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Abstract. The finite time Lyapunov exponent (FTLE) is a powerful Lagrangian concept widely used

for describing large-scale flow patterns and transport phenomena. However, field experiments usu-

ally have modest scales. Therefore, it is necessary to bridge the gap between the concept of FTLE

and field experiments. In this paper, two independent observations are discussed: (i) approximation

of the local FTLE time-series at a fixed location as a function of known distances between the desti-5

nation (respectively, source) points of released (resp., collected) particles and local velocity, and (ii)

estimation of the distances between the destination (resp., source) points of the released (resp., col-

lected) particles when consecutive release (resp., sampling) events are performed at a fixed location.

These two observations lay the groundwork for an ansatz methodology which can practically assist

in field experiments where consecutive samples are collected at a fixed location and it is desirable to10

attribute source locations to the collected particles, and also in planning of optimal local sampling of

passive particles for maximal diversity monitoring of atmospheric assemblages of microorganisms.

In addition to deterministic flows, the more realistic case of unresolved turbulence and low resolu-

tion flow data that yield probabilistic source (resp., destination) regions are studied. It is shown that,

similar to deterministic flows, Lagrangian coherent structures (LCS) and local FTLE can describe15

the separation of probabilistic source (resp., destination) regions corresponding to consecutively col-

lected (resp., released) particles.

1 Introduction

The classical interpretation of finite time Lyapunov exponent (FTLE) fields and the associated hy-

perbolic Lagrangian coherent structures (LCSs) provides useful information about large-scale flow20
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patterns and transport and mixing phenomena in flow domains (Haller and Poje, 1998; Haller and

Yuan, 2000; Mancho et al., 2004; Shadden et al., 2005; Haller, 2011). There are an increasing num-

ber of studies that apply various concepts of LCSs, based on the classic right Cauchy-Green tensor,

to describe and predict the time evolution of Lagrangian features in geophysical systems (Haller,

2015). In some of these studies, geophysical information (e.g., wind or oceanic velocity fields) have25

been used as the input data and Lagrangian results (e.g., the distribution of an oil spill in the ocean or

volcanic ash in the atmosphere) over a large area are compared with the behavior of the geophysical

system via satellite data or simulations (Dellnitz et al., 2009; Peng and Peterson, 2012; Olascoaga

and Haller, 2012; Mendoza and Mancho, 2012; Olascoaga et al., 2012). A large scale distribution

of particles is a common characteristic among these studies. In contrast, this study is motivated by a30

series of field experiments regarding the long distance transport of airborne microorganisms where

only a limited number of localized and temporally consecutive measurements of the atmospheric

structure of microbial assemblages are available (Schmale III et al., 2008; Tallapragada et al., 2011;

Schmale et al., 2012; Lin et al., 2013; Schmale and Ross, 2015). Therefore, there is a need to bridge

the powerful concept of FTLE and local field experiments.35

In this paper, we present two independent observations related to the estimation of the local FTLE

and the distance between destination (or source) points of released (or collected) particles. These

observations provide an ansatz for bridging field experiment results with the concept of local Lya-

punov exponents and the direction of maximum expansion in ordinary differential equation systems,

however a rigorous mathematical formalism for non-autonomous dynamical systems is still needed40

(Abarbanel et al., 1992; Branicki and Wiggins, 2009; Kloeden and Rasmussen, 2011). These obser-

vations may help investigate long distance transport phenomena as a possible cause of variation in

successively collected airborne samples such as the presence or absence of a unique strain or species

of microorganism. In addition, this analysis is useful for planning geophysical sampling at a fixed

location with respect to forecast FTLE fields (BozorgMagham et al., 2013).45

Because this study is motivated by aerial measurements in realistic conditions, i.e., hundreds of

collections of microorganisms from the atmosphere with drones, it is necessary to consider the spa-

tiotemporal limitations of the available velocity field data. These limitations are manifested in unre-

solved turbulence and impose uncertainties on the location of the source and destination points. For

this reason, we use a Lagrangian particle dispersion model to determine the probabilistic source (or50

destination) regions and show how the concept of local FTLE and deterministic Lagrangian coher-

ent structures (LCS) can explain the separation between probabilistic source (or destination) regions,

and may contribute to understanding the geographic and genetic diversity observed in aerial samples

(Fay et al., 1995; Draxler and Hess, 1998; BozorgMagham and Ross, 2015).

Results from this study can be applied to environmental applications such as early warning sys-55

tems for airborne pathogens, integrated pest management in crops, and the collection of samplers
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from geophysical flows (Tallapragada et al., 2011; BozorgMagham et al., 2013; BozorgMagham and

Ross, 2015).

This paper is outlined as follows. In §2 we present two observations associated with the estimation

of the local FTLE and the dispersion of destination (or source) points in flow fields. In §3 we show60

some numerical examples and applications of presented observations in periodic and aperiodic sys-

tems. In §4 we consider the unresolved turbulence and investigate the uncertainty of the backward

and forward trajectories and the resulting probabilistic source and destination regions.

2 Local Finite Time Lyapunov Exponent

In this section we present two independent observations related to the estimation of the local FTLE65

and the distance between destination (or source) points of successively released (or collected) parti-

cles in a time-varying n-dimensional vector field,

dx
dt

= v(x, t) , (1)

where, n= 2 for two-dimensional flows and n= 3 for three-dimensional flows.

