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Abstract. A technique for estimating the age–depth relationship in an ice core and evaluating its

uncertainty is presented. The age–depth relationship is determined by the accumulation of snow at

the site of the ice core and the thinning process as a result of the deformation of ice layers. However,

since neither the accumulation process nor the thinning process are fully understood, it is essential

to incorporate observational information into a model that describes the accumulation and thinning5

processes. In the proposed technique, the age as a function of depth is estimated from age markers

and δ18O data. The estimation is achieved using the particle Markov chain Monte Carlo (PMCMC)

method, in which the sequential Monte Carlo (SMC) method is combined with the Markov chain

Monte Carlo method. In this hybrid method, the posterior distributions for the parameters in the

models for the accumulation and thinning processes are computed using the Metropolis method, in10

which the likelihood is obtained with the SMC method. Meanwhile, the posterior distribution for

the age as a function of depth is obtained by collecting the samples generated by the SMC method

with Metropolis iterations. The use of this PMCMC method enables us to estimate the age–depth

relationship without assuming either linearity or Gaussianity. The performance of the proposed

technique is demonstrated by applying it to ice core data from Dome Fuji in Antarctica.15

1 Introduction

Ice cores provide vital information on the climatic and environmental changes over the past hun-

dreds of thousands of years. In order to make use of the chronological records from each slice of

an ice core, it is crucial to accurately determine the age for each slice which should be obtained

based on an accurate estimate of the relationship between age and depth in the ice cores. For de-20
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termining the age–depth relationship, dating methods based on glaciological modeling are widely

used. However, since the glaciological processes controlling this relationship are not fully known,

it is essential to reduce uncertainty by incorporating various types of observational information into

the glaciological model. In particular, age markers sometimes provides significant constraints on the

age–depth relationship in the dating of an ice core. It is thus important to effectively make use of the25

information of age markers to determine the age–depth relationship of the ice core. The Bayesian

approach is a powerful way to combine a variety of observational information with a model, and it

has been applied to the dating of ice cores in a number of studies. Parrenin et al. (2007) considered

a glaciological process model which contains several uncertain parameters. They then estimated the

parameters for that model using the Bayesian approach and the Markov chain Monte Carlo (MCMC)30

method, although they did not consider the errors in the glaciological process model in the estimation

of the parameters. Klauenberg et al. (2011) took a Bayesian approach to estimate the accumulation

and some parameters from δ18O data and to evaluate the uncertainty of the estimate. However, their

method was not designed to make use of the constraints of age markers to estimate the age–depth

relationship. In order to effectively make use of age markers, it is essential to ensure the consistency35

of the estimated age within the whole ice core, and it is thus necessary to simultaneously consider

a large number of variables to represent the age–depth relationship for the entire ice core. Hence,

the Bayesian estimation of the age–depth relationship becomes a high-dimensional problem. Some

existing methods handle this high-dimensionality by assuming Gaussianity. Dreyfus et al. (2007)

used age markers and a penalized least square method, which assumes Gaussianity, to estimate the40

age as a function of depth. Lemieux-Dudon et al. (2009) also started by assuming that the uncertain-

ties are Gaussian and that the model is approximately linear. However, if any of the relationships

among the variables are nonlinear, Gaussianity does not hold in general. In this paper, we propose a

dating method to estimate the age for the entire ice core without assuming either linearity or Gaus-

sianity. The proposed method formulates the age–depth relationship based on a sequential Bayesian45

approach. The estimation is then achieved using the particle Markov chain Monte Carlo (PMCMC)

method (Andrieu et al., 2010), which is applicable to nonlinear non-Gaussian problems formulated

as a state space model. This method estimates the age by using the marginal distribution, in which

the uncertainties of the parameters in the glaciological model are marginalized out. Hence, it eval-

uates the uncertainty of the estimated age after considering the effects of the uncertainties in the50

model parameters.

The remainder of the present paper is organized as follows. In Section 2, we describe the models of

the accumulation and thinning processes that control the age–depth relationship. In Section 3, these

models are formulated in a framework of the sequential Bayesian approach in order to estimate the

age, accumulation rate, and the model parameters. The PMCMC algorithms are explained in Section55

4. In Section 5, an application to the Dome Fuji ice core is demonstrated, and the performance of

our method is evaluated. Finally, a summary and discussion are presented in Section 7.
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2 Dating model

It is thought that the age–depth relationship is determined by two processes: the accumulation of

snow at the site of the ice core and thinning due to long-term deformations within the ice sheet (e.g.,60

Parrenin et al., 2001, 2007). We can thus consider the following differential equation describing the

relationship between age and depth:

dz =A(z)Θ(z)dξ (1)

where z [cm] denotes the depth from the surface of the ice sheet, ξ [year] is the age in year at the

given z (past is positive), A(z) [cm/year] is the annual rate of accumulation of snow, and Θ(z) (no65

unit) represents the thinning factor. It would be more meaningful to consider the accumulation rate

as a function of age rather than depth. In this study, however, we first consider the accumulation rate

as a function of depth for the convenience of computation. The accumulation with respect to age is

then estimated after considering the uncertainty of age as described later. Equation (1) yields the

age ξ in the following form:70

ξ(z) =

z∫
0

dz′

A(z′)Θ(z′)
. (2)

This implies that the age ξ can be obtained by the integral from the surface at z = 0.

