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Abstract. The ensemble Kalman smoother (EnKS) is used as a linear least-squares solver in the

Gauss–Newton method for the large nonlinear least-squares system in incremental 4DVAR. The en-

semble approach is naturally parallel over the ensemble members and no tangent or adjoint operators

are needed. Further, adding a regularization term results in replacing the Gauss–Newton method,

which may diverge, by the Levenberg–Marquardt method, which is known to be convergent. The5

regularization is implemented efficiently as an additional observation in the EnKS. The method is

illustrated on the Lorenz 63 model and a two-level quasi-geostrophic model.

1 Introduction

Four dimensional variational data assimilation (4DVAR) is a dominant data assimilation method

used in weather forecasting centers worldwide. 4DVAR attempts to reconcile model and data vari-10

ationally, by solving a large weighted nonlinear least-squares problem. The unknown is a vector of

system states over discrete points in time, when the data are given. The objective function minimized

is the sum of the squares of the differences of the initial state from a known background state at the

initial time and the differences of the values of observation operator and the data at every given

time point. In the weak-constraint 4DVAR (Trémolet, 2007), considered here, the model error is ac-15

counted for by allowing the ending and starting states of the model at every given time point to be

different, and adding to the objective function also the sums of the squares of those differences. The

sums of the squares are weighted by the inverses of the appropriate error covariance matrices, and

much of the work in the applications of 4DVAR goes into modeling those covariance matrices.

In the incremental approach (Courtier et al., 1994), the nonlinear least-squares problem is solved20

iteratively by solving a succession of linearized least-squares problems. The major cost in 4DVAR

iterations is evaluating the model, the tangent and adjoint operators, and solving the large linear least

squares. A significant software development effort is needed for the additional code to implement the
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tangent and adjoint operators to the model and the observation operators. Straightforward lineariza-

tion leads to the Gauss–Newton method for nonlinear least squares (Bell, 1994; Tshimanga et al.,25

2008). Gauss–Newton iterations are not guaranteed to converge, not even locally, though a careful

design of an application system may avoid divergence in practice. Finally, while the evaluation of the

model operator is typically parallelized on modern computer architectures, there is a need to further

parallelize the 4DVAR process itself.

The Kalman filter is a sequential Bayesian estimation of the Gaussian state of a linear system at30

a sequence of discrete time points. At each of the time points, the use of the Bayes theorem results in

an update of the state, represented by its mean and covariance. The Kalman smoother considers all

states within an assimilation time window to be a large composite state. Consequently, the Kalman

smoother can be obtained from the Kalman filter by simply applying the same update as in the filter

to the past states as well. However, historically, the focus was on efficient short recursions (Rauch35

et al., 1965; Strang and Borre, 1997), similarly as in the Kalman filter.

It is well known that weak-constraint 4DVAR is equivalent to the Kalman smoother in the linear

case and when all observations are in the assimilation window. Use of the Kalman smoother to solve

the linear least squares in the Gauss–Newton method is known as the iterated Kalman smoother, and

considerable improvements can be obtained against running the Kalman smoother only once (Bell,40

1994; Fisher et al., 2005).

The Kalman filter and smoother require maintaining the covariance of the state, which is not

feasible for large systems, such as in numerical weather prediction. Hence, the ensemble Kalman

filter (EnKF) and ensemble Kalman smoother (EnKS) (Evensen, 2009) use a Monte-Carlo approach

for large systems, representing the state by an ensemble of simulations, and estimating the state45

covariance from the ensemble. The implementation of the EnKS in Stroud et al. (2010) uses the

adjoint model explicitly, with the short recursions and a forward and a backward pass, as in the

Kalman smoother. However, the implementations in Khare et al. (2008); Evensen (2009) do not

depend on the adjoint model and simply apply EnKF algorithms to the composite state over multiple

time points. Such composite variables are also called 4D vectors, (e.g., Desroziers et al., 2014). We50

use the latter approach in the computations reported here.

In this paper, we use the EnKS as a linear lest squares solver in 4DVAR. The EnKS is implemented

in the physical space and with randomization. The ensemble approach is naturally parallel over the

ensemble members. The rest of the computational work is relatively cheap compared to the ensemble

of simulations, and parallel dense linear algebra libraries can be used; however, in high-dimensional55

systems or for a large lag, the storage requirements can be prohibitive (e.g., Cosme et al., 2010).

The proposed approach uses finite differences from the ensemble, and no tangent or adjoint opera-

tors are needed. To stabilize the method and assure convergence, a Tikhonov regularization term is

added to the linear least squares, and the Gauss–Newton method becomes the Levenberg–Marquardt

method (Levenberg, 1944; Marquardt, 1963). The Tikhonov regularization is implemented within60
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EnKS as an independent observation following Johns and Mandel (2008) in a computationally cheap

additional analysis step, which is statistically correct because the smoother operates only on the lin-

earized problem. A new probabilitistic ensemble is generated in every iteration, so the minimization

is not restricted to the combinations of a single ensemble. We use finite differences from ensemble

mean towards the ensemble members to linearize the model and observation operators. The iterations65

can be proved to converge to incremental 4DVAR iterations for small finite difference step and large

ensemble size (Bergou et al., 2014). Thus, in the limit, the method performs actual minimization of

the weak-constraint objective function and inherits the advantages of 4DVAR in handling nonlinear

problems. We call the resulting method EnKS-4DVAR.

Combinations of ensemble and variational approaches have been of considerable recent interest.70

Estimating the background covariance for 4DVAR from an ensemble was one of the first connections

(Hamill and Snyder, 2000b). It is now standard and became operational (Wang, 2010). Zhang et al.

(2009) use a two-way connection between EnKF and 4DVAR to obtain the covariance for 4DVAR,

and 4DVAR to feed the mean analysis into EnKF. EnKF is operational at the National Centers for

Environmental Prediction (NCEP) as part of its Global Forecast System Hybrid Variational Ensem-75

ble Data Assimilation System (GDAS), together with the Gridpoint Statistical Interpolation (GSI)

variational data assimilation system (Developmental Testbed Center, 2015).

The first methods that use ensembles for more than computing the covariance minimized the

3DVAR objective function in the analysis step. The MLEF method by Zupanski (2005) works in the

ensemble space, i.e., minimizing in the span of the ensemble members, with the control variables80

being the coefficients of a linear combination of the ensemble members. Gu and Oliver (2007) use

iterated ensemble Kalman filter (with randomization) in the state space, with a linearization of the ob-

servation operator obtained by a regression on the increments given by the ensemble. This approach

was extended by Chen and Oliver (2013) to a Levenberg-Marquardt method, with the regularization

done by a multiplicative inflation of the covariance in the linearized problem rather than adding a85

Tikhonov regularization term. Liu et al. (2008, 2009); Liu and Xiao (2013) minimize the (strong

constraint) 4DVAR objective function over linear combinations of the ensemble by computations in

the observation space.