By local FTLE we mean the time-varying value of the FTLE field at an arbitrary location x.70

Classically, the time-varying FTLE measures the maximum separation rate between nearby particles

when they are released in the flow field at the same time (isochronic particles). Fig. 1(a) refers to

this classical description. This figure shows two isochrone particles which are close to each other at

an initial time t0. Under the effect of the flow field the small displacement vector between the two

particles, δx, changes. After an elapsed time T , the new vector between the two particles is75

δx(t0 +T ) = φt0+T
t0 (x + δx)−φt0+T

t0 (x)

=Dφt0+T
t0 (x) + O

(
‖δx(t0)‖2

)
, (2)

where φt0+T
t0 is the flow map for the vector field (1) from time t0 to t0+T andDφt0+T

t0 = dφt0+T
t0 (x)/dx

is the Jacobian of the flow map, and ‖·‖ is the Euclidean norm.

Consider the right Cauchy-Green strain tensor, C (x, t0,T ) =Dφt0+T
t0 (x)

ᵀ
Dφt0+T

t0 (x). For sake

of the following discussion, consider the situation of incompressible two-dimensional flows, n= 2.

The eigenvalues λi and normalized eigenvectors ξi of C satisfy (Haller, 2015),80

Cξi = λiξi, ‖ξi‖= 1, i= 1,2, 0< λ1 < 1< λ2, ξ1 ⊥ ξ2, (3)

where the (x, t0,T ) dependence of C, λi, and ξi is understood. As illustrated in Fig. 1(b), the two

eigenvectors, ξ1 and ξ2, are carried along by the flow φt0+T
t0 to the two vectors r1 and r2, respectively,

where

ri =Dφt0+T
t0 (x)ξi, (4)85

3
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Figure 1. (a) Separation of nearby particles during time interval T due to the flow map φ. The two particles are

released in the flow field at the same time t0; isochronic particles. (b) ξ2 is the direction of maximum growth

at the initial point x, which evolves into the direction r2 =Dφt0+T
t0

(x)ξ2 at the evolved point φt0+T
t0

(x). The

closer the initial displacement vector δx is to the ξ2 direction, the more it will be stretched to that maximum

perturbation .

whose lengths are scaled by a factor
√
λi compared with the normalized eigenvectors. The maximum

possible separation between the released particles after a time interval T , assuming a sufficiently

small initial distance ‖δx(t0)‖, is

max‖δx(t0 +T )‖=
√
λmax (C (x, t0,T ))‖δx(t0)‖ (5)

where λmax = λn.

The finite-time Lyapunov exponent (FTLE), with t0 and T fixed, is considered a scalar field of the90

Lyapunov exponent as a function of initial position, x,

σT
t0 (x) =

1

|T |
ln
√
λmax (C). (6)

Similar to the calculation of maximum separation between two initially neighboring points in a

system of ordinary differential equations (ODEs) and the corresponding maximum Lyapunov expo-

nents, σT
t0 can be used, via (5) and (6), to describe max‖δx(t0 +T )‖ as

max‖δx(t0 +T )‖= exp
(
σT
t0 (x, t0) |T |

)
‖δx(t0)‖ . (7)

In this study we are interested in particles that are released (or collected) sequentially in time at95

a fixed location. Thus, the standard concept of the FTLE, i.e., separation rate of nearby isochronic

points, might not be applicable. Therefore, we present two independent observations and show that

we can (i) approximate the local FTLE by using the information of local velocity and successive

destination (or source) points, and (ii) estimate the distance of the destination (or source) points

by having the local FTLE and velocity. These two observations require the assumption of a time-100

dependent vector field, so that that the initial displacement vector is not along a common trajectory

for sequential particles.
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Figure 2. Two sequentially released (left panel)/collected (right panel) particles at a fixed location shown by a

bold cross. Particles 1 and 2 are released/collected at t1 and t2 = t1+δt respectively (time interval between the

two sequential samplings is δt). The integration time between the destination/sources and the release/sampling

location is approximately T for both particles (|T | � δt). The displacement of the first particle during δt is

shown by δ∗.

Referring to Fig. 2, the left panel, assume that two particles are sequentially released at t1 and

t2 = t1 + δt at the release location shown by the ×××. The right panel corresponds to the analogous

situation of sequentially collected particles.105

Observation I: The local FTLE value over the time interval [t1, t2], provided an appropriate 0<

δt� |T |, can be approximated by,

σT
[t1,t2] (x) =

1

|T |
ln

δ (x,T, t1, δt)
‖v(x, t1, t2)δt‖

. (8)

where δ (x,T, t1, δt) is the distance between successive destination (resp., source) points correspond-

ing to the elapsed time T , and v(x, t1, t2) is the [non-zero] average velocity at the release (resp.,

sampling) location during [t1, t2].110

Observation II: The distance between the destination (resp., source) points of consecutively re-

leased (resp., collected) particles can be estimated, provided an appropriate δt, by the local velocity

and the true local FTLE at the release (resp., sampling) location as,

δ (x,T, t1, δt) = exp(|T |σT
(t1,t2) (x))‖v(x, t1, t2)δt‖. (9)

We suggest that observation I provides a recovered FTLE field, based on mild assumptions which

tend to hold in geophysical flows. Observation II is important for sampling purposes, because it115

enables us to estimate the distance between the source positions of consecutively collected particles,

if we have the local velocity and local FTLE data by separate means. We note that observations I

and II are independent and also the information on the right-hand sides of (8) and (9) are assumed

known. For example, the local velocity could be obtained from an anemometer or high-frequency

radar in ocean, (Shadden et al., 2009)), or the local FTLE could be obtained from a nowcast or120

forecast velocity field.

