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Abstract

The time-varying finite time Lyapunov exponent (FTLE) is a powerful Lagrangian con-
cept widely used for describing large-scale flow patterns and transport phenomena.
However, field experiments usually have modest scales. Therefore, it is necessary to
bridge between the powerful concept of FTLE and (local) field experiments. In this pa-5

per a new interpretation of the local FTLE, the time series of a FTLE field at a fixed
location, is proposed. This concept can practically assist in field experiments where
samples are collected at a fixed location and it is necessary to attribute long distance
transport phenomena and location of source points to the characteristic variation of
the sampled particles. Also, results of this study have the potential to aid in planning10

of optimal local sampling of passive particles for maximal diversity monitoring of as-
semblages of microorganisms. Assuming a deterministic flow field, one can use the
proposed theorem to (i) estimate the differential distances between the source (or des-
tination) points of the collected (or released) particles when consecutive sampling (or
releasing) is performed at a fixed location, (ii) estimate the local FTLE as a function15

of known differential distances between the source (or destination) points. In addition
to the deterministic flows, the more realistic case of unresolved turbulence and low
resolution flow data that yield the probabilistic source (or destination) regions are stud-
ied. It is shown that similar to deterministic flows, Lagrangian coherent structures (LCS)
separate probabilistic source (or destination) regions corresponding to consecutive col-20

lected (or released) particles.

1 Introduction

The classical interpretation of finite time Lyapunov exponent (FTLE) fields and the as-
sociated hyperbolic Lagrangian coherent structures (LCSs) provides useful information
about large-scale flow patterns and transport and mixing phenomena in flow domains25

(Haller and Poje, 1998; Haller and Yuan, 2000; Mancho et al., 2004; Shadden et al.,
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2005; Haller, 2011). There are an increasing number of studies that apply various con-
cepts of LCSs, based on the classic right Cauchy–Green tensor, to describe and pre-
dict the time evolution of Lagrangian features in geophysical systems. In some of these
studies, geophysical information (e.g., wind or oceanic velocity fields) have been used
as the input data and Lagrangian results (e.g., the distribution of an oil spill in the ocean5

or volcanic ash in the atmosphere) over a large area are compared with the behavior
of the geophysical system either via satellite data or simulations (Dellnitz et al., 2009;
Peng and Peterson, 2012; Olascoaga and Haller, 2012; Mendoza and Mancho, 2012;
Olascoaga et al., 2012). A large scale distribution of particles is a common character-
istic among these studies. In contrast, this study is motivated by a series of field exper-10

iments and studies regarding the long distance transport of airborne microorganisms
where only a limited number of localized (and temporally consecutive) measurements
of the atmospheric structure of microbial assemblages is available (Schmale III et al.,
2008; Tallapragada et al., 2011; Schmale et al., 2012; Lin et al., 2013). Therefore, there
is a need to bridge the powerful concept of FTLE and (local) field experiments.15

In this paper, we present a new interpretation of local FTLE using the concept of
local Lyapunov exponents in ordinary differential equation systems (Abarbanel et al.,
1992; Branicki and Wiggins, 2009) . The suggested interpretation of local FTLE helps
us to investigate long distance transport phenomena as a possible cause of charac-
teristic variation in successively collected airborne samples such as the presence or20

absence of a unique strain or species of microorganism. In addition, this analysis is
useful for planning the atmospheric collections at a fixed location with respect to the
forecast data of FTLE fields. Because this study is motivated by aerial measurements
in realistic conditions, i.e., hundreds of collections of microorganisms from the atmo-
sphere with drones, it is necessary to consider the spatiotemporal limitations of the25

available velocity field data. These limitations are manifested in unresolved turbulence
and impose uncertainties on the location of the source and destination points. For this
reason, we use a Lagrangian particle dispersion model to determine the probabilistic
source (or destination) regions and show how the concept of local FTLE can explain the

905

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/2/903/2015/npgd-2-903-2015-print.pdf
http://www.nonlin-processes-geophys-discuss.net/2/903/2015/npgd-2-903-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
2, 903–937, 2015

Local finite time
Lyapunov exponent

A. E. BozorgMagham
et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

degree of separation between probabilistic source (or destination) regions (Fay et al.,
1995; Draxler and Hess, 1998; BozorgMagham and Ross, 2015), and may contribute
to understanding the degree of geographic and genetic diversity observed in aerial
samples.

Results of this study are important for practical environmental applications such as5

early warning and integrated risk management systems in agriculture communities and
sampling planning from geophysical flows (Tallapragada et al., 2011; BozorgMagham
et al., 2013; BozorgMagham and Ross, 2015).

This paper is outlined as follows. In Sect. 2 we define the local FTLE and study the
relationship between this concept and the dispersion of source (or destination) points10

in deterministic flow fields. In Sect. 3 we show some numerical verification and applica-
tions of the local FTLE concept. In Sect. 4 we consider the unresolved turbulence and
investigate the uncertainty of the backward and forward trajectories and the resulting
probabilistic source and destination regions.