Assuming a steady state, the thinning factor Θ(z) in Eq. (2) can be written using the vertical

velocity U :

Θ(z) = U(z)/U(0). (3)75

Rescaling z and U as

ζ =
H − z

H
, u(ζ) =−U(z)

H
, (4)

Eq. (3) can be rewritten as:

Θ(ζ) = u(ζ)/u(1). (5)80

In Eq. (4), H is the thickness of the ice sheet. We assume H = 3031m in this study. The variable ζ

is a rescaled vertical coordinate which becomes 0 at the bottom and 1 at the surface, and u indicate

the velocity in the ζ coordinate. We rewrite the rescaled vertical velocity u(ζ) in the following form

(Parrenin et al., 2006):

u(ζ) = u(0)+ [u(1)−u(0)]ω(ζ), (6)85

where ω(ζ) is a function satisfying ω(0) = 0 and ω(1) = 1. We assume the following form for ω(ζ)

(Lliboutry, 1979):

ω(ζ) = ζ − 1− s

p+1
(1− ζ)

[
1− (1− ζ)p+1

]
, (7)
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where s corresponds to the sliding ratio, which is the ratio of the basal horizontal velocity to the

vertically averaged horizontal velocity. Denoting the accumulation at the surface by A0 and the90

melting at the base of the ice sheet by m, A0 and m correspond to the vertical velocity at ζ = 1 and

that at ζ = 0, respectively, under a steady state. Eq. (6) can thus be rewritten as:

u(ζ) =− 1

H

[
m+(A0 −m)ω(ζ)

]
. (8)

Using Eq. (8), Eq. (5) becomes

Θ(ζ) =
ω(ζ)+µ

1+µ
, (9)95

where µ is defined as µ=m/(A0 −m). Using Eqs. (7) and (9), the thinning factor Θ can be

determined if the parameters s, p, and µ are specified.

In order to obtain the age ξ using Eq. (2), it is also necessary to give the accumulation rate A. In

this study, A is treated as an unknown variable to be estimated. However, since the accumulation

rate A is related to the temperature in the Antarctica, it can be constrained by some proxy of the100

temperature. We used the δ18O data taken at Dome Fuji (Watanabe et al., 2003), which is plotted

in Figure 1, as a proxy for the temperature to estimate A. Since the vertical profile of the age ξ is

associated with the profile of A, the information from the δ18O data is also effective to improve the

estimate of the age ξ.

At several depths, we can also use use more reliable age information. We used such age values as105

tie points when estimating the age–depth relationship. The age, depth, and uncertainty (2σ) for each

tie point used in the paper are shown in Table 2. The first two points were given by Parrenin et al.

(2007), and the other points were determined from the relationship between O2/N2 and the summer

insolation (Kawamura et al., 2007). The age ξ was estimated considering both the δ18O data and

the tie points.110

3 Bayesian model

Discretizing the vertical coordinate z with an interval ∆z, the integral in Eq. (2) for any discretized

z can be calculated using the following recurrence relation:

ξz+∆z = ξz +
∆z

AzΘz
+ νz

√
∆z

AzΘz
(z = 0,∆z,2∆z, . . .), (10)

where ξz denotes the age at z, and Z denotes the depth at the bottom of the core (Z = 2505m in this115

study). At the surface (z = 0), ξ0 is defined as zero. The accumulation rate and the thinning factor

in the interval from z to z+∆z are denoted by Az and Θz , respectively. The term νz represents

an unknown variation that are attributed to processes that are not taken into account in Eq. (2). We

multiply νz by
√

∆z/(AzΘz) in order that the variance of the unknown variation per year is not

changed down to the bottom of the core. The thinning factor Θz can be obtained according to Eq.120
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(9) in a steady state. Eq. (9) does not consider all of the effects governing the thinning process

Θz but some effects such as the effect of impurity (Freitag et al., 2013) are not specified in Eq.

(9). The errors in Θ due to such unspecified effects would also be contained in νz in Eq. (10).

The accumulation rate Az is treated as an unknown variable, and its transition from z to z+∆z is

described by the following recurrence relation:125

logAz+∆z = logAz + ηz

√
∆z

AzΘz
(z = 0,∆z,2∆z, . . .). (11)

Note that the transition of Az is described using its logarithm in Eq. (11) in order to guarantee Az >

0. The term ηz represents the (unknown) variation in the accumulation rate. Eq. (11) allows non-

steady variations in the accumulation rate A, which is not necessarily consistent with the steady-state

assumption for the thinning factor Θ in Eq. (9). However, νz in Eq. (10) allows errors which might130

affect the age-depth relationship including the errors in the thinning function and the misestimation

of the accumulation rate. Thus, the errors due to the inconsistency in the assumptions between A

and Θ would be compensated by νz to some extent. We hereinafter assume ∆z = 1[m]. Eqs. (10)

and (11) can thus be rewritten as follows:

ξz+1 = ξz +
1

AzΘz
+

νz√
AzΘz

, (12)135

logAz+1 = logAz +
ηz√
AzΘz

, (z = 0, . . . ,Z −∆z). (13)

In order to apply a Bayesian approach, we introduce conditional probability density functions

based on Eqs. (12), (13). We assume that νz and ηz obey the normal distributions N (0, σ2
ν) and

N (0, σ2
η), respectively, where we denote a normal distribution with mean µ and variance σ2 by140

N (µ,σ2). Accordingly, the conditional distribution of ξz+1 given ξz for each z becomes

p(ξz+1|ξz,θ) =N
(
ξz+

1

AzΘz
,

σ2
ν

AzΘz

)
, (14)

and the conditional distribution of Az+1 given Az for each z becomes a log-normal distribution as

follows:

p(Az+1|Az,θ) = logN

(
Az,

σ2
η

AzΘz

)
, (15)145

where θ indicates a collection of unspecified parameters such as p and s in Eq. (7). The full definition

of θ will be provided later. Because p(ξz+1|ξz,θ) and p(Az+1|Az,θ) are given, the joint distribution

p(ξz+1,Az+1|ξz,Az,θ) can also be defined. We hereinafter combine ξz and Az into one vector xz .