Two remarks are in order regarding these observations. (i) A proper choice of δt, which depends

on the spatiotemporal variability of the velocity field, is critical for a good approximation of the local
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FTLE or the distance between the destination (resp., source) points. If δt is chosen to be too small,

then variation of the velocity field would not be observed, the two particles would essentially be125

following one another along a nearly identical trajectory, and consequently the separation between

the two particles would lead to a null LE value, not maximal growth. However, if δt is too large, then

the initial particle separation at time t2 is too large to justify the linearization assumption underlying

FTLE calculations; see, e.g., (2). Thus, a good selection of δt depends on the spatiotemporal vari-

ability of the velocity field. (ii) A larger true local FTLE of the real flow field yields a smaller error130

of estimations for the recovered local FTLE and the distance between the destination (resp., source)

points. This comes from numerical evidence in the following sections.

The fundamental idea behind these observations is related to more general methods of analysis of

chaotic dynamical systems, often used in experimental settings, namely that the direction of maxi-

mum expansion dominates the dynamics of typical displacement vector growth (see Fig. 1(b)) (Os-135

eledec, 1968; Abarbanel et al., 1992; Rosenstein et al., 1993; Tanaka and Ross, 2009) . This notion

is generally accepted in settings assumed to be modeled by underlying autonomous ODEs (whether

known or unknown), but to our knowledge, there is no similar theorem for non-autonomous ODEs.

Our observations show that in a time-dependent velocity field, with a proper choice of δt and suf-

ficiently large |T |, δ (x,T, t1, δt) is often close to the maximum possible distance between the two140

particles. These observations, at the present stage, are more of an ansatz and may help stimulate

rigorous mathematical investigation related to separation of non-isochronic nearby particles in a

non-autonomous ODE setting.

In following section we demonstrate some numerical verification and applications of these obser-

vations.145

3 Numerical Examples and Applications

3.1 Numerical Examples of Observations I & II, for Periodic and Aperiodic Velocity Fields

First, we study the well-known example of a periodic double-gyre. We consider the same model and

parameters introduced in Section 6, Example 1, of (Shadden et al., 2005). For observation I, we need

to know δ (x,T, t1, δt) and the local velocity. Therefore, we use the double-gyre model to generate150

the velocity field and then exploit that data to calculate the trajectories and the corresponding distance

between successively released particles after integration time T . We repeat this procedure for all the

grid points of the gyre domain [0,2]× [0,1].

Fig. 3(a) shows the benchmark (true) forward FTLE field corresponding to t0 = 1, calculated by

(6), and panel (b) shows the approximated forward FTLE field calculated by (8). A 4-th order Runge-155

Kutta integration scheme with constant integration time-step 0.01 and total integration time T = 15

time units is implemented for both panels. For the recovered (approximated) FTLE field, panel (b),

we consider δt = 0.2 time unit in (8). One can adjust parameters, e.g., T or δt, to investigate their
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a) b)

Figure 3. Forward FTLE field of a periodic double-gyre velocity field. (a) The benchmark FTLE field at t0 = 1

calculated by (6). (b) The approximated FTLE field calculated by (8), and δt= 0.2 time unit. A 4-th order

Runge-Kutta integration scheme with constant integration time-step 0.01 and total integration time T = 15

time units is implemented for both panels.

impact on the FTLE field. Our results (not presented here) show stable outcomes when a periodic

double-gyre is considered.160

To investigate observation I for an aperiodic system we use a two-dimensional model of time-

dependent Rayleigh-Bénard convection model developed by Solomon and Gollub (1988) and im-

plemented by Lekien and Haller (2008) to study unsteady flow separation on slip boundaries. The

streamfunction of this model is a function of position and a stochastic time-dependent forcing term.

ψ(x,y, t) =
A

k
sin{k [x− g(t)]}sin(2y). (10)

Following Lekien and Haller (2008), we generate the stochastic forcing, g(t), based on a random165

Fourier spectrum with zero mean and unit impulse covariance (see Fig. 5 in (Lekien and Haller,

2008)). Fig. 4(a) shows the benchmark forward FTLE field calculated by (6), and panel (b) shows

the recovered forward FTLE field calculated by (8) in the domain [0,2]× [0,π/2]. Two panels of this

figure correspond to t0 = 1. Similar to the previous example, a 4-th order Runge-Kutta integration

scheme with constant integration time-step 0.01 is used. The total integration time is T = 75 time170

units for both panels. For the recovered FTLE field, panel (b), we consider δt= 0.1 time unit in (8).

By comparing two panels of Figs. 3 and 4, one sees that the main features of the FTLE field are

recovered by (8) and the benchmark and approximated fields are highly correlated. However, in some

areas (e.g., near (1.2,0.5) in Fig 3 and (1.5,0.8) in Fig 4) we see discontinuities in the recovered

FTLE field. The reason might be that the selected δt is not a proper choice at those regions. It is also175

important to note that we use a common color scale for the two panels of Figs. 3 and 4, respectively.

Therefore, minute differences between the true and approximated fields are visually exaggerated

because the FTLE values are generally small in magnitude. Numerical comparison of the results

(see the next two numerical experiments) shows close approximation of the recovered local FTLE

to the true values.180
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Figure 4. Forward FTLE field of an aperiodic Rayleigh-Bénard convection model. (a) The benchmark FTLE

field at t0= 1 calculated by (6). (b) The approximated FTLE field calculated by (8), and δt= 0.1 time unit. A

4-th order Runge-Kutta integration scheme with constant integration time-step 0.01 and total integration time

T = 75 units is implemented for both panels.

Next, we investigate both observations I and II at an arbitrary point over the time span [0,10],

which is one period of the double-gyre flow. First, we consider the point (x,y) = (0.3,0.4) in the

periodic double-gyre, keeping all the parameters of FTLE computation the same as before (e.g, δt =

0.2). Fig. 5(a) shows the benchmark and approximated FTLE time-series at that point. The bench-

mark FTLE is calculated by (6) using the velocity field information and the maximum eigenvalue of185

the Cauchy-Green strain tensor. The approximated FTLE in this panel is calculated by (8). Informa-

tion about δ and the local velocity (i.e., v) are assumed to be known (in this numerical experiment

we obtain them from the velocity field). Fig. 5(b) shows the benchmark and approximated distance

between successively released particles after an elapsed time T = 15. To calculate the benchmark

time-series we use the velocity field information to generate the trajectories and find the distance be-190

tween the successive particles. The approximated time-series is generated by (9), with the provided

information about the local velocity and the local FTLE value.