2 Local finite time Lyapunov exponent15

In this section we consider a new interpretation of local FTLE for a time-varying vector
field, e.g., dx/dt = v (x,t), which is conceptually related to the local Lyapunov exponent
(LE) in ordinary differential equation (ODE) systems (Oseledec, 1968; Abarbanel et al.,
1992). By local FTLE we mean the time-varying value of the FTLE field at an arbitrary
location x. Classically, the time-varying FTLE measures the maximum separation rate20

between nearby particles when they are released in the flow field at the same time
(isochrone particles). Figure 1 refers to this classical description. This figure shows
two (isochrone) particles which are close to each other at an initial time t0. Under the
effect of the flow field the displacement vector between the two particles, δx, changes.
After an elapsed time T , the new vector between the two particles is25

δx (t0 + T ) =φ
t0+T
t0

(x+δx)−φt0+Tt0
(x) = Dφ

t0+T
t0

(x)+O
(
‖δx (t0)‖2

)
(1)
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where φ
t0+T
t0

is the flow map for the vector field from time t0 to t0 + T and Dφ
t0+T
t0

=

dφ
t0+T
t0

(x)/dx is the Jacobian of the flow map.
The maximum possible separation between the released particles after time interval

T , assuming sufficiently small initial distance between them with respect to an appro-
priate norm ‖·‖, is proportional to the square root of the maximum singular value, λmax,5

of the right Cauchy–Green strain tensor, ∆.

max‖δx (t0 + T )‖ =
√
λmax (∆)‖δx (t0)‖ (2a)

∆ (x,t0,T ) = Dφ
t0+T
t0

(x)TDφ
t0+T
t0

(x) . (2b)

The finite time Lyapunov exponent (FTLE), with t0 and T fixed, is considered a scalar
field of the Lyapunov exponent as a function of initial position, x,10

σTt0 (x) =
1

|T |
ln
√
λmax (∆). (3)

Similar to the calculation of maximum separation between two initially neighboring
points in an ODE system and the corresponding maximum LEs, σTt0 is used to describe
the max‖δx (t0 + T )‖ as

max‖δx (t0 + T )‖ = exp
(
σTt0 (x,t0) |T |

)
‖δx (t0)‖ . (4)15

In this study we are interested in particles that are sampled (or released) consecu-
tively in time at a fixed location. Thus, the standard concept of the FTLE, i.e., separation
rate of nearby isochron points, is not applicable. Therefore, we propose and apply the
concept of local FTLE. We show that we can (i) recover an approximation of the true
local FTLE by using the differential distances of the successive source (or destination)20

points and (ii) estimate the differential distance of the source (or destination) points by
having the true local FTLE and (local) velocity time-series.
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In the following sections we focus on the backward FTLE fields and the location of
source points because this situation is important for our field studies for identifying
potential source regions of plant pathogens and their relative risk of transport to pre-
viously unexposed regions Lin et al. (2014); Prussin et al. (2014b, a, 2015). However,
all the results are valid for forward time FTLE fields as well, and the spread of passive5

particles released from a fixed location.

Theorem: providing sufficiently small time interval between successive sampling
events, i.e., δt, and sufficiently long elapsed time, i.e., |T | � δt, the true local FTLE
value, averaged over the time interval [t1,t2], can be approximated by

σT[t1,t2] (x) = limδt→0
1

|T |
ln

δ (x,T ,t1,δt)∥∥v (x,t1,t2)δt
∥∥ . (5)10

where t1 and t2 = t1 +δt are the times that particles 1 and 2 are observed at the
sampling location x, |T | is the norm of the elapsed time, δ (x,T ,t1,δt) is the distance
between successive source points corresponding to the elapsed time T , and v (x,t1,t2)
is the average velocity at the sampling location over [t1,t2].

To prove this theorem, we introduce δ∗ (shown by the dashed line in Fig. 2) which is15

the distance between particle 1 (shown by a solid circle) and particle 2 at time t2. For
clarity, we also view this backward time problem in the forward direction, from source
point to sampling point. By satisfying two conditions, the above theorem is automati-
cally converted to the classic interpretation of FTLE. Those two conditions are (i) δ∗

is sufficiently small, (ii) δ (x,T ,t1,δt) is close to the maximum separation between the20

two particles.

