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Abstract. A technique for estimating the age–depth relationship in an ice core and evaluating its

uncertainty is presented. The age–depth relationship is determined by the accumulation of snow at

the site of the ice core and the thinning process as a result of the deformation of ice layers. However,

since neither the accumulation rate nor the thinning process is fully known, it is essential to incorpo-

rate observational information into a model that describes the accumulation and thinning processes.5

In the proposed technique, the age as a function of depth is estimated by making use of age markers

and δ18O data. The age markers provides reliable age information at several depths. The data of

δ18O is used as a proxy of the temperature for estimating the accumulation rate. The estimation is

achieved using the particle Markov chain Monte Carlo (PMCMC) method, which is a combination

of the sequential Monte Carlo (SMC) method and the Markov chain Monte Carlo method. In this10

hybrid method, the posterior distributions for the parameters in the models for the accumulation and

thinning process are computed using the Metropolis method, in which the likelihood is obtained

with the SMC method, and the posterior distribution for the age as a function of depth is obtained

by collecting the samples generated by the SMC method with Metropolis iterations. The use of this

PMCMC method enables us to estimate the age–depth relationship without assuming either linearity15

or Gaussianity. The performance of the proposed technique is demonstrated by applying it to ice

core data from Dome Fuji in Antarctica.

1 Introduction

Ice cores provide vital information on the climatic and environmental changes over the past hun-

dreds of thousands of years. In order to make use of the chronological records from each slice of20
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an ice core, it is crucial to accurately determine the relationship between age and depth in the ice

cores. Many of dating methods for determining the age–depth relationship rely on glaciological

modeling. However, since the glaciological processes controlling the age–depth relationship are not

fully known, it is essential to reduce uncertainty by incorporating various types of observational in-

formation into the glaciological model. In particular, it is important to effectively make use of the25

information of age markers, which provides significant constraints on the age–depth relationship.

The Bayesian approach is a powerful way to combine a variety of observational information with

a model, and it has been applied to the dating of ice cores in a number of studies. Parrenin et al.

(2007) considered a glaciological process model which contains several uncertain parameters. They

then estimated the parameters for that model using the Bayesian approach and the Markov chain30

Monte Carlo (MCMC) method, although they did not consider the errors in the glaciological process

model in the estimation of the parameters. Klauenberg et al. (2011) took a Bayesian approach to

estimate the age–depth relationship and to improve some parameters in their dating model by using

δ18O data. The uncertainty of the estimate was also evaluated in a Bayesian manner. However,

their method was not designed to make use of the constraints of age markers when estimating the35

age–depth relationship. In order to effectively make use of age markers, it is essential to ensure

the consistency of the estimated age within the whole ice core, and it is thus necessary to simulta-

neously consider a large number of variables to represent the age–depth relationship for the entire

ice core. Hence, the Bayesian estimation of the age–depth relationship becomes a high-dimensional

problem. Some existing methods handle this high-dimensionality by assuming Gaussianity. Dreyfus40

et al. (2007) used age markers and a penalized least-squares method, which assumes Gaussianity, to

estimate the age as a function of depth. Lemieux-Dudon et al. (2009) also started by assuming that

the uncertainties are Gaussian and that the model is approximately linear. However, if any of the

relationships among the variables are nonlinear, Gaussianity does not hold in general. In this paper,

we propose a dating method to estimate the age for the entire ice core without assuming either lin-45

earity or Gaussianity. The proposed method formulates the age–depth relationship based on a state

space model to apply a sequential Bayesian approach. The estimation is then achieved using the

particle Markov chain Monte Carlo (PMCMC) method (Andrieu et al., 2010), which is a sequential

Bayesian applicable to nonlinear non-Gaussian problems formulated as a state space model. This

method estimates the age by using the marginal distribution, in which the uncertainties of the pa-50

rameters in the glaciological model are marginalized out. Hence, it evaluates the uncertainty of the

estimated age after considering the effects of the uncertainties in the model parameters.

The remainder of the present paper is organized as follows. In Section 2, we provide a model of the

age–depth relationship. In Section 3, the age–depth relationship is formulated in a framework of a

state space model in order to apply PMCMC for the estimation of the age, accumulation rate, and the55

model parameters. The PMCMC algorithms are explained in Section 4. In Section 5, an application

to the Dome Fuji ice core is demonstrated, and the performance of our method is evaluated. The
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discussion on the proposed method is presented in Section 6. Finally, a summary is presented in

Section 7. For reference, symbols used in this paper are listed in Table 1.

2 Dating model60

The age–depth relationship is determined by two processes. One is accumulation of snow at the site

of the ice core and the other is thinning process due to long-term deformations within the ice sheet

(e.g., Parrenin et al., 2001, 2007). In this section, a model for describing the age–depth relationship

is introduced. Basic ideas about how to estimate the contributions from the snow accumulation and

thinning are also provided.65

Denoting the annual rate of snow accumulation by A(z) [m/year] and the thinning factor by Θ(z)

(dimensionless), the relationship between age ξ [year] and depth from the surface z [m] is described

by the following differential equation:

dz =A(z)Θ(z)dξ. (1)

In this equation, the accumulation rate A(z) is written as a function of depth. This means that A(z)70

indicates the accumulation rate at the time when the ice at depth z was deposited. It would be

more natural to consider the accumulation rate as a function of age ξ rather than depth z. In this

study, however, we first consider the accumulation rate as a function of depth for the convenience

of computation. The accumulation rate with respect to age is then estimated after considering the

uncertainty of age as described later. Equation (1) yields the age ξ in the following form:75

ξ(z) =

z∫
0

dz′

A(z′)Θ(z′)
. (2)

This implies that the age ξ can be obtained by the integral from the surface at z = 0.