Next, we consider the point (x,y) = (1.3,1.3) in the aperiodic time-dependent Rayleigh-Bénard

convection model, keeping all the parameters of FTLE computation the same as before (e.g, δt

= 0.1). Fig. 6(a) shows the benchmark and approximated FTLE time-series at the selected point195

and Fig. 6(b) shows the benchmark and the approximated distance between successively released

particles after an elapsed time T = 75.

Figures 5 and 6 show typical time-series of the recovered local FTLE and the distance between

successively released (or collected) particles. As one can observe, the two time-series in panels (a)

and (b) are highly correlated and the error of approximation is generally small.200
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Figure 5. Observation I & II at (x,y) = (0.3,0.4) for a periodic double-gyre velocity field. (a) Local benchmark

and recovered forward FTLE. (b) Benchmark and approximated final distance between successively released

particles corresponding to T = 15.

Figure 6. Observation I & II at (x,y) = (1.3,1.3) for an aperiodic velocity field corresponding to a time-

dependent Rayleigh-Bénard convection model. (a) Local benchmark and recovered forward FTLE. (b) Bench-

mark and approximated final distance between successively released particles corresponding to T = 75.

The error of approximation in observations I and II depends on many parameters, for example: δt,

T , and variation of vector field over the time-scale δt. We leave the analysis of errors of observations

I and II for a future study.

3.2 Applications of the Local FTLE Observations I & II

Next, we consider the real-world wind data and focus on the backward FTLE fields and the location205

of source points. This situation is important for field studies for identifying potential source regions

of plant pathogens and their relative risk of transport to previously unexposed regions (Lin et al.,
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2014; Prussin et al., 2014b, a, 2015). For this purpose, we use observations I & II to compare the

benchmark and the recovered local backward FTLE time-series and also the true and the estimated

distance of the source locations corresponding to the particles that were collected at Virginia Tech’s210

Kentland Farm, located at 37◦11′ N and 80◦35′ W. A large variety of microbial samples have been

collected at this location over the past 7 years (2006 to 2013) (Schmale et al., 2012). We refer to this

point as (0,0) in our plots.

The flow maps are calculated by using numerical data corresponding to the North America Mesoscale,

NAM-218 provided by the National Oceanic and Atmospheric Administration (NOAA) and National215

Centers for Environmental Prediction’s (NCEP) Operational Model Archive and Distribution System

(NOMADS) project1. Spatial resolution of this data set is about 12.1 km and the temporal resolution

is 3 hours. All the trajectories are calculated by a fourth order Runge-Kutta integrator with a constant

integration time step equals to 5 min. We use third order splines for all necessary spatiotemporal in-

terpolations. We consider the time interval 12:00 UTC 29 Sep to 12:00 UTC 30 Sep 2010 for our220

numerical experiments and refer to it as the interrogation window.

Figs. 7 shows the trajectories and the initial positions of the indexed particles corresponding to

the collected particles at the sampling location during the interrogation window. The frequency of

sampling was 1 hour and the backward time integration is 24 hours for all the particles. In addition,

for simplicity and without losing generality of the results we perform the integration on a quasi-225

2D 850mb pressure surface (BozorgMagham and Ross, 2015). Indices of this figure indicate the

sampling times of the collected particles, for example index ‘12’ that locates on the North-West of

the figure refers to the initial position of a particle that started at 12:00 UTC 28 Sep and was collected

24 hours later, i.e., 12:00 UTC 29 Sep, at the sampling location. In terms of streaklines (Batchelor,

2000), this line (see Fig. 7(b)) is composed of contemporaneous points, e.g., 24 hr, from the assembly230

of streaklines which pass through the sampling location during the interrogation window. We define

this line as the isochrone source-line since the integration time from all points on it to the sampling

location is equal, e.g., 24 hr in this example.

Following the assumptions of the local FTLE observations, i.e., a proper δt with respect to the

spatiotemporal variability of the velocity field, we choose sampling periods from 0.1 to 1 hour and235

all the integration are done in the same interrogation window. Figure 8(a) shows the benchmark

distance between successive source points, i.e., δ (x,T, t1, t2), during the interrogation window cal-

culated from the available velocity field data. We use the average velocity at the sampling location

to calculate δ∗ as ‖v(x, t1, t2)δt‖. Fig. 8(b) shows the recovered local FTLE time-series, assuming

that the true successive distances are available.240

Figures 7(b) and 8 demonstrate that we interpret a local (backward) FTLE time-series as differ-

ential stretching of line elements along an isochrone source-line. To verify this result and to study

the effect of different δt’s on the recovery of local FTLE time-series we calculate the benchmark

1http://nomads.ncdc.noaa.gov/data.php
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Figure 7. (a) Trajectories of the collected particles during 24 hours of integration. (b) Sequential source points

and the isochrone source-line. Sampling frequency is one hour between 12:00 UTC 29 Sep to 12:00 UTC 30

Sep 2010 and the sampling location is at (0,0) (Virginia Tech Kentland Farm 37◦11′ N and 80◦35′ W).
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Figure 8. (a) δ as the benchmark (true) distance between successive source points corresponding to δt = 0.1, 0.5

and 1 hr. Horizontal axis represents the averaged time corresponding to each successive pairs. (b) Approximated

local FTLE for different δt’s form 0.1 hr (6 min) to 1 hour. Interrogation window is 12:00 UTC 29 Sep to 12:00

