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Abstract. The ensemble Kalman smoother (EnKS) is used as a linear least squares solver in the

Gauss–Newton method for the large nonlinear least squares system in incremental 4DVAR. The en-

semble approach is naturally parallel over the ensemble members and no tangent or adjoint operators

are needed. Further, adding a regularization term results in replacing the Gauss–Newton method,

which may diverge, by the Levenberg–Marquardt method, which is known to be convergent. The5

regularization is implemented efficiently as an additional observation in the EnKS. The method is

illustrated on the Lorenz 63 model and a two-level quasi-geostrophic model.

1 Introduction

Four dimensional variational data assimilation (4DVAR) is a dominant data assimilation method

used in weather forecasting centers worldwide. 4DVAR attempts to reconcile model and data vari-10

ationally, by solving a large weighted nonlinear least squares problem. The unknown is a vector of

system states over discrete points in time, when the data are given. The objective function minimized

is the sum of the squares of the differences of the initial state from a known background state at the

initial time and the differences of the values of observation operator and the data at every given

time point. In the weak-constraint 4DVAR (Trémolet, 2007), considered here, the model error is ac-15

counted for by allowing the ending and starting states of the model at every given time point to be

different, and adding to the objective function also the sums of the squares of those differences. The

sums of the squares are weighted by the inverses of the appropriate error covariance matrices, and

much of the work in the applications of 4DVAR goes into modeling those covariance matrices.

In the incremental approach (Courtier et al., 1994), the nonlinear least squares problem is solved20

iteratively by solving a succession of linearized least square problems. The major cost in 4DVAR

iterations is in evaluating the model, tangent and adjoint operators, and solving the large linear least

squares. A significant software development effort is needed for the additional code to implement the

tangent and adjoint operators to the model and the observation operators. Straightforward lineariza-
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tion leads to the Gauss–Newton method for nonlinear least squares (Bell, 1994; Tshimanga et al.,25

2008). Gauss–Newton iterations are not guaranteed to converge, not even locally, though a careful

design of an application system may avoid divergence in practice. Finally, while the evaluation of the

model operator is typically parallelized on modern computer architectures, there is a need to further

parallelize the 4DVAR process itself.

The Kalman filter is a sequential Bayesian estimation of the gaussian state of a linear system at30

a sequence of discrete time points. At each of the time points, the use of the Bayes theorem results in

an update of the state, represented by its mean and covariance. The Kalman smoother considers all

states within an assimilation time window to be a large composite state. Consequently, the Kalman

smoother can be obtained from the Kalman filter by simply applying the same update as in the filter

to the past states as well. However, historically, the focus was on efficient short recursions (Rauch35

et al., 1965; Strang and Borre, 1997), similarly as in the Kalman filter.

It is well known that weak constraint 4DVAR is equivalent to the Kalman smoother in the linear

case and when all observations are in the assimilation window. Use of the Kalman smoother to solve

the linear least squares in the Gauss–Newton method is known as the iterated Kalman smoother, and

considerable improvements can be obtained against running the Kalman smoother only once (Bell,40

1994; Fisher et al., 2005).

The Kalman filter and smoother require maintaining the covariance of the state, which is not

feasible for large systems, such as in numerical weather prediction. Hence, the ensemble Kalman

filter (EnKF) and ensemble Kalman smoother (EnKS) (Evensen, 2009) use a Monte-Carlo approach

for large systems, representing the state by an ensemble of simulations, and estimating the state45

covariance from the ensemble. The implementation of the EnKS in Stroud et al. (2010) uses the

adjoint model explicitly, with the short recursions and a forward and a backward pass, as in the

Kalman smoother. However, the implementations in Khare et al. (2008); Evensen (2009) do not

depend on the adjoint model and simply apply EnKF algorithms to the composite state over multiple

time points. Such composite variables are also called 4D vectors, e.g., (Desroziers et al., 2014). We50

use the latter approach in the computations reported here.

In this paper, we use the EnKS as a linear lest squares solver in 4DVAR. The EnKS is implemented

in the physical space and with randomization. The ensemble approach is naturally parallel over the

ensemble members. The rest of the computational work is relatively cheap compared to the ensemble

of simulations, and parallel dense linear algebra libraries can be used; however, in high-dimensional55

systems or for a large lag, the storage requirements can be prohibitive (e.g., Cosme et al., 2010).

The proposed approach uses finite differences from the ensemble, and no tangent or adjoint opera-

tors are needed. To stabilize the method and assure convergence, a Tikhonov regularization term is

added to the linear least squares, and the Gauss–Newton method becomes the Levenberg–Marquardt

method (Levenberg, 1944; Marquardt, 1963). The Tikhonov regularization is implemented within60

EnKS as an independent observation following Johns and Mandel (2008) in a computationally cheap
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additional analysis step, which is statistically correct because the smoother operates only on the lin-

earized problem. A new probabilitistic ensemble is generated in every iteration, so the minimization

is not restricted to the combinations of a single ensemble. We use finite differences from ensemble

mean towards the ensemble members to linearize the model and observation operators. The iterations65

can be proved to converge to incremental 4DVAR iterations for small finite difference step and large

ensemble size (Bergou et al., 2014). Thus, in the limit, the method performs actual minimization of

the weak-constraint objective function and inherits the advantages of 4DVAR in handling nonlinear

problems. We call the resulting method EnKS-4DVAR.

Combinations of ensemble and variational approaches have been of considerable recent interest.70

Estimating the background covariance for 4DVAR from an ensemble was one of the first connections

(Hamill and Snyder, 2000b). It is now standard and became operational (Wang, 2010). Zhang et al.

(2009) use a two-way connection between EnKF and 4DVAR to obtain the covariance for 4DVAR,

and 4DVAR to feed the mean analysis into EnKF. EnKF is operational at the National Centers for

Environmental Prediction (NCEP) as part of its Global Forecast System Hybrid Variational Ensem-75

ble Data Assimilation System (GDAS), together with the Gridpoint Statistical Interpolation (GSI)

variational data assimilation system (Developmental Testbed Center, 2015).

