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Dear Prof. Lucarini 
 

We are resubmitting you our revised manuscript entitled “Nonstationary time series prediction  

combined with slow  feature analysis”, which number is npg-2014-82. We would like to thank you 

and the three anonymous reviewers for the careful reading of the manuscript and constructive 

comments during the discussion phase in NPGD which are very important and helpful on 

improving the quality of this manuscript. 

 

We have considered all the comments and revised the manuscript accordingly with red font on the 

revised version. Follow ing is a point-by-point reply to the comments and the marked-up 

manuscript version. 

 
Referee #1 
 

1. The method is outlined …as this approach will see more and more applications, given that 

in climate most of the signals are nonstationary. 

As a data driven attempt to make progress in prediction of nonstationary climatic time series, 

this approach will be applied to other climatic signals. 

2. A minor comment: In the abstract line 5 the word “combining” should be replaced by 

“recovering” or “extracting”. 

Corrected. 

 
Referee #2 

1. The only weakness of this paper is that the authors fail to demonstrate that the 

methodology they propose performs better than other competing forecasting methodologies.  

To make an additional comparison, the best prediction skill was achieved when four climate 

modes were used as nonlinearly interacting inputs to the prediction model to predict global 

temperature in the former paper by Wang et al, 2012 (Wang et al :Directional influences on global 

temperature prediction. Geophys. Res. Lett., 39, L13704, 2012), where the results of the statistical 

prediction method of persistence have been shown. 

2. I suggest the authors to make an additional comparison with other methodologies also 

because from their figures 2 and 4 the forcing model works better for just a very few steps, 

just 1-4 steps. This result may be important, but it is not well explained in the paper why it 

may be important.  

As for the prediction experiments shown in Figure 2 and 4 present the forcing model works better 

for just a very few steps, this may due to the chaotic or nonstationary nature of the two signals 

(both theoretical and observed data), predictability is lost fast.  
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Referee #3 

The paper is well structured, the results are convincing, and the conclusions are well 

supported by the data. Therefore I recommend its publication pending technical corrections. 

Please find specific comments/edits/suggestions in the attached .pdf. 

 
The specific technical edits and suggestions are very helpful for improving this manuscript. 
We have considered all comments/edits/suggestions and revised the manuscript accordingly. 
 

Correspondence to: G. Wang (wgl@mail.iap.ac.cn) 
 

Abstract. Almost all climate time series have some degree of nonstationarity due to 
external driving forces perturbing the observed system. Therefore, these external 
driving forces should be taken into account when constructing the climate dynamics. 
This paper presents a new technique of obtaining the driving forces of a time series 
from the Slow Feature Analysis (SFA) approach, then introducing them into a 
predictive model to predict non-stationary time series. The basic theory of the 
technique is to consider the driving forces as state variables and incorporate them into 
the predictive model. Experiments using a modified logistic time series and winter 
ozone data in Arosa, Switzerland, were conducted to test the model. The results 
showed improved prediction skills. 
 
1 Introduction 

If you have any other questions, please let us know. 

Thanks again for your help on this paper! 

Yours sincerely  

Geli Wang  

mailto:wgl@mail.iap.ac.cn�
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Many previous studies have concluded that the climate system is essentially 

non-stationary (Trenberth, 1990; Tsonis, 1996; Yang and Zhou, 2005; Boucharel et al., 

2009). However, lacking o f any general theory for predicting non-stationary processes 

has become one of the main barriers in the field of climate prediction. To unravel this 

issue, in recent years, increasing effort has been devoted to devising methods to 

analyze and predict nonstationary time series.（e.g. Hegger et al., 2000; Verdes et al., 

2000, Wan et al, 2005; Wang and Yang, 2005; Yang et al., 2010）. The mostly used 

method in such studies was to remove or reduce the nonstationarity of the predicted 

system using some mathematical techniques, thereby improving the prediction skills.  

The nonstationarity exists due to the fact that the driving forces that perturb the 

observed system change with time (Manuca and Savit, 1996). Consequently, the mos t 

effective way to remove the nonstationarity may be to incorporate all the driving 

forces in the constructed dynamical system, and to consider them as the state variables 

of that system when establishing a prediction equation within a general circulation 

mod el (GCM). Based on this principle, lately a data-dr iven modeling path that 

compatible with GCM was proposed to predict several artificial non-stationary time 

series with known external forces. It has achieved success in improving predictions 

when driving forces were included in some ideal or climate systems, such as the 

Lorenz system, a logistic model, or global temperature over seasonal timescales 

including the North Atlantic Oscillation (NAO), the Pacific Decadal Oscillation 

(PDO), the El Niño/Southern Oscillation (ENSO), and the North Pacific Index (NPI) 

variability (Wang et. al., 2012, 2013). However, a disadvantage of this technique is 

that it can not differentiate the assumed driving forces from the predictive model. 