In order to model the thinning factor Θ(z) in Eq. (2), we adopt the pseudo-steady hypothesis (Par-

renin et al., 2006; Parrenin and Hindmarsh, 2007), which assumes steady geometry of the icesheet

and steady vertical profile for velocity. Assuming a pseudo-steady state, the thinning factor Θ(z) in80

Eq. (2) can be written using the vertical velocity U :

Θ(z) = U(z)/U(0). (3)

Rescaling z and U as

ζ =
H − z

H
, u(ζ) =−U(z)

H
, (4)

85

Eq. (3) can be rewritten as follows:

Θ(ζ) = u(ζ)/u(1). (5)
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In Eq. (4), H is the thickness of the ice sheet, which is constant in the pseudo-steady state. The

variable ζ is a rescaled vertical coordinate which becomes 0 at the bottom and 1 at the surface, and

u indicates the velocity in the ζ coordinate. We rewrite the rescaled vertical velocity u(ζ) in the90

following form (Parrenin et al., 2006):

u(ζ) = u(0)+ [u(1)−u(0)]ω(ζ). (6)

where ω(ζ) is a function satisfying ω(0) = 0 and ω(1) = 1. In the pseudo-steady state, the function

ω(ζ) is unchanged in time. In this study, ω(ζ) is described by the Lliboutry equation (Lliboutry,

1979):95

ω(ζ) = ζ − 1− s

p+1
(1− ζ)

[
1− (1− ζ)p+1

]
, (7)

where s corresponds to the sliding ratio, which is the ratio of the basal horizontal velocity to the

vertically averaged horizontal velocity. In the pseudo-steady state, the vertical velocity profile u(ζ)

is assumed to be steady. Thus, the parameters p and s does not vary over time. Equation (7) derives

from the Shallow Ice Approximation (SIA), and is based on a linearization of the temperature profile.100

Martin and Gudmundsson (2012) have shown that the Lliboutry equation is not appropriate for a

steady dome. However, we can expect that the domes in central Antarctica are non-steady because

the Raymond bumps have never been observed. We thus assume that the Lliboutry equation can still

be used. Denoting the melting rate at the base of the ice sheet by m, A and m correspond to the

vertical velocity at ζ = 1 and that at ζ = 0, respectively, under a pseudo-steady state. Equation (6)105

can thus be rewritten as follows:

u(ζ) =− 1

H

[
m+(A−m)ω(ζ)

]
. (8)

Setting µ=m/(A−m), Eqs. (5) and (8) yields

Θ(ζ) =
ω(ζ)+µ

1+µ
. (9)

We assume µ is constant, which means the ratio m/A is constant. This assumption would be approx-110

imately justified because m is typically much smaller than A. Using Eqs. (7) and (9), the thinning

factor Θ can be determined if the parameters s, p, and µ are specified.

In order to obtain the age ξ using Eq. (2), it is also necessary to give the profile of the accumulation

rate A. In this study, A is treated as unknown to be estimated. Since the accumulation rate is

related to the Antarctic temperature, we can use proxies of the temperature for constraints when115

estimating the profile of A. As a proxy for the temperature, we used the δ18O data taken at Dome

Fuji (Watanabe et al., 2003), which is plotted in Figure 1. Since the vertical profile of the age ξ is

associated with the profile of A, the information from the δ18O data is also effective for improving

the estimate of the age ξ.

At several depths, we can also use reliable age values given by age markers. We used such age120

values as tie points when estimating the age–depth relationship. The age, depth, and uncertainty (2σ)
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for each tie point used in the paper are shown in Table 2. The first point was determined from the

ACR-Holocene transition and the second one was determined from the Beryllium 10 peak. These

two points were given by Parrenin et al. (2007). The subsequent 23 points were determined from

the relationship between O2/N2 and the summer insolation (Kawamura et al., 2007). Both the δ18O125

data and the tie points were considered when estimating the age ξ.

3 State space model

In this section, the age–depth relationship is formulated in a framework of a state space model on the

basis of the model described in the previous section. The state space model represents the evolution

of variables by a recurrence equation. The state space model provides a platform for the sequential130

Bayesian estimation using PMCMC, which will be explained in the next section.

Discretizing the vertical coordinate z with an interval ∆z, the integral in Eq. (2) for any discretized

z can be approximately calculated using the following recurrence relation:

ξz+∆z ≈ ξz +
∆z

AzΘz
(z = 0,∆z,2∆z, . . . ,Z −∆z), (10)

where ξz denotes the age at depth z, and we denote the accumulation rate and the thinning factor in135

the interval from z to z+∆z by Az and Θz , respectively. At the surface (z = 0), ξ0 is defined as

zero. The depth at the bottom of the core is denoted by Z.

Equation (10) would contain an error due to the discretization of Eq. (2). In addition, since we

can not accurately know Az and Θz for each z, an estimate of the age–depth relationship might also

be affected by errors in Az and Θz . We represent these unspecified errors by νz . Equation (10) is140

thus modified as follows:

ξz+∆z = ξz +
∆z

AzΘz
+ νz

√
∆z

AzΘz
(z = 0,∆z,2∆z, . . . ,Z −∆z). (11)

We assume that νz obeys the normal distributions N (0, σ2
ν), where we denote a normal distribution

with mean µ and variance σ2 by N (µ,σ2). We multiply νz by
√

∆z/(AzΘz) in order that the

variance of the unknown variation per year remain the same to the bottom of the core. In a pseudo-145

steady state, the thinning factor Θz can be obtained according to Eq. (9). However, Eq. (9) does

not consider all of the effects governing the thinning process Θz; for example, it omits the effect

of impurities (Freitag et al., 2013). The errors in Θ due to such unspecified effects would also be

considered by νz in Eq. (11).