The first methods that use ensembles for more than computing the covariance minimized the

3DVAR objective function in the analysis step. The MLEF method by Zupanski (2005) works in the

ensemble space, i.e., minimizing in the span of the ensemble members, with the control variables80

being the coefficients of a linear combination of the ensemble members. Gu and Oliver (2007) use

iterated ensemble Kalman filter (with randomization) in the state space, with a linearization of the ob-

servation operator obtained by a regression on the increments given by the ensemble. This approach

was extended by Chen and Oliver (2013) to a Levenberg-Marquardt method, with the regularization

done by a multiplicative inflation of the covariance in the linearized problem rather than adding a85

Tikhonov regularization term. Liu et al. (2008, 2009); Liu and Xiao (2013) minimize the (strong

constraint) 4DVAR objective function over linear combinations of the ensemble by computations in

the observation space.

The IEnKF method by Sakov et al. (2012) minimizes the lag-one 4DVAR objective function in

the ensemble space, using the square root EnKF as a linear solver in Newton-Gauss method, and90

rescaling the ensemble to approximate the tangent operators, which is similar to the use of finite

differences and EnKS here. Bocquet and Sakov (2012) combined the IEnKF method of Sakov et al.

(2012) with an inflation-free approach to obtain a 4D ensemble variational method, and with the

Levenberg-Marquard method by adding a diagonal regularization to the Hessian. Bocquet and Sakov

(2012); Chen and Oliver (2013) used Levenberg-Marquardt for faster convergence, as an adaptive95

method between steepest descent and Gauss-Newton method rather than to overcome divergence.

Bocquet and Sakov (2012) also considered scaling the ensemble to approximate the tangent oper-

ators (“bundle variant”) as in Sakov et al. (2012). Bocquet and Sakov (2013) extended IEnKF to
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smoother (IEnKS) with fixed-lag and moving window and noted that Gauss-Newton can be replaced

by Levenberg-Marquard. The method is formulated in terms of the composite model operator, i.e.,100

with strong constraints. Bocquet and Sakov (2014) developed the method further, including cycling.

(Bocquet and Sakov, 2012, 2013, 2014) note that various optimizers could be used in IEnKF/IEnKS;

the present method can be understood as EnKS used as such optimizer.

It is well known that for good practical performance, ensemble methods need to be modified

by localization to improve the sampling error. Ensemble methods can be localized in multiple105

ways (Sakov and Bertino, 2011). For methods operating in the physical space, localization can be

achieved, e.g., by tapering of the covariance matrix (Furrer and Bengtsson, 2007) or by replacing the

sample covariance by its diagonal in a spectral space (Kasanický et al., 2015). This is not completely

straightforward for the EnKS, but implementations of the EnKS based on the Bryson–Frazier ver-

sion of the classical formulation of the Kalman smoother, with a forward and a backward pass, are110

more flexible (Butala, 2012). Methods in the ensemble space can be modified to update only nodes

in a neighborhood of the observation (e.g., Ott et al., 2004). The 4DEnVAR method of Desroziers

et al. (2014) uses ensemble-derived background covariance and the authors propose several methods

to solve the linearized problem in each iteration by combinations of ensemble members with the

weights allowed to vary spatially. Lorenc et al. (2014) compares the hybrid 4DEnVAR and hybrid115

4DVAR for operational weather forecasts. “Hybrid” refers to a combination of a fixed climatological

model of the background error covariances and localised covariances obtained from ensembles.

For background in data assimilation, see, e.g., Evensen (2009) and Kalnay (2003).

The paper is organized as follows. In Sect. 2, we review the formulation of 4DVAR. The EnKF and

the EnKS are reviewed in Sect. 3. The proposed method is described in Sect. 4. Section 5 contains120

the results of the computational experiments, and Sect. 6 is the conclusion.

2 Incremental 4DVAR

For vectors ui, i= 1, . . . ,L, denote the composite (column) 4D vector

u0:L =


u0

...

uL

 .
We want to estimate x0, . . . ,xL, where xi is the state at time i, from the background state, x0 ≈ xb,125

the model, xi ≈Mi (xi−1) , and the observations Hi (xi)≈ yi, whereMi is the model operator,

andHi is the observation operator. Quantifying the uncertainty by covariances, with x0 ≈ xb taken

as (x0−xb)
T
B−1 (x0−xb)≈ 0, etc., we get the nonlinear least squares problem

‖x0−xb‖2B−1 +

L∑
i=1

‖xi−Mi (xi−1)‖2Q−1
i

+

L∑
i=1

‖yi−Hi (xi)‖2R−1
i
→min

x0:L

, (1)
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called weak-constraint 4DVAR (Trémolet, 2007). Originally, in 4DVAR, xi =Mi (xi−1); the weak130

constraint xi ≈Mi (xi−1) accounts for model error.

The least squares problem (Eq. 1) is solved iteratively by linearization,

Mi (xi−1 + δxi−1)≈Mi (xi−1) +M′i (xi−1)δxi−1,

Hi (xi + δxi)≈Hi (xi) +H′i (xi)δxi.