Therefore, in the present study we considered the extraction of driving forces from the 
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time series itself and established a predictive model by incorporating the constructed 

driving forces. As a result, the extraction of driving forces became the foc us of this 

study. 

Wiscott (2003) developed a technique called Slow Feature Analysis (SFA) to 

extract driving forces from time series. This technique has been applied to 

nonstationary time series with some success (Wiskott, 2003; Berkes and Wiskott, 

2005; Gunturkun, 2010; Konen and Koch, 2011). In this paper, we used SFA to 

construct the driving forces from a testing time series, and then established a 

predictive model that incorporated the driving forces. The paper is organized as 

follows: A brief description of the predictive technique is presented in section 2. In 

section 3, results are reported from applying the approach to a modified logistic time 

series and the total ozone data of Arosa, Switzerland. A summary is provided in 

section 4. 

2 Methodology 
 

SFA is a method that extracts slowly varying driving forces from a quickly varying 

non-stationary time series. In this section we provide a brief overview of SFA and its 

application on the extraction and construction of the driving forces from the time 

series. The details of SFA is presented in Wiscott (2003), but the basic steps of the 

technique are provided here for convenience and completeness. Let us assume that we 

have a single variable time series nttx ,...2,1)}({ = from a dynamical system: 

1) Embed the above time series into an m-dimensional space (also named the 

length of the m window), a phase trajectory in the m-dimensional space denoted as 

  NtmtxtxtxtX ,...,1))}1((),...,1(),({)( =−−−=    or      

http://www.researchgate.net/researcher/7030333_Wolfgang_Konen/�
http://www.researchgate.net/researcher/66445943_Patrick_Koch/�
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         Ntm txtxtxtX ,...,121 )}(),...,(),({)( ==                           （1） 

where 1+−= mnN . 

2) Generate an expanded signal H(t) for a quadratic expansion,  all monomials of 

degree one and two including mixed terms are used: 

Ntmmmmmm txtxtxtxtxtxtxtxtxtH ,...,1
2

1
2

11
2
11 )}(),()(),(),......()(),...,(),(),...,({)( =−−= , (2) 

where H(t) is an Nk ×  matrix and k = m + m (m + 1)/2.  

To simplify (2) as 

Ntk thththtH ,...,121 )}()...,(),({)( == .        (3)  

The general ob jective of SFA is to extract slowly varying features from the time 

series nttx ,...2,1)}({ = , in other words, to find a set of coefficients, ),...,,( **
2

*
1

*
KwwwW = , 

to make the output signal )()( ** tHWty •=  satisfy 

)}{(min)( ** T
kk

k

T yyyy  =
.          (4) 

Here, ky  is first-order derivative, calculated by )()()( 1 ikikik tytyty −=∆ + . 

3) Normalize the expanded signal H(t), by an affine transformation to generate H’(t) 

with zero mean and unit covariance matrix: 

Ntk thththtH ,...,121 )}()...,(),({)( =′′′=′             (5) 

Where  0=′jh , 1=′′ T
jjhh , S/)h)t(h()t(h jjj −=′ , and ( )∑
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4) By means of the Schmidt algorithm, the function space (5) is orthogonalized as 
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which is also denoted as Ntk tztztztZ ,...121 )}()...,(),({)( == . Here, 0)()( =• tztz ji

（i≠j） and it guarantees that every variable of the output is uncorrelated 

,  
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5) Establish the covariance matrix of )(tZ , denoted as KK
TZZB ×= )(  .The k 

eigenvectors with smallest eigenvalues, kλ , yield the normalized weight vectors 

with kλλλ ≤≤≤ .......21 , which can be easily found by principle component analysis. 

The smallest eigenvalue, 1λ , corresponding to the eigenvector 1W can satisfy 

equation (4), which represents the weight coefficient of the slowest varying 

component. Here, 1W has a free scale factor (presented as r), and then the slowest 

varying variable, or the driving forcing, can be obtained by the following equation: 

ctZrWty +•= )()( 11 ,          (7) 

Where c is a given constant and )}({ 1 ty  is the output signal of the slowest driving 

force obtained by equation (7). 