Proof: if the time between successive sampling (or release) events is sufficiently small
(δt→ 0 or δt� TL, the Lagrangian time scale of the velocity field) and the magnitude of

the velocity at any arbitrary location is finite, then δ∗ =
∥∥∥∫t2=t1+δtt1

v (x,t)dt
∥∥∥ converges
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to
∥∥v (x,t1,t2)δt

∥∥, which is small. Therefore the first condition is satisfied. The total
elapsed time for particle 1 from its source location to the solid circle is T +δt which is
approximately the same as the integration time of particle 2 since T � δt. Therefore,
if we look in the reverse-time direction we can consider the two particles as nearly
isochronic particles which are released from two nearby points (bold cross and solid5

circle), each with elapsed time T . To satisfy the second condition, we need to show that
δ (x,T ,t1,δt) is close to the maximum possible distance between the two particles after
T (referring to Eq. 4). In general, the direction of maximum expansion dominates the
dynamics of the displacement vector growth (Rosenstein et al., 1993). Therefore any
two nearby initial conditions will stretch into the direction of the local leading Lyapunov10

vector. Thus, with a sufficiently long elapsed time T we conclude that the two separated
particles lie along (or very close to) the major axis of an ellipse which is generated by
deformation of a sufficiently small sphere of arbitrary initial conditions (Tanaka and
Ross, 2009). Thus, as δt→ 0 and for sufficiently large |T |, δ (x,T ,t1,δt) is sufficiently
close to the maximum possible distance between the two particles. Therefore, the two15

necessary conditions are satisfied and the proof is completed. �

This theorem enables us to recover the local FTLE if we have the distance between
the source points and the time-varying velocity at the sampling point. More importantly,
for sampling purposes, the reverse is also true; we can use Eq. (5) to estimate the
distance between the isochronic source positions of consecutively collected particles,20

provided we also have the velocity (e.g., wind velocity from an anemometer) and local
FLTE data at the sampling location as

δ (x,T ,t1,δt) = exp
(
|T |σT(t1,t2) (x)

)∥∥v (x,t1,t2)δt
∥∥ . (6)

We note the following. (i) Results of this theorem are also valid for forward FTLE
fields and spread of passive particles. In this case, sampling and source locations are25

replaced by release and destination locations respectively. (ii) Results of this theorem
are independent of the flow field dimension. (iii) By decreasing the time interval be-

909

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/2/903/2015/npgd-2-903-2015-print.pdf
http://www.nonlin-processes-geophys-discuss.net/2/903/2015/npgd-2-903-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/
AEBM
Highlight

AEBM
Sticky Note
This has been revised.




NPGD
2, 903–937, 2015

Local finite time
Lyapunov exponent

A. E. BozorgMagham
et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

tween successive sampling (or releases) events, i.e., smaller δt, errors of Eqs. (5) and
(6) decrease and the approximated local FTLE value and differential distance would
be closer to the true values. (iv) A larger (true) local FTLE of the real flow field, yields
smaller error of estimations for the recovered local FTLE and the differential distance.

In following section we demonstrate some numerical verification and applications of5

this theorem.

3 Numerical verification and some applications

3.1 Numerical verification of the local FTLE theorem

We apply the local FTLE theorem to compare the true (benchmark) and the recovered
local FTLE time-series and also the true and the estimated differential distances of the10

source locations corresponding to the particles that were sampled at Virginia Tech’s
Kentland Farm, located at 37◦11′N and 80◦35′W, where we have collected a large
variety of microbial samples with drones over the past 7 years (2006 to 2013) (Schmale
et al., 2012). We refer to this point as (0,0) in our plots.

The flow maps are calculated by using numerical data corresponding to the North15

America Mesoscale, NAM–218 provided by the National Oceanic and Atmospheric
Administration (NOAA) and National Centers for Environmental Prediction’s (NCEP)
Operational Model Archive and Distribution System (NOMADS) project1. Spatial reso-
lution of this data set is about 12.1 km and the temporal resolution is 3 h. All the trajecto-
ries are calculated by a fourth order Runge–Kutta integrator with a constant integration20

time step equals to 5 min. We use third order splines for all necessary spatiotemporal
interpolations. We consider the time interval 12:00 UTC 29 September to 12:00 UTC
30 September 2010 for our numerical experiments and refer to it as the interrogation
window.

1http://nomads.ncdc.noaa.gov/data.php
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Figure 3a and b shows the trajectories and the initial positions of the indexed parti-
cles corresponding to the collected particles at the sampling location during the inter-
rogation window. The frequency of sampling was 1 h and the backward time integration
is 24 h for all the particles. In addition, for simplicity and without losing generality of
the results we perform the integration on a quasi-2-D 850 mb pressure surface (Bo-5

zorgMagham and Ross, 2015). Indices of this figure indicate the sampling times of the
collected particles, for example index “12” that locates on the North-West of the fig-
ure refers to the initial position of a particle that started at 12:00 UTC 28 September
and was collected 24 h later, i.e., 12:00 UTC 29 September, at the sampling location.
In terms of streaklines (Batchelor, 2000), this line (Fig. 3b) is composed of contem-10

poraneous points, e.g., 24 h, from the assembly of streaklines which pass through the
sampling location during the interrogation window. We define this line as the isochron
source-line since the integration time from all points on it to the sampling location is the
same, i.e., 24 h in this example.