The IEnKF method by Sakov et al. (2012) minimizes the lag-one 4DVAR objective function in

the ensemble space, using the square root EnKF as a linear solver in Newton-Gauss method, and90

rescaling the ensemble to approximate the tangent operators, which is similar to the use of finite

differences and EnKS here. Bocquet and Sakov (2012) combined the IEnKF method of Sakov et al.

(2012) with an inflation-free approach to obtain a 4D ensemble variational method, and with the

Levenberg-Marquard method by adding a diagonal regularization to the Hessian. Bocquet and Sakov

(2012); Chen and Oliver (2013) used Levenberg-Marquardt for faster convergence, as an adaptive95

method between steepest descent and Gauss-Newton method rather than to overcome divergence.

Bocquet and Sakov (2012) also considered scaling the ensemble to approximate the tangent oper-
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ators (“bundle variant”) as in Sakov et al. (2012). Bocquet and Sakov (2013) extended IEnKF to

smoother (IEnKS) with fixed-lag and moving window and noted that Gauss-Newton can be replaced

by Levenberg-Marquard. The method is formulated in terms of the composite model operator, i.e.,100

with strong constraints. Bocquet and Sakov (2014) developed the method further, including cycling.

(Bocquet and Sakov, 2012, 2013, 2014) note that various optimizers could be used in IEnKF/IEnKS;

the present method can be understood as EnKS used as such optimizer.

It is well known that for good practical performance, ensemble methods need to be modified

by localization to improve the sampling error. Ensemble methods can be localized in multiple105

ways (Sakov and Bertino, 2011). For methods operating in the physical space, localization can be

achieved, e.g., by tapering of the covariance matrix (Furrer and Bengtsson, 2007) or by replacing the

sample covariance by its diagonal in a spectral space (Kasanický et al., 2015). This is not completely

straightforward for the EnKS, but implementations of the EnKS based on the Bryson–Frazier ver-

sion of the classical formulation of the Kalman smoother, with a forward and a backward pass, are110

more flexible (Butala, 2012). Methods in the ensemble space can be modified to update only nodes

in a neighborhood of the observation (e.g., Ott et al., 2004). The 4DEnVAR method of Desroziers

et al. (2014) uses ensemble-derived background covariance and the authors propose several methods

to solve the linearized problem in each iteration by combinations of ensemble members with the

weights allowed to vary spatially. Lorenc et al. (2014) compares the hybrid 4DEnVAR and hybrid115

4DVAR for operational weather forecasts. “Hybrid” refers to a combination of a fixed climatological

model of the background error covariances and localised covariances obtained from ensembles.

The paper is organized as follows. In Sect. 2, we review the formulation of 4DVAR. The EnKF and

the EnKS are reviewed in Sect. 3. The proposed method is described in Sect. 4. Section 5 contains

the results of the computational experiments, and Sect. 6 is the conclusion.120

2 Incremental 4DVAR

For vectors ui, i= 1, . . . ,L, denote the composite (column) 4D vector

u0:L =


u0

...

uL

 ,
where L is the number of cycles in the assimilation window. We want to estimate x0, . . . ,xL, where

xi is the state at time i, from the background state, x0 ≈ xb, the model, xi ≈Mi (xi−1) , and the125

observations Hi (xi)≈ yi, where Mi is the model operator, and Hi is the observation operator.

Quantifying the uncertainty by covariances, with x0 ≈ xb taken as (x0−xb)
T
B−1 (x0−xb)≈ 0,

etc., we get the nonlinear least-squares problem

‖x0−xb‖2B−1 +

L∑
i=1

‖xi−Mi (xi−1)‖2Q−1
i

+

L∑
i=1

‖yi−Hi (xi)‖2R−1
i
→min

x0:L

, (1)
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called weak-constraint 4DVAR (Trémolet, 2007). Originally, in 4DVAR, xi =Mi (xi−1); the weak-130

constraint xi ≈Mi (xi−1) accounts for model error.

The least-squares problem (Eq. 1) is solved iteratively by linearization,

Mi (xi−1 + δxi−1)≈Mi (xi−1) +M′i (xi−1)δxi−1,

Hi (xi + δxi)≈Hi (xi) +H′i (xi)δxi.

In each iteration x0:L← x0:L + δx0:L, one solves the auxiliary linear-least squares problem for the135

increments δx0:L,

‖x0 + δx0−xb‖2B−1 +

L∑
i=1

‖xi + δxi− (Mi (xi−1) +M′i (xi−1)δxi−1)‖2Q−1
i

+

L∑
i=1

‖yi− (Hi (xi) +H′i (xi)δxi)‖
2
R−1

i
→ min

δx0:L

. (2)

This is the Gauss–Newton method (Bell, 1994; Tshimanga et al., 2008) for nonlinear least squares,

known in 4DVAR as the incremental approach (Courtier et al., 1994). Write the auxiliary linear140

least-squares problem (Eq. 2) for δx0:L as

‖δx0− δxb‖2B−1 +

L∑
i=1

‖δxi− (Miδxi−1 +mi)‖2Q−1
i

+

L∑
i=1

‖di−Hiδxi‖2R−1
i
→ min

δx0:L

(3)

where

δxb = xb−x0, mi =Mi (xi−1)−xi, di = yi−Hi (xi) , (4)

Mi =M′i (xi−1) , Hi =H′i (xi) .145

The function minimized in Eq. (3) is the same as the one minimized in the Kalman smoother (Bell,

1994).

3 Ensemble Kalman filter and smoother

We present the EnKF and EnKS algorithms, essentially following Evensen (2009), in a form suitable

for our purposes. We start with a formulation of the EnKF, in a notation useful for the extension150

to EnKS. The notation v` ∼N (m,A) means that v` is sampled from the Gaussian distribution

N (m,A) with mean m and covariance A, independently of anything else. The ensemble of states

of the linearized model at time i, conditioned on data up to time j (that is, with the data up to time

j already ingested), is denoted by XN
i|j =

[
x1
i|j , . . . ,x

N
i|j

]
=
[
x`
i|j

]
, where the ensemble member

index ` always runs over `= 1, . . . ,N , and similarly for other ensembles. Assume for the moment155

that the observation operator Hi is linear, that is, Hi (u) = Hiu. The EnKF algorithm consists of

the following steps:
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1. Initialize

x`
0|0 ∼N (xb,B) , `= 1, . . . ,N. (5)

2. For i= 1,2, . . . ,L,160

(a) advance in time

x`
i|i−1 =Mi(x

`
i−1|i−1) +v`i , v`i ∼N (0,Qi) , (6)

(b) The analysis step

x`
i|i = x`

i|i−1−PN
i,iH

T
i (HiP

N
i,iH

T
i +Ri)

−1(Hi(x
`
i|i−1)−di−w`

i), (7)

w`
i ∼N (0,Ri) ,165

where PN
i,i is the sample covariance computed from the ensemble XN

i|i−1.

