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Abstract. Almost all climate time series have some degree of nonstationarity due to 9 

external driving forces perturbing the observed system. Therefore, these external 10 

driving forces should be taken into account when constructing the climate dynamics. 11 

This paper presents a new technique of obtaining the driving forces of a time series 12 

from the Slow Feature Analysis (SFA) approach, then introducing them into a 13 

predictive model to predict non-stationary time series. The basic theory of the 14 

technique is to consider the driving forces as state variables and incorporate them into 15 

the predictive model. Experiments using a modified logistic time series and winter 16 

ozone data in Arosa, Switzerland, were conducted to test the model. The results 17 

showed improved prediction skills. 18 

 19 

1 Introduction 20 

 21 

Many previous studies have concluded that the climate system is essentially 22 

non-stationary (Trenberth, 1990; Tsonis, 1996; Yang and Zhou, 2005; Boucharel et al., 23 

2009). However, lacking o f any general theory for predicting non-stationary processes 24 

has become one of the main barriers in the field of climate prediction. To unravel this 25 

issue, in recent years, increasing effort has been devoted to devising methods to 26 

analyze and predict nonstationary time series.（e.g. Hegger et al., 2000; Verdes et al., 27 

2000, Wan et al, 2005; Wang and Yang, 2005; Yang et al., 2010）. The mostly used 28 

method in such studies was to remove or reduce the nonstationarity of the predicted 29 

system using some mathematical techniques, thereby improving the prediction skills.  30 

The nonstationarity exists due to the fact that the driving forces that perturb the 31 

observed system change with time (Manuca and Savit, 1996). Consequently, the mos t 32 
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effective way to remove the nonstationarity may be to incorporate all the driving 33 

forces in the constructed dynamical system, and to consider them as the state variables 34 

of that system when establishing a prediction equation within a general circulation 35 

mod el (GCM). Based on this principle, lately a data-dr iven modeling path that 36 

compatible with GCM was proposed to predict several artificial non-stationary time 37 

series with known external forces. It has achieved success in improving predictions 38 

when driving forces were included in some ideal or climate systems, such as the 39 

Lorenz system, a logistic model, or global temperature over seasonal timescales 40 

including the North Atlantic Oscillation (NAO), the Pacific Decadal Oscillation 41 

(PDO), the El Niño/Southern Oscillation (ENSO), and the North Pacific Index (NPI) 42 

variability (Wang et. al., 2012, 2013). However, a disadvantage of this technique is 43 

that it can not differentiate the assumed driving forces from the predictive model. 44 

Therefore, in the present study we considered the extraction of driving forces from the 45 

time series itself and established a predictive model by incorporating the constructed 46 

driving forces. As a result, the extraction of driving forces became the foc us of this 47 

study. 48 

Wiscott (2003) developed a technique called Slow Feature Analysis (SFA) to 49 

extract driving forces from time series. This technique has been applied to 50 

nonstationary time series with some success (Wiskott, 2003; Berkes and Wiskott, 51 

2005; Gunturkun, 2010; Konen and Koch, 2011). In this paper, we used SFA to 52 

construct the driving forces from a testing time series, and then established a 53 

predictive model that incorporated the driving forces. The paper is organized as 54 

follows: A brief description of the predictive technique is presented in section 2. In 55 

section 3, results are reported from applying the approach to a modified logistic time 56 

series and the total ozone data of Arosa, Switzerland. A summary is provided in 57 
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section 4. 58 

2 Methodology 59 

 60 

SFA is a method that extracts slowly varying driving forces from a quickly varying 61 

non-stationary time series. In this section we provide a brief overview of SFA and its 62 

application on the extraction and construction of the driving forces from the time 63 

series. The details of SFA is presented in Wiscott (2003), but the basic steps of the 64 

technique are provided here for convenience and completeness. Let us assume that we 65 

have a single variable time series nttx ,...2,1)}({ = from a dynamical system: 66 

1) Embed the above time series into an m-dimensional space (also named the 67 

length of the m window), a phase trajectory in the m-dimensional space denoted as 68 