The accumulation rate Az is treated as an unknown variable, and its transition from z to z+∆z150

is described by the following recurrence relation:

logAz+∆z = logAz + ηz

√
∆z

AzΘz
(z = 0,∆z,2∆z, . . . ,Z −∆z). (12)

Note that in Eq. (12), the transition of Az is described by using its logarithm in order to guarantee

Az > 0. The term ηz represents the (unknown) variation in the accumulation rate. We assume that ηz
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obeys N (0, σ2
η). We hereinafter assume ∆z = 1[m]. Equations (11) and (12) can thus be rewritten155

as follows:

ξz+1 = ξz +
1

AzΘz
+

νz√
AzΘz

, (z = 0, . . . ,Z − 1) (13)

logAz+1 = logAz +
ηz√
AzΘz

, (z = 0, . . . ,Z − 1). (14)

Based on Eqs. (13) and (14), we introduce conditional probability density functions. Since we160

assumed νz and ηz obey N (0, σ2
ν) and N (0, σ2

η), respectively, the conditional distribution of ξz+1

given ξz and that of Az+1 given Az for each z become

p(ξz+1|ξz,θ) =N
(
ξz +

1

AzΘz
,

σ2
ν

AzΘz

)
, (15)

p(Az+1|Az,θ) = logN

(
Az,

σ2
η

AzΘz

)
, (16)

165

respectively, where θ indicates a collection of unspecified parameters such as p and s in Eq. (7). The

full definition of θ will be provided later.

Estimates of ξz and Az for each z are obtained on the basis of their posterior distributions given

the tie points and the δ18O data. For the k-th tie point τk at depth zk, we assume the following

relationship between τk and the modeled age ξzk :170

τk = ξzk + εk, (17)

where εk is the discrepancy between the age at the tie point and the modeled age. We assume that

εk obeys the normal distribution N (0,σ2
ε). While we consider the uncertainty in the age of tie

points, we assume there to be no uncertainty in the depths of tie points. This is because the depth

uncertainty would not make essential effects on the estimate of the age for each slice of the ice core.175

The effects of the depth uncertainty on the estimates of accumulation and thinning are also expected

to be minor. because the accumulation and thinning are related with the increment of depth rather

than the absolute depth from the surface. In this study, the uncertainty in the age increment is taken

into account by νz in Eq. (13). This would compensate the possible effect of the depth uncertainty

on the estimates of accumulation rate and thinning factor.180

The δ18O data, which are associated with the accumulation rate, can be abundantly obtained from

the ice core at Dome Fuji. Multiple data points for δ18O are sometimes available within an interval

of a single meter, and we used the mean δ18O value for each such interval. It was assumed that Az ,

the accumulation rate in the interval from z to z+∆z, is associated with δ18O as follows:

δ18Oz = a logAz + b+wz; (18)185

this relation was also used by Klauenberg et al. (2011). We assume that wz obeys the normal dis-

tribution N (0,σ2
w). Although we assume the regression coefficients a and b do not depend on age,
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it is not guaranteed that the accumulation rate and δ18O have the same linear relationship over the

entire period recorded in the ice core. Even if we could accept the linear assumption between the

accumulation rate and δ18O, a and b might change due to the variation of climatological conditions190

other than temperature. However, the uncertain variable ηz in Eq. (12) represents the variation of ac-

cumulation rate including not only the variation related with δ18O but also the variation due to other

unknown factors. Thus, to some extent, errors in our assumption about the relationship between the

accumulation rate and δ18O would be absorbed by ηz .

Like Eqs. (15) and (16), we introduce conditional probability density functions based on Eqs. (17)195

and (18). Since we assumed εz and wz obey N (0, σ2
ε) and N (0, σ2

w), respectively, the conditional

distribution of τk given ξzk and that of δ18Oz given Az become

p(τk|ξzk ,θ) =N
(
ξzk , σ

2
ε

)
, (19)

p(δ18Oz|Az,θ) =N
(
a logAz + b, σ2

w

)
. (20)200

We hereinafter combine ξz and Az into one vector xz as xz+1 = (ξz Az)
T . Because p(ξz+1|ξz,θ)

and p(Az+1|Az,θ) are given, the joint distribution p(ξz+1,Az+1|ξz,Az,θ) can also be defined.

Thus,

p(xz+1|xz,θ) = p(ξz+1,Az+1|ξz,Az,θ). (21)

We also define the vector of the available data for each z as yz . If both the tie point τkz and the205

δ18O data are available at z, then, yz = (τkz , δ
18Oz)

T . If the δ18O data are available but a tie point

is unavailable, we define yz = δ18Oz . If neither a tie point nor δ18O data are available, we define

yz =Ø. Using yz , the conditional distributions in Eqs. (19) and (20) can then be combined into the

conditional distribution p(yz|xz,θ) for any z, where we define p(yz =Ø|xz,θ) = 1.

Our aim is to estimate x0:Z = {x0, . . . ,xZ} based on the sequence of the data y1:Z = {y1, . . . ,yZ}.210

If a set of the parameters θ were given, we could obtain an estimate of x0:Z from the posterior dis-

tribution p(x0:Z |y1:Z ,θ). However, since the value of θ is not specified, it is necessary to take into

account the uncertainties of θ in estimating x0:Z . We obtain an estimate from the marginal posterior

distribution given y1:Z , where θ is marginalized out:

p(x0:Z |y1:Z) =

∫
p(x0:Z |y1:Z ,θ)p(θ|y1:Z)dθ. (22)215

Since yz is conditionally independent of xz′ given xz when z′ ̸= z,

p(yz|x0:z,θ) = p(yz|xz,θ). (23)

Hence, p(x0:Z |y1:Z ,θ) satisfies the following recurrence equation:

p(x0:z|y1:z,θ)

∝ p(yz|xz,θ)p(x0:z|y1:z−1,θ)

= p(yz|xz,θ)p(xz|xz−1,θ)p(x0:z−1|y1:z−1,θ).

