
I must first apologize to the authors for the long delay in sending this review. 
 
The paper presents results that basically deserve publication in my mind. At the same time, I 

consider a number of clarifications, and also some additional tests, are necessary before the paper can 
be accepted. My main comments are as follows. 

 
1. There is some confusion in the paper about the roles of linearity and Gaussianity in 

assimilation. The abstract reads Two common derivations respectively lead to the Kalman filter and to 
variational approaches. They rely on either assumptions of linearity or assumptions of Gaussianity of 
the probability density functions of both observation and background errors. Maybe I am mistaken on 
the authors’ intentions, but these sentences mean in effect that the hypotheses of linearity (leading to 
Kalman filter) and Gaussianity (leading to variational assimilation) are mutually exclusive. They are 
not. Both Kalman filter and variational assimilation are based on the same linear assumptions (and both 
are empirically extended to weakly nonlinear situations). Under these linear assumptions, they are only 
two different algorithms that solve the same problem. In addition, they both achieve Bayesian 
estimation in the case when the errors affecting the data are Gaussian. More precisely 

 
P. 1063, ll. 10-11. …, up to now operational Numerical Weather Prediction (NWP) has relied 

on assimilation schemes that are Gaussian …. The authors do not say which assimilation schemes they 
have in mind, but I presume they mean schemes of the general ‘Kalman’ form 

 
xa  = xb + K(y - Hxb)         (1) 

 
where xb and xa  are respectively the background and the analysis, y is the observation, H the 
corresponding  (linear) observation operator, the difference d ≡ y - Hxb being the innovation vector. K is 
the gain matrix which, in the context of least variance estimation, is defined as K ≡ Czd Cdd

-1, where Czd 
is the cross-covariance matrix of the background error z ≡ x  - xb with the innovation, and is Cdd is the 
covariance matrix of the innovation itself. 

I stress there is nothing necessarily ‘Gaussian’ in Eq. (1) above. That equation can be obtained 
as defining the Best Linear Unbiased Estimator (BLUE) of x from xb and y, independently of any 
Gaussian hypothesis. It can also be obtained, also independently of any Gaussian hypothesis, on a 
principle of maximum entropy. Linearity, on the other hand, is always necessary. Gausianity is only a 
‘plus’ which, if it comes in addition to linearity, ensures Bayesianity of the estimation. 

The authors write (p. 1065, ll. 2-3, efforts [to] be made to improve linear assumptions … Well, 
if Gaussianity is obtained at the expense of linearity, this may result in a degradation of the accuracy of 
the final estimate. 

P. 1064, ll. 7-8. It [the 4D-Var algorithm] solves for the most probable state […] by minimizing 
a non-quadratic cost-function …. If there are nonlinearities and the cost-function is non-quadratic, it is 
very unlikely that minimizing it will lead to the most probable state. Actually, that is guaranteed only in 
the linear and Gaussian case. 

 
Please revise all parts ot the paper relative to the basic principles of assimilation and to the 

questions of linearity, Gaussianity and bayesianity. It must be clear in particular that, among the 
hypotheses to be made for Kalman filtering and variational assimilation, linearity must come before 
Gaussianity. 

 
 
2. The significance of the D’Agostino test, and the interpretation to be given to the results it 

produces, must be clarified. 
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I mention first that formulæ (2) and (3) for the skewness G3 and the kurtosis G4 are not exact. 
The denominator in the expression for the variance should be NS-1, and similar corrections are to be 
made in the expressions for the third- and fourth-order moments. 

 
More importantly, the fundamental purpose of the test is the following. For given ensemble size 

NS and exact Gaussianity, by how much can one expect G3 and G4 to deviate from their Gaussian values 
0 and 3 ? The authors define transformed skewness and kurtosis f3(G3) and f4(G4) through formulæ 
whose significance is obscure (and which would be in my opinion more appropriately put in an 
appendix than in the main text of the paper). The transformed f3(G3) and f4(G4) are said to be standard 
Gaussian (i.e. with expectation 0 and variance 1) if the original variable is Gaussian. For which values 
of NS is that statement true (it cannot be for any NS, in view for instance of a term NS -3 in several of the 
formulæ leading to the definition of f4(G4)) ? 

The next step is to test the Gaussianity of the transformed f3(G3) and f4(G4). But what is then the 
interest of making the test on f3(G3) and f4(G4) rather than on the raw G3 and G4 ? Is it that a possible 
non-Gaussianity will show up more clearly on the former ? Is so, say it clearly. In any case, explain. 