  NtmtxtxtxtX ,...,1))}1((),...,1(),({)( =−−−=    or      69 

         Ntm txtxtxtX ,...,121 )}(),...,(),({)( ==                           （1） 70 

where 1+−= mnN . 71 

2) Generate an expanded signal H(t) for a quadratic expansion,  all monomials of 72 

degree one and two including mixed terms are used: 73 

Ntmmmmmm txtxtxtxtxtxtxtxtxtH ,...,1
2

1
2

11
2
11 )}(),()(),(),......()(),...,(),(),...,({)( =−−= , (2) 74 

where H(t) is an Nk ×  matrix and k = m + m (m + 1)/2.  75 

To simplify (2) as 76 

Ntk thththtH ,...,121 )}()...,(),({)( == .        (3)  77 

The general ob jective of SFA is to extract slowly varying features from the time 78 

series nttx ,...2,1)}({ = , in other words, to find a set of coefficients, ),...,,( **
2

*
1

*
KwwwW = , 79 

to make the output signal )()( ** tHWty •=  satisfy 80 
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)}{(min)( ** T
kk

k

T yyyy  =
.          (4) 81 

Here, ky  is first-order derivative, calculated by )()()( 1 ikikik tytyty −=∆ + . 82 

3) Normalize the expanded signal H(t), by an affine transformation to generate H’(t) 83 

with zero mean and unit covariance matrix: 84 

Ntk thththtH ,...,121 )}()...,(),({)( =′′′=′             (5) 85 

Where  0=′jh , 1=′′ T
jjhh , S/)h)t(h()t(h jjj −=′ , and ( )∑

=

=
k

j
j hh

k
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1

2-(t)1  86 

4) By means of the Schmidt algorithm, the function space (5) is orthogonalized as 87 
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 88 

which is also denoted as Ntk tztztztZ ,...121 )}()...,(),({)( == . Here, 0)()( =• tztz ji89 

（i≠j） and it guarantees that every variable of the output is uncorrelated 90 

5) Establish the covariance matrix of )(tZ , denoted as KK
TZZB ×= )(  .The k 91 

eigenvectors with smallest eigenvalues, kλ , yield the normalized weight vectors 92 

with kλλλ ≤≤≤ .......21 , which can be easily found by principle component analysis. 93 

The smallest eigenvalue, 1λ , corresponding to the eigenvector 1W can satisfy 94 

equation (4), which represents the weight coefficient of the slowest varying 95 

component. Here, 1W has a free scale factor (presented as r), and then the slowest 96 

varying variable, or the driving forcing, can be obtained by the following equation: 97 

ctZrWty +•= )()( 11 ,          (7) 98 

Where c is a given constant and )}({ 1 ty  is the output signal of the slowest driving 99 

force obtained by equation (7). 100 

 101 

,  
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In this study, the SFA was tested on a logistic map  102 

    1 (1 )t t t ts s sµ+ = −                                               (8)  103 

with a given driving force parameter  104 

 )2500/exp()1600/3cos(45.05.3 ttt −−= πµ                                (9) 105 

To test the ability to construct the driving force from this modified logistic map, we 106 

took a time series that consists of 5000 data points from this map. Applying the SFA 107 

algorithm on this time series with the embedded dimension chosen as 3, we 108 

constructed the driving force shown in Figure 1, in which the dotted line represents 109 

the true driving force given by (9) and the solid line the constructed driving force by 110 

the SFA approach. There is a good agreement be tween the constructed and the true 111 

driving forces with a correlation coefficient of 0.998. This suggests that SFA was able 112 

to extract the driving force from the observed time series in an unsupervised manner. 113 

By far we have two time series, one is the original time series )}({ tx , the another is 114 

the slowest driving force )}({ 1 ty . Next we demonstrate how to establish a predictive 115 

model that includes the driving force constructed by the SFA procedure described 116 

above. We present the basic principle to build the prediction model, for convenience, 117 

we assume a nonstationary process composes of two series, nttx ,...2,1)}({ =  and )}({ 1 ty , 118 

with the former being the state variable time series and the latter as the constructed 119 

external driving force obtained through the SFA approach. The two time series were 120 

embedded in an m1 + m2 dimensional phase space with a selected time lag τ. The 121 

constructed phase trajectory using the embedding theorem of Takens (1981) is shown 122 

as: 123 

NtmtytytymtxtxtxtE ,...,2,121111 )})1((),...,(),();)1((),...,(),({)( =−−−−−−= ττττ