UTC 30 Sep 2010.

backward FTLE fields for the interrogation window with integration time equal to 24 hr. Figure 9(a)

shows an image of the true time-varying FTLE field corresponding to 12:00 UTC 29 Sep 2010. To245

give a sense about the changes of the FTLE field during the interrogation window, we may describe

the motion of the strong ridges of the field in figure 9(a) toward North-West direction, as shown by

the arrow. Figure 9(b) shows the benchmark local FTLE value (black line) at the Kentland Farm dur-

ing the interrogation window. To generate this plot we use (6) and calculate the backward FTLE field

every 15 minutes, then the time-varying value of FTLE at (0,0) is extracted. Also, for comparing the250
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Figure 9. (a) The frozen image corresponding to 12:00 UCT 29 Sep 2010 of the backward FTLE field during

the interrogation window. Integration time is 24 hours for FTLE calculations. The bold arrow shows the general

wind direction and the motion of the attracting LCS. (b) The true (black) and recovered (red) local FTLE

time-series at the reference point (0,0). For the recovered time series (red), δt is equal to 0.1 hr.

results, the recovered FTLE time-series corresponding to δt= 0.1 hr is displayed in the same panel

by the red line. Figures 8(b) and 9(b) indicate that: (i) an optimal δt for this example is between 0.1

to 0.5 hr, and (ii) the estimation error is smaller for larger values of the true local FTLE. Therefore,

we may observe larger errors of estimation when [true] σ is close to zero, e.g., between 00 and 4

UTC in Fig. 9(b). For δt= 0.1 hr we observe that the true and approximated local FTLE time-series255

are highly correlated and also their maxima (corresponding to the local maxima of the FTLE field)

are at the same times (within δt=±0.1 hr). Therefore, with a proper choice of δt’s the recovered

local FTLE time-series can accurately capture the passage times of moving ridges of a FTLE field.

Detecting these ridges is important since they are candidates for hyperbolic LCSs in many geophys-

ical applications (Tallapragada et al., 2011; Haller, 2011; Karrasch, 2012; BozorgMagham et al.,260

2013).

In addition, we investigate whether we can estimate the distances by using observation II, provid-

ing necessary information about local velocity and FTLE. Fig. 10 is a numerical example that shows

that the benchmark distance between the successive source points (black line) is well approximated

(red line) by observation II, i.e., (9). Note that in this case we have the data of the true local FTLE265

and the local velocity. In this figure we see that at δt= 0.25 hr, the estimated differential distance

time-series is very close to the true answer and it captures the correct times of the local maxima.

This is an empirically important result, because one can schedule the sampling of geophysical

flows (e.g., with drones) based on the available forecast FTLE fields and local velocity such that

the successive collected particles originate from the most possible diverse locations (see § 3.2). In270

Fig. 10 it is evident that there are two optimal time intervals, i.e., before and after 16 UTC, for

maximal diversity monitoring. To interpret this, consider Fig. 7(b) and notice that the geographic
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Figure 10. Differential distance between the successive source points on the isochrone source-line correspond-

ing to δt= 0.25 hr. The black line shows the benchmark and the red line shows the approximated time series

which is calculated by local FTLE theorem as exp(|T |σT
[t1,t2]

(x))‖v(x, t1, t2)δt‖. The backward integration

time for calculations of the flow maps is T = 24 hr and the interrogation window is 12:00 UTC 29 Sep to 12:00

UTC 30 Sep 2010.

extent of the line segment from point 15 to point 16 is much larger than the segment from point 13

to point 14.

A direct result of the local FTLE observations is the possibility of planning for maximal geo-275

graphic (and therefore also genetic) diversity monitoring such that the collected particles come from

the most separated source locations. This means incorporating greater potential source areas, which

could drive a greater diversity of sample collection. Suppose that it is desired to maximize the ge-

netic diversity of microorganisms collected in a sample, assuming that all the collected particles

have approximately the same flight time. Results of observation II indicate that the optimal time for280

collecting samples such that they originate from the most possible distant locations is at times corre-

sponding to the maxima of the local FTLE time-series (note the high correlation between the distance

and the local FTLE time-series in Fig. 10 and Fig. 9(b)). To ensure that the particles are coming from

significantly separated locations we may use the topology of the FTLE field and collect the samples

on either side of a strong attracting LCS feature which corresponds to a local maximum of σT
[t1,t2],285

providing short enough time between sampling periods. In this condition, high value of σT
[t1,t2] as

the exponent in equation (7) is the reason for having a large δ. Figure 11 schematically shows this

strategy when an attracting LCS feature passes over a fixed sampling location causing a dramatic

change in the region of possible source points of collected particles.
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Figure 11. An attracting LCS feature (red) passes over the geographically fixed sampling location (indicated by

a bold×××). Black lines show trajectories of hypothetical particles that are absorbed to a moving attracting LCS.

The bold arrow shows the general wind direction and the motion of the attracting LCS at the specified interval.

Collected samples on either side of this attracting LCS feature come from two different regions.

As an example in realistic geophysical flow, Fig. 12 shows trajectories of three hypothetical par-290

ticles that are collected at (0,−100) km with respect to the reference point. Backward integration

time for specifying the corresponding source points, i.e., A, B and C, and the trajectories is 40 hr

for those three particles. The sampling times during the interrogation window are 13:40 UTC for the

red particle, 14:00 UTC for the blue particle and 14:10 UTC for the green particle. The green and

the blue particles are collected on one side of an attracting LCS but the red particle is collected on295

the other side of the same LCS. As we observe, the source points corresponding to blue and green

particles, points B and C, are close. Meanwhile the source point of the red particle, point A, is signif-

icantly far from the other two particles. An interesting feature of this figure is that the separation of

the trajectories does not start from the sampling point, but as it is shown, the three trajectories remain

close to each other for about 200 km and then begin to diverge. This observation is directly related to300

the concept of the FTLE, because σT
t0 is a function of the “final” separation between nearby particles

and it does not specify the moment of divergence.