In each iteration x0:L← x0:L + δx0:L, one solves the auxiliary linear least squares problem for the135

increments δx0:L,

‖x0 + δx0−xb‖2B−1 +

L∑
i=1

‖xi + δxi− (Mi (xi−1) +M′i (xi−1)δxi−1)‖2Q−1
i

+

L∑
i=1

‖yi− (Hi (xi) +H′i (xi)δxi)‖
2
R−1

i
→ min

δx0:k

. (2)

This is the Gauss–Newton method (Bell, 1994; Tshimanga et al., 2008) for nonlinear squares, known

in 4DVAR as the incremental approach (Courtier et al., 1994). Write the auxiliary linear least squares140

problem (Eq. 2) for δx0:L as

‖δx− δxb‖2B−1 +

L∑
i=1

‖δxi− (Miδxi−1 +mi)‖2Q−1
i

+

L∑
i=1

‖di−Hiδxi‖2R−1
i
→ min

δx0:L

(3)

where

δxb = xb−x0, mi =Mi (xi−1)−xi, di = yi−Hi (xi) , (4)

Mi =M′i (xi−1) , Hi =H′i (xi) .145

The function minimized in Eq. (3) is the same as the one minimized in the Kalman smoother (Bell,

1994).

3 Ensemble Kalman filter and smoother

We present the EnKF and EnKS algorithms, essentially following Evensen (2009), in a form suitable

for our purposes. We start with a formulation of the EnKF, in a notation useful for the extension to150

EnKS. The notation v` ∼N (m,A) means that v` is sampled from N (m,A) independently of

anything else. The ensemble of states of the linearized model at time i, conditioned on data up to

time j (that is, with the data up to time j already ingested), is denoted by XN
i|j =

[
x1
i|j , . . . ,x

N
i|j

]
=[

x`
i|j

]
, where the ensemble member index ` always runs over `= 1, . . . ,N , and similarly for other

ensembles. Assume for the moment that the observation operatorHi is linear, that is,Hi (u) = Hiu.155

The EnKF algorithm consists of the following steps:

1. Initialize

x`
0|0 ∼N (xb,B) , `= 1, . . . ,N. (5)

5



2. For i= 1,2, . . .,

(a) advance in time160

x`
i|i−1 =Mi(x

`
i−1|i−1) +v`i , v`i ∼N (0,Qi) , (6)

(b) The analysis step

x`
i|i = x`

i|i−1−PN
i,iH

T
i (HiP

N
i,iH

T
i +Ri)

−1(Hi(x
`
i|i−1)−di−w`

i), (7)

w`
i ∼N (0,Ri) ,

where PN
i,i is the sample covariance computed from the the ensemble XN

i|i−1.165

Denote by AN
i the matrix of anomalies of the ensemble ZN

i|i−1,

AN
i =

[
a1
i , . . . ,a

N
i

]
=
[
x1
i|i−1−xi|i−1, . . . ,x

N
i|i−1−xi|i−1

]
, xi|i−1 =

1

N

N∑
j=1

xi|i−1. (8)

Then PN
i,i = 1

N−1A
N
i

(
AN

i

)T
, and we can write the matrices in Eq. (7) as

PN
i,iH

T
i =

1

N − 1
AN

i

(
HiA

N
i

)T
, HiP

N
i,iH

T
i =

1

N − 1
HiA

N
i

(
HiA

N
i

)T
. (9)

In particular, the matrix Hi is used here only in the matrix-vector multiplications170

g`i = Hia
`
i = Hi

(
x`
i|i−1−xi|i−1

)
= Hix

`
i|i−1−

1

N

N∑
j=1

Hix
j
i|i−1, (10)

which allows the matrix-vector multiplication to be replaced by the use of a possibly nonlinear

observation operator Hi evaluated on the ensemble members only (Eq. 18 below). This technique

is commonly used for nonlinear observation operators, e.g., Chen and Snyder (2007); Mandel et al.

(2009). With HiA
N
i = GN

i =
[
g1i , . . . ,g

N
i

]
, Eq. (9) becomes175

PN
i,iH

T
i =

1

N − 1
AN

i

(
GN

i

)T
, HiP

N
i,iH

T
i =

1

N − 1
GN

i

(
GN

i

)T
, (11)

Also, from Eqs. (9,8), it follows that the analysis ensemble XN
i|i consists of linear combinations of

the forecast ensemble, hence it can be written as multiplying the forecast ensemble by a suitable

transformation matrix TN
i ,

XN
i|i = XN

i|i−1T
N
i , TN

i ∈ RN×N . (12)180

The EnKS is obtained by applying the same analysis step as in EnKF (Eq. 7) to the ensemble

X0:i|i−1 of 4D composite states from time 0 to i, conditioned on data up to time i− 1,

XN
0:i|i−1 =


XN

0|i−1
...

XN
i|i−1

 ,
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in the place of Xi|i−1, with the observation matrix H̃0:i = [0, . . . ,Hi]. Then, Eq. (7) becomes

x`
0:i|i = xN

0:i|i−1−PN
0:i,0:iH̃

T
0:i(H̃0:iP0:i,0:iH̃

T
0:i +Ri)

−1(H̃0:ix
`
0:i|i−1−d

`
i −w`

i),185

where PN
0:i,0:i is the sample covariance matrix of XN

0:i|i−1. Fortunately, the matrix–vector and

matrix–matrix products can be simplified,

H̃0:ix
`
0:i|i−1 = [0, . . . ,0,Hi]x

`
0:i|i−1 = Hix

`
i|i−1 (13)

PN
0:i,0:iH̃

T
0:i = PN

0:i,iH
T
i , H̃0:iP0:i,0:iH̃

T
0:i = HiP

N
i,iH

T
i , (14)

which is the same expression as in Eq. (9). Using also Eq. (11), we obtain the EnKS algorithm:190

1. Initialize

z`0|0 ∼N (zb,B) , `= 1, . . . ,N. (15)

2. For i= 1, . . . ,L:

(a) Advance in time:

x`
i|i−1 =Mi(x

`
i−1|i−1) +v`i , v`i ∼N (0,Qi) , `= 1, . . . ,N (16)195

(b) Compute the anomalies of the ensemble in the state space and in the observation space:

A0:i =
[
a1
0:i, . . . ,a

N
0:i

]
, a`

0:i = x`
0:i|i−1−

1

N

N∑
j=1

xj
0:i|i−1 (17)

GN
i =

[
g1i , . . . ,g

N
i

]
, g`i =Hi

(
x`
i|i−1

)
− 1

N

N∑
j=1

Hi

(
xj
i|i−1

)
(18)

(c) The analysis step:

x`
0:i|i = x`

0:i|i−1−
1

N − 1
AN

0:i

(
GN

i

)T( 1

N − 1
GN

i

(
GN

i

)T
+Ri

)−1
· (19)200 (

Hi(x
`
i|i−1)−yi−w`

i

)
, w`

i ∼N (0,Ri) , `= 1, . . . ,N.