Following the assumptions of the local FTLE theorem (δt� TL, the Lagrangian time15

scale of the velocity field, which is in the order of approximately 104 s for the horizontal
turbulence cases, Draxler and Hess, 1998), we have to choose small sampling peri-
ods. For this aim the frequency of sampling, δt, is selected from 0.1 to 1 h and all the
integrations are done in the same interrogation window. Figure 4a shows the bench-
mark (true) differential distance between successive source points, i.e., δ (x,T ,t1,t2),20

during the interrogation window calculated from the available velocity field data. We
use the average velocity at the sampling location to calculate δ∗ as

∥∥v (x,t1,t2)δt
∥∥. In

general, the average velocity term, i.e., v (x,t1,t2), is approximated by the average of
the velocities at two successive sampling (or release) times or the velocity at the mid
time of two sampling (or release) events. Figure 4b show the time series of the recov-25

ered local FTLE time-series for each sampling case, assuming that the true successive
differential distances are available.

Figures 3b and 4 demonstrate that we interpret a local (backward) FTLE time-series
as differential stretching of line elements, i.e., strain, along an isochron source-line. To

911

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/2/903/2015/npgd-2-903-2015-print.pdf
http://www.nonlin-processes-geophys-discuss.net/2/903/2015/npgd-2-903-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
2, 903–937, 2015

Local finite time
Lyapunov exponent

A. E. BozorgMagham
et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

verify this result and to study the effect of different δt’s on the recovery of local FTLE
time-series we calculate the benchmark backward FTLE fields for the interrogation win-
dow with integration time equal to 24 h. Figure 5a shows an image of the time-varying
FTLE field corresponding to 12:00 UTC 29 September 2010. To give a sense about the
changes of the FTLE field during the interrogation window, we may describe the mo-5

tion of the strong ridges of the field in Fig. 5a toward North-West direction (upper-left
corner of the figure as shown by the arrow). Figure 5b shows the benchmark (true)
local FTLE value (black line) at the Kentland Farm during the interrogation window. To
generate this plot we calculate the backward FTLE field every 15 min, then the time
varying value of FTLE at (0,0) is extracted. Also for comparing the results, the recov-10

ered FTLE time-series corresponding to δt = 0.1 h is displayed in the same panel by
the red line. Figures 4b and 5b indicate that: (i) by choosing smaller sampling period
time, δt, the recovered local FTLE time-series converges to the true one. (ii) The esti-
mation error is smaller for larger values of the true local FTLE. Therefore, when σ→ 0
we may observe larger errors of estimation, e.g., between 00:00 and 04:00 UTC in15

Fig. 5b. For δt = 0.1 h we observe that the two time series are highly correlated and
also their maxima (corresponding to the local maxima of the FTLE field) are at the
same times (within δt = ±0.1 h). Therefore, for sufficiently small δt’s the recovered lo-
cal FTLE time-series can accurately capture the passage times of moving ridges of
a FTLE field. Detecting those ridges is important since they are candidates for hyper-20

bolic LCSs in many geophysical applications (Tallapragada et al., 2011; Haller, 2011;
Karrasch, 2012; BozorgMagham et al., 2013).

In addition, we investigate whether we can estimate the differential distances by the
local FTLE theorem providing necessary information about local velocity and FTLE.
Figure 6 is a numerical example that shows that the benchmark differential distance25

between the successive source points (black line) is well approximated by the local
FTLE theorem as [4]δ = exp(|T |σT[t1,t2] (x))

∥∥v (x,t1,t2)δt
∥∥ which is shown by the red

line. Note that in this case we have the data of the true local FTLE and the local ve-
locity. In this figure we see that with δt = 0.25 h, the estimated differential distance
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time-series is very similar to the true answer and it captures the correct times of the
local maxima. This is an empirically important result, because one can schedule the
sampling from geophysical flows based on the available forecast FTLE fields and local
velocity such that the successive collected particles originate from the most possible
diverse locations (see Sect. 3.2). In Fig. 6 it is evident that there are two optimal time5

intervals, i.e., before and after 16:00 UTC, for maximal diversity monitoring. To interpret
this, consider Fig. 3b and notice that the geographic extent of the line segment from
point 15 to point 16 is much larger than segment 13 and 14.

3.2 Applications of the local FTLE theorem

A direct result of the local FTLE recovery theorem is the possibility of planning for10

maximal geographic (and therefore also genetic) diversity monitoring such that the
collected particles come from the most separated source locations. This means incor-
porating greater potential source areas, which could drive a greater diversity of sample
collection.