(24)
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By applying Eq. (24) recursively, we can obtain p(x0:z|y1:z,θ) for any z. Thus, sampling from220

p(x0:z|y1:z,θ) can be achieved using the sequential Monte Carlo (SMC) method (Doucet et al.,

2001; Liu, 2001). If z in Eq. (24) is set at the depth at the bottom of the ice core (i.e., z = Z), we

obtain p(x0:Z |y1:Z ,θ), which provides the estimate of the age given all the data for the entire ice

core.

We can also estimate the parameter θ. The posterior distribution of θ given y1:Z in Eq. (22) is225

calculated using the following equation:

p(θ|y1:Z)∝ p(y1:Z |θ)p(θ) (25)

The vector θ contains all of the unspecified parameters used above. The full definition of θ is as

follows:

θ = (A0 a b µ p s σν ση σw)
T
. (26)230

An approximation of p(y1:Z |θ) can be calculated using the SMC method. Therefore, if the prior

p(θ) is given, the posterior of θ can readily be obtained. In this study, we use flat prior distributions.

Since it is unreasonable to allow the parameters except a and b to be negative, the prior distributions

for these non-negative parameters was assumed to be a uniform distribution on the non-negative

real line. The prior distributions for the other parameters a and b were assumed to be a uniform235

distribution on the real line. The shape of the posterior thus corresponds to that of the likelihood

function in this study.

Since the present accumulation A0 is not specified in the above sequential model, A0 is treated

as one of the unspecified parameters and is included in θ. The parameter vector θ also contains

three hyper-parameters σν , ση , and σw, which represent the variabilities in the model. These hyper-240

parameters are estimated so as to well explain the variability observed in the data. For example, if

σν is taken to be too small, the estimated age would not be fit the data well. On the other hand, if σν

is taken to be too large, large variations of the age ξ are allowed. Thus, the result could be sensitive

to the noise contained in the data. The posterior given the data provides an appropriate value of

σν so that it is large enough to achieve a good fit, but not too large. The posterior of σw indicates245

the typical magnitude of dispersion of δ18O data from the predicted δ18O based on the estimated

accumulation rate. We did not include σε in θ, but we set a fixed value for σε for each tie point, as

shown in Table 2; the values were determined according to Kawamura et al. (2007).

4 Estimation algorithm

In order to approximate the conditional distributions p(x0:Z |y1:Z ,θ) and p(θ|y1:Z), we employ the250

PMCMC method (Andrieu et al., 2010), a non-Gaussian hybrid method that combines the SMC and

the MCMC methods. In this method, the posterior distributions for the uncertain parameters in the

model are computed using standard MCMC, with the exception that the likelihood of the parameters
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is approximated using the SMC method. Meanwhile, the age–depth relationship is estimated by

performing many repetitions of the SMC procedure under iterations of MCMC. The SMC method255

can be used to obtain p(x0:Z |y1:Z ,θ) under a given θ, but it cannot be used to obtain p(θ|y1:Z). In

principle, MCMC could be used to obtain any probability distribution, including p(x0:Z |y1:Z ,θ),
p(θ|y1:Z), and p(x0:Z |y1:Z). However, this would require prohibitive computational cost for high

dimensional problems. Thus, use of MCMC is not practical for obtaining high-dimensional dis-

tributions like p(x0:Z |y1:Z ,θ) and p(x0:Z |y1:Z). By combining SMC and MCMC, we can obtain260

p(x0:Z |y1:Z ,θ), p(θ|y1:Z), and p(x0:Z |y1:Z) with an acceptable computational cost. Below, we first

present the SMC method, on which the PMCMC method is based. We then describe the PMCMC

method and explain how approximations of p(x0:Z |y1:Z ,θ) and p(θ|y1:Z) can be obtained.

4.1 Sequential Monte Carlo method

The SMC method, which is sometimes referred to as the particle filter/smoother in time-series anal-265

ysis (Gordon et al., 1993; Kitagawa, 1996; Doucet et al., 2001), is used for sampling from the

conditional distribution p(x0:Z |y1:Z ,θ). The SMC method approximates a probability distribution

by a set of N particles, which are the samples drawn from the distribution. Let x(i)
0:z−1|z−1 be the

i-th sample from p(x0:z−1|y1:z−1,θ), we have the following approximation:

p(x0:z−1|y1:z−1,θ)≈
1

N

N∑
i=1

δ(x0:z−1 −x
(i)
0:z−1|z−1), (27)270

where δ(·) denotes the Dirac delta function. If we draw a particle x
(i)
z|z−1 for each i according to

x
(i)
z|z−1 ∼ p(xz|xz−1 = x

(i)
z−1|z−1,θ), (28)

then the set of particles {x(i)
0:z|z−1} provides an approximation of p(x0:z|y1:z−1,θ):

p(x0:z|y1:z−1,θ)≈
1

N

N∑
i=1

δ(x0:z −x
(i)
0:z|z−1). (29)

An approximation of the distribution conditioned by the observation yz at z can be obtained using275

the importance sampling scheme (e.g., Liu, 2001; Robert and Casella, 2004):

p(x0:z|y1:z,θ) =
p(yz|xz,θ)p(x0:z|y1:z−1,θ)

p(yz|y1:z−1,θ)

≈
N∑
i=1

β(i)
z δ(x0:z −x

(i)
0:z|z−1).

(30)

The weight β(i)
z for each i is defined as

β(i)
z =

p(yz|x(i)
z|z−1,θ)∑N

i=1 p(yz|x(i)
z|z−1,θ)

, (31)
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where p(yz|x(i)
z|z−1,θ) is called the likelihood of the particle x

(i)
z|z−1.280

Equation (30) indicates that p(x0:z|y1:z,θ) can be approximated by weighting the particles {x(i)
0:z|z−1}.