Comparing Eq. (7) and Eq. (19), we see that the EnKS can be implemented in a straightforward

manner by applying the same transformation as in the EnKF to the composite 4D state vector from

times 0 to i, XN
0:i|i = XN

0:i|i−1T
N
i , where TN

i is the transformation matrix in Eq. (12) (Brusdal et al.,

2003, Eq. 20).205

4 EnKS-4DVAR

We apply the EnKS algorithm (Eqs. 15-18) with the increments δx in place of x to solve the lin-

earized auxiliary least squares problem (Eq. 3). Approximating by finite differences based at xi−1

with step τ > 0, we get the action of the linearized model operator

Miδx
`
i−1 +mi ≈

Mi

(
xi−1 + τδx`

i−1
)
−Mi (xi−1)

τ
+Mi (xi−1)−xi, (20)210
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and the linearized observation operator

Hiδx
`
i ≈
Hi

(
xi + τδx`

i

)
−Hi (xi)

τ
. (21)

The Gauss–Newton method may diverge, but convergence to a stationary point of (Eq. 1) can be

recovered by a control of the step δx. Adding a constraint of the form ‖δxi‖ ≤ ε leads to glob-

ally convergent trust region methods (Gratton et al., 2013). Here, we add to (Eq. 3) a Tikhonov215

regularization term of the form γ ‖δxi‖2S−1
i

, which controls the step size as well as rotates the step

direction towards the steepest descent, and obtain the Levenberg–Marquardt method (Levenberg,

1944; Marquardt, 1963) x0:L← x0:L + δx0:L, where

‖δx0− δxb‖2B−1 +

L∑
i=1

‖δxi−Miδxi−1−mi‖2Q−1
i

+ (22)

L∑
i=1

‖di−Hiδxi‖2R−1
i

+ γ

L∑
i=0

‖δxi‖2S−1
i
→ min

δx0:L

.220

Under suitable technical assumptions, the Levenberg–Marquardt method is guaranteed to con-

verge globally if the regularization parameter γ ≥ 0 is large enough (Gill and Murray, 1978; Os-

borne, 1976). Estimates for the convergence of the Levenberg–Marquardt method in the case when

the linear system is solved only approximately exist (Wright and Holt, 1985).

Similarly as in Johns and Mandel (2008), we interpret the regularization term γ ‖δxi‖2S−1
i

in225

Eq. (22) as arising from additional independent observations δxi ≈ 0 with covariance γ−1Si. The

independent observation can be assimilated separately, resulting in a mathematically equivalent but

often more efficient two-stage method – simply run the EnKF analysis (Eqs. 25, 26) twice. With

the choice of Si as identity or, more generally a diagonal matrix, the implementation of these large

observations can be made efficient (Mandel et al., 2009). We use the notation δx`
0:i|i−1/2 for the230

increments after the first half-step, conditioned on the original observations only, and δx`
0:i|i for the

increments conditioned also on the regularization δxi ≈ 0. Note that unlike in Johns and Mandel

(2008), where the regularization was applied to a nonlinear problem and thus the sequential data

assimilation was only approximate, here the EnKS is run on the auxiliary linearized problem, so all

distributions are gaussian and the equivalence of assimilating the observations at the same time and235

sequentially is statistically exact.

We obtain the following algorithm EnKS-4DVAR for Eq. (1).

1. Initialize

x0 = xb, xi =Mi (xi−1) , i= 1, . . . ,L,

if not given already.240

2. Incremental 4DVAR (Eq. 2): Given x0, . . . ,xL, initialize the ensemble of increments

δx`
0|0 ∼N (δxb,B) , `= 1, . . . ,N, δxb = xb−x0. (23)

8



(a) For i= 1, . . . ,L:

i. Advance the ensemble of increments δx` in time following Eq. (16), with the lin-

earized operator approximated from Eq. (20),245

δx`
i|i−1 =

Mi

(
xi−1 + τδx`

i−1|i−1

)
−Mi (xi−1)

τ
+Mi (xi−1)−xi +v`i , (24)

v`i ∼N (0,Qi) , `= 1, . . . ,N.

ii. Compute the anomalies of the ensemble in the 4D state space and in the observation

space:

A0:i =
[
a1
0:i, . . . ,a

N
0:i

]
, a`

0:i = δx`
i|i−1−

1

N

N∑
j=1

δxj
i|i−1250

GN
i =

[
g1i , . . . ,g

N
i

]
, g`i =

1

τ

Hi

(
xi + τδx`

i|i−1

)
− 1

N

N∑
j=1

Hi(xi + τδxj
i|i−1)


(25)

iii. The first analysis step:

δx`
0:i|i−1/2 =δx`

0:i|i−1−
1

N − 1
AN

0:i

(
GN

i

)T( 1

N − 1
GN

i

(
GN

i

)T
+Ri

)−1
·Hi(xi) +

Hi

(
xi + τδx`

i|i−1

)
−Hi (xi)

τ
−yi−w`

i

 , (26)

w`
i ∼N (0,Ri) , `= 1, . . . ,N.255

iv. If γ > 0, compute the anomalies of the ensemble in the 4D state space:

ZN
0:i =

[
z10:i, . . . ,z

N
0:i

]
, z`0:i = δx`

i|i−1/2−
1

N

N∑
j=1

δxj
i|i−1/2 (27)

Observation operator for the regularization is the identity, so the anomalies in the

observation space are simply ZN
i .

v. If γ > 0, regularization as the second analysis step with zero data and data covari-260

ance γ−1Si:

δx`
0:i|i =δx`

0:i|i−1/2−
1

N − 1
ZN

0:i

(
ZN

i

)T( 1

N − 1
ZN

i

(
ZN

i

)T
+

1

γ
Si

)−1
· (28)(

δx`
i|i−1/2−v

`
i

)
, v`i ∼N (0,Si) , `= 1, . . . ,N,

otherwise δx`
0:i|i = δx`

0:i|i−1/2, `= 1, . . . ,N .