Suppose that it is desired to maximize the genetic diversity of microorganisms col-15

lected in a sample, assuming that all the sampled particles have approximately the
same flight time. Results of the local FTLE theorem indicate that the optimal time for
collecting samples such that they originate from the most possible distant locations
is at times corresponding to the maxima of the local FTLE time-series (note the high
correlation between the differential distance and the local FTLE time-series in Figs. 620

and 5b). To ensure that the particles are coming from significantly separated locations
we may use the topology of the FTLE field and collect the samples on either side of
a strong attracting LCS feature which corresponds to a local maximum of σT[t1,t2], pro-
viding short enough time between sampling periods. In this condition, high value of
σT[t1,t2] as the exponent in Eq. (4) is the reason for having a large δ. Figure 7 schemati-25

cally shows this strategy when an attracting LCS feature passes over a fixed sampling
location causing a dramatic change in the region of possible source points of collected
particles.
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As an example in realistic geophysical flow, Fig. 8 shows trajectories of three hypo-
thetical particles that are collected at (0,−100) km with respect to the reference point.
Backward integration time for specifying the corresponding source points, i.e., A, B and
C, and the trajectories is 40 h for those three particles. The sampling times during the
interrogation window are 13:40 UTC for the red particle, 14:00 UTC for the blue particle5

and 14:10 UTC for the green particle. The green and the blue particles are sampled on
one side of an attracting LCS but the red particle is sampled on the other side of the
same LCS. As we observe, the source points corresponding to blue and green parti-
cles, points B and C, are close meanwhile the source point of the red particle, point
A, is significantly far from the other two particles. An interesting feature of this figure10

is that the separation of the trajectories does not start from the sampling point, but
as it is shown, the three trajectories remain close to each other for about 200 km and
then begin to diverge. This observation is directly related to the concept of the FTLE,
because σTt0 is a function of the “final” separation between nearby particles and it does
not specify the moment of divergence.15

Referring to this example, the local FTLE theory can help us to explain the observa-
tion of significant characteristic variation of the collected particles, e.g., genetic types or
aerial density of the microbial samples, at the sampling location during short intervals
when sampling is coincide with a high value local FTLE, or equivalently, passage of
a strong LCS over the sampling location (Tallapragada et al., 2011; Lin et al., 2013). In20

addition, a direct result of the local FTLE theorem is that when the local FTLE value is
small during the sampling process, then it is expected that the collected particles orig-
inate from nearby source points, assuming approximately same flight times for them.
This might be the reason that the characteristics of the microbial samples remain quasi-
constant in consecutive collections, but differ as the time between sample collections25

increases (Lin et al., 2013). This situation is similar to sampling from a coherent set
where the FTLE values are generally small (Froyland et al., 2010; Tallapragada and
Ross, 2013) and the particles have similar Lagrangian characteristics. Moreover, in
cases that we observe significant changes in collected samples while local FTLE value
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is small, we may conclude that those changes are caused by some local incidents
rather than long range transport phenomena (Lin et al., 2013). Thus, the local FTLE
concept helps us to include or exclude rare/unique microbes from specific source re-
gions.

4 Unresolved turbulence and probabilistic regions5

In this section we study the uncertainty in calculation of the source (or destination)
points due to the unresolved turbulence and also the role of high-value local FTLE in
separation of the probabilistic source (or destination) regions.

Precise calculation of the source (or destination) point of any collected (or released)
particle and the corresponding flow map require high resolution data of the velocity10

field. But geophysical data are always discrete and spatially sparse. For example, spa-
tial and temporal resolution of operational data set varies from the order of 10 to hun-
dreds of kilometers and 3 h to longer intervals respectively. Meanwhile, spatiotemporal
scales of atmospheric flows can be smaller than the resolution of the available data
and we may lose important Lagrangian phenomena such as turbulent diffusion and15

small size eddies if we just consider available data (Csanady, 1973; Rodean, 1996).
Therefore, for realistic calculation of the source (or destination) points it is necessary
to consider the the uncertainty of the trajectories. For this purpose, we consider a La-
grangian particle dispersion model (LPDM) that provides the stochastic component of
the velocity with respect to the available deterministic (background) data (Legg and20

Raupach, 1982; Fay et al., 1995; Draxler and Hess, 1998; Stohl et al., 2005). The over-
all velocity v (x,t) is composed of a deterministic term, v (x,t), and a random variable,
V (x,v ,t), which depends explicitly on the instantaneous position of the particle x, its
deterministic velocity v at that location and the time t; see Eq. (7). Later, we see how
this dependency dictates two different solutions for the calcualtions of the probabilistic25

source and destination regions (BozorgMagham and Ross, 2015).

v (x,t) = v (x,t)+ V (x,v ,t). (7)
915
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The stochastic term of the Eq. (7) is a Markov-chain process as a function of the
velocity deformation tensor and the Lagrangian time scale of the flow field,

V(t+∆t) = R∆tVt +
(

1−R2
∆t

)0.5
N (0,1)

√
κ/TL (8)

where V shows each component of the stochastic velocity term V , and the correlation
coefficient R∆t is a measure of the association between stochastic velocities during5

successive time steps. Also, N is a normal distribution with mean zero and unit SD.
The correlation coefficient

R∆t = exp
(
−∆t/TL

)
. (9)

is a function of integration time step, ∆t, and the Lagrangian time scale of the flow
field, TL, which is on the order of 104 s. The term κ depends on the gradient of the10

instantaneous deterministic velocity, v = (u,v), the meteorological data grid size, χ ,
and an empirical constant, c,

κ = 2−0.5(cχ )2

[(
∂v
∂x

+
∂u
∂y

)2

+
(
∂u
∂x
− ∂v
∂y

)2]0.5

. (10)