Referring to this example, observation II can help us to explain the seeming association of sample

diversity with high FTLE. There have been some reports of significant characteristic variation of the

collected particles, e.g., genetic types or aerial density of the microbial samples, during short inter-305

vals when sampling coincides with a high value local FTLE, or similarly, passage of a strong LCS

over the sampling location (Schmale et al., 2012; Lin et al., 2013). In addition, a direct result of the

local FTLE observations is that when the local FTLE value is small during the sampling process, it

is expected that the collected particles originate from nearby source points, assuming approximately
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Figure 12. Three calculated trajectories of [hypothetical] collected samples. The red and blue trajectories cor-

respond to the samples on either side of a LCS. The blue and green trajectories correspond to the samples on

one side of the same LCS. Sampling times are 13:40, 14:00 and 14:10 UTC during the interrogation window

(12:00 UTC 29 Sep to 12:00 UTC 30 Sep 2010) for the red, blue and the green particles, respectively. Source

points of the collected particles are shown by A, B and C. Integration time for all three particles is T = 40 hr.

same flight times for them. This might be the reason that the characteristics of the microbial samples310

remain quasi-constant in consecutive collections, but differ as the time between sample collections

increases (Lin et al., 2013). This situation is similar to sampling from a coherent set where the FTLE

values are generally small (Froyland et al., 2010; Tallapragada and Ross, 2013) and the particles

have similar Lagrangian characteristics. Moreover, in cases where we observe significant changes in

collected samples while local FTLE value is small, we speculate that those changes are caused by315

local sources rather than long range transport phenomena (Lin et al., 2013). Thus, the local FTLE

concept helps us to include or exclude rare/unique microbes from specific source regions. This sets

the stage for additional work to be performed to test hypotheses concerning the presence/absence of

the unique microbes at the potential source locations.

4 Unresolved Turbulence and Probabilistic Regions320

In this section we study the uncertainty in calculation of the source (or destination) points due to

the unresolved turbulence and also the role of high-value local FTLE and deterministic LCS in

separation of the probabilistic source (or destination) regions.

Precise calculation of the source (or destination) point of any collected (or released) particle and

the corresponding flow map require high resolution data of the velocity field. But geophysical data325
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are always discrete and spatially sparse. For example, spatial and temporal resolution of operational

data sets vary from the order of 10 to hundreds of kilometers and 3 hours to longer intervals, respec-

tively. Meanwhile, spatiotemporal scales of atmospheric flows can be smaller than the resolution of

the available data and we may lose important Lagrangian phenomena such as turbulent diffusion

and small size eddies if we just consider available data (Csanady, 1973; Rodean, 1996). Therefore,330

for realistic calculation of the source (or destination) points it is necessary to consider the the un-

certainty of the trajectories. For this purpose, we consider a Lagrangian particle dispersion model

(LPDM) that provides the stochastic component of the velocity with respect to the available deter-

ministic (background) data (Legg and Raupach, 1982; Fay et al., 1995; Draxler and Hess, 1998;

Stohl et al., 2005). In LPDM, the velocity vector at each point, v(x, t), is assumed to be the sum-335

mation of a deterministic term, v̄(x, t), and a random variable, V(x, v̄, t) that depends explicitly

on the instantaneous position of the particle x, its deterministic velocity v̄ at that location and the

time t; see equation (11). Later, we see how this dependency dictates two different solutions for the

calcualtions of the probabilistic source and destination regions (BozorgMagham and Ross, 2015).

v(x, t) = v̄(x, t) + V(x, v̄, t). (11)

The stochastic term of (11) is a Markov-chain process as a function of the velocity deformation340

tensor and the Lagrangian time scale of the flow field,

V(t+∆t) =R∆tVt +
(
1−R2

∆t

)0.5N (0,1)
√
κ/TL (12)

where V shows each component of the stochastic velocity term V, and the correlation coefficient

R∆t is a measure of the association between stochastic velocities in successive time steps. Also, N
is a normal distribution with mean zero and unit standard deviation. The correlation coefficient

R∆t = exp(−∆t/TL) , (13)

is a function of integration time step, ∆t, and the Lagrangian time scale of the flow field, TL, which345

is on the order of 104 s. The term κ depends on the gradient of the instantaneous deterministic

velocity, v̄ = (ū, v̄), the grid size of the meteorological data, χ, and an empirical constant, c,

κ= 2−0.5 (cχ)
2

[(
∂v̄

∂x
+
∂ū

∂y

)2

+

(
∂ū

∂x
− ∂v̄

∂y

)2
]0.5

. (14)

Because κ depends on the gradient of the background velocity one can easily use the set of equa-

tions (11)-(14) for forward integration. Using this set for simple backward integration requires pre-

sumption about the position of a particle at specific times which leads to misleading results. There-350

fore, we have to consider two distinct cases, (i) calculation of the probabilistic destination region of

a released particle, (ii) calculation of the probabilistic source region of a collected particle. In this

study we discuss both cases, but like before, emphasize the probabilistic source regions (correspond-

ing to the backward trajectories). We also revisit the problem of local FTLE and successive sampling
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in the presence of unresolved turbulence. Our numerical results show that if successive sampling are355

performed on either side of a strong attracting LCS (represented by the temporal peaks in the local

backward FTLE time-series), the probabilistic source regions are significantly separated similar to

the deterministic case.