(b) Complete the approximate incremental 4DVAR iteration: update265

x0:L← x0:L +
1

N

N∑
`=1

δx`
0:L|L. (29)
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Note that for small γ→ 0, (Eq. 28) has asymptotically no effect, δx`
0:i|i→ δx`

0:i|i−1/2. The com-

putational cost of EnKS-4DVAR is one evaluations of the modelMi for the initialization (Eq. 23),

N + 1 evaluations of the modelMi, and N evaluations of the observation operator Hi in each in-

cremental 4DVAR iteration, in each of the L observation periods. In comparison, the cost of EnKF270

is N evaluation of the model Mi and of the observation operator Hi in each observation period.

Running the model and evaluating the observation operator are the major cost in practical problems

such as weather models, rather than the linear algebra of the EnKS itself, in a reasonably efficient

EnKF/EnKS implementation.

It can be proved that for small τ and large N , the iterates x0:k converge to those of incremental275

4DVAR (Bergou et al., 2014). Surprisingly, it turns out that in the case when τ = 1, we recover the

standard EnKS applied directly to the nonlinear problem (Eq. 1), as shown by the following theorem.

In particular, EnKS-4DVAR does not converge when τ = 1 for nonlinear problems, because the

result of each iteration is determined only by the starting value x0. It is interesting that the ensemble

transform approach in Sakov et al. (2012); Bocquet and Sakov (2012, 2013, 2014) corresponds to280

our τ = 1, but it does not seem to reduce to the standard EnKS.

Theorem 1 If τ = 1, then one step of EnKS-4DVAR (Eqs. 23-26) becomes the EnKS (Eqs. 15-19)

(modified by including the additional regularization observation if γ > 0). In particular, in that case,

the values of x0:L + δx`
0:L do not depend on the previous values of x1:L.

Proof. Indeed, Eq. (24) becomes285

δx`
i|i−1 =

Mi

(
xi−1 + δx`

i−1|i−1

)
−Mi (xi−1)

1
+Mi (xi−1)−xi +v`i

=Mi

(
xi−1 + δx`

i−1|i−1

)
−xi +v`i ,

hence

xi + δx`
i|i−1 =Mi

(
xi−1 + δx`

i−1|i−1

)
+v`i

which is the same as Eq. (16) for xi−1+δx`
i−1|i−1 in place of xi−1|i−1. Similarly, Eq. (25) becomes290

with τ = 1,

g`i =
Hi

(
xi + δx`

i|i−1

)
−Hi (xi)

1
− 1

N

N∑
j=1

Hi

(
xi + δxj

i|i−1

)
−Hi (xi)

1
(30)

=Hi

(
xi + δx`

i|i−1

)
− 1

N

N∑
j=1

Hi

(
xi + δxj

i|i−1

)
, (31)

which is again the same as Eq. (18) for xi + δx`
i|i−1 in place of xi|i−1. Finally, the innovation term

in Eq. (26) becomes using Eq. (4),295

Hi(xi) +
Hi

(
xi + τδx`

i|i−1

)
−Hi (xi)

1
−yi =Hi

(
xi + δx`

i|i−1

)
−yi,

which is again the same as in Eq. (19) xi + δx`
i|i−1 in place of xi|i−1. �
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5 Computational results

In this section, we investigate the performance of EnKS-4DVAR method, described in this paper, by

solving the nonlinear least-squares problem (Eq. 1) in which the dynamical models are chosen either300

the Lorenz 63 system (Lorenz, 1963) or the two-level quasi-geostrophic model (Fandry and Leslie,

1984). Most of the experiments assess the convergence of the incremental 4DVAR iterations with

EnKS as the linear solver in a single assimilation cycle (Sections 5.1.1, 5.1.2). We also demonstrate

the overall long-term performance on a large number of assimilation cycles on the Lorenz 63 model

in Section 5.1.3.305

We first consider experiments where the regularisation is not necessary to guarantee the conver-

gence (i.e., γ = 0). Lorenz 63 equations are used as a forecast model for these experiments. Sec-

tion 5.1 describes the Lorenz 63 model and presents numerical results on the convergence. Using the

same model, in Sect. 5.1.2, we investigate the impact of the finite differences parameter τ , used to

approximate the derivatives of the model and observation operators, along the iterations.310

Experiments where the regularisation is necessary to guarantee the convergence are shown in

Sect. 5.2, and we analyse the impact of the regularisation parameter γ on the application to the

two-level quasi-geostrophic model.

Note that for the experiments presented here, we do not use localization, hence we choose large

ensemble sizes. In all experiments, the regularization covariance Si = I.315

5.1 Numerical tests using the Lorenz 63 model

The Lorenz 63 equations (Lorenz, 1963) are given by the nonlinear system

dx

dt
=−σ(x− y),

dy

dt
= ρx− y−xz, dz

dt
= xy−βz, (32)

where x= x(t), y = y(t), z = z(t) and σ, ρ, β are parameters, whose values are chosen as 10, 28

and 8/3 respectively for the experiments described in this paper. These values result in a chaotic320

behaviour with two regimes as illustrated in Fig. 1. This figure shows the Lorenz attractor, which

has two lobes connected near the origin, and the trajectories of the system in this saddle region are

particularly sensitive to perturbations. Hence, slight perturbations can alter the subsequent path from

one lobe to the other.

