted from original time series.
The experimental results obtained from a modified logistic time series and winter ozone5

data in Arosa illustrated our model’s effectiveness.
The driving force reconstruction technique based on SFA represents a progress for

climate causal relations. Such an approach may provide a compatible and direct win-
dow for studying causality with external driving forces. We reconstructed the driving
forces with SFA and then combined these driving forces to establish the predictive10

model. Although we found this approach able to effectively improve the predictive abil-
ity, in essence the reconstructed driving force information is just a time series with-
out any physical sense. In order to understand the real background of this string of
figures, one has to further explain the physical sense behind it. One recommended
method, provided by Verdes (2005), suggests using a measure called “transfer en-15

tropy” to analyze the causality, another recommended method is named “convergent
cross mapping” provided by Sugihara et al. (2012), which measures causality in non-
linear dynamic systems. Work in this area is in progress and will be reported in future
publications.
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Table 1. RMSE comparison of the prediction experiments (unit: Dobson units).

1 2 3 4 5 6 7 8 9 10

Stationary model 0.80 0.88 0.90 0.94 0.96 0.99 1.03 1.02 1.04 1.05
Forcing model 0.62 0.55 0.62 0.74 0.87 0.93 0.97 0.98 1.01 1.01
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Figure 1. The true and reconstructed driving force.
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Figure 2. Prediction skill comparison combined with or without driving force.
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Figure 3. The slowest driving force with different embedding dimension for total ozone data.
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Figure 4. Prediction skill comparison combined with or without driving force.
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Figure 5. Error (Dobson Units) at prediction steps with or without forcing input.
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