Denote by AN
i the matrix of anomalies of the ensemble XN

i|i−1,

AN
i =

[
a1
i , . . . ,a

N
i

]
=
[
x1
i|i−1−xi|i−1, . . . ,x

N
i|i−1−xi|i−1

]
, xi|i−1 =

1

N

N∑
j=1

xi|i−1. (8)

Then PN
i,i = 1

N−1A
N
i

(
AN

i

)T
, and we can write the matrices in Eq. (7) as

PN
i,iH

T
i =

1

N − 1
AN

i

(
HiA

N
i

)T
, HiP

N
i,iH

T
i =

1

N − 1
HiA

N
i

(
HiA

N
i

)T
. (9)170

In particular, the matrix Hi is used here only in the matrix-vector multiplications

g`i = Hia
`
i = Hi

(
x`
i|i−1−xi|i−1

)
= Hix

`
i|i−1−

1

N

N∑
j=1

Hix
j
i|i−1, (10)

which allows the matrix-vector multiplication to be replaced by the use of a possibly nonlinear

observation operator Hi evaluated on the ensemble members only (Eq. 18 below). This technique

is commonly used for nonlinear observation operators. With HiA
N
i = GN

i =
[
g1i , . . . ,g

N
i

]
, Eq. (9)175

becomes

PN
i,iH

T
i =

1

N − 1
AN

i

(
GN

i

)T
, HiP

N
i,iH

T
i =

1

N − 1
GN

i

(
GN

i

)T
, (11)

Also, from Eqs. (7,9) and writing the matrix of anomalies in the form

AN
i = XN

i|j

(
I − 11T

N

)
,

where 1 is the column vector of all ones of length N , it follows that the analysis ensemble XN
i|i180

consists of linear combinations of the forecast ensemble, hence it can be written as multiplying the

forecast ensemble by a suitable transformation matrix TN
i ,

XN
i|i = XN

i|i−1T
N
i , TN

i ∈ RN×N ,
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where

TN
i =I− 1

N − 1

(
I − 11T

N

)(
AN

i

)T( 1

N − 1
AN

i

(
AN

i

)T
+Ri

)−1
(12)185

·
[
Hix

`
i|i−1−di +w`

i

]
`=1,N

.

The EnKS is obtained by applying the same analysis step as in EnKF (Eq. 7) to the ensemble

X0:i|i−1 of 4D composite states from time 0 to i, conditioned on data up to time i− 1,

XN
0:i|i−1 =


XN

0|i−1
...

XN
i|i−1

 ,
in the place of Xi|i−1, with the observation matrix H̃0:i = [0, . . . ,Hi]. Then, Eq. (7) becomes190

x`
0:i|i = xN

0:i|i−1−PN
0:i,0:iH̃

T
0:i(H̃0:iP0:i,0:iH̃

T
0:i +Ri)

−1(H̃0:ix
`
0:i|i−1−d

`
i −w`

i),

where PN
0:i,0:i is the sample covariance matrix of XN

0:i|i−1. Fortunately, the matrix–vector and

matrix–matrix products can be simplified,

H̃0:ix
`
0:i|i−1 = [0, . . . ,0,Hi]x

`
0:i|i−1 = Hix

`
i|i−1 (13)

PN
0:i,0:iH̃

T
0:i = PN

0:i,iH
T
i , H̃0:iP

N
0:i,0:iH̃

T
0:i = HiP

N
i,iH

T
i , (14)195

which is the same expression as in Eq. (9). Using also Eq. (11), we obtain the EnKS algorithm:

1. Initialize

x`
0|0 ∼N (xb,B) , `= 1, . . . ,N. (15)

2. For i= 1, . . . ,L:

(a) Advance in time:200

x`
i|i−1 =Mi(x

`
i−1|i−1) +v`i , v`i ∼N (0,Qi) , `= 1, . . . ,N (16)

(b) Compute the anomalies of the ensemble in the state space and in the observation space:

A0:i =
[
a1
0:i, . . . ,a

N
0:i

]
, a`

0:i = x`
0:i|i−1−

1

N

N∑
j=1

xj
0:i|i−1 (17)

GN
i =

[
g1i , . . . ,g

N
i

]
, g`i =Hi

(
x`
i|i−1

)
− 1

N

N∑
j=1

Hi

(
xj
i|i−1

)
(18)

(c) The analysis step:205

x`
0:i|i = x`

0:i|i−1−
1

N − 1
AN

0:i

(
GN

i

)T( 1

N − 1
GN

i

(
GN

i

)T
+Ri

)−1
· (19)(

Hi(x
`
i|i−1)−yi−w`

i

)
, w`

i ∼N (0,Ri) , `= 1, . . . ,N.
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Comparing Eq. (7) and Eq. (19), we see that the EnKS can be implemented in a straightforward

manner by applying the same transformation as in the EnKF to the composite 4D state vector from

times 0 to i, XN
0:i|i = XN

0:i|i−1T
N
i , where TN

i is the transformation matrix in Eq. (12) (Brusdal et al.,210

2003, Eq. 20).

4 EnKS-4DVAR

We apply the EnKS algorithm (Eqs. 15-19) with the increments δx in place of x to solve the lin-

earized auxiliary least-squares problem (Eq. 3). Approximating by finite differences based at xi−1

with step τ > 0, we get the action of the linearized model operator215

Miδx
`
i−1 +mi ≈

Mi

(
xi−1 + τδx`

i−1
)
−Mi (xi−1)

τ
+Mi (xi−1)−xi, (20)

and the linearized observation operator

Hiδx
`
i ≈
Hi

(
xi + τδx`

i

)
−Hi (xi)

τ
. (21)

The Gauss–Newton method may diverge, but convergence to a stationary point of (Eq. 1) can be

recovered by a control of the step δx. Adding a constraint of the form ‖δxi‖ ≤ ε leads to glob-220

ally convergent trust region methods (Gratton et al., 2013). Here, we add to (Eq. 3) a Tikhonov

regularization term of the form γ ‖δxi‖2S−1
i

, which controls the step size as well as rotates the step

direction towards the steepest descent, and obtain the Levenberg–Marquardt method (Levenberg,

1944; Marquardt, 1963) x0:L← x0:L + δx0:L, where

‖δx0− δxb‖2B−1 +

L∑
i=1

‖δxi−Miδxi−1−mi‖2Q−1
i

+ (22)225

L∑
i=1

‖di−Hiδxi‖2R−1
i

+ γ

L∑
i=0

‖δxi‖2S−1
i
→ min

δx0:L

.