Thus,

p(xz+1|xz,θ) = p(ξz+1,Az+1|ξz,Az,θ). (16)150

Estimates of ξz and Az for each z are obtained on the basis of their posterior distributions given

the tie points and the δ18O data. For the k-th tie point τk at depth zk, we assume the following

5



relationship between τk and the modeled age ξzk :

τk = ξzk + εk, (17)

where εk is the discrepancy between the age at the tie point and the modeled age. We assume the155

tie points have no depth uncertainty. The depth uncertainty would not make essential effects on the

estimate of the age for each slice of the ice core labeled with a depth value, even if its true depth is

uncertain. The estimates of accumulation and thinning might be affected by the depth uncertainty.

But the estimates of accumulation and thinning would not be sensitive to the depth uncertainty

because accumulation and thinning are related with the increment of depth rather than the absolute160

depth from the surface. In addition, the uncertainty in age would compensate the possible effect of

the depth uncertainty on the estimates of accumulation and thinning. Assuming that εk obeys the

normal distribution N (0,σ2
ε), the conditional distribution of τk given ξzk becomes

p(τk|ξzk) =N
(
ξzk , σ

2
ε

)
. (18)

The δ18O data, which are associated with the accumulation rate, can be abundantly obtained from165

the ice core at Dome Fuji. Multiple data points for δ18O are sometimes available within an interval

of a single meter, and we used the mean δ18O value for each such interval. It was assumed that Az ,

the accumulation rate in the interval from z to z+∆z, is associated with δ18O as follows:

δ18Oz = a logAz + b+wz, (19)

which was also used by Klauenberg et al. (2011). Assuming that wz obeys the normal distribution170

N (0,σ2
w), the conditional distribution of δ18Oz given Az becomes

p(δ18Oz|Az,θ) =N
(
a logAz + b, σ2

w

)
. (20)

Although we assume the regression coefficients a and b do not depend on age, it is not guaranteed

that the accumulation rate and δ18O have the same linear relationship over the entire period recorded

in the ice core. Even if we could accept the linear assumption between the accumulation rate and175

δ18O, a and b might change due to the variation of climatological conditions other than temperature.

However, the uncertain variable ηz in Eq. (11) represents the variation of accumulation rate includ-

ing not only the variation related with δ18O but also the variation due to other unknown factors.

Thus, errors in our assumption in the relationship between the accumulation rate and δ18O would

be absorbed by ηz to some extent. In addition, νz in Eq. (10) allows some errors in the relationship180

between the accumulation rate and δ18O.

We define the vector of the available data for each z as yz . If both the tie point τkz and the δ18O

data are available at z, then, yz = (τkz , δ
18Oz)

T . If the δ18O data are available but a tie point is

unavailable, we define yz = δ18Oz . In the case that neither a tie point nor δ18O data are available, we

define yz =Ø. Using yz , the conditional distributions in Eqs. (18) and (20) can then be combined185

into the conditional distribution p(yz|xz,θ) for any z, where we define p(yz =Ø|xz,θ) = 1.
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Our aim is to estimate x0:Z = {x0, . . . ,xZ} based on the sequence of the data y1:Z = {y1, . . . ,yZ}.

If a set of the parameters θ was given, we could obtain an estimate of x0:Z from the posterior dis-

tribution p(x0:Z |y1:Z ,θ). However, since the value of θ is not specified, it is necessary to take into

account the uncertainties of θ in estimating x0:Z . We obtain an estimate from the marginal posterior190

distribution given y1:Z , where θ is marginalized out:

p(x0:Z |y1:Z) =

∫
p(x0:Z |y1:Z ,θ)p(θ|y1:Z)dθ. (21)

Since yz is conditionally independent of xz′ given xz when z′ ̸= z,

p(yz|x0:z,θ) = p(yz|xz,θ). (22)

Hence, p(x0:Z |y1:Z ,θ) satisfies the following recurrence equation:195

p(x0:z|y1:z,θ)

∝ p(yz|xz,θ)p(x0:z|y1:z−1,θ)

= p(yz|xz,θ)p(xz|xz−1,θ)p(x0:z−1|y1:z−1,θ).

(23)

This equation expresses a sequential Bayesian model. By applying Eq. (23) recursively, we can

obtain p(x0:z|y1:z,θ) for any z. Thus, sampling from p(x0:z|y1:z,θ) can be achieved using the

sequential Monte Carlo (SMC) method (Doucet et al., 2001; Liu, 2001). If z in Eq. (23) is set at

the depth at the bottom of the ice core (i.e., z = Z), we obtain p(x0:Z |y1:Z ,θ), which provides the200

estimate of the age given all the data for the entire ice core.