The authors then introduce the parameter K2 of which they write (p. 1068, ll. 9-10) that it 
follows an approximate χ2 distribution with two degrees of freedom. Well, if f3(G3) and f4(G4) are 
independent standard Gaussians, K2 will follow an exact χ2 distribution with two degrees of freedom 
(with expectation 2 and variance 4). Is it because G3 and G4 are not independent in the first place that 
the distribution cannot be expected to be an exact χ2 ? 

It is not clear how the values obtained for f3(G3), f4(G4) and K2 must be interpreted. The authors 
write (p. 1069, last sentence) describing the values of K2 has the advantage to prevent the results from 
depending on the chosen confidence level. Which confidence level are you referring to ? A level similar 
to the one given (p. 1068, l. 11) for NS = 100 ? But that does not say how to interpret the values 
obtained for K2. One could expect that a χ2 mean value of 2 for K2, with a variance of 4, could be 
interpreted as proof of Gaussianity. And you mention a value of 2.7 (p. 1072, l. 11) as indicating 
Gaussianity. But Fig. 3a shows values, at all levels and for all variables except q, which are about 4, 
which seems to indicate significant deviation from Gaussianity. Nevertheless, you write in the 
conclusion (p. 1076, l. 14) Deviation from Gaussianity for U, V , and T only appears in the boundary 
layer. All that is confusing. 

A similar remark applies to the parameters f3(G3) and f4(G4), of which it is not clearly said 
(except for the large values of f3(G3)) how they must be interpreted. For instance, how the fact that the 
values of f4(G4) are positive in Fig. 3c must be interpreted (f4(G4) clearly does not have the standard 
Gaussian distribution to be expected if the basic variables are Gaussian) ? 

 
All those aspects must be clarified. In particular, explain in what it is better to use the 

parameters f3(G3) and f4(G4) (and K2) rather than the raw diagnostics G3 and G4. And explain better how 
the values found for f3(G3), f4(G4) and K2 must be interpreted (see also comment 4 below). 

 
3. Subsection 4.2.1 and associated Fig. 9. You present diagnostics for control variables, and 

particularly vorticity and divergence and for a 3-hour forecast. You have shown previously that, for 
other variables, the analysis ensembles are more Gaussian than the forecast ensembles. I suggest you 
also present diagnostics for the analysed control variables. 

 
4. Subsection 4.2.1. You write on the basis if Fig.9 that the vorticity, unlike the wind 

components, is strongly non-Gaussian. This is what comparison of Figs 3 and 9 may suggest, but the 
vorticity is a linear function of the wind components, and cannot be as such be less Gaussian than those 
components. This requires clarification. 

 
5. Concerning also Fig. 9, you write that the unbalanced divergence ηu, like vorticity, is strongly 
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non-Gaussian, while the variables Tu and qu display much more Gaussian profiles. Well, according to 
the caption of Fig. 9, it is Tu which, in addition to vorticity, shows large values of K2, while ηu shows 
smaller values. Is there an error in the caption, or what ? 

 
And, speaking of vorticity, you use the Greek letter ξ (pronounced xi) to denote it. The usual 

notation is ζ (pronounced zeta). I suggest you follow the established practice. 
 

6. P. 1073, ll. 9-11. For q, NG is mainly found in “cloudy” areas, […] with two peaks around 
900 and 700 hPa. According to Fig. 6a, there is a much more marked peak in the layer 100-300 hPa.  

 
7. Abstract, ll. 18-19, The mass control variables used in our data assimilation, namely vorticity 

and divergence. Well, vorticity and divergence are not mass variables (check for other possible similar 
mistakes elsewhere in the paper) 

 
8. P. 1066, ll. 3-4, Positive (negative) values are associated with a mode of the PDF smaller  

(larger) than its mean. This statement may not be true of the mode of the distribution (which can be 
arbitrarily modified with infinitesimal change to the distribution), but is true of its median. 

 
9. And there are erroneous statements concerning the relationship between skewness and tails 

pp. 1071, l. 13, and 1072, l. 1. 
 
10. P. 1068, l. 11, what is unilateral testing ? 
 
11. P. 1073 and 1076, ll. 11 and 19, forecast terms ranges 
 
12. P. 1064, l. 15, Laroche and Pierre, 1998. Do you mean Laroche and Gauthier ? 
 
13. P. 1064, l. 20 (and elsewhere). The proper spelling is Järvinen (with a diaeresis) 
 
14. P. 1077, ll. 7-8, … does not include model error, neither in the analysis nor in the forecast 

steps (what you write is analogous to writing in French Je n’ai pas vu personne) 
 
15. P. 1076, l. 3, below the tropopause 
 
 