 (10)   124 

Here, m1 and m2 are the given embedding dimensions for )}({ tx and )}({ 1 ty , 125 
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respectively, and N = n − (max (m 1, m2) − 1)τ is the number of phase points on the 126 

trajectory. 127 

Based on this trajectory, a predictive model to predict the future state of the system 128 

can be established as: 129 

)())();((ˆ)( 1 ttytxfptx p ε+=+ 
                         (11)  130 

Where p is the prediction time step (considered as 1 in the present study), )(tε is the 131 

fitting error, and f̂ is assumed to be a quadratic polynomial in this study. The Takens 132 

embedding theorem is only appropriate for an autonomous dynamical system, 133 

therefore we followed the method of Stark (1999) to embed the driving forces in the 134 

same state space for a nonstationary system. The next task is to find the cost function 135 

2
1

1
)]1())(),(([ +−= ∑

=

txtytxf
N

t
η

(12 ) when it reaches its minimum value. For more 136 

details, refer to the studies of Farmer and Sidorowich (1987) and Casdagli (1989). 137 

3 Experiments 138 

We applied the prediction technique described above to perform some prediction 139 

experiments using several given non-stationary time series. The experiment presented 140 

in Section 3.1  was performed with data from the modified logistic model given above. 141 

3.1 Prediction experiments for ideal time series 142 

The prediction experiments were based on 5000 data points from the above verified 143 

logistic map (8) with the assumed driving force (9). The first 4800 data points were 144 

applied to establish the predictive model, and the remaining 200 data points were used 145 

to test the prediction and estimate the correlation coefficient between the actual and 146 

predicted values as a function of the prediction time step. The embedding dimension 147 
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of the verified logistic time series, namely m1, took values from 2 to 3, and the 148 

embedding dimension of the driving force time series, namely m2, was set to either 0 149 

(the driving force was not taken into account, and is referred to as the ‘stationary 150 

model’ hereinafter) or 1 (the driving force extracted from the verified logistic map by 151 

SFA was taken into account, and is referred to as the ‘forcing model’ hereinafter).The 152 

time lag τ was always set to be 1. Figure 2 shows the prediction skill with and without 153 

the influence of the driving force, which was constructed by the SFA approach. The 154 

forcing model excelled over the stationary mode l. In particular, at the fourth 155 

prediction step,  the correlation coefficients were be low 0.2 in the stationary model 156 

compared to above 0.6 in the forcing mode l. The average correlation across the 157 

prediction time steps was improved, indicating that introducing the driving force 158 

extracted through the SFA approach into the prediction model can yield a significant 159 

improvement in accuracy.  160 

 161 

3.2 Prediction experiment for total ozone  162 

Many studies have sought to explain the variables involved in ozone dynamics, such 163 

as the Quasi-Biennial Oscillation (QBO), the 11-year solar cycle, volcanic eruptions, 164 

the El Nĩ no Southern Oscillation (ENSO), North Atlantic Oscillation (NAO) (e.g., 165 

Brasseur and Granier, 1992; Hood, 1997; Schmidt et al., 2010；Rieder et al., 2010). In 166 

this paper we focused on prediction experiments with total ozone data. The total 167 

ozone data were from Arosa, Switzerland, and were the world’s longest total ozone 168 

record. Homogenized total ozone data from 1927 to 2007 were obtained from the 169 
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World Ozone and Ultraviolet Radiation Data Centre (WOUDC; 170 

http://www.woudc.org).  171 

By using the SFA technique on Arosa’s daily total ozone data in winter (from 172 

January to March) for the period 1927 to 2007, we obtained the first output of the 173 

driving force }{ 1y when the embedd ing dimens ion was chosen as 3,5,7,9,11, 174 

respectively (shown in Figure 3). Note that the result did not change significantly with 175 

different embedding dimension values. 176 

We established a pr ediction mod el for winter ozone data by incorporating the 177 

driving force constructed by SFA. The prediction was based on 7305 data points. Out 178 

of the 7305 data points, the first 7125 data points were used to build the predictive 179 

model, and the remaining 180 data points were used to test the prediction using 180 

root-mean-square error (RMSE) and the correlation coefficient between observed and 181 

predicted values. The time lag τ was taken to be 1, the embedding dimension of the 182 

total ozone data m1 took values from 3 to 5, and the embedding dimension of the 183 

driving force time series m2 was set to either 0 for the stationary model or 3 to 5 for 184 

the forcing model.  185 

The experimental results for this case are listed in Table 1, also shown in Figure 4 186 

and Figure 5. From Table 1, it can be seen that all RMSE values given by the forcing 187 

model were much lower than those by the stationary mod el. Figure 4 presents the 188 

correlation coefficients between the observed and predicted values. The forcing mod el 189 

outperformed the stationary mode l, especially at the first two steps. At the first 190 

prediction step, the correlation coefficients reached 0.61 for the stationary model but 191 

