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Thank you very much for your constructive comments and suggestions. We
followed your recommended points and revised our manuscript. Below is our
detailed response to your comments (the original comments are in normal font
and our response is in bold font):

In this paper the authors discuss a new conceptual tool, which they call the local finite
time Lyapunov exponent, to characterize flows in real applications and field experi-
ments where samples are collected/released at a fixed location and it becomes im-
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perative to obtain information concerning long distance transport properties from this
data.

They main idea is to generalize the well-known concept of FTLE, which involves initial
small differences in the initial condition of two (or and ensemble) of tracers, to the case
where particles (tracers) are collected/dropped at the same spatial position but different
times. This is done by introducing the so-called local FTLE– mathematically defined
in Eq. (5). The idea, as it stands, would be interesting for obvious reasons, specially
in field applications. However, I have strong doubts that the quantity defined in Eq.(5)
and the corresponding method, and theorem, are valid.

I explain in detail my main concerns:

1) The main authors claim is that they generalize the FTLE concept. I assume this
means that the new exponents in Eq.(5) characterize the maximal exponential growth
rates in some time interval (t1, t2)? Unfortunately, the authors offer no proof whatso-
ever that Eq.(5) yields the maximal FTLE. There is no warranty that perturbing in the
direction of the flow will lead to maximal growth. Therefore, there is no proof, as far as
I see, that Eq.(5) leads to a set of LEs with the intended meaning. This must be rigor-
ously proven or, at least, strong arguments of plausibility should be provided regarding
the meaning of σT as a Lyapunov exponent characterizing the maximal expansion rate.

We thank the reviewer for finding this error. Following this important comment,
and based on our exploration of the non-autonomous systems, we replace the
previously proposed (and as we now see, incorrect) “Theorem” with related “Ob-
servations I II”. We agree with the reviewer, believing we have made some helpful
observations which fit into the larger emerging Lagrangian transport framework,
particularly in geophysical flows; and yet concede that we are not, nor do we
now intend, to put this into a rigorous theorem. Instead we leave that for the fu-
ture or to other authors. We have also included some example analytical vector
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fields, and the provided numerical experiments on periodic and aperiodic flow
fields demonstrate that we seem to be able to approximate the benchmark (true)
σ with Eq. (8) [Eq. (5) in the original manuscript]. Our hope is that our observa-
tions will have some bearing on practical field applications, and will help foster
further connection with time-series based methods, often used in experimen-
tal analysis, which commonly assume that the direction of maximum expansion
dominates the dynamics of perturbations in arbitrary directions (see Rosenstein
et al (1993)).

Regarding “perturbing in the direction of the flow”, see below.

2) Related with the point above is the following. The local FTLE and corresponding
"theorem", as defined by Eq.(5), cannot be valid in such a general situation as the
authors imply. As it stands, absolutely no requirements seem to exist for mathematical
conditions of applicability of this theorem, so we should assume it is of general validity,
including any form for v(x, t)?? Well, this cannot be the case because for autonomous
systems, where v(x) does not depend explicitly on time, it is known that a perturbation
in the trajectory direction gives on average a null FTLE (and of course, never tends to
the maximal instability). By the same token, we can also expect that a slow varying
v(x, t) will also be problematic for time intervals shorter than the inverse of the typical
frequency of variation of v(x, t). In fact, I am afraid that the authors have naively
assumed that the perturbation in the direction of the flow will exponentially grow and
tend to align with the direction of maximal growth, however, as far as I see it, this will
require some mixing/randomness conditions on v in a general case, which are not
totally clear. For instance, one may assume that if v(x, t) is a delta-time-correlated
stochastic field this might provide enough randomness to allow the system to scan
random disturbances and Eq.(5) could be given a meaning. On the other hand, a
smoothly varying field v would be more problematic.
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The issue of “perturbing in the direction of the flow” and the resulting null
FTLE for autonomous systems is an important concern which escaped our
notice before, and for which we thank the reviewer. We now discuss in the
revised paper, in light of Observations I II. We recognize that taking δt to zero
will not give the result we expected, and having it too long will violate the linear
approximation of the flow map gradient. We are thus led to conclude that for
practical applications δt must be in an ad-hoc ‘appropriate range’ to provide a
good approximation via Eq. (8) [Eq. (5) in the original manuscript]. This δt range
depends on the time-variability of the vector field in question. We make no claim
to know what the appropriate range is, a priori.

3) I would expect to see a numerical verification of the new concept in a simplified
model of chaotic flow in order to clearly show that, under general enough conditions for
v(x, t), the idea works. For instance, by comparing the local FTLE with the true FTLE
at x(t), also in the limit t2 –> t1 with the true FTLE measured by standard methods,
maybe extracting some conclusions on the degree of randomness of v for the method
to give reasonable results. Instead the authors go to full scale models and field data,
where it is unclear what tests can be used for validation.

Again we thank the reviewer for this constructive comment, and have added four
numerical examples from two well-known flow systems with time-variability. We
present the results for the double-gyre system and also the aperiodic Rayleigh–
Bénard convection model, which help bolster our numerical evidence for Obser-
vations I II.

In this regard, I am very much confused by the comparison with numerical data. I do
not understand what is used as benchmark local FTLE in Fig. 5 and 6 for instance.
As far as I can see in these plots the real numerical distance δ(t) is compared with
that obtained from Eq.(5). But, Eq.(5) is also used to compute σT from the numerical
distances δ(t) so what is exactly proven by these plots? It looks like a simple change
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of variables. Given the fact that σT do not have the meaning of LEs (i.e. characterizing
the maximal exponential growth rates) what difference does it make to give the tracers
separation as δ(t) or in terms of σT ? To be more specific, suppose the true FTLE is
very high at some point of the trajectory x(t) for a time horizon T, will this imply anything
on the value of the σT (x, t)?? Or is it totally unrelated? Can one compute the LCS
from σT ?

Following this comment and to avoid any confusion, we revised the description
of the figures throughout the paper. To be more specific about Fig. 5 and 6
(equivalent to Figs. 9 and 10 in the revised paper, respectively) we must say
that Fig. 5a (Fig. 9a in the new revision) shows the “true” FTLE field at a
specific moment. Panel (b) of the same figure shows the “true” (black line) and
“approximated” (red line) local FTLEs at a specific location. The approximated
FTLE (red line) is calculated by Observation I, Eq. (8) [Eq. (5) in the original
manuscript]. For this case, we assume that we know the distance between the
particles and also the local value of velocity.
Fig. 6 (Fig. 10 in the revised paper) shows the “true” (black line) and “ap-
proximated distance” (red line) between successively collected particles at
the sampling location. The red line (approximated distance) is calculated by
Observation II, Eq. (9) [Eq. (6) in the original manuscript]. In this case we
assume that we have the information of local FTLE and local velocity. (One
should note that, these two figure and the two Observations are independent)
Observations I is a means to calculate the local FTLE value. Therefore it can
show the “temporal” peaks of the local FTLE time-series (for example, please
see the new added figures 5 and 7 in the revised paper). Computation of the
LCS requires the availability of FTLE over the entire field which is out of scope
of Observations I II.

Please also note the supplement to this comment:
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http://www.nonlin-processes-geophys-discuss.net/2/C361/2015/npgd-2-C361-2015-
supplement.pdf
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