A Bayesian approach also enables us to estimate the parameter θ. The posterior distribution of θ

given y1:Z in Eq. (21) is calculated using the following equation:

p(θ|y1:Z)∝ p(y1:Z |θ)p(θ) (24)

The vector θ contains all of the unspecified parameters used above. The full definition of θ is as205

follows:

θ = (A0 a b µ p s σν ση σw)
T
. (25)

An approximation of p(y1:Z |θ) can be calculated using the SMC method. Therefore, if the prior

p(θ) is given, the posterior of θ can readily be obtained. The prior distribution of each parameter

was assumed to be a uniform distribution. Thus, the shape of the posterior corresponds to that of the210

likelihood function in this study.

Since the present accumulation A0 is not specified in the above sequential model, A0 is treated as

one of unspecified parameters and is included in θ. The parameter vector θ also contains three hyper-

parameters σν , ση , and σw, which represent the variabilities in the model. These hyper-parameters

are estimated so as to well explain the variability observed in the data. For example, if σν is taken215

to be too small, the estimated age would not be well fit to the data. On the contrary, if σν is taken
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to be too large, large variations of the age ξ are allowed. Thus, the result could be sensitive to the

noises contained in the data. The posterior given the data provides an appropriate value of σν ,

which is large enough to achieve a good fit but not too large. The posterior of σw indicates a typical

magnitude of the dispersion of δ18O data from the trend of the δ18O variation. We did not include220

σε in θ, but σε for each tie point was set at a fixed value shown in Table 2, which was determined

according to Kawamura et al. (2007).

4 Estimation algorithm

In order to approximately obtain the conditional distributions p(x0:Z |y1:Z ,θ) and p(θ|y1:Z), we

employ a non-Gaussian algorithm called the PMCMC method (Andrieu et al., 2010), which is a225

hybrid method combining the SMC method and the Markov chain Monte Carlo (MCMC) method.

In this hybrid method, the posterior distributions for the uncertain parameters in the model are com-

puted using the standard MCMC with the exception that the likelihood of the parameters is estimated

using the SMC method. Meanwhile, the age–depth relationship is estimated by performing many

repetitions of the SMC procedure under iterations of the MCMC. The SMC can be used only for230

obtaining p(x0:Z |y1:Z ,θ) under a given θ, but it can not be used for obtaining p(θ|y1:Z). In princi-

ple, the MCMC could be used for obtaining any probability distribution including p(x0:Z |y1:Z ,θ),
p(θ|y1:Z), and p(x0:Z |y1:Z). However, it would require prohibitive computational cost for high

dimensional problems. In practice, the MCMC is not applicable to obtain a high dimensional distri-

bution like p(x0:Z |y1:Z ,θ) and p(x0:Z |y1:Z). Combining the SMC and the MCMC, we can obtain235

p(x0:Z |y1:Z ,θ), p(θ|y1:Z), and p(x0:Z |y1:Z) with acceptable computational cost. In the following,

we first present the SMC method on which the PMCMC method is based. We then describe the PM-

CMC method and explain how approximations of p(x0:Z |y1:Z ,θ) and p(θ|y1:Z) can be obtained.

4.1 Sequential Monte Carlo method

The SMC method, which is sometimes referred to as the particle filter/smoother in time-series240

analysis (Gordon et al., 1993; Kitagawa, 1996; Doucet et al., 2001), is used for sampling from

the conditional distribution p(x0:Z |y1:Z ,θ). The SMC method approximates the density function

p(x0:z−1|y1:z−1) by a set of particles {x(i)
0:z−1|z−1} as

p(x0:z−1|y1:z−1,θ)≈
1

N

N∑
i=1

δ(x0:z−1 −x
(i)
0:z−1|z−1), (26)

where δ(·) denotes the Dirac delta function, N denotes the number of samples, and x
(i)
0:z−1|z−1245

denotes the i-th sample from p(x0:z−1|y1:z−1,θ). Drawing a particle x
(i)
z|z−1 according to

x
(i)
z|z−1 ∼ p(xz|xz−1 = x

(i)
z−1|z−1,θ), (27)
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the set of particles {x(i)
0:z|z−1} provides an approximation of p(x0:z|y1:z−1,θ):

p(x0:z|y1:z−1,θ)≈
1

N

N∑
i=1

δ(x0:z −x
(i)
0:z|z−1). (28)

An approximation of the distribution conditioned by the observation yz at z can be obtained using250

the importance sampling scheme (e.g., Liu, 2001; Robert and Casella, 2004):

p(x0:z|y1:z,θ) =
p(yz|xz,θ)p(x0:z|y1:z−1,θ)

p(yz|y1:z−1,θ)

≈
N∑
i=1

β(i)
z δ(x0:z −x

(i)
0:z|z−1).

(29)

The weight β(i)
z for each i is defined as

β(i)
z =

p(yz|x(i)
z|z−1,θ)∑N

i=1 p(yz|x(i)
z|z−1,θ)

, (30)

where p(yz|x(i)
z|z−1,θ) is the likelihood of the particle x

(i)
z|z−1 that indicates how well x(i)

z|z−1 ex-255

plains the observation yz at z.

Equation (29) indicates that p(x0:z|y1:z,θ) can be approximated by weighting the particles {x(i)
0:z|z−1}.