To focus on the main concerns of this study and to avoid complexity we proceed with a 2D velocity

field similar to the previous sections. However, this approach can be extended to 3D fields by adding360

an appropriate stochastic term in the extended direction (Rodean, 1996).

4.1 Probabilistic Source and Destination Regions

(i) The probabilistic destination region is the probability distribution of the final positions of virtually

released particles after integration time T when the initial position is known precisely, e.g., a Dirac

delta function. The case of forward integration and related calculations of a probabilistic distribution365

is equivalent to solving the Fokker-Planck or Kolmogorov forward equations (Rodean, 1996; Risken,

1985) which describes the future of a probability distribution function of a known initial condition

that evolves under the dynamics of a system, e.g., a diffusion process.

Because the time-varying vector fields are usually complicated, analytical solutions for proba-

bilistic destination regions are not available and it is necessary to use numerical solutions. For this370

aim, we discretize the domain of our interest into sufficiently small boxes and use the Monte Carlo

method by releasing sufficient number of independent particles from a box that includes the release

point. Fig. 13(a) shows this procedure. By choosing an appropriate integration time step we calculate

the trajectories. By completion of the integration process we have a distribution of particles in differ-

ent boxes. If the total number of released particles is sufficiently large and the boxes’ dimensions are375

sufficiently small, then the ratio of the virtual particles in each box to the total number of released

particles show the probability distribution of the destination region. By increasing the number of

virtual particles and decreasing the size of the boxes the calculated distribution becomes invariant.

(ii) The solution for a probabilistic source region is conceptually the same as solving the Kol-

mogorov backward problem (Risken, 1985). In mathematical terms, at time t0−T (T > 0 is the380

integration time) we investigate for a specific source distribution such that in a future time, i.e.,

t0, the system will be in a given target set. A probabilistic source region cannot be determined

by simply performing backward time-integration. Because κ in equation (14) and consequently the

stochastic velocity term are determined by the instantaneous background velocity which depends on

the location and time. Naively applying the backward time-integration produces a series of “false”385

displacement vectors. The cumulative effect of these false displacements yields a false probabilis-

tic source region. To solve this problem, we first discretize the domain of the flow field into small

boxes. Then, we shift the starting time to t0−T and consider the velocity field at this new time

frame. By this means, we convert this problem into a forward integration problem from t0−T to t0.

At t0−T we release a sufficient number of independent particles from all boxes of the domain (this390
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a) b)

Figure 13. (a) A solution for the probability distribution of a forward case. Virtual particles are released from a

box that includes the release location. Distribution of the final positions after integration time T would specify

the probabilistic destination region. Calculation of the probabilistic destination region is equivalent to the solu-

tion of a Fokker-Planck equation for finding the future probability distribution of an initially known distribution.

Trajectories of the released particles from the initial box are shown in green. (b) A solution for probability dis-

tribution of a source region. For a proper [forward-time] integration, the starting time is shifted to t0−T . Virtual

particles are released from all the boxes in the domain. Important particles are those who land in the target box

which include the sampling location. Trajectories of particles which land in the target box are shown by green,

other trajectories are shown by red. A solution for the probabilistic source region is conceptually the same as

the solution of backward Kolmogorov equation where an initial probability distribution is the desired solution

such that in a future time the system will have a specified probability distribution.

step is the major difference between the current and the previous case). By forward integration from

t0−T to time t0 we find the landing location of all released particles. The influential particles in this

procedure are those which land inside the sampling box, e.g., the particles associated to the green

trajectories in Fig. 13(b). In this figure, those boxes that have contribute to the particles ending up in

the target box “j”, are hatched. As we observe, there may be particles from contributing boxes that395

do not land in the target box (shown by red trajectories).

In Fig. 13(b) the boxes are labeled by i= 1,2, · · · ,nb where nb is the number of boxes and the

sampling box is shown by index j. We denote the number of particles which start from box i at time

t0−T and are in box j at time t0 by ni→j . We calculate the relative contribution of each source box

as,400

γi =
ni→j∑
ini→j

, (15)

where
∑

ini→j shows the total number of particles that land in the sampling (target) box j and γi

is the chance of a collected particle to come from a specific box i. Therefore, the distribution of

γ over the domain approximates the probability distribution of the source region. This procedure

generates the correct probabilistic source region but its numerical efficiency is not high because
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many, e.g., 106, independent particles are released from all boxes of the domain but only those405

particles that land in the sampling box are counted. Thus, there are a huge number of calculated

trajectories that are left out. It is not the purpose of this study, but one can increase the efficiency of

this procedure by applying some optimization methods. For example, sequential release of particles

from large boxes that are inside a circle centered at the sampling box and by identifying the regions

with maximum contributions. The radius of that circle can be determined by statistical information410

about the mean velocity and the integration time. After that, one may focus on those important

regions by partitioning them into smaller boxes and increasing the number of released particles to

determine fine structures of the probabilistic source region. For more information regarding this

problem one can refer to STILT project2 (Lin et al., 2003; Nehrkorn et al., 2010; Hegarty et al.,

2013).415

4.2 Probabilistic Source Region and Local FTLE Observations

To investigate a realistic example of probabilistic source regions and the applicability of the pre-

sented observations, we revisit the case study of section §3.2. Fig. 14 shows one example of a prob-

abilistic source region where the color intensity determines the relative contribution of each source

box. In this case the sampling location is at (0,−100) km with respect to our reference point. Sam-420

pling time is 14:10 UTC 29 Sep 2010 and the total elapsed time for trajectory calculations is T = 40

hours. This figure is the stochastic equivalent of the source point of the particle that its trajectory is

shown by the green line in Fig. 12. For this calculation 105 particles are released from each 10× 10

km box. After trial and error experiment, the search area for this specific problem is considered to

be 900km×600km rectangular grid. Considering the size of the boxes, the total number of released425

particles and calculated trajectories is 5.4× 108 in each integration time step.