Under suitable technical assumptions, the Levenberg–Marquardt method is guaranteed to con-

verge globally if the regularization parameter γ ≥ 0 is large enough (Gill and Murray, 1978; Os-

borne, 1976). Estimates for the convergence of the Levenberg–Marquardt method in the case when

the linear system is solved only approximately exist (Wright and Holt, 1985).230

Similarly as in Johns and Mandel (2008), we interpret the regularization term γ ‖δxi‖2S−1
i

in

Eq. (22) as arising from additional independent observations δxi ≈ 0 with covariance γ−1Si. The

independent observation can be assimilated separately, resulting in a mathematically equivalent but

often more efficient two-stage method – simply run the EnKF analysis twice. With the choice of

Si as identity or, more generally a diagonal matrix, the implementation of these large observations235

can be made efficient (Mandel et al., 2009). We use the notation δx`
0:i|i−1/2 for the increments

after the first half-step, conditioned on the original observations only, and δx`
0:i|i for the increments

conditioned also on the regularization δxi ≈ 0. Note that unlike in Johns and Mandel (2008), where
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the regularization was applied to a nonlinear problem and thus the sequential data assimilation was

only approximate, here the EnKS is run on the auxiliary linearized problem, so all distributions are240

Gaussian and the equivalence of assimilating the observations at the same time and sequentially is

statistically exact.

We obtain the following algorithm EnKS-4DVAR for Eq. (1).

1. Initialize

x0 = xb, xi =Mi (xi−1) , i= 1, . . . ,L,245

if not given already.

2. Incremental 4DVAR (Eq. 2): Given x0, . . . ,xL, initialize the ensemble of increments

δx`
0|0 ∼N (0,B) , `= 1, . . . ,N. (23)

(a) For i= 1, . . . ,L:

i. Advance the ensemble of increments δx` in time following Eq. (16), with the lin-250

earized operator approximated from Eq. (20),

δx`
i|i−1 =

Mi

(
xi−1 + τδx`

i−1|i−1

)
−Mi (xi−1)

τ
+Mi (xi−1)−xi +v`i , (24)

v`i ∼N (0,Qi) , `= 1, . . . ,N.

ii. Compute the anomalies of the ensemble in the 4D state space and in the observation

space:255

A0:i =
[
a1
0:i, . . . ,a

N
0:i

]
, a`

0:i = δx`
i|i−1−

1

N

N∑
j=1

δxj
i|i−1

GN
i =

[
g1i , . . . ,g

N
i

]
, g`i =

1

τ

Hi

(
xi + τδx`

i|i−1

)
− 1

N

N∑
j=1

Hi(xi + τδxj
i|i−1)


(25)

iii. The first analysis step:

δx`
0:i|i−1/2 =δx`

0:i|i−1−
1

N − 1
AN

0:i

(
GN

i

)T( 1

N − 1
GN

i

(
GN

i

)T
+Ri

)−1
·Hi(xi) +

Hi

(
xi + τδx`

i|i−1

)
−Hi (xi)

τ
−yi−w`

i

 , (26)260

w`
i ∼N (0,Ri) , `= 1, . . . ,N.

iv. If γ > 0, compute the anomalies of the ensemble in the 4D state space:

ZN
0:i =

[
z10:i, . . . ,z

N
0:i

]
, z`0:i = δx`

i|i−1/2−
1

N

N∑
j=1

δxj
i|i−1/2 (27)
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Observation operator for the regularization is the identity, so the anomalies in the

observation space are simply ZN
i .265

v. If γ > 0, regularization as the second analysis step with zero data and data covari-

ance γ−1Si:

δx`
0:i|i =δx`

0:i|i−1/2−
1

N − 1
ZN

0:i

(
ZN

i

)T( 1

N − 1
ZN

i

(
ZN

i

)T
+

1

γ
Si

)−1
· (28)(

δx`
i|i−1/2−v

`
i

)
, v`i ∼N (0,Si) , `= 1, . . . ,N,

otherwise δx`
0:i|i = δx`

0:i|i−1/2, `= 1, . . . ,N .270

(b) Complete the approximate incremental 4DVAR iteration: update

x0:L← x0:L +
1

N

N∑
`=1

δx`
0:L|L. (29)

Note that for small γ→ 0, (Eq. 28) has asymptotically no effect, δx`
0:i|i→ δx`

0:i|i−1/2. The com-

putational cost of EnKS-4DVAR is one evaluations of the model Mi for the initialization, N + 1

evaluations of the modelMi, and N evaluations of the observation operator Hi in each incremen-275

tal 4DVAR iteration, in each of the L observation periods. In comparison, the cost of EnKF is N

evaluation of the model Mi and of the observation operator Hi in each observation period. Run-

ning the model and evaluating the observation operator are the major cost in practical problems

such as weather models, rather than the linear algebra of the EnKS itself, in a reasonably efficient

EnKF/EnKS implementation.280

It can be proved that for small τ and large N , the iterates x0:L converge to those of incremental

4DVAR (Bergou et al., 2014). Surprisingly, it turns out that in the case when τ = 1, we recover the

standard EnKS applied directly to the nonlinear problem (Eq. 1), as shown by the following theorem.

In particular, EnKS-4DVAR does not converge when τ = 1 for nonlinear problems, because the

result of each iteration is determined only by the starting value x0. It is interesting that the ensemble285

transform approach in Sakov et al. (2012); Bocquet and Sakov (2012, 2013, 2014) corresponds to

our τ = 1, but it does not seem to reduce to the standard EnKS.