0.91 for the forcing model. At the 8th prediction step, the correlation coefficients 192 

reduced to 0.39 for the stationary model, but still maintained at 0.45 for the forcing 193 

mod el. At the 12th prediction step, the correlation coefficients were 0.22 and 0.33 for 194 
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the stationary mode l, and the forcing model respectively. This has clearly shown that, 195 

when the constructed driving force is introduced, the accuracy of prediction is 196 

dramatically improved. The average correlation over the prediction time steps is 197 

improved by 50% when the driving force extracted through SFA technique is included. 198 

Figure 5 illustrates the error between the prediction and observation. The pr ediction 199 

errors for every time step is lower for the forcing model than the stationary model. All 200 

these results indicate that the inclusion of the driving force constructed by the SFA 201 

approach into the prediction model largely improve the predictive skill of winter total 202 

ozone in Arosa. Some sensitivity analysis with different training/verifying lengths do 203 

not alter this conclus ion. 204 

4 Discussion 205 

 206 

In this study, we first constructed the driving forces of a time series based on the SFA 207 

approach, and then the driving forces were introduced into a predictive model. By 208 

doing so, we extend the study by Wang et. al. (2012, 2013) and present a novel 209 

technique to predict non-stationary time series. Unlike the former works by Wang et. 210 

al. (2012, 2013) with assumed driving forces, in this study the driving force was 211 

extracted from original time series. The experimental results obtained from a modified 212 

logistic time series and winter ozone data in Arosa confirmed the effectiveness of the 213 

mod el. 214 

The driving force construction technique based on SFA represents a progress for 215 

climate causal relations. Such an approach may provide a compatible and direct 216 

window for  studying causality using external driving forces. We constructed the 217 

driving forces with SFA and then combined these driving forces to establish the 218 

predictive model. Although we found this approach was able to effectively improve 219 
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the predictive ability, the constructed driving force time series still lacks of physical 220 

explanation. In order to understand the real background of these, one has to further 221 

explore the physical processes behind it. One recommended method, provided by 222 

Verde s (2005), suggests using a measure called ‘transfer entropy’ to analyze the 223 

causality; another recommended method is named ‘convergent cross mapping’224 

provided by Sugihara et. al. (2012), which measures causality in nonlinear dynamic 225 

systems. Work in this area is in progress and will be reported in future publications. 226 
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 300 

 301 

Table 1  RMSE comparison of the prediction experiments (unit: Dobson units) 302 

 303 

 304 

 305 

 306 

 307 

 308 

 309 

 310 

 1 2 3 4 5 6 7 8 9 10 

Stationary 
model 0.80 0.88 0.90 0.94 0.96 0.99 1.03 1.02 1.04 1.05 

Forcing 
model 0.62 0.55 0.62 0.74 0.87 0.93 0.97 0.98 1.01 1.01 
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Figure Captions 311 

Figure 1   The true and constructed driving force. 312 

Figure 2   The comparison of prediction skills between models combined with or 313 

without driving force. 314 

Figure 3   The slowest driving force with different embedding dimension for total 315 

ozone data. 316 

Figure 4   The comparison of prediction skills between models combined with or 317 

without driving force. 318 

Figure 5   Errors (Dobson Units) at prediction steps with or without forcing input. 319 
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Figure 1   The true and constructed driving force. 334 
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 337 

Figure 2   The comparison of prediction skills between models combined with or without driving 338 

force. 339 
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 341 

Figure 3   The slowest driving force with different embedding dimension for total ozone data. 342 
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Figure 4   The comparison of prediction skills between models combined with or without driving force. 346 
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 348 

Figure 5   Errors (Dobson Units) at prediction steps with or without forcing input. 349 
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