 

In this study, the SFA was tested on a logistic map  

    1 (1 )t t t ts s sµ+ = −                                               (8)  

with a given driving force parameter  

 )2500/exp()1600/3cos(45.05.3 ttt −−= πµ                                (9) 

To test the ability to construct the driving force from this modified logistic map, we 

took a time series that consists of 5000 data points from this map. Applying the SFA 

algorithm on this time series with the embedded dimension chosen as 3, we 

constructed the driving force shown in Figure 1, in which the dotted line represents 

the true driving force given by (9) and the solid line the constructed driving force by 

the SFA approach. There is a good agreement be tween the constructed and the true 

driving forces with a correlation coefficient of 0.998. This suggests that SFA was able 

to extract the driving force from the observed time series in an unsupervised manner. 
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By far we have two time series, one is the original time series )}({ tx , the another is 

the slowest driving force )}({ 1 ty . Next we demonstrate how to establish a predictive 

model that includes the driving force constructed by the SFA procedure described 

above. We present the basic principle to build the prediction model, for convenience, 

we assume a nonstationary process composes of two series, nttx ,...2,1)}({ =  and )}({ 1 ty , 

with the former being the state variable time series and the latter as the constructed 

external driving force obtained through the SFA approach. The two time series were 

embedded in an m1 + m2 dimensional phase space with a selected time lag τ. The 

constructed phase trajectory using the embedding theorem of Takens (1981) is shown 

as: 

NtmtytytymtxtxtxtE ,...,2,121111 )})1((),...,(),();)1((),...,(),({)( =−−−−−−= ττττ


 (10)   

Here, m1 and m2 are the given embedding dimensions for )}({ tx and )}({ 1 ty , 

respectively, and N = n − (max (m 1, m2) − 1)τ is the number of phase points on the 

trajectory. 

Based on this trajectory, a predictive model to predict the future state of the system 

can be established as: 

)())();((ˆ)( 1 ttytxfptx p ε+=+ 
                         (11)  

Where p is the prediction time step (considered as 1 in the present study), )(tε is the 

fitting error, and f̂ is assumed to be a quadratic polynomial in this study. The Takens 

embedding theorem is only appropriate for an autonomous dynamical system, 

therefore we followed the method of Stark (1999) to embed the driving forces in the 

same state space for a nonstationary system. The next task is to find the cost function 

2
1

1
)]1())(),(([ +−= ∑

=

txtytxf
N

t
η

(12 ) when it reaches its minimum value. For more 
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details, refer to the studies of Farmer and Sidorowich (1987) and Casdagli (1989). 

3 Experiments 

We applied the prediction technique described above to perform some prediction 

experiments using several given non-stationary time series. The experiment presented 

in Section 3.1  was performed with data from the modified logistic model given above. 

3.1 Prediction experiments for ideal time series 

The prediction experiments were based on 5000 data points from the above verified 

logistic map (8) with the assumed driving force (9). The first 4800 data points were 

applied to establish the predictive model, and the remaining 200 data points were used 

to test the prediction and estimate the correlation coefficient between the actual and 

predicted values as a function of the prediction time step. The embedding dimension 

of the verified logistic time series, namely m1, took values from 2 to 3, and the 

embedding dimension of the driving force time series, namely m2, was set to either 0 

(the driving force was not taken into account, and is referred to as the ‘stationary 

model’ hereinafter) or 1 (the driving force extracted from the verified logistic map by 

SFA was taken into account, and is referred to as the ‘forcing model’ hereinafter).The 

time lag τ was always set to be 1. Figure 2 shows the prediction skill with and without 

the influence of the driving force, which was constructed by the SFA approach. The 

forcing model excelled over the stationary mode l. In particular, at the fourth 

prediction step,  the correlation coefficients were be low 0.2 in the stationary model 

compared to above 0.6 in the forcing mode l. The average correlation across the 

prediction time steps was improved, indicating that introducing the driving force 
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extracted through the SFA approach into the prediction model can yield a significant 

improvement in accuracy.  

 

3.2 Prediction experiment for total ozone  

Many studies have sought to explain the variables involved in ozone dynamics, such 

as the Quasi-Biennial Oscillation (QBO), the 11-year solar cycle, volcanic eruptions, 

the El Nĩ no Southern Oscillation (ENSO), North Atlantic Oscillation (NAO) (e.g., 

Brasseur and Granier, 1992; Hood, 1997; Schmidt et al., 2010；Rieder et al., 2010). In 

this paper we focused on prediction experiments with total ozone data. The total 

ozone data were from Arosa, Switzerland, and were the world’s longest total ozone 

record. Homogenized total ozone data from 1927 to 2007 were obtained from the 

World Ozone and Ultraviolet Radiation Data Centre (WOUDC; 

http://www.woudc.org).  