The system is discretized using the fourth-order Runge–Kutta method. The state at time t is de-325

noted byXt = [x(t),y(t),z(t)]>,Xt ∈ R3.

To evaluate the performance of EnKS-4DVAR method, we will test it using the classical twin

experiment technique, which consists on fixing an initial true state, denoted by truth0, and then

integrating the initial truth in time using the model to obtain the true state truthi =M(truthi−1) at

each time i. We then build the data yi by applying the observation operator Hi to the truth at time i330

and by adding a Gaussian perturbation N(0,Ri). Similarly, the background xb is sampled from the
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Gaussian distribution with the mean truth0 and the covariance matrix B. Then, we try to recover the

truth using the observations and the background.

5.1.1 Convergence of the iterations

We perform numerical experiments without model error. The initial truth is set to truth0 = [1,1,1]>335

and the background covariance is chosen as the identity matrix of order three, i.e. B = I3. The

model is advanced in time by using the Runge–Kutta method with a time step of 0.1 time unit.

The time window length is L= 50 time steps (5 time units). The observation operator is de-

fined as Hi (x,y,z) =
(
x2,y2,z2

)
. At each time i, the observations are constructed as follows:

yi =Hi(truthi) +vi, where vi is sampled from N(0,R) with R = I3. Observations are taken for340

each time step (i= 1, . . .50). The ensemble size is fixed to N = 100.

Figure 2 shows the estimator of the state vector Xi, i= 1, . . . ,10, for the first five iterations.

Figure 3 shows the root square error (RSE) for the same iterates showm in Fig. 2. RSE is defined as

RSE(j)
i =

√
1

n
(truthi−x(j)

i )>(truthi−x(j)
i ), j = 1, . . . ,5, (33)

where truthi is the true vector state at time i, x(j)
i is the jth iterate at time i and n is the length of xi.345

Table 1 shows the root mean square error (RMSE) for each iterate given by

RMSE(j) =
1

k

k∑
i=0

RSE(j)
i , j = 1, . . . ,5, (34)

where k is the number of time steps.

From Table 1 and Figs. 2 and 3, it can be seen that the iterates of converge to the solution (without

using a regularization). For these experiments, we observe that RMSE is reduced significantly in five350

iterations. Note that the error does not converge to zero, because of the approximation and variability

inherent in the ensemble approach.

5.1.2 The impact of the finite difference parameter

Now we investigate the influence of the finite differences parameter τ used to approximate the deriva-

tives of the model and observation operators. We use the same experimental set-up as described in355

the previous section. The numerical results are based on 30 runs with eight iterations for Lorenz

63 problem, with the following choices for the parameter τ : 1, 10−1, 10−2, 10−3, 10−4, 10−5 and

10−6.

Table 2 shows the mean of the objective function value as a function the finite difference step

τ and the number of iterations. When τ = 1, the iterations after the first one do not improve the360

objective function. However, when τ ≤ 10−1, the objective function was overall decreasing along

the iterations, after a large initial increase. Because of the stochastic nature of the algorithm, the

objective function does not necessarily decrease every iteration and its values eventually fluctuate
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around a limit value randomly randomly. This stage was achieved after at most 6 iterations, so only

8 iterations are shown; further lines (not shown) exhibit the same fluctuating pattern in all columns.365

This limit value of the objective function decreases with smaller τ , until it stabilizes for τ ≤ 10−3.

Figs. 4 and 5 show more details of the statistics as boxplots of the objective function values. Each

panel corresponds to one line of Table 2.

We can conclude that for this toy test case at least, the method was insensitive to the choice of

τ ≤ 10−3, except that small τ , when the problem solved by the smoother is essentially the tangent370

problem, resulted in a large increase of the value of the objective function in the first iteration. This is

not uncommon in Newton type methods and highly nonlinear problems. Hence, an adaptive method,

which decreases τ adaptively, may be of interest. This issue will be studied elsewhere.

5.1.3 Cycling

So far, we have studied the impact of the use of the stochastic solver for a single assimilation window375

only. Now we test the overall long-term performance. Consider again the Lorenz 63 model (32) with

the parameters σ = 10, ρ= 28, β = 8/3, and integration step set to 0.01 time unit. This is the same

parameters setup as the one used in Bocquet and Sakov (2012). We then proceed with similar testing

as in Metref et al. (2014). we perform usual twin model experiment. The initial truth state Y0 is gen-

erated from N(0,I3) distribution and the initial forecast state is then simulated by sampling from380

N(Y0,I3). Both states are advanced for 50,000 model time-steps burn-in period We used nonlinear

observational operator h(x,y,z) =
(
x3,y3,z3

)
with observational error generated fromN

(
0,σ2I3

)
with σ2 = 8, and τ = 10−4. The time between two available observations ∆t varies from 0.05 time

units, when the model is nearly linear, to 0.55, when the model is strongly nonlinear. We use ensem-

ble of size 10. After running multiple simulations we have found suitable values of parameters of the385

method: the number of iterations is 25, and the parameter γ = 10−9 when ∆t= 0.05 and γ = 1000

otherwise. The length of assimilation window is set to L= 6, in other words we assimilate 6 ob-

servations at once. We assimilate each observation only once, i.e., the assimilation windows do not

overlap. To create initial ensemble at the beginning of each iteration, we use background covariance

created as a weighted average of the sample covariance from the last iteration in the previous assim-390

ilation window and the identity matrix, similarly as in Hamill and Snyder (2000a). The weights are

0.99 for sample covariance and 0.01 for identity. The model error covariance in each time-step set

to Q= 0.01I3. The experiment is run for 100,000 observation cycles.