Because κ depends on the gradient of the background velocity one can use the set
of Eqs. (7)–(10) for forward integration. Using this set for simple backward integration15

requires presumption about the position of a particle at specific times which leads to
misleading results. Therefore, we have to consider two distinct cases, (i) calculation of
the probabilistic destination region of a released particle, (ii) calculation of the proba-
bilistic source region of a collected particle. In this study we discuss both cases, but
like before, emphasize the probabilistic source regions (corresponding to the backward20

trajectories). We also revisit the problem of local FTLE and successive sampling when
the effects of unresolved turbulence are considered. Our numerical results show that
even in the presence of unresolved turbulence, if successive sampling are performed
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on either side of a strong attracting LCS, then the probabilistic source regions are sig-
nificantly separated similar to the deterministic case.

To focus on the main concerns of this study and to avoid complexity we proceed
with a 2-D velocity field similar to the previous sections. However, this approach can
be extended to 3-D fields by adding an appropriate stochastic term in the extended5

direction (Rodean, 1996).

4.1 Probabilistic source and destination regions

(i) The probabilistic destination region is the probability distribution of the final positions
of virtually released particles after integration time T when the initial position is known
precisely, e.g., a Dirac delta function. The case of forward integration and related cal-10

culations of a probabilistic distribution is equivalent to solving the Fokker–Planck or
Kolmogorov forward equations (Rodean, 1996; Risken, 1985) which describe the fu-
ture of a probability distribution function of a known initial condition that evolves under
the dynamics of a system, e.g., a diffusion process.

Because the time-varying vector fields are usually complicated, analytical solutions15

for probabilistic destination regions are not available and it is necessary to use nu-
merical solutions. For this aim, we discretize the domain of our interest into sufficiently
small boxes and then use the Monte Carlo method by releasing sufficient number of
independent particles from a box that includes the release point. Figure 9 shows this
procedure. By choosing an appropriate integration time step we calculate the trajec-20

tories. By completion of the integration process we have a distribution of particles in
different boxes. If the total number of released particles is sufficiently large and the
boxes’ dimensions are sufficiently small, then the ratio of the virtual particles in each
box to the total number of released particles show the probability distribution of the
destination region. By increasing the number of virtual particles and decreasing the25

size of the boxes the calculated distribution becomes invariant.
(ii) The solution for a probabilistic source region is conceptually the same as solv-

ing the Kolmogorov backward problem (Risken, 1985). In mathematical terms, at time
917
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t0 − T (T > 0 is the integration time) we investigate for a specific source distribution
such that in a future time, i.e., t0, the system will be in a given target set, i.e., the
box that includes the sampling location. A probabilistic source region cannot be de-
termined by simply performing backward time-integration. Because κ in Eq. (10) and
consequently the stochastic velocity term are determined by the instantaneous back-5

ground velocity which depends on the location and time. Naively applying the backward
time-integration produces a series of “false” displacement vectors. The cumulative ef-
fect of these false displacements yields a false probabilistic source region. To solve
this problem, we first discretize the domain of the flow field into small boxes. Then, we
shift the starting time to t0 − T . By this means, we convert this problem into a forward10

integration problem from t0 − T to t0. At t0 − T we release a sufficient number of inde-
pendent (virtual) particles from all boxes of the domain (this step is the major difference
between the current and the previous case). By forward integration from t0 − T to time
t0 we find the landing location of all released particles. The influential particles in this
procedure are those which land inside the sampling box, e.g., the green trajectories15

in Fig. 10. In this figure, those boxes that have contribute to the particles ending up in
the target box, labeled “j ”, are hatched. As we observe, there may be particles from
contributing boxes that do not land in the target box (shown by red trajectories).

In Fig. 10 the boxes are labeled by i = 1,2, . . .,nb where nb is the number of boxes
and the sampling box is shown by index j . We denote the number of particles which20

start from box i at time t0 − T and are in box j at time t0 by ni→j . We calculate the
relative contribution of each source box as,

γi =
ni→j∑
ini→j

, (11)

where
∑
ini→j shows the total number of particles that land in the sampling (target) box

j and γi is the chance of a sampled particle to come from a specific box i . Therefore,25

the distribution of γ over the domain approximates the probability distribution of the
source region. This procedure generates the correct probabilistic source region but its
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numerical efficiency is not high because many, e.g., 106, independent particles are
released from all boxes of the domain but only those particles that land in the sampling
box are counted. Thus, there are a huge number of calculated trajectories that are
left out. It is not the purpose of this study, but one can increase the efficiency of this
procedure by applying some optimization methods. For example, sequential release of5

particles from large boxes that are inside a circle centered at the sampling box and
identifying the regions with maximum contributions. The radius of that circle can be
determined by statistical information about the mean velocity and the integration time.
After that, one may focus on those important regions by partitioning them into smaller
boxes and increasing the number of released particles to determine finer structures of10

the probabilistic source region. For more information regarding this problem one can
refer to STILT project2 (Lin et al., 2003; Nehrkorn et al., 2010; Hegarty et al., 2013).