However, the weights are usually highly unbalanced and many of the particles have only negligible

weights. Because particles with negligible weights no longer contribute to the estimation, this de-

stroys the efficiency of the approximation. In order to resolve the imbalance in the weights, a new

set of N particles {x(i)
0:z|z} is obtained by resampling the original particles {x(i)

0:z|z−1} such that each285

x
(i)
0:z|z−1 is drawn with a probability of β(i)

z (see Nakano et al., 2007; van Leeuwen, 2009). After re-

sampling, the original particles in {x(i)
0:z|z−1} that have low weights are removed, and those that have

high weights are duplicated. The number of the duplicates of x(i)
0:z|z−1, n(i)

z , becomes approximately

equal to Nβ
(i)
z . The newly generated particles then provide an approximation of p(x0:z|y1:z,θ) as

follows:290

p(x0:z|y1:z,θ)≈
N∑
i=1

β(i)
z δ

(
x0:z −x

(i)
0:z|z−1

)
≈

N∑
i=1

n
(i)
z

N
δ
(
x0:z −x

(i)
0:z|z−1

)
=

1

N

N∑
i=1

δ
(
x0:z −x

(i)
0:z|z

)
.

(32)

Applying the procedure from Eq. (27) to Eq. (32) recursively up to z = Z, we obtain samples from

the conditional distribution p(x0:Z |y1:Z ,θ). If only the marginal distribution p(xz|y1:z,θ), where

x0:z−1 is marginalized out, is of interest, it is not necessary to keep the whole sequence of x(i)
0:z|z for

each particle; instead, at each iteration, it is sufficient to keep only the element x(i)
z|z and discard the295

remaining x
(i)
1:z−1

4.2 Particle Markov chain Monte Carlo method

An approximation of the marginal likelihood p(y1:Z |θ) in Eq. (25) can be calculated using SMC

(Kitagawa, 1996). If we decompose p(y1:Z |θ) as

p(y1:Z |θ) = p(y1:Z−1|θ)p(yZ |y1:Z−1,θ)

= p(y1|θ)
Z∏

z=2

p(yz|y1:z−1,θ),
(33)300

we can obtain p(yz|y1:z−1,θ) for each z, from the following equation:

p(yz|y1:z−1,θ)

=

∫
p(yz|xz,θ)p(x0:z|y1:z−1,θ)dx0:z

(34)
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Since samples from p(x0:z−1|y1:z−1,θ) can be obtained by SMC, a Monte Carlo approximation of

the integral in Eq. (34) can be obtained as follows:

p(yz|y1:z−1,θ)

≈ 1

N

N∑
i=1

∫
p(yz|xz,θ)δ

(
x0:z −x

(i)
0:z|z−1

)
dx0:z

=
1

N

N∑
i=1

p(yz|x(i)
0:z|z−1,θ),

(35)305

where we used Eq. (23). We can then approximate the logarithm of p(y1:Z |θ):

log p̂(y1:Z |θ) =
Z∑

z=1

log

[
1

N

N∑
i=1

p(yz|x(i)
0:z|z−1,θ)

]
, (36)

and an approximation of the posterior p(θ|y1:Z) in Eq. (25) can accordingly be obtained. As a matter

of fact, however, the approximation given in Eq. (36) for the log-likelihood is too sensitive to the

parameter θ because of the large amount of δ18O data. We thus introduce the following relaxation:310

log p̂(y1:Z |θ) =
Z∑

z=1

log

[
1

N

N∑
i=1

p(δ18Oz|x(i)
0:z|z−1,θ)

λp(τkz
|x(i)

0:z|z−1,θ)

]
, (37)

where we set λ= 1/5 so that the information of tie points becomes effective enough.

Using the Monte Carlo approximation of the marginal likelihood p̂(y1:Z |θ), we can obtain an ap-

proximation of the marginal posterior distribution of θ using MCMC, which sequentially produces

samples that obey the target distribution. This is the basic idea of the PMCMC method. There315

are some variants of the PMCMC method such as the particle Gibbs method with ancestor sampling

(Lindsten et al., 2014). In this study, because of the ease of implementation, we employ the Metropo-

lis method to obtain an approximation of p(θ|y1:Z). In the Metropolis method, at the k-th iteration,

a proposal sample θ∗ is drawn from the proposal density q(θ|θ(k−1)), which is conditioned by the

sample θ(k−1) obtained at the previous iteration:320

θ∗ ∼ q(θ|θ(k−1)). (38)

In this paper, the proposal distribution q was taken to be a zero-mean Gaussian distribution with a

fixed variance for each element of θ. This means we assume a symmetrical proposal distribution

satisfying

q(θ|θ′) = q(θ′|θ) (39)325

for any θ and θ′. The variance of q(θ|θ′) was tuned by preliminary runs. In obtaining the final

results, the variances were set at 0.05,0.1,0.1,0.001,0.2,0.01,5.0,0.0002,0.005 for the parameters

A0,a,b,µ,p,s,σν ,ση,σw, respectively, in order that the Markov chain rapidly moves around in the

parameter space. The proposal sample θ∗ is accepted with the following probability:

min

(
1,

p̂(y1:Z |θ∗)p(θ∗)

p̂(y1:Z |θ(k−1))p(θ(k−1))

)
, (40)330
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where p̂(y1:Z |θ) is an approximation of the marginal likelihood obtained by SMC as written in Eq.

(37). If θ∗ is accepted, we set θ(k) = θ∗; otherwise, we set θ(k) = θ(k−1) and thus p̂(y1:Z |θ(k)) =

p̂(y1:Z |θ(k−1)). Using θ(k), the proposal sample at the next iteration can be obtained according to

Eq. (38). Iterating the above procedure generates a large number of samples that obey the posterior

distribution p(θ|y1:Z). A short summary of PMCMC is also found in a pseudo-code in the original335

paper by Andrieu et al. (2010).