We compare the proposed method with the standard EnKF with 10 ensemble members, where

the initial ensemble is created after burn-in period by adding N (0,I3) perturbations. For stability395

reason and to preserve covariance between ensemble members we add N (0,0.01I3)noise after each

advance of each ensemble member. The necessity of related covariance inflation was identified also

in Bocquet and Sakov (2012). The EnKF algorithm is run every time when new observations are
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available. The initial ensemble is created by adding white noise perturbation to forecasted state

directly after burn-in period.400

Fig. 6 shows that the proposed method has significantly smaller RMSE in the case when the

model is nonlinear. Only in the situation, when the time between observation is 0.05 time unit, i.e.,

the model is nearly linear EnKF gives a comparable result as the proposed method.

5.2 Numerical tests using a two-layer Quasi Geostrophic model (QG)

The EnKS-4DVAR algorithm has been implemented into Object Oriented Prediction System405

(OOPS) (Trémolet, 2013), which is a data assimilation framework developed by European Centre

for Medium-Range Weather Forecasts (ECMWF). Numerical experiments are performed by using

the simple two-layer quasi-geostrophic model of OOPS platform. The details for the model and the

data assimilation system are given in Sects. 5.2.1 and 5.2.2 respectively. Numerical experiments are

performed to solve the weak-constraint data assimilation problem (Eq. 1) by using EnKS-4DVAR410

with regularization. Numerical results are presented in Sect. 5.2.3.

5.2.1 A two-layer quasi-geostrophic model

The two-layer quasi-geostrophic channel model is widely used in theoretical atmospheric studies,

since it is simple enough for numerical calculations and it adequately captures an important aspect

of large-scale dynamics in the atmosphere.415

The two-layer quasi-geostrophic model equations are based on the non-dimensional quasi-

geostrophic potential vorticity, whose evolution represents large scale circulations of the atmosphere.

The quasi-geostrophic potential vorticity on the first (upper) and second (lower) layers can be written

respectively as

q1 =∇2ψ1−
f20L

2

g′H1
(ψ1−ψ2) +βy, q2 =∇2ψ2−

f20L
2

g′H2
(ψ2−ψ1) +βy+Rs, (35)420

where ψ is the stream function, ∇2 is the two-dimensional Laplacian, Rs represents orography

or heating, β is the (non-dimensionalised) northward variation of the Coriolis parameter at the fixed

latitude y, f0 is the Coriolis parameter at the southern boundary of the domain. L is the typical length

scale of the motion we wish to describe, H1 and H2 are the depths of the two layers, g′ = g∆θ/θ is

the reduced gravity where θ is the mean potential temperature, and ∆θ is the difference in potential425

temperature across the layer interface. The non-dimensional equations (Fandry and Leslie, 1984;

Pedlosky, 1979) can be derived as follows:

t= t̃
Ū

L
, x=

x̃

L
, y =

ỹ

L
,

u=
ũ

Ū
, v =

ṽ

Ū
, β = β0

L2

Ū
,
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where t denotes time, Ū is a typical velocity scale, x and y are the eastward and northward coordi-430

nates respectively, u and v are the horizontal velocity components, β0 is the northward derivative,

and the tilde notation refers to the dimensionalized parameters.

Potential vorticity in each layer is conserved and thus is described by

Diqi
Dt

= 0, i= 1,2. (36)

where Di/Dt, is the total derivative, defined by435

Di

Dt
=
∂

∂t
+ui

∂

∂x
+ vi

∂

∂y
(37)

and

ui =−∂ψi

∂y
, vi =

∂ψi

∂x
, (38)

are the horizontal velocity components in each layer. Therefore, the potential vorticity at each time

step is determined by using the conservation of potential vorticity given by Eq. (36). In this process,440

time stepping consists of a simple first order semi-Lagrangian advection of potential vorticity.

Given the potential vorticity at a fixed time, Eq. (35) can be solved for the stream function at

each gridpoint and then the velocity fields obtained through Eq. (38). The equations are solved by

using periodic boundary conditions in the west–east direction and Dirichlet boundary condition in

the north–south direction. For the experiments in this paper, we choose L= 106 m, Ū = 10 ms−1,445

H1 = 6000 m, H2 = 4000 m, f0 = 10−4 s−1, β0 = 1.5× 10−11 s−1 m−1. For more details on the

model and its solution, we refer to Fisher et al. (2011).

The domain for the experiments is 12000 km by 6300 km for both layers. The horizontal dis-

cretization consists of 40×20 points, so that the east–west and the north–south resolution is approx-

imately 300km. The dimension of the state vector of the model is then 1600. Note that the state450

vector is defined only in terms of the stream function.

5.2.2 Experimental setup

The performance of EnKS-4DVAR with regularization is analyzed by using twin experiments

(Sect. 5.1).

The truth is generated from a model with layer depths of D1 = 6000 m and D2 = 4000 m, and455

the time step is set to 300 s, whereas the assimilating model has layer depths of D1 = 5500 m and

D2 = 4500 m, and the time step is set to 3600 s. These differences in the layer depths and the time

step provide a source of model error.

For all the experiments presented here, observations of non-dimensional stream function, vector

wind and wind speed were taken from a truth of the model at 100 points randomly distributed over460

both levels. Observations were taken every 12 hours. We note that the number of observations is

much smaller than the dimension of the state vector. Observation errors were assumed to be inde-

pendent from each others and uncorrelated in time. The standard deviations (SD) were chosen to
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be equal to 0.4 for stream function observation error, 0.6 for vector wind and 1.2 for wind speed.

The observation operator is the bi-linear interpolation of the model fields to horizontal observation465

locations.

The background error covariance matrix (matrix B) and the model error covariances (matrices

Qi) used in these experiments correspond to vertical and horizontal correlations. The vertical and

horizontal structures are assumed to be separable. In the horizontal plane covariance matrices cor-

respond to isotropic, homogeneous correlations of stream function with Gaussian spatial structure470

obtained from a Fast Fourier Transform approach (Dietrich and Newsam, 1997; Nowak et al., 2003).