Theorem 1 If τ = 1, then one step of EnKS-4DVAR (Eqs. 23-26) becomes the EnKS (Eqs. 15-19)

(modified by including the additional regularization observation if γ > 0). In particular, in that case,

the values of x0:L + δx`
0:L do not depend on the previous values of x1:L.290

Proof. Indeed, Eq. (24) becomes

δx`
i|i−1 =

Mi

(
xi−1 + δx`

i−1|i−1

)
−Mi (xi−1)

1
+Mi (xi−1)−xi +v`i

=Mi

(
xi−1 + δx`

i−1|i−1

)
−xi +v`i ,

hence

xi + δx`
i|i−1 =Mi

(
xi−1 + δx`

i−1|i−1

)
+v`i295

10



which is the same as Eq. (16) for xi−1+δx`
i−1|i−1 in place of xi−1|i−1. Similarly, Eq. (25) becomes

with τ = 1,

g`i =
Hi

(
xi + δx`

i|i−1

)
−Hi (xi)

1
− 1

N

N∑
j=1

Hi

(
xi + δxj

i|i−1

)
−Hi (xi)

1
(30)

=Hi

(
xi + δx`

i|i−1

)
− 1

N

N∑
j=1

Hi

(
xi + δxj

i|i−1

)
, (31)

which is again the same as Eq. (18) for xi + δx`
i|i−1 in place of xi|i−1. Finally, the innovation term300

in Eq. (26) becomes using Eq. (4),

Hi(xi) +
Hi

(
xi + δx`

i|i−1

)
−Hi (xi)

1
−yi =Hi

(
xi + δx`

i|i−1

)
−yi,

which is again the same as in Eq. (19), with xi + δx`
i|i−1 in place of xi|i−1. �

5 Computational results

In this section, we investigate the performance of EnKS-4DVAR method, described in this paper, by305

solving the nonlinear least-squares problem (Eq. 1) in which the dynamical models are chosen either

the Lorenz 63 system (Lorenz, 1963) or the two-level quasi-geostrophic model (Fandry and Leslie,

1984). Most of the experiments assess the convergence of the incremental 4DVAR iterations with

EnKS as the linear solver in a single assimilation cycle (Sections 5.1.1, 5.1.2). We also demonstrate

the overall long-term performance on a large number of assimilation cycles on the Lorenz 63 model310

in Section 5.1.3.

We first consider experiments where the regularisation is not necessary to guarantee the conver-

gence (i.e., γ = 0). Lorenz 63 equations are used as a forecast model for these experiments. Sec-

tion 5.1 describes the Lorenz 63 model and presents numerical results on the convergence. Using the

same model, in Sect. 5.1.2, we investigate the impact of the finite differences parameter τ , used to315

approximate the derivatives of the model and observation operators, along the iterations.

Experiments where the regularisation is necessary to guarantee the convergence are shown in

Sect. 5.2, and we analyse the impact of the regularisation parameter γ on the application to the

two-level quasi-geostrophic model.

Note that for the experiments presented here, we do not use localization, hence we choose large320

ensemble sizes. In all experiments, the regularization covariance Si = I.

5.1 Numerical tests using the Lorenz 63 model

The Lorenz 63 equations (Lorenz, 1963) are given by the nonlinear system

dx

dt
=−σ(x− y),

dy

dt
= ρx− y−xz, dz

dt
= xy−βz, (32)
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where x= x(t), y = y(t), z = z(t) and σ, ρ, β are parameters, whose values are chosen as 10, 28325

and 8/3 respectively for the experiments described in this paper. These values result in a chaotic

behaviour with two regimes as illustrated in Fig. 1. This figure shows the Lorenz attractor, which

has two lobes connected near the origin, and the trajectories of the system in this saddle region are

particularly sensitive to perturbations. Hence, slight perturbations can alter the subsequent path from

one lobe to the other.330

The state at time t is denoted byXt = [x(t),y(t),z(t)]>,Xt ∈ R3.

To evaluate the performance of EnKS-4DVAR method, we will test it using the classical twin

experiment technique, which consists on fixing an initial true state, denoted by truth0, and then

integrating the initial truth in time using the model to obtain the true state truthi =M(truthi−1) at

each cycle i. We then build the data yi by applying the observation operatorHi to the truth at time i335

and by adding a Gaussian perturbation N(0,Ri). Similarly, the background xb is sampled from the

Gaussian distribution with the mean truth0 and the covariance matrix B. Then, we try to recover the

truth using the observations and the background.

5.1.1 Convergence of the iterations

We perform numerical experiments without model error. The initial truth is set to truth0 = [1,1,1]>340

and the background covariance is chosen as the identity matrix of order three, i.e. B = I3. The model

is advanced in cycles of 0.1 time unit. Within each cycle, the differential equations are solved by

adaptive Runge-Kutta method implemented as MATLAB function ode45, with default parameter

values. The assimilation time window length is L= 50 cycles (5 time units total). The observation

operator is defined as Hi (x,y,z) =
(
x2,y2,z2

)
. At each time i, the observations are constructed as345

follows: yi =Hi(truthi) +vi, where vi is sampled from N(0,R) with R = I3. Observations are

taken for each cycle (i= 1, . . .50). The ensemble size is fixed to N = 100.

Figure 2 shows the root square error (RSE) for the first 5 iterations, defined as

RSE(j)
i =

√
1

n
(truthi−x(j)

i )>(truthi−x(j)
i ), j = 1, . . . ,5, (33)

where truthi is the true vector state at time i, x(j)
i is the jth iterate at time i and n is the length of xi.350

Table 1 shows the root mean square error (RMSE) for each iterate given by

RMSE(j) =
1

L

L∑
i=0

RSE(j)
i , j = 1, . . . ,5, . (34)

From Table 1 and Fig. 2, it can be seen that the iterates converge to the solution, without using

regularization. For these experiments, we observe that RMSE is reduced significantly in five itera-

tions. Note that the error does not converge to zero, because of the approximation and variability355

inherent in the ensemble approach.
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5.1.2 The impact of the finite difference parameter

Now we investigate the influence of the finite differences parameter τ used to approximate the deriva-

tives of the model and observation operators. We use the same experimental set-up as described in

the previous section. The numerical results are based on 30 runs with eight iterations for Lorenz360

63 problem, with the following choices for the parameter τ : 1, 10−1, 10−2, 10−3, 10−4, 10−5 and

10−6.

Table 2 shows the mean of the objective function value as a function of the finite difference step

τ and the number of iterations. When τ = 1, the iterations after the first one do not improve the

objective function. However, when τ ≤ 10−1, the objective function was overall decreasing along365

the iterations, after a large initial increase. Because of the stochastic nature of the algorithm, the

objective function does not necessarily decrease every iteration and its values eventually fluctuate

around a limit value randomly. This stage was achieved after at most 6 iterations, so only 8 iterations

are shown; further lines (not shown) exhibit the same fluctuating pattern in all columns. This limit

value of the objective function decreases with smaller τ , until it stabilizes for τ ≤ 10−3. Figs. 3370

and 4 show more details of the statistics as boxplots of the objective function values. Each panel

corresponds to one line of Table 2.