However, the weights are usually highly unbalanced and many of the particles have only negligible

weights. Because particles with negligible weights no longer contribute to the estimation, this de-

stroys the efficiency of the approximation. In order to resolve the imbalance in the weights, a new260

set of N particles {x(i)
0:z|z} is obtained by resampling the original particles {x(i)

0:z|z−1} such that each

x
(i)
0:z|z−1 is drawn with a probability of β(i)

z (see Nakano et al., 2007; van Leeuwen, 2009). After re-

sampling, the original particles in {x(i)
0:z|z−1} that have low weights are removed, and those that have

high weights are duplicated. The number of the duplicates of x(i)
0:z|z−1, n(i)

z , becomes approximately

equal to Nβ
(i)
z . The newly generated particles then provide an approximation of p(x0:z|y1:z,θ) as265

follows:

p(x0:z|y1:z,θ)≈
N∑
i=1

β(i)
z δ

(
x0:z −x

(i)
0:z|z−1

)
≈

N∑
i=1

n
(i)
z

N
δ
(
x0:z −x

(i)
0:z|z−1

)
=

1

N

N∑
i=1

δ
(
x0:z −x

(i)
0:z|z

)
.

(31)

Applying the procedure from Eq. (26) to Eq. (31) recursively up to z = Z, we obtain samples from

the conditional distribution p(x0:Z |y1:Z ,θ). If only the marginal distribution p(xz|y1:z,θ), where

x0:z−1 is marginalized out, is of interest, it is not necessary to keep the whole sequence of x(i)
0:z|z for270

each particle; instead, at each iteration, it is sufficient to keep only the element x(i)
z|z and discard the

remaining x
(i)
1:z−1
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4.2 Particle Markov chain Monte Carlo method

An approximation of the marginal likelihood p(y1:Z |θ) in Eq. (24) can be calculated using the SMC

algorithm (Kitagawa, 1996). If we decompose p(y1:Z |θ) as275

p(y1:Z |θ) = p(y1:Z−1|θ)p(yZ |y1:Z−1,θ)

= p(y1|θ)
Z∏

z=2

p(yz|y1:z−1,θ),
(32)

we can obtain p(yz|y1:z−1,θ) for each z, from the following equation:

p(yz|y1:z−1,θ)

=

∫
p(yz|xz,θ)p(xz|y1:z−1,θ)dxz

=

∫
p(yz|xz,θ)p(x0:z|y1:z−1,θ)dx0:z

(33)

Since samples from p(x0:z−1|y1:z−1,θ) can be obtained by the SMC, a Monte Carlo approximation

of the integral in Eq. (33) can be obtained as follows:280

p(yz|y1:z−1,θ)

≈ 1

N

N∑
i=1

∫
p(yz|xz,θ)δ

(
x0:z −x

(i)
0:z|z−1

)
dx0:z

=
1

N

N∑
i=1

p(yz|x(i)
0:z|z−1,θ),

(34)

where we used Eq. (22). We can then approximate the logarithm of p(y1:Z |θ):

log p̂(y1:Z |θ) =
Z∑

z=1

log

[
1

N

N∑
i=1

p(yz|x(i)
0:z|z−1,θ)

]
, (35)

and an approximation of the posterior p(θ|y1:Z) in Eq. (24) can accordingly obtained. As a matter

of fact, however, the approximation of the log-likelihood given in Eq. (35) is too sensitive to the pa-285

rameter θ because of the large amount of the δ18O data. We then introduce the following relaxation

in this study:

log p̂(y1:Z |θ) =
Z∑

z=1

log

[
1

N

N∑
i=1

p(δ18Oz|x(i)
0:z|z−1,θ)

λp(τkz |x
(i)
0:z|z−1,θ)

]
, (36)

where we set λ= 1/5.

Using the Monte Carlo approximation of the marginal likelihood p̂(y1:Z |θ), we can obtain an290

approximation of the marginal posterior distribution of θ using the MCMC, which sequentially pro-

duces samples that obey the target distribution. This is the basic idea of the PMCMC method. There

are some variants of the PMCMC method such as the particle Gibbs with ancestor sampling (Lind-

sten et al., 2014). In this study, we employ the Metropolis method to obtain an approximation of
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p(θ|y1:Z) because of the ease of implementation. In the Metropolis method, at the k-th iteration,295

a proposal sample θ∗ is drawn from the proposal density q(θ|θ(k)), which is conditioned by the

sample θ(k−1), which was obtained at the previous iteration:

θ∗ ∼ q(θ|θ(k−1)). (37)

In this paper, we use a zero-mean Gaussian distribution with a fixed variance for each element of θ

in order to satisfy300

q(θ|θ′) = q(θ′|θ) (38)

for any θ and θ′. The variance of q(θ|θ′) was tuned by preliminary runs. In obtaining the final

results, the variances were set at 0.05,0.1,0.1,0.001,0.2,0.01,5.0,0.0002,0.005 for the parameters

A0,a,b,µ,p,s,σν ,ση,σw, respectively. The proposal sample θ∗ is accepted with the following

probability:305

min

(
1,

p̂(y1:Z |θ∗)p(θ∗)

p̂(y1:Z |θ(k−1))p(θ(k−1))

)
, (39)

where p̂(y1:Z |θ) is an approximation of the marginal likelihood obtained by the SMC. If θ∗ is ac-

cepted, we set θ(k) = θ∗; otherwise, we set θ(k) = θ(k−1) and thus p̂(y1:Z |θ(k)) = p̂(y1:Z |θ(k−1)).

Using θ(k), the proposal sample at the next iteration can be obtained according to Eq. (37). Iter-

ating the above procedure generates a large number of samples that obey the posterior distribution310

p(θ|y1:Z).

In the above algorithm, an approximated value of the marginal likelihood p(y1:Z |θ) is computed

using the SMC method at each iteration of the Metropolis method. It should be noted that Eq. (33)

can be modified as follows:

p(yz|y1:z−1,θ)

=

∫
p(yz|xz,θ)p(xz|xz−1,θ)p(xz−1|y1:z−1,θ)dxz−1 dxz.