4.2 Probabilistic source region and local FTLE

For a realistic example of probabilistic source regions and the local FTLE we revisit
the case study of section Sect. 3.2. Figure 11a shows one example of a probabilistic15

source region where the color intensity shows the relative contribution of each source
box. In this case the sampling location is at (0,−100) km with respect to our reference
point. Sampling time is 14:10 UTC 29 September 2010 and the total elapsed time for
trajectory calculations is T = 40 h. This figure is the stochastic equivalent of the source
point of the particle that its trajectory is shown by a green line in Fig. 8. For this cal-20

culation 105 particles are released from each 10km×10 km box. The search area for
this specific problem is a 900km×600km rectangular grid. Considering the size of the
boxes, we would have 5400 of them. Therefore, the total number of released particles
and calculated trajectories is 5.4×108 in each integration time step.

An important point for both cases, the probabilistic source and destination regions,25

is that although at each time step the stochastic velocity term has a Gaussian distri-

2http://www.stilt-model.org
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bution (recalling Eq. 8), the final distribution of particles is not necessarily Gaussian.
The reason for this fact is the cumulative effects of the variability of the variance of

normal distribution,
√
κ/TL, that is a function of the gradient of instantaneous velocity.

In general, for small integration time the probability distribution of the source (or desti-
nation) region is close to a Gaussian distribution but as the integration time increases,5

the corresponding distribution diverges from a normal one. For example, visual inspec-
tion of Fig. 11b indicates that the final distribution of the probable source points is not
Gaussian. In Fig. 11c the relative contribution of the source boxes along the speci-
fied line PQ is shown. Standard statistical tests such as the Kolmogorov–Smirnov test
(Lilliefors, 1967) confirm that the distribution is not Gaussian.10

In Fig. 8 we show that the source locations of two sampled particles on either side
of a attracting LCS are much further apart than the source points of two successive
sampled particles on one side of the same LCS. We want to investigate whether this
result is still valid in the presence of unresolved turbulence. If that result holds then
in practical applications such as sampling the microbial structure of the atmosphere15

we can have reasonable confidence about the separation of the probabilistic source
regions based solely on a deterministic analysis, that is, without performing bothersome
probabilistic calculations. We study this problem for an example for which we also know
the deterministic answer. Figure 12 shows the evolution of the probabilistic source
regions “A” and “B” (shown in panel a) corresponding to red and blue particles of Fig. 820

respectively. The total integration time for this example is 40 h. In each panel of this
figure we also show the contemporaneous attracting hyperbolic LCSs according to
Haller (2011) and Karrasch (2012). For calculation of each probabilistic region of this
figure, 105 particles are released from each small 10km×10km box. By comparing
Fig. 8 and panel a of Fig. 12 we observe that the probabilistic source regions contain25

the deterministic source points and they significantly separated from each other. Also,
we see how the two probabilistic regions contract and become closer to the attracting
LCS as they get closer to the sampling point. One noticeable feature in this figure is
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the difference between the shapes of the two source regions, while the two sampling
are separated by only 20 min.

Results of this example show that, similar to the deterministic case, the probabilistic
source regions corresponding to the collected particles on either side of a deterministic
attracting LCSs are significantly separated in backward time.5

5 Conclusions

FTLE fields provide useful information about large-scale transport phenomena and
also Lagrangian structures of flow fields. However, in field experiments the data are on
a much more modest scale. Therefore, it is necessary to bridge the gap between the
concept of FTLE and local experiments. Our new interpretation of local FTLE was moti-10

vated in part by our previous work examining the dynamics of assemblages of microor-
ganisms in the lower atmosphere The mathematical concept of local FTLE enables
us to either (i) estimate the differential distances between the source (or destination)
points of successive collected (or released) particles assuming the availability of the
local velocity and FTLE data, or (ii) recover an approximation of the the true local FTLE15

time-series if we have the local velocity and differential distance data.
The suggested notion is useful in practical cases where we have a collection of parti-

cles, sampled at a fixed location, and we want to generate hypotheses about the char-
acteristics of the collected particles, their source locations and long distance transport
phenomena. We show that assuming short time interval between successive sample20

collections, the differential distance between the corresponding source locations is de-
scribed by the local FTLE (at sampling interval) and the local velocity. This result may
help us to explain the variations in the genetic structure of assemblages of microorgan-
isms in the atmosphere.

In addition, we show that the concept of local FTLE could be applied to scheduling25

of atmospheric sampling missions with drones to collect samples with a high diversity
and/or that contain unique individuals or species. We also investigate the unresolved
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turbulence and the probabilistic description of the source (or destination) points. We
use the box discretization method and discuss the important differences between cal-
culation methods of the probabilistic source and destination regions. Furthermore, we
show that because the stochastic velocity is a function of instantaneous background
velocity, the probabilistic source (or destination) regions are not necessarily Gaussian.5

Finally, we study the probabilistic source regions corresponding to successive sampled
particles on either side of a strong hyperbolic attracting LCS and we show that the
source regions are significantly separated similar to the deterministic flow field.