By using the SFA technique on Arosa’s daily total ozone data in winter (from 

January to March) for the period 1927 to 2007, we obtained the first output of the 

driving force }{ 1y when the embedd ing dimens ion was chosen as 3,5,7,9,11, 

respectively (shown in Figure 3). Note that the result did not change significantly with 

different embedding dimension values. 

We established a pr ediction mod el for winter ozone data by incorporating the 

driving force constructed by SFA. The prediction was based on 7305 data points. Out 

of the 7305 data points, the first 7125 data points were used to build the predictive 

model, and the remaining 180 data points were used to test the prediction using 

root-mean-square error (RMSE) and the correlation coefficient between observed and 

http://www.woudc.org/�
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predicted values. The time lag τ was taken to be 1, the embedding dimension of the 

total ozone data m1 took values from 3 to 5, and the embedding dimension of the 

driving force time series m2 was set to either 0 for the stationary model or 3 to 5 for 

the forcing model.  

The experimental results for this case are listed in Table 1, also shown in Figure 4 

and Figure 5. From Table 1, it can be seen that all RMSE values given by the forcing 

model were much lower than those by the stationary mod el. Figure 4 presents the 

correlation coefficients between the observed and predicted values. The forcing mod el 

outperformed the stationary mode l, especially at the first two steps. At the first 

prediction step, the correlation coefficients reached 0.61 for the stationary model but 

0.91 for the forcing model. At the 8th prediction step, the correlation coefficients 

reduced to 0.39 for the stationary model, but still maintained at 0.45 for the forcing 

mod el. At the 12th prediction step, the correlation coefficients were 0.22 and 0.33 for 

the stationary model,and the forcing model respectively. This has clearly shown that, 

when the constructed driving force is introduced, the accuracy of prediction is 

dramatically improved. The average correlation over the prediction time steps is 

improved by 50% when the driving force extracted through SFA technique is included. 

Figure 5 illustrates the error between the prediction and observation. The pr ediction 

errors for every time step is lower for the forcing model than the stationary model. All 

these results indicate that the inclusion of the driving force constructed by the SFA 

approach into the prediction model largely improve the predictive skill of winter total 

ozone in Arosa. Some sensitivity analysis with different training/verifying lengths do 

not alter this conclus ion. 

4 Discussion 

 
In this study, we first constructed the driving forces of a time series based on the SFA 
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approach, and then the driving forces were introduced into a predictive model. By 

doing so, we extend the study by Wang et. al. (2012, 2013) and present a novel 

technique to predict non-stationary time series. Unlike the former works by Wang et. 

al. (2012, 2013) with assumed driving forces, in this study the driving force was 

extracted from original time series. The experimental results obtained from a modified 

logistic time series and winter ozone data in Arosa confirmed the effectiveness of the 

mod el. 

The driving force construction technique based on SFA represents a progress for 

climate causal relations. Such an approach may provide a compatible and direct 

window for  studying causality using external driving forces. We constructed the 

driving forces with SFA and then combined these driving forces to establish the 

predictive model. Although we found this approach was able to effectively improve 

the predictive ability, the constructed driving force time series still lacks of physical 

explanation. In order to understand the real background of these, one has to further 

explore the physical processes behind it. One recommended method, provided by 

Verde s (2005), suggests using a measure called ‘transfer entropy’ to analyze the 

causality; another recommended method is named ‘convergent cross mapping’

provided by Sugihara et. al. (2012), which measures causality in nonlinear dynamic 

systems. Work in this area is in progress and will be reported in future publications. 

 

Acknowledgments. This research was supported by the National Natural Science 
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Table 1  RMSE comparison of the prediction experiments (unit: Dobson units) 

 

 

 

 

 

 
 

 

Figure Captions 

Figure 1   The true and constructed driving force. 

Figure 2   The comparison of prediction skills between models combined with or without 

driving force. 

Figure 3   The slowest driving force with different embedding dimension for total 

ozone data. 

Figure 4   The comparison of prediction skills between models combined with or without 

driving force. 

Figure 5   Errors (Dobson Units) at prediction steps with or without forcing input. 

 

 

 

 

 

 1 2 3 4 5 6 7 8 9 10 

Stationary 
model 0.80 0.88 0.90 0.94 0.96 0.99 1.03 1.02 1.04 1.05 

Forcing 
model 0.62 0.55 0.62 0.74 0.87 0.93 0.97 0.98 1.01 1.01 
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Figure 1   The true and constructed driving force. 
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Figure 2   The comparison of prediction skills between models combined with or without driving 

force. 
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Figure 3   The slowest driving force with different embedding dimension for total ozone data. 
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Figure 4   The comparison of prediction skills between models combined with or without driving force. 
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Figure 5   Errors (Dobson Units) at prediction steps with or without forcing input. 

 