We can conclude that for this toy test case at least, the method was insensitive to the choice of

τ ≤ 10−3. This is a similar conclusion as in Bocquet and Sakov (2014); parameter τ here plays the

same role as their ε. It should be noted that very small τ , when the problem solved by the smoother375

is essentially the tangent problem, results in a large increase of the value of the objective function

in the first iteration. This is not uncommon in Newton type methods and highly nonlinear problems.

Hence, an adaptive method, which decreases τ adaptively, may be of interest. This issue will be

studied elsewhere.

5.1.3 Cycling380

So far, we have studied the impact of the use of the stochastic solver for a single assimilation win-

dow only. Now we test the overall long-term performance. Consider again the Lorenz 63 model

(Eq. 32), with the parameters σ = 10, ρ= 28, β = 8/3. This time, we use the Runge-Kutta method

of order 4 with the time step of 0.01 time unit. This is the same parameters setup as the one used

in Bocquet and Sakov (2012). We then proceed with similar testing as in Metref et al. (2014). We385

perform usual twin model experiment. The initial truth state Y0 is generated from N(0,I3) distri-

bution and the initial forecast state is then simulated by sampling from N(Y0,I3). Both states are

advanced for 50,000 model time steps burn-in period. We use the nonlinear observational opera-

tor h(x,y,z) =
(
x3,y3,z3

)
with observational error generated from N

(
0,σ2I3

)
with σ2 = 8, and

τ = 10−4. The cycle length ∆t between two available observations varies from 0.05 time unit, when390

the model is nearly linear, to 0.55, when the model is strongly nonlinear. We use ensemble size 10.
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After running multiple simulations, we have found suitable values of the parameters of the method

as the number of iterations 25 and the penalty coefficient γ = 10−9 when ∆t= 0.05 and γ = 1000

otherwise. The length of assimilation window is L= 6, i.e., assimilating 6 observation vectors at

once. Each observation vector is assimilated only once, i.e., the assimilation windows do not over-395

lap. To create initial ensemble at the beginning of each iteration, we use the background covariance

created as a weighted average of the sample covariance from the last iteration in the previous assim-

ilation window and the identity matrix, similarly as in Hamill and Snyder (2000a). The weights are

0.99 for the sample covariance and 0.01 for the identity. The model error covariance in each cycle is

Q= 0.01I3. The experiment was run for 100,000 observation cycles.400

We compare the proposed method with the standard EnKF with also ensemble size 10, where the

initial ensemble is created after the burn-in period by adding perturbations sampled from N (0,I3).

For stability reason and to preserve the covariance between ensemble members, we add noise sam-

pled from N (0,0.01I3) after advancing the ensemble. The necessity of related covariance inflation

was pointed out also in Bocquet and Sakov (2012). The EnKF algorithm is run every time when new405

observations are available.

Fig. 5 shows that the proposed method has a significantly smaller RMSE than the EnKF in the

case when the time between observation is larger and thus the behavior of the model is nonlinear.

Only in the case when the cycle length between the observation is 0.05 time unit, i.e., the model

behavior is nearly linear, EnKF gives a comparable result as the proposed method.410

5.2 Numerical tests using a two-layer Quasi Geostrophic model (QG)

The EnKS-4DVAR algorithm has been implemented into the Object Oriented Prediction System

(OOPS) (Trémolet, 2013), which is a data assimilation framework developed by the European Centre

for Medium-Range Weather Forecasts (ECMWF). Numerical experiments are performed by using

the simple two-layer quasi-geostrophic model in the OOPS platform. Numerical experiments are415

performed to solve the weak-constraint data assimilation problem (Eq. 1) by using EnKS-4DVAR

with regularization. Numerical results are presented in Sect. 5.2.3.

5.2.1 A two-layer quasi-geostrophic model

The two-layer quasi-geostrophic channel model is widely used in theoretical atmospheric studies,

since it is simple enough for numerical calculations and it adequately captures an important aspect420

of large-scale dynamics in the atmosphere.

The two-layer quasi-geostrophic model equations are based on the non-dimensional quasi-

geostrophic potential vorticity, whose evolution represents large scale circulations of the atmosphere.

The quasi-geostrophic potential vorticity on the first (upper) and second (lower) layers can be written
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respectively as425

q1 =∇2ψ1−
f20L

2

g′H1
(ψ1−ψ2) +βy, q2 =∇2ψ2−

f20L
2

g′H2
(ψ2−ψ1) +βy+Rs, (35)

where ψ1,ψ2 are the stream functions, ∇2 is the two-dimensional Laplacian, Rs represents orog-

raphy or heating, β is the (non-dimensionalised) northward variation of the Coriolis parameter at

the fixed latitude y, f0 is the Coriolis parameter at the southern boundary of the domain. L is the

typical length scale of the motion we wish to describe, H1 and H2 are the depths of the two layers,430

g′ = g∆θ/θ is the reduced gravity where θ is the mean potential temperature, and ∆θ is the differ-

ence in potential temperature across the layer interface. The non-dimensional equations (Fandry and

Leslie, 1984; Pedlosky, 1979) can be derived as follows:

t= t̃
Ū

L
, x=

x̃

L
, y =

ỹ

L
,

u=
ũ

Ū
, v =

ṽ

Ū
, β = β0

L2

Ū
,435

where t denotes time, Ū is a typical velocity scale, x and y are the eastward and northward coordi-

nates respectively, u and v are the horizontal velocity components, β0 is the northward derivative,

and the tilde notation refers to the dimensionalized parameters.

Potential vorticity in each layer is conserved and thus is described by

Diqi
Dt

= 0, i= 1,2. (36)440

where Di/Dt, is the total derivative, defined by

Di

Dt
=
∂

∂t
+ui

∂

∂x
+ vi

∂

∂y
(37)

and

ui =−∂ψi

∂y
, vi =

∂ψi

∂x
, (38)

are the horizontal velocity components in each layer. Therefore, the potential vorticity at each time445

step is determined by using the conservation of potential vorticity given by Eq. (36). In this process,

time stepping consists of a simple first order semi-Lagrangian advection of potential vorticity.