In the above algorithm, an approximated value of the marginal likelihood p(y1:Z |θ) is computed

using the SMC method at each iteration of the Metropolis method. It should be noted that Eq. (34)

can be modified as follows:

p(yz|y1:z−1,θ)

=

∫
p(yz|xz,θ)p(xz|xz−1,θ)p(xz−1|y1:z−1,θ)dxz−1 dxz.

(41)340

Thus, in calculating p(y1:Z |θ) in Eq. (33), it is not necessary to consider the joint distribution of

the sequence x0:Z ; it is sufficient to consider the marginal distribution p(xz|y1:z,θ) for each z.

As mentioned above, sampling from p(xz|y1:z,θ) can be achieved when discarding x1:z−1. This

greatly reduces the computational cost because it can skip some procedures for handling the whole

sequence of 2510 time steps (Z = 2510 in this paper) for 5000 particles. In addition, the memory345

cost is also remarkably reduced, although the memory cost could be reduced by using another effi-

cient algorithm by Jacob et al. (2015). We then discard x1:z−1 in order to obtain an approximation

of p(y1:Z |θ) at each iteration of the Metropolis method.

As mentioned in Section 3, if we retain the samples for the whole sequence x0:Z from a run of

SMC with a given θ, we obtain samples from p(x0:Z |y1:Z ,θ). The Metropolis procedure sequen-350

tially generates a large number of samples that obey the marginal posterior distribution p(θ|y1:Z).

By combining the SMC samples with various θ values that obey p(θ|y1:Z), we can obtain the

samples representing the marginal posterior distribution p(x0:Z |y1:Z) where θ is marginalized out

according to Eq. (22). If samples that obey p(θ|y1:Z) are obtained in advance, the sampling proce-

dures from p(x0:Z |y1:Z ,θ) for various θ can be performed in parallel, and an approximation of the355

marginal posterior distribution p(x0:Z |y1:Z) can be obtained efficiently.

5 Results

We applied the PMCMC method to the Dome Fuji ice core. In this study, the thickness of the ice

sheet H is assumed to be 3031m. The bottom of the core Z is 2505m. Following a burn-in period,

we performed 250000 iterations of the Metropolis sampling, and we retained a sample every fifth360

iteration. We thus drew 50000 samples from the marginal posterior distribution of θ, p(θ|y1:Z). For

each run of SMC, 5000 particles were used to obtain samples from p(x0:Z |y1:Z ,θ
(k)).

Figure 2 shows the marginal histograms for the estimated posterior distribution for each param-

eter. The posterior mean and standard deviation of the present accumulation rate A0(=A(0))
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were 0.0278 and 0.0019 [m/year], respectively. This result is in good agreement with the mea-365

surements by Kameda et al. (2008), who reported the surface mass balance at Dome Fuji to be

27.3± 1.5kg/(m−2 · year), which corresponds to about 0.0273m/year. The maxima of the poste-

rior distributions for µ and s were estimated to be near zero. This result is similar to that obtained

in a previous study that used the Metropolis-Hastings method (Parrenin et al., 2007). The result in

Figure 2 suggests that µ is most likely between 0 and 2% of the accumulation rate. Considering that370

the accumulation rate A were mostly less than 0.03m/year, we can guess that the basal melting rate

is mostly less than 0.0006m/year(= 0.6mm/year). This roughly agrees with the result by Parrenin

et al., who showed that the basal melting rate is likely to be less than 0.4mm/year. Such a small

value of m is consistent with our assumption of the pseudo-steady state, in which the ratio m/A is

constant as described in Section 2. In the result by Parrenin et al. (2007), the posterior of p peaks375

around 3, and another peak was suggested around p= 2. On the other hand, the results obtained in

this study suggest that the posterior of p peaks around 3, and it is not clear whether there is another

mode. It should be noted that these two results were based on different models of the accumulation

rate. In addition, the setting of the thinning factor in this study is different from that used by Parrenin

et al. as discussed later. Thus, it should not be expected that they would necessarily provide similar380

results.

In the posterior distribution, some of the parameters are correlated with each other. Figure 3

shows two-dimensional histograms of the marginal posterior distribution of a and b (a), the marginal

posterior distribution of a and ση (b), and the marginal posterior distribution of b and ση (c). Close

correlations between the three parameters a, b, and ση are observed in this posterior distribution.385

These three parameters are related to the accumulation rate and δ18O data. Thus, the accuracy of the

estimation for these three parameters could be much improved if any of the three parameters could

be effectively constrained.

Figure 4 shows the estimated age as a function of depth. The red solid line indicates the median

of the posterior distribution and the red dotted lines indicate the 10th and 90th percentiles of the390

posterior distribution. For reference, the result by Parrenin et al. (2007) is indicated by a grey

line. The black crosses in this figure indicate the tie points used for the estimation. In order to

verify the convergence of the SMC sampling, we repeated sampling from the marginal posterior

distribution p(x0:Z |y1:Z) five times with different seeds and confirmed that there were no apparent

differences between the results of the five trials. (The figures shown in this paper show the result395

of one of the five trials.) Thus, the estimate shown in Figure 4 is considered reliable. The SMC

method often suffers from the degeneracy problem, especially when the number of steps is large. In

PMCMC, this problem is overcome by collecting a large number of SMC samples from the iterations

of the Metropolis method. In Figure 4, it is difficult to discriminate the 10th and 90th percentiles

from the median because the width of the posterior distribution is much smaller than the range of400

Figure 4. In order to make the width of the posterior visible, the 10th and 90th percentiles of the
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posterior distribution are indicated by red dotted lines around the median of the posterior distribution

in Figure 5. Black crosses show the difference between each tie point and the median of the posterior.