Results of this study can aid in optimizing the sampling schedules of passive particles
and also aid in understanding of the outcomes of local observations in geophysical10

flows, based on larger scale features.
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Figure 1. Separation of nearby particles during time interval T due to the flow map φ. The two
particles are released in the flow field at the same time t0; isochrone particles.
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Figure 2. Two successive sampled particles at a fixed location shown by a bold cross. Particles
1 and 2 are collected at t1 and t2 = t1+δt respectively (time interval between the two successive
sampling is δt). The integration time between the sources and the sampling location is T for
both particles. The excessive displacement of the first particle during δt is shown by δ∗.
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Figure 3. (a) Trajectories of the sampled particles during 24 h of integration. (b) Sequen-
tial source points and the isochron source-line. Sampling frequency is one hour between
12:00 UTC 29 September to 12:00 UTC 30 September 2010 and the sampling location is at
(0,0) (Virginia Tech Kentland Farm 37◦11′ N and 80◦35′W).
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Figure 4. (a) δ as the benchmark (true) differential distance between successive source points.
Horizontal axis represents the averaged time corresponding to each successive pairs, (b) re-
covered local FTLE for different δt’s form 0.1 h (6 min) to 1 h. Interrogation window is 12:00 UTC
29 September to 12:00 UTC 30 September 2010.
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Figure 5. (a) The frozen image corresponding to 12:00 UCT 29 September 2010 of the back-
ward FTLE field during the interrogation window. Integration time is 24 h for FLTE calculations.
The bold arrow shows the general wind direction and the motion of the attracting LCS. (b) The
true (black) and recovered (red) local FTLE time-series at the reference point (0,0). For the
recovered time series (red), δt is equal to 0.1 h.
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Figure 6. Differential distance between the successive source points on the isochron
source-line corresponding to δt = 0.25 h. The black line shows the benchmark and the red
line shows the approximated time series which is calculated by local FTLE theorem as
exp(|T |σT[t1,t2] (x))

∥∥v (x,t1,t2)δt
∥∥. The backward integration time for calculations of the flow

maps is T = 24 h and the interrogation window is 12:00 UTC 29 September to 12:00 UTC
30 September 2010.
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attracting LCSattracting LCS

Figure 7. An attracting LCS feature (red) passes over the sampling location (indicated by a bold
×). Dashed lines show trajectories of hypothetical particles that are absorbed to a moving
attracting LCS. The bold arrow shows the general wind direction and the motion of the attracting
LCS at the specified interval. Collected samples on either side of this attracting LCS feature
come from two different regions.
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Figure 8. Three trajectories of hypothetical collected samples. The red and blue trajectories
correspond to the samples on either side of a LCS. The blue and green trajectories correspond
to the samples on one side of the same LCS. Sampling times are 13:40, 14:00 and 14:10 UTC
during the interrogation window (12:00 UTC 29 September to 12:00 UTC 30 September 2010)
for the red, blue and the green particles, respectively. Source points of the sampled particles
are shown by (A), (B), and (C). Integration time for all three particles is T = 40 h.
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Figure 9. A solution for probability distribution of a forward case. Virtual particles are released
from a box that includes the release location. Distribution of the final positions after integration
time T would specify the probabilistic destination region. Calculation of the probabilistic des-
tination region is equivalent to the solution of a Fokker–Planck equation for finding the future
probability distribution of an initially known distribution. Trajectories of the released particles
from the initial box are shown in green.
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Figure 10. A solution for probability distribution of a source region. For proper forward-time
integration, the starting time is shifted to t0−T . Virtual particles are released from all the boxes
in the domain. Important particles are those who land in the target box which include the sam-
pling location. Trajectories of particles which land in the target box are shown by green, other
trajectories are shown by red. A solution for the probabilistic source region is conceptually the
same as the solution of backward Kolmogorov equation where an initial probability distribution
is the desired solution such that in a future time the system will have a specified probability
distribution.
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Figure 11. (a) The probabilistic equivalent of the source point of the green particle in Fig. 8.
The sampling point S is located at (0,−100) km with respect to our reference point and sampling
time is 14:10 UTC 29 September 2010, (b) details of the probabilistic source region which is
composed of 5400 boxes, each 10km×10km. Color intensity shows the relative contribution of
each source box. (c) γ, relative contribution of source boxes along the specified line PQ.
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Figure 12. Sequence of hyperbolic LCSs (blue) and two probabilistic source regions corre-
sponding to two successive samples. Probabilistic regions “A” and “B” (a) correspond to the
virtually red and blue particles in Fig. 8. These six panels correspond to 40, 30, 20, 10, 5 and
0 h before collecting the corresponding samples at 13:40 and 14:00 UTC during the interroga-
tion window.
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