(40)315

Thus, in calculating p(y1:Z |θ) in Eq. (32), it is not necessary to consider the joint distribution of

the sequence x0:Z ; it is sufficient to consider the marginal distribution p(xz|y1:z,θ) for each z.

As mentioned above, sampling from p(xz|y1:z,θ) can be achieved when discarding x1:z−1. This

greatly reduces the computational cost because it can skip some procedures for handling the whole

sequence of 2510 time steps (Z = 2510 in this paper) for 5000 particles. In addition, the memory320

cost is also remarkably reduced. We then discard x1:z−1 in order to obtain an approximation of

p(y1:Z |θ) at each iteration of the Metropolis method.

As mentioned in Section 3, if we retain the samples for the whole sequence x0:Z from a run of the

SMC with a given θ, we obtain samples from p(x0:Z |y1:Z ,θ). The Metropolis procedure sequen-

tially generates a large number of samples that obey the marginal posterior distribution p(θ|y1:Z).325

By combining the SMC samples with various θ values that obey p(θ|y1:Z), we can obtain the
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samples representing the marginal posterior distribution p(x0:Z |y1:Z) where θ is marginalized out

according to Eq. (21). If samples that obey p(θ|y1:Z) are obtained in advance, the sampling proce-

dures from p(x0:Z |y1:Z ,θ) for various θ can be performed in parallel, and an approximation of the

marginal posterior distribution p(x0:Z |y1:Z) can be obtained efficiently.330

5 Result

Following a burn-in period, we performed 250000 iterations of the Metropolis sampling, and we

retained a sample every fifth iteration. We thus drew 50000 samples from the marginal posterior

distribution of θ, p(θ|y1:Z). For each run of the SMC, 5000 particles were used to obtain samples

from p(x0:Z |y1:Z ,θ
(k)).335

Figure 2 shows the marginal histograms for the estimated posterior distribution for each parameter.

The posterior mean and standard deviation of the accumulation at the surface A0(=A(0)) were 2.78

and 0.19 [cm/year], respectively. This result is in good agreement with the measurement by Kameda

et al. (2008), who reported the surface mass balance at Dome Fuji to be 27.3± 1.5kg/(m−2 · yr).
The maxima of the posterior distributions for µ and s were estimated to be near zero. This result is340

similar to that obtained in a previous study that used the Metropolis-Hastings method (Parrenin et al.,

2007), although this result estimated a smaller uncertainty for µ and a larger uncertainty for s. In the

result by Parrenin et al. (2007), the posterior of p peaks around 3, and another peak was suggested

around p= 2. On the other hand, the results obtained in this study suggest that the posterior of p

peaks around 3, and it is not clear whether there is another mode. It should be noted that these two345

results were based on different modeling for the accumulation rate. In addition, the setting of the

thinning factor in this study is different from that used by Parrenin et al.. Thus, it should not be

expected that they would necessarily provide similar results.

In the posterior distribution, some of the parameters correlate with each other. Figure 3 shows the

two-dimensional histogram indicating the marginal posterior distribution of a and b (a), the marginal350

posterior distribution of a and ση (b), and the marginal posterior distribution of b and ση (c). Close

correlations among the three parameters a, b, and ση are observed in this posterior distribution.

These three parameters are related with the accumulation rate and δ18O data. Thus, the accuracy

of the estimation for these three parameters could be much improved if any of the three parameters

were effectively constrained.355

Figure 4 shows the estimated age as a function of depth. The red solid line indicates the median

of the posterior distribution and the red dotted lines indicate the 10th and 90th percentiles of the

posterior distribution. The result by Parrenin et al. (2007) is also indicated with a grey line for

reference. The black crosses in this figure indicate the tie points used for the estimation. In order

to verify the convergence of the SMC sampling, we repeated sampling from the marginal posterior360

distribution p(x0:Z |y1:Z) five times with different seeds and confirmed that there were no apparent
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differences between the results of the five trials. (The figures shown in this paper show the result of

one of the five trials. ) Thus, the estimate shown in Figure 4 is sufficiently converged. The SMC

method often suffers from the degeneracy problem, especially when the number of steps is large.

In the PMCMC method, this degeneracy problem is overcome by collecting a large number of the365

SMC samples that are obtained by iterations of the Metropolis method. In Figure 4, it is difficult to

discriminate the difference of the 10th and 90th percentiles from the median because the width of

the posterior distribution is much smaller than the range of Figure 4. In order to make the posterior

width visible, the difference of the 10th and 90th percentiles of the posterior distribution from the

median of the posterior is shown with red dotted lines in Figure 5. A black cross shows the difference370

of each age marker from the median of the posterior. The uncertainty of the age is minimized at each

tie point where the age is known with high accuracy. Note that the age at each tie point has some

uncertainty. Accordingly, the uncertainty can not be reduced to zero even at a tie point. In Figure 5,

the difference of the estimate by Parrenin et al. (2007) from the median of the posterior obtained by

the proposed method is also shown with a grey line. The grey line tends to deviate from the zero line375

more highly than the black crosses. This means that the estimate with the proposed method fit to the

tie points more closely than the estimate by Parrenin et al., although the difference between the two

results is more than 3000 years at largest.