The uncertainty of age is minimized at each tie point, where the age is known with high accuracy,

although it is not possible to completely remove any uncertainty. In Figure 5, a grey line indicates the405

difference between the estimate by Parrenin et al. (2007) and the median of the posterior obtained by

the proposed method. Note that this line tends to deviate further from the median than do the black

crosses. This means that the estimate with the proposed method fits the tie points more closely than

does the estimate by Parrenin et al., although the difference between the two results is about 3000

years at the greatest.410

Figure 6 shows the estimated thinning factor as a function of depth. Again, the red solid line

indicates the median of the posterior distribution and the red dotted lines indicate the 10th and 90th

percentiles of the posterior distribution. The estimate by Parrenin et al. (2007) is indicated by a

grey line. Since, by definition, Θ= 1 at the surface, the width of the posterior distribution is almost

zero near the surface, and the uncertainty becomes larger in the deeper core. The profiles of the415

thinning factor indicated by the red solid line and the grey line differ, and this is probably caused by

the assumption of a constant ice thickness. While Parrenin et al. (2007) allowed the ice thickness

H to vary, we assumed that it was constant; it would be instructive to examine the effect of this

assumption in a future work. Figure 7 shows the estimated accumulation rate as a function of depth.

As in Figure 4, the red solid line indicates the median of the posterior distribution, and the red dotted420

lines indicate the 10th and 90th percentiles of the posterior distribution. The difference between

the 10th and 90th percentiles, which corresponds to the 80% confidence interval, is indicated by a

blue dotted line. In this way, we can estimate the age and related variables, and we can also obtain

information about the accuracy of these estimates. The accumulation rate can also be considered as

a function of age. As shown in Figure 7, we have the posterior distribution of the accumulation rate425

given depth p(A|z). The accumulation rate with respect to age is estimated after considering the

uncertainty of age:

p(A|ξ) =
∫

p(A|z)p(z|ξ)dz (42)

where we assume p(z) to be a uniform distribution when obtaining p(z|ξ):

p(z|ξ) = p(ξ|z)p(z)∫
p(ξ|z)p(z)dz

. (43)430

Figure 8 shows the estimate of the accumulation rate with respect to age.

6 Discussion

In order to evaluate the robustness, we obtained the estimate without using the last five tie points at

below 2400m depth. We estimated the parameters and the age–depth relationship from the other 20

tie points and the δ18O data. Figure 9 shows the histograms of the marginal posterior distributions435
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of the nine parameters. The results without using the five tie points are indicated by red lines and

the results with all the tie points, which are the same as the results in Figure 2, are indicated as

blue lines. The posterior distributions obtained without some of the tie points are very similar to the

result shown in Figure 2. However, the posterior distributions of the three parameters a, b, and ση

are slightly different. Since ση was estimated to be larger when the five tie points were not used, this440

might indicate that the variation in the accumulation rate was noisier near the bottom. The marginal

posterior distribution for a and b could accordingly be modified due to the correlation with ση shown

in Figure 3. However, more careful evaluation would be required to determine the reason.

Figure 10 shows the estimates of the age as a function of depth are compared between the result

without using the last five tie points and that with all the tie points. In order to make the differences445

visible, this figure shows the differences from the median of the posterior without the last five tie

points like in Figure 5. The red lines indicate the estimate without the last five tie points, and the

grey lines indicate the estimate with all the tie points. The dotted lines indicate the 10th and 90th

percentiles of the posterior distributions. The tie points used for the estimation are shown with black

crosses. The deviation of the grey lines tended to be large near the bottom of the ice core. However,450

the grey lines were within the range of uncertainty shown with the red dotted lines. This suggests

that our model does a good job of representing the uncertainties due to the lack of the information.

The accumulation rate as a function of age was also estimated without using the five tie points at

the bottom of the ice core. Figure 11 shows the estimate of the accumulation rate as a function of age.

The red lines indicate the estimate without using the last five tie points, and for reference, the grey455

line indicates the estimate using all the tie points. The solid lines indicate the median of the posterior,

and the 10th and 90th percentiles are indicated by dotted lines. The difference is remarkable below

the depth where the age is 300,000 years. However, the difference was mostly within the uncertainty

between the 10th and 90th percentile. Thus, this difference near the bottom is acceptable.

The proposed technique requires a high computational cost because the SMC sampling is per-460

formed at each iteration of the Metropolis method. At present, it takes about 43 hours to complete

250000 iterations of the Metropolis sampling with 5000 particles for the SMC on a workstation with

two Intel Xeon processors (12 cores for each processor; 2.7GHz). The efficiency could be improved

by using a better proposal distribution used in SMC (e.g., Doucet et al., 2001). This problem should

be addressed in the future.465

There may be a room for improvement in the model for the accumulation rate described by Eq.

(12). Equation (12) represents the transition of the accumulation rate by a random walk model with a

Gaussian perturbation. However, we could consider another model such as an auto-regressive model

for the transition and another distribution for the perturbation. There are a large number of choices

for the model for the accumulation rate and the goodness of fit could be evaluated using some metric470

such as Bayes factors. However, it would require a great deal of time to evaluate a wide variety of

choices, and so such a search is beyond the scope of this study.
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This study used the δ18O data and tie points deduced from O2/N2 data to estimate the age–

depth relationships. However, PMCMC allows us to use various kinds of data. Thus, data from

other various sources could also be used to improve the accuracy of the estimates. For example,475

deuterium-excess data have been used to estimate temperatures (Uemura et al., 2012), and this could

be used for improving the accuracy of the accumulation rate. Some recent studies have provided

simultaneous estimates of the age as a function of depth at multiple sites (e.g., Lemieux-Dudon

et al., 2010; Veres et al., 2013). The SMC approach could be extended to include information at

multiple sites; this would be a useful area for future work.480

7 Concluding remarks

We have developed a technique for the dating of an ice core by combining information obtained

from age markers at various depths with a model describing the accumulation of snow and glacio-

logical dynamics. This technique provides estimates of unspecified parameters in the model from the

posterior distributions calculated with the PMCMC method. In the PMCMC method, the marginal485

posterior distributions of the parameters are obtained using the Metropolis method; this is similar

to other existing techniques (Parrenin et al., 2007), but here the likelihood of the set of parameters

is estimated with the SMC method. The age as a function of depth can also be estimated from the

marginal posterior distributions where the parameters are marginalized out. The marginal posterior

distribution of age at each depth is obtained by collecting the SMC samples produced by many itera-490

tions of the Metropolis method. We applied this PMCMC method to the data of the ice core at Dome

Fuji. The estimates of the age–depth relationship and the parameters were successfully obtained.