An important point about probabilistic source and destination regions, is that although at each

time step the stochastic velocity term has a Gaussian distribution (recalling equation (12)), the final

distribution of particles is not necessarily Gaussian. The reason for this fact is the cumulative effects

of the variability of the variance of normal distribution,
√
κ/TL, that is a function of the gradient of430

instantaneous velocity. In general, for small integration time the probability distribution of the source

(or destination) region is close to a Gaussian distribution but as the integration time increases, the

corresponding distribution diverges from a normal one. For example, visual inspection of Fig. 14b

indicates that the final distribution of the probable source points is not Gaussian. In Fig. 14c the

relative contribution of the source boxes along the specified line PQ is shown. Standard statistical435

tests such as the Kolmogorov-Smirnov test (Lilliefors, 1967) confirm that the distribution is not

Gaussian.

In Fig. 12 we show that the source locations of two collected particles on either side of a attracting

LCS are much further apart than the source points of two successive collected particles on one side of

2http://www.stilt-model.org
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Figure 14. (a) The probabilistic equivalent of the source point of the [virtually] green particle in Fig. 12.

The sampling point S is located at (0,−100) km with respect to our reference point and sampling time is

14:10 UTC 29 Sep 2010. (b) Details of the probabilistic source region which is composed of 5400 boxes, each

10km× 10km. Color intensity shows the relative contribution of each source box. (c) γ, relative contribution

of source boxes along the specified line PQ.

the same LCS. We want to investigate whether this result is still valid in the presence of unresolved440

turbulence. If that result holds then in practical applications such as sampling the microbial structure

of the atmosphere we can have reasonable confidence about the separation of the probabilistic source

regions based solely on a deterministic analysis, that is, without performing bothersome probabilistic

calculations. Therefore, we study a case that we know its deterministic dynamics. Fig. 15 shows the

evolution of the probabilistic source regions “A” and “B” (shown in panel (a)) corresponding to445

[virtually] red and blue particles of Fig. 12, respectively. The total integration time for this example

is 40 hours. In each panel of this figure we also show the attracting hyperbolic LCSs according to

Haller (2011) and Karrasch (2012). For calculation of each probabilistic region of this figure, 105

particles are released from each small 10km× 10km box. By comparing Fig. 12 and Fig. 15(a)

we observe that the probabilistic source regions contain the deterministic source points and they450

significantly separated from each other. Also, we see how the two probabilistic regions contract and

become closer to the attracting LCS as they get closer to the sampling point. One noticeable feature

in this figure is the difference between the shapes of the two source regions, while the two sampling

are separated by only 20 minutes.
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Figure 15. Sequence of the hyperbolic LCSs (blue) and two probabilistic source regions corresponding to two

successive samples. Probabilistic regions “A” and “B” (panel (a)) correspond to the virtually red and blue parti-

cles in Fig. 12. These six panels correspond to 40, 30, 20, 10, 5 and 0 hours before collecting the corresponding

samples at 13:40 and 14:00 UTC during the interrogation window.

Results of this example show that, similar to the consequences of observation II, the probabilistic455

source regions corresponding to the collected particles on either side of a deterministic attracting

LCSs are significantly separated in backward time.

5 Conclusions

FTLE fields provide useful information about large-scale transport phenomena and also Lagrangian

structures of flow fields, particularly geophysical flows. However, in field experiments the data are460

on a much more modest scale. Therefore, it is necessary to bridge the gap between the concept of

large-scale FTLE fields and local experiments. To fill that gap we propose a methodology that is

an ansatz which is closely related to the concept of local Lyapunov exponents and the direction of

maximum expansion in autonomous ordinary differential equation systems (a rigorous mathematical

formalism for non-autonomous dynamical systems is still needed). Our observations correspond to:465

(i) estimation of the local FTLE, given the local velocity and the distance between sequentially

released (or collected) particles, and (ii) estimation of the distances between the destination (or

source) points of sequentially released (or collected) particles assuming the availability of the local

velocity and local FTLE.
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These observations were motivated in part by our previous work examining the dynamics of470

assemblages of microorganisms in the lower atmosphere. We numerically demonstrate the results

of our observations for a periodic velocity field (i.e., a double-gyre), an aperiodic system (i.e., a

Rayleigh-Bénard convection model) and the real-world wind data. The suggested notion is useful in

practical cases where we have samples of particles (e.g., microbes) collected at a fixed location and

we are interested in formulating hypotheses about their origin, structure, and potential transport phe-475

nomena driving their atmospheric movement. In addition, we show that the concept of local FTLE

and observation II can be applied to scheduling of atmospheric sampling missions to collect samples

containing unique or high diversity individuals or species.

We also investigate the unresolved turbulence and the probabilistic description of the source (or

destination) points. We use the box discretization method and discuss the important differences be-480

tween calculation methods of the probabilistic source and destination regions. Furthermore, we show

that because the stochastic velocity is a function of instantaneous background velocity, the proba-

bilistic source (or destination) regions are not necessarily Gaussian. Finally, we study the prob-

abilistic source regions corresponding to successive collected particles on either side of a strong

hyperbolic attracting LCS — or equivalently, a local maximum of the local FTLE time-series —485

and demonstrate that one may trust the estimated results of deterministic calculations of source (or

destination) points in realistic geophysical flows.

Results of this study can aid in optimizing the sampling schedules of passive particles and under-

standing of the outcomes of local observations in geophysical flows, based on large-scale transport

features.490
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