Figure 6 indicates the estimated thinning factor as a function of depth. Again, the red solid line

indicates the median of the posterior distribution and the red dotted lines indicate the 10th and 90th380

percentiles of the posterior distribution. The estimate by Parrenin et al. (2007) is also plotted with a

grey line. Since Θ= 1 at the surface by definition, the width of the posterior distribution is almost

zero near the surface, and the uncertainty becomes larger in the deeper core. The profile of the

thinning factor seems to be different between the red solid line and the grey line. This difference

would be caused by the assumption of a constant ice thickness. While Parrenin et al. (2007) allowed385

the variation of the ice thickness H , we assume that the ice thickness is constant in this study. It

would be a useful future work to examine the effect of the assumption of a constant H . Figure 7

shows the estimated accumulation rate as a function of depth. As in Figure 4, the red solid line

indicates the median of the posterior distribution, and the red dotted lines indicate the 10th and

90th percentiles of the posterior distribution. The difference between the 10th and 90th percentiles,390

which corresponds to 80% confidence interval, is also shown with blue dotted line. In this way, we

can estimate the age and related variables, and we can also obtain information about the credibility

of these estimates. The accumulation rate can also be considered as a function of age. As shown

in Figure 7, we have the posterior distribution of the accumulation rate given depth p(A|z). The

accumulation rate with respect to age is estimated after considering the uncertainty of age:395

p(A|ξ) =
∫

p(A|z)p(z|ξ)dz (41)

13



where we assume p(z) to be a uniform distribution in obtaining p(z|ξ):

p(z|ξ) = p(ξ|z)p(z)∫
p(ξ|z)p(z)dz

. (42)

Figure 8 shows the estimate of the accumulation rate with respect to age.

6 Discussion400

In order to evaluate the robustness of the estimation, we tried the estimation without using the last

five age markers at below 2400m depth. We estimated the parameters and the age–depth relationship

from the other 20 age markers and δ18O data. Figure 9 shows the histograms of the marginal poste-

rior distribution for the nine parameters. The result without using the five age markers is indicated

with a red line and the result with all the age markers, which is the same as the result in Figure 2,405

is indicated with the blue line. The posterior distribution obtained without a part of the age markers

is basically similar to the result shown in Figure 2. However, the posterior distribution of the three

parameters a, b, and ση are slightly different. Since ση is estimated larger when the five age markers

were not used, this might indicates that the variations of the accumulation rate was noisier near the

bottom. However, more careful evaluations would be required to resolve the reason.410

In Figure 10, red lines indicate the estimate of the age as a function of depth without using the

last five age markers. The solid red line indicates the median of the posterior distribution, and the

dotted red lines indicate the 10th and 90th percentiles of the posterior. In this figure, the estimate of

the age obtained using all the age markers is also plotted with grey lines. However, the difference

between the two results is not visible except that the two results are slightly different near the bottom415

of the ice core. This suggests that our model well represents the actual processes related with the

age–depth relationship of the ice core.

The accumulation rate as a function of age was also estimated without using the five age markers

near the bottom of the ice core. Figure 11 shows the estimate of the accumulation rate as a function

of age. The red lines indicate the estimate without using the last five age markers, and the grey line420

indicates the estimate using all the age markers for reference. Each solid line indicates the median

of the posterior, and the 10th and 90th percentiles are shown with dotted lines. The difference is

remarkable below the depth where the age is 300,000 years. However, the difference was mostly

within the uncertainty between the 10th and 90th percentile. Thus, this difference near the bottom

would be acceptable.425

In the SMC part, if the number of particles N is large, each run of the sampling requires high

computational cost. Thus, it is preferable that N should be as small as possible. We evaluated

the performance with various smaller values of N . Figure 12 shows the result when 1000 particles

were used for the SMC run, but 1250000 iterations of the Metropolis sampling were performed in

order to obtain 250000 samples. The SMC method with N = 1000 requires only about 1/5 of the430

computational cost with N = 5000. Thus, 1250000 iterations with N = 1000 have approximately
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the same computational cost as 250000 iterations with N = 5000. The averaged acceptance rate of

the MCMC sampling was 7.6% with N = 1000 while it was 26.4% with N = 5000. The estimate

with N = 1000, as shown in the cyan histogram, is somewhat similar to the estimate with N = 5000.

However, even though these two estimates have similar computational costs, the histogram of the435

estimate with N = 1000 appear to deviate from that of the estimate with N = 5000. As far as we

examined, the estimate did not reach the convergence in Figure 12. If we use a parallel computer, the

computation of the particle filter with N = 5000 could be conducted as fast as that with N = 1000.

Therefore, there seem to be no reasons to reduce the number of the particles in the SMC part.

7 Concluding remarks440

We have developed a technique for the dating of an ice core by combining information obtained

from age markers at various depths and with a model describing the accumulation of snow and

glaciological dynamics. This technique provides estimates of unspecified parameters in the model

from their posterior distributions as calculated with the PMCMC method. In the PMCMC method,

the marginal posterior distributions of the parameters are obtained using the Metropolis method; this445

is similar to other existing techniques (Parrenin et al., 2007), but here the likelihood of the set of

parameters is estimated with the SMC method. The age as a function of depth can also be estimated

from the marginal posterior distributions where the parameters are marginalized out. The marginal

posterior distribution of age at each depth is obtained by collecting the SMC samples produced by

many iterations of the Metropolis method. We applied this PMCMC method to the data of the ice450

core at Dome Fuji. The estimates of the age–depth relationship and the parameters were successfully

obtained.