Given the potential vorticity at a fixed time, Eq. (35) can be solved for the stream function at

each gridpoint and then the velocity fields obtained through Eq. (38). The equations are solved by

using periodic boundary conditions in the west–east direction and Dirichlet boundary condition in450

the north–south direction. For the experiments in this paper, we choose L= 106 m, Ū = 10 ms−1,

H1 = 6000 m, H2 = 4000 m, f0 = 10−4 s−1, β0 = 1.5× 10−11 s−1 m−1. For more details on the

model and its solution, we refer to Fisher et al. (2011).

The domain for the experiments is 12000 km by 6300 km for both layers. The horizontal dis-

cretization consists of 40×20 points, so that the east–west and the north–south resolution is approx-455

imately 300km. The dimension of the state vector of the model is then 1600. Note that the state

vector is defined only in terms of the stream function.
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5.2.2 Experimental setup

The performance of EnKS-4DVAR with regularization is analyzed by using twin experiments

(Sect. 5.1).460

The truth is generated from a model with layer depths of D1 = 6000 m and D2 = 4000 m, and

the time step is set to 300 s, whereas the assimilating model has layer depths of D1 = 5500 m and

D2 = 4500 m, and the time step is set to 3600 s. These differences in the layer depths and the time

step provide a source of model error.

For all the experiments presented here, observations of non-dimensional stream function, vector465

wind and wind speed were taken from a truth of the model at 100 points randomly distributed over

both levels. Observations were taken every 12 hours. We note that the number of observations is

much smaller than the dimension of the state vector. Observation errors were assumed to be inde-

pendent from each others and uncorrelated in time. The standard deviations (SD) were chosen to

be equal to 0.4 for stream function observation error, 0.6 for vector wind and 1.2 for wind speed.470

The observation operator is the bi-linear interpolation of the model fields to horizontal observation

locations.

The background error covariance matrix (matrix B) and the model error covariances (matrices

Qi) used in these experiments correspond to vertical and horizontal correlations. The vertical and

horizontal structures are assumed to be separable. In the horizontal plane covariance matrices cor-475

respond to isotropic, homogeneous correlations of stream function with Gaussian spatial structure

obtained from a Fast Fourier Transform approach (Dietrich and Newsam, 1997; Nowak et al., 2003).

For the background covariance matrix B, the SD and the horizontal correlation length scale in this

experiments was set to 0.8 and 106 m respectively. For the model error covariance matrices Qi, the

SD and the horizontal correlation length scale was set to 0.2 and 2×106 m respectively. The vertical480

correlation is assumed to be constant over the horizontal grid and the correlation coefficient value

between the two layers was taken as 0.5 for Qi and 0.2 for B.

5.2.3 Numerical results

We perform one cycle for the experiments. The window length is set to 10 days when nonlinearity

is increasing (Fisher et al., 2011, Fig. 2), with two sub-windows of 5 days (L= 2). No localization485

is used in the experiments, as a result the ensemble size is chosen to be large enough, N = 30000.

Therefore, this test is only a partial assessment. Localization and cycling in the QG model are beyond

the scope of this paper. For the finite difference approximation, the parameter τ is set to 10−4 for

all experiments. We have performed experiments for incremental 4DVAR and EnKS-4DVAR. The

incremental 4DVAR method used conjugate gradients to solve the linearized problem with exact490

tangent and adjoint models in each iteration, with no ensembles involved. The numerical results are

presented as follows.
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Figure 6 shows the objective function values along iterations of the incremental 4DVAR method.

The objective function is oscillating with the iteration number, therefore incremental 4DVAR method

without regularization is diverging. This divergence is due to the highly nonlinear behaviour of the495

model for a long window (10 days). In such a case, as explained in Sect. 4, a convergence to a

stationary point can be recovered by controlling the step which is done by introducing an additional

regularization term in this study. In order to see the affect of this regularization, we performed EnKS-

4DVAR with different values of the regularization parameter γ. Figure 7 shows the objective function

values along iterations for eight different choices of γ. RMSE values along the iterations for the same500

experiments performed with 4DVAR and EnKS-4DVAR are presented in Table 3.

It can be seen from Figure 7 that when γ = 0, the iterations diverge as expected, since we do

not use regularization and we only approximate the linearized subproblem using ensembles. For

small values of γ (e.g., γ ≤ 10−1), the objective function is not monotonically decreasing, hence

the iterations are still diverging even if we use the regularization. Therefore, small values of γ can505

not guarantee the convergence. For large values of γ (e.g., γ ≥ 10), we can observe the decrease on

the objective function along iterations. Moreover, the fastest decrease on the objective function is

obtained for γ = 10.

If we look at the RMSE values from Table 3, we can see that increasing γ beyond an optimal

value results in higher RMSE values, and the reduction in RMSE values becomes very slow. In any510

case, the RMSE values oscillate along the iterations. We note that all RMSE values are lower than

the initial RMSE value.

In conclusion, when the regularization is used, the choice of the regularization parameter γ is

crucial to ensure the convergence. For instance, for small values of γ, the method can still diverge,

and for large values of γ, the objective function decreases, but slowly (and many iterations may be515

needed to attain some predefined decrease). On the other hand, small γ values results in small RMSE

values with oscillation along the iterations and RMSE values decrease slowly for the larger values

of γ. Therefore the regularization parameter should be neither “very small” nor “very large”. An

adaptive γ over iterations can be a better compromise, which will be explored in future studies.

6 Conclusions520

We have proposed a stochastic solver for the incremental 4DVAR weak-constraint method. The reg-

ularization term added to the Gauss–Newton method, resulting in a globally convergent Levenberg–

Marquardt method, maintains the structure of the linearized least-squares subproblem, enabling us

to use ensemble Kalman smoother as linear solver while simultaneously controlling the conver-

gence. We have formulated the EnKS-4DVAR method and have shown that it is capable of handling525

strongly nonlinear problems. We have demonstrated that the randomness of the EnKS version used

(with perturbed data) eventually limits the convergence to a minimum, but a sufficiently large de-
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crease of the objective function can be achieved for successful data assimilation. On the contrary,

we suspect that the randomization may help to increase the supply of the search directions over the

iterations, as opposed to deterministic methods locked into one low-dimensional subspace, such as530

the span of one given ensemble.

We have numerically illustrated the new method on the Lorenz 63 model and the two-level quasi-

geostrophic model. We have analyzed the impact of the finite differences parameter τ used to ap-

proximate the derivatives of the model and observation operators. We have shown that for τ = 1,

the iterates obtained from EnKS-4DVAR are equivalent to those obtained from the standard EnKS.535

Based on computational experiments, it may be better to start with the EnKS (i.e., τ = 1) and then

to decrease τ in futher the iterations.