The main advantage of the proposed technique is that it can be applied to general nonlinear non-

Gaussian situations. Since the relationship between accumulation rate and a temperature proxy is

typically nonlinear, it is not necessarily justified to assume linearity and Gaussianity when using a495

temperature proxy to date an ice core. The PMCMC method allows us to use various kinds of data

which are expected to have a nonlinear relationship with the model variables. Another advantage is

that the PMCMC method estimates the model parameters simultaneously with the age as a function

of depth. The uncertainty of age is therefore evaluated after taking into account the uncertainties in

the model parameters.500
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z Vertical coordinate

Z Vertical coordinate at the bottom

H Thickness of the ice sheet

ξ Age

A Accumulation rate

Θ Thinning factor

µ,p,s Parameters for Θ

U Vertical velocity

ζ Rescaled vertical coordinate

u Rescaled velocity

ω Flux shape function

m Basal melting rate

νz/
√
AzΘz System noise for age

σ2
ν Variance of νz

ηz/
√
AzΘz System noise for accumulation rate

σ2
η Variance of ηz

τk Tie point (age marker)

εk Observation noise for tie point

σε Variance of τk

δ18O δ18O

a,b Parameters of the observation model for δ18O

wz Observation noise for δ18O

σw Variance of w

xz State at depth z
(
xz = (ξz Az)

T
)

yz Observation at depth z
(
yz = (τkz δ18Oz)

T
)

θ Parameter vector
(
θ = (A0 a b µ p s σν ση σw)

T
)

Table 1. Definition of the variables used in this paper.
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Depth Age Uncertainty of age (2σε)

371.00 12390 400

791.00 41200 1000

1261.61 81973 2230

1375.67 94240 1410

1518.91 106263 1220

1605.27 116891 1490

1699.17 126469 1660

1824.80 137359 2040

1900.74 150368 2230

1958.31 164412 2550

2015.01 176353 2880

2052.23 186470 2770

2103.14 197394 1370

2156.67 209523 1980

2202.02 221211 890

2232.45 230836 780

2267.28 240633 1230

2309.35 252866 1160

2345.32 268105 1980

2366.01 280993 1600

2389.31 290909 1210

2412.25 301628 880

2438.37 313205 840

2462.36 324774 1110

2505.4 343673 2000

Table 2. Depth, age, and uncertainty of age at each tie point.

20



-60

-58

-56

-54

-52

-50

-48

-46

 0  500  1000  1500  2000  2500

d
1

8
O

 (
p

e
rm

il)

Depth (m)

Fig. 1. δ18O data used in this study.
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Fig. 2. Estimated marginal distributions of the posterior distributions for the nine parameters.
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Fig. 4. Estimated age as a function of depth. The solid line indicates the median of the posterior distribution.

The 10th and 90th percentiles of the posterior are indicated by red dotted lines. The black crosses indicates the

tie points. The result obtained by Parrenin et al. (2007) is also indicated by a grey line.
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Fig. 5. Difference of the 10th and 90th percentiles of the posterior distribution from the median of the posterior

(red dotted lines), difference of each tie point from the median of the posterior (black crosses), and difference

of the estimate by Parrenin et al. (2007) from the median of the posterior obtained in this study (grey line).
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Fig. 6. Estimated thinning factor Θ as a function of depth. The median of the posterior is indicated by a red

solid line, the 10th and 90th percentiles are indicated by red dotted lines, and the estimate by Parrenin et al.

(2007) is indicated by a grey line.
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Fig. 7. Estimated accumulation rate as a function of depth. The median of the posterior is indicated by a red

solid line, the 10th and 90th percentiles are indicated by red dotted lines, the difference between the 10th and

90th percentiles is indicated by a blue dotted line, and the estimate by Parrenin et al. (2007) is indicated by a

grey line.

25



0 50000 100000 150000 200000 250000 300000 350000

0
1

2
3

4
5

Age

A
c
c
u

m
u

la
ti
o

n
 r

a
te

2
10 [m-of-ice/year]−
×

Fig. 8. Estimated accumulation rate as a function of age. The median of the posterior is indicated by a red solid

line, the 10th and 90th percentiles are indicated by red dotted lines, the difference between the 10th and 90th

percentiles is indicated by a blue dotted line, and the estimate by Parrenin et al. (2007) is indicated by a grey

line.
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Fig. 9. Estimated marginal distributions of each of the nine parameters; without using the last five tie points

(red) and with all the tie points (blue).
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Fig. 10. Difference of the 10th and 90th percentiles of the posterior distribution from the median of the posterior

(red dotted lines) for the result without using the last five age markers. The difference of each tie point from the

median of the posterior (black crosses), and the difference between the estimate with all the tie points and the

estimate without using the last five tie points (grey line) are also shown.
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Fig. 11. Estimated accumulation rate as a function of age: without using the last five tie points (red) and with

all the tie points (grey). The solid lines indicate the median of the posterior distribution. The 10th and 90th

percentiles of the posterior are indicated by dotted lines.
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