The main advantage of the proposed technique is that it can be applied to general nonlinear non-

Gaussian situations. Since the relationship between accumulation rate and a temperature proxy is

typically nonlinear, it is not necessarily justified to assume linearity and Gaussianity in dating of an455

ice core using a temperature proxy. The PMCMC method allows us to use various kinds of data

which are expected to have nonlinear relationship with model variables. Another advantage is that

the PMCMC method estimates model parameters simultaneously with the age as a function of depth.

The uncertainty of age is therefore evaluated after taking into account the uncertainties in the model

parameters. However, the proposed technique requires high computational cost because the SMC460

sampling is performed at each iteration of the Metropolis method. At present, it takes about 43

hours to complete 250000 iterations of the Metropolis sampling with 5000 particles for the SMC on

a workstation with two Intel Xeon processors (12 cores for each processor; 2.7Ghz). The efficiency

could be improved by using a better proposal distribution (e.g., Doucet et al., 2001). This problem

should be addressed in the future.465

There might be a room for improvement in the model for the accumulation rate described by Eq.

(11). Eq. (11) represents the transition of the accumulation rate by a random walk model with a

Gaussian perturbation. However, we could consider another model such as an auto-regressive model
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for the transition and another distribution for the perturbation. There are a large number of choices

for the model for the accumulation rate and the goodness could be evaluated using some metric470

such as Bayes factors. However, it would take much time to make the selection among a variety of

choices. Thus, we will not explore a better model in this study.

This study used the δ18O data and tie points deduced from O2/N2 data to estimate the age–depth

relationships. However, data from other sources could also be used to improve the accuracy of the

estimates. For example, deuterium-excess data have been used to estimate temperatures (Uemura475

et al., 2012), and this could be used for improving the accuracy of the accumulation rate. Some

recent studies have provided simultaneous estimates of the age as a function of depth at multiple

sites (e.g., Lemieux-Dudon et al., 2010; Veres et al., 2013). The extension of the SMC approach

such that information at multiple sites could be combined would be a useful area of future work.
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glaciological modelling to quantify uncertainties in ice core chronologies, Quaternary Sci. Rev., 30, 2961–

2975, 2011.

Lemieux-Dudon, B., Parrenin, F., and Blayo, E.: A probabilistic method to construct an optimal ice core

chronology for ice cores, in: Proceedings of the 2nd International Workshop on Physics of Ice Core Records

(PICR-2), edited by Hondoh, T., pp. 233–245, Institute of Low Temperature Science, Hokkaido University,510

2009.

Lemieux-Dudon, B., Blayo, E., Petit, J. R., Waelbroeck, C., Svenson, A., Ritz, C., Barnola, J. M., Narcisi,

B. M., and Parrenin, F.: Consistent dating for Antarctic and Greenland ice cores, Quaternary Sci. Rev., 29,

8–20, 2010.

Lindsten, F., Jordan, M. I., and Schön, T. B.: Particle Gibbs with ancestor sampling, J. Mach. Learn. Res., 15,515

2145–2184, 2014.

Liu, J. S.: Monte Carlo strategies in scientific computing, Springer-Verlag, New York, 2001.

Lliboutry, L.: Local friction laws for glaciers: a critical review and new openings, J. Glaciology, 23, 67–95,

1979.

Nakano, S., Ueno, G., and Higuchi, T.: Merging particle filter for sequential data assimilation, Nonlin. Process.520

Geophys., 14, 395–408, 2007.

Parrenin, F., Waelbroeck, J. J. C., Ritz, C., and Barnola, J.-M.: Dating the Vostok ice core by an inverse method,

17



J. Geophys. Res., 106, 31 837–31 851, 2001.
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z Vertical coordinate

ξ Age

A Accumulation rate

Θ Thinning factor

xz State at depth z (xz = (ξz Az)
T )

yz Observation at depth z (yz = (τkz δ18Oz)
T )

θ Parameter vector (θ = (A0 a b µ p s σν ση σw)
T )

Table 1. Definition of the variables used in this paper.
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Depth Age Uncertainty of the age (2σε)

371.00 12390 400

791.00 41200 1000

1261.61 81973 2230

1375.67 94240 1410

1518.91 106263 1220

1605.27 116891 1490

1699.17 126469 1660

1824.80 137359 2040

1900.74 150368 2230

1958.31 164412 2550

2015.01 176353 2880

2052.23 186470 2770

2103.14 197394 1370

2156.67 209523 1980

2202.02 221211 890

2232.45 230836 780

2267.28 240633 1230

2309.35 252866 1160

2345.32 268105 1980

2366.01 280993 1600

2389.31 290909 1210

2412.25 301628 880

2438.37 313205 840

2462.36 324774 1110

2505.4 343673 2000

Table 2. The depth, the age, and the uncertainty of the age at each tie point.
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Fig. 9. Comparison of the estimated marginal distributions for the nine parameters between the result without

using the last five age markers (red) and the result with all the age markers (blue).
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Fig. 10. Estimated age as a function of depth without using the last five agemarkers (red) and estimate using

all the agemarkers (grey). Each solid line indicates the median of the posterior distribution. The 10th and 90th

percentiles of the posterior are indicated by dotted lines.
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Fig. 11. Estimated accumulation rate as a function of age without using the last five agemarkers (red) and

estimate using all the agemarkers (grey). Each solid line indicates the median of the posterior distribution. The

10th and 90th percentiles of the posterior are indicated by dotted lines.
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Fig. 12. Comparison of the estimated marginal distributions for the nine parameters between the result with

50000 iterations and 5000 particles (red line) and the result with 250000 iterations and 1000 particles (blue

line).

28