We have demonstrated long-term stability of the method on the Lorenz 63 method and shown that

it achieves lower RMSE than standard EnKF for a highly nonlinear problem. This, however, took

some parameter turning, in particular the data error variance.540

For the second part of the experiments, we have shown the performance of the EnKS-4DVAR

method with regularization on the two-level quasi-geostropic problem, one of the widely used model

in theoretical atmospheric studies, since it is simple enough for numerical calculations and it ade-

quately captures an important aspect of large-scale dynamics in the atmosphere. We have observed

that the incremental 4DVAR method is not converging for a long assimilation window length, and545

that the regularization is necessary to guarantee convergence. We have concluded that the choice

of the regularization parameter is crucial to ensure the convergence and different choices of this

parameter can change the rate of decrease in the objective function. As a summary, an adaptive regu-

larization parameter can be a better compromise to achieve the approximate solution in a reasonable

number of iterations.550

The choice of the parameters used in our approach is of crucial importance for the computational

cost of the algorithm, for instance the number of iterations to obtain some desired reduction. The

exploration in more detail of the best strategies to adapt these parameters course of the iterations

will be studied elsewhere.

The base method, used in the computational experiments here, is using sample covariance. How-555

ever, there is a priori nothing to prevent the use of more sophisticated variants of EnKS with local-

ization and the covariance inflation, and square root filters instead of EnKS with data perturbation,

as is done in related methods in the literature. These issues, as well as, the performance on larger

and realistic problems, will be studied elsewhere.
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Table 1. The root mean square error given by Eq. (34) for the first six Gauss–Newton iterations, for Lorenz

63 problem. The whole state is observed. Ensemble size is 100. The assimilation window length is 50 cycles.

Finite differences parameter is 10−3.

Iteration 1 2 3 4 5 6

RMSE 20.16 15.37 3.73 2.53 0.09 0.09

Table 2. Mean of the objective function from 30 runs of the EnKS-4DVAR algorithm for the Lorenz 63 problem

and for different values of τ (finite differences parameter). The whole state is observed. Ensemble size is 50.

The assimilation window length is 50 cycles.

Iter. τ = 1 τ = 10−1 τ = 10−2 τ = 10−3 τ = 10−4 τ = 10−5 τ = 10−6

Init 5.61e+6 5.61e+6 5.61e+6 5.61e+6 5.61e+6 5.61e+6 5.61e+6

1 1.02e+6 1.39e+9 3.21e+9 3.54e+9 3.58e+9 3.58e+9 3.58e+9

2 1.39e+6 5.27e+7 1.70e+8 1.93e+8 1.96e+8 1.96e+8 1.96e+8

3 1.32e+6 4.14e+6 2.99e+6 3.69e+6 3.76e+6 3.77e+6 3.77e+6

4 1.38e+6 5699 3266 4431 4581.31 4594 4598

5 1.55e+6 1299 89.22 65.69 65.4442 65.41 65.26

6 1.34e+6 830.1 17.08 6.933 6.844 6.856 6.923

7 2.05e+6 826.8 10.75 1.885 1.89082 1.8 1.721

8 1.47e+6 847.4 10.82 1.68 1.63813 1.547 1.641

Table 3. RMSE values calculated by Eq. (34) along the incremental 4DVAR and EnKS-4DVAR iterations for

different values of the regularization parameter γ, for the two-level quasi-geostrophic model (Sect. 5.2.2).

Iter. 4DVAR γ = 0 γ = 10−3 γ = 0.1 γ = 1 γ = 10 γ = 100 γ = 500 γ = 103

Init 5.3026 5.3026 5.3026 5.3026 5.3026 5.3026 5.3026 5.3026 5.3026

1 3.9666 3.9713 3.9716 4.0274 4.4051 4.7046 4.8194 4.8774 4.9028

2 3.8167 3.8879 3.8903 3.8388 4.1949 4.3618 4.7136 4.8233 4.8514

3 3.8394 3.9703 3.9539 4.0927 4.1092 4.4898 4.6993 4.8093 4.8222

4 4.3390 4.1093 4.1891 3.9588 4.0232 4.4697 4.7348 4.7781 4.7771

5 3.9726 3.7723 3.7337 3.9000 3.9490 4.3866 4.7104 4.7802 4.7729

6 3.8984 3.8202 3.7302 3.8222 3.8045 4.3587 4.6785 4.7800 4.7624

7 3.7553 3.8873 3.8004 3.8619 4.0068 4.3369 4.6562 4.7742 4.7533

8 4.005 3.8183 4.1342 4.0614 3.7866 4.3147 4.6521 4.7578 4.7514

9 3.8429 3.7907 4.0450 3.7049 3.7159 4.2962 4.6358 4.7436 4.7409

10 3.8759 3.7177 4.0983 3.7242 3.6996 4.2805 4.6280 4.7239 4.7327
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Figure 1. The Lorenz attractor, initial values x(0) = 1, y(0) = 1, and z(0) = 1, discretization time
step is dt= 0.1 time unit.
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Figure 2. Root square error given by Eq. (33) for the first five Gauss–Newton iterations from Lorenz 63 prob-

lem. The initial conditions for the truth are x(0) = 1, y(0) = 1, and z(0) = 1. The cycle length is dt = 0.1

time unit. The observations are the full state at each time step. The ensemble size is N = 100. The assimilation

window length is L= 50 cycles. Finite differences parameter is τ = 10−3.
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Figure 3. Box plots of objective function values for Lorenz 63 problem. From the left to the right and from the

top to the bottom, the figures correspond to the results of the first, the second, the third and the fourth iteration

respectively. The whole state is observed. Ensemble size is 50. The assimilation window is 50 cycles. In each

box, the central line presents the median (red line), the edges are the 25th and 75th percentiles (blue line), the

whiskers extend to the most extreme data points the plot algorithm considers to be not outliers (black line), and

the outliers are plotted individually (red dots).
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Figure 4. Same as Fig. 3, but for the fifth, the sixth, the seventh and the eighth iteration respectively.
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Figure 5. Comparison of RMSE between EnKF and EnKS-4DVAR from twin experiment for the Lorenz 63

model. EnKS-4DVAR has better performance for larger time interval between the observations as the model

become more nonlinear. See Section 5.1.3 for further details.

Figure 6. Objective function values along incremental 4DVAR iterations for the two-level quasi-geostrophic

problem from Sect. 5.2.2.
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Figure 7. Objective function values along EnKS-4DVAR with regularization iterations for the two-level quasi-

geostrophic problem (Sect. 5.2.2).
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