For the background covariance matrix B, the SD and the horizontal correlation length scale in this

experiments was set to 0.8 and 106 m respectively. For the model error covariance matrices Qi, the

SD and the horizontal correlation length scale was set to 0.2 and 2×106 m respectively. The vertical

correlation is assumed to be constant over the horizontal grid and the correlation coefficient value475

between the two layers was taken as 0.5 for Qi and 0.2 for B.

5.2.3 Numerical results

We perform one cycle for the experiments. The window length is set to 10 days when nonlinearity is

increasing (Fisher et al., 2011, Fig. 2), with two sub-windows of 5 days (L= 2). No localization is

used in the experiments, as a result the ensemble size is chosen to be large enough, i.e. N = 30000.480

Therefore, this test is only a partial assessment. Localization and cycling in the QG model are beyond

the scope of this paper. For the finite difference approximation, the parameter τ is set to 10−4 for

all experiments. We have performed experiments for incremental 4DVAR and EnKS-4DVAR. The

incremental 4DVAR method used conjugate gradients to solve the linearized problem with exact

tangent and adjoint models in each iteration, with no ensembles involved. The numerical results are485

presented as follows.

Figure 7 shows the objective function values along iterations of the incremental 4DVAR method.

The objective function is oscillating with the iteration number, therefore incremental 4DVAR method

without regularization is diverging. This divergence is due to the highly nonlinear behaviour of the

model for a long window (10 days). In such a case, as explained in Sect. 4, a convergence to a490

stationary point can be recovered by controlling the step which is done by introducing an additional

regularization term in this study. In order to see the affect of this regularization, we performed EnKS-

4DVAR with different values of the regularization parameter γ. Figures 8 and 9 show the objective

function values along iterations for eight different choices of γ. RMSE values along the iterations

for the same experiments performed with 4DVAR and EnKS-4DVAR are presented in Table 3.495

It can be seen from Figures 8 and 9 that when γ = 0, the iterations diverging as expected (since we

do not use regularization and we only approximate the linearized subproblem using ensembles). For

small values of γ (for instance γ ≤ 10−1), the objective function is not monotonically decreasing,

hence the iterations are still diverging even if we use the regularization. Therefore, small values of γ

16



can not guarantee the convergence. For large values of γ (for instance γ ≥ 10), we can observe the500

decrease on the objective function along iterations. Moreover, the fastest decrease on the objective

function is obtained for γ = 10.

If we look at the RMSE values from Table 3, we can see that increasing γ values result in higher

RMSE values. For large values of γ, for example γ ≥ 10, the reduction in RMSE values is very

small. For smaller values of γ the reduction is faster however RMSE values oscillates along the505

iterations. We want to note also that all RMSE values are lower than the initial RMSE value.

In conclusion, when the regularization is used, the choice of the regularization parameter γ is

crucial to ensure the convergence. For instance, for small values of γ, the method can still diverge,

and for large values of γ, the objective function decreases, but slowly (and many iterations may be

needed to attain some predefined decrease). On the other hand, small γ values results in small RMSE510

values with oscillation along the iterations and RMSE values decrease slowly for the larger values

of γ. Therefore the regularization parameter should be neither “very small” nor “very large”. An

adaptive γ over iterations can be a better compromise, which will be explored in future studies.

6 Conclusions

We have proposed a stochastic solver for the incremental 4DVAR weak constraint method. The reg-515

ularization term added to the Gauss–Newton method, resulting in a globally convergent Levenberg–

Marquardt method, maintains the structure of the linearized least squares subproblem, enabling us to

use ensemble Kalman smoother as linear solver while simultaneously controlling the convergence.

We have formulated the EnKS-4DVAR method and have shown that it is capable of handling strongly

nonlinear problems. We have demonstrated that the randomness of the EnKS version used (with per-520

turbed data) eventually limits the convergence to a minimum, but a sufficiently large decrease of

the objective function can be achieved for successful data assimilation. On the contrary, we suspect

that the randomization may help to increase the supply of the search directions over the iterations,

as opposed to deterministic methods locked into one low-dimensional subspace, such as the span of

one given ensemble.525

We have numerically illustrated the new method on the Lorenz 63 model and the two-level quasi-

geostrophic model. We have analyzed the impact of the finite differences parameter τ used to ap-

proximate the derivatives of the model and observation operators. We have shown that for τ = 1, the

iterates obtained from EnKS-4DVAR are equivalent to those of obtained from the standard EnKS.

Based on computational experiments, it may be better to start with the EnKS (i.e., τ = 1) and then530

to decrease τ in futher the iterations.

We have demonstrated long-term stability of the method on the Lorenz 63 method and shown that

it achieves lower RMSE than standard EnKF for a highly nonlinear problem. This, however, took

some parameter turning, in particular the data error variance.
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For the second part of the experiments, we have shown the performance of the EnKS-4DVAR535

method with regularization on the two-level quasi-geostropic problem, one of the widely used model

in theoretical atmospheric studies, since it is simple enough for numerical calculations and it ade-

quately captures an important aspect of large-scale dynamics in the atmosphere. We have observed

that the incremental 4DVAR method is not converging for a long time window length, and that the

regularization is necessary to guarantee convergence. We have concluded that the choice of the reg-540

ularization parameter is crucial to ensure the convergence and different choices of this parameter

can change the rate of decrease in the objective function. As a summary, an adaptive regularization

parameter can be a better compromise to achieve the approximate solution in a reasonable number

of iterations.

The choice of the parameters used in our approach is of crucial importance for the computational545

cost of the algorithm, for instance the number of iterations to obtain some desired reduction. The

exploration in more detail of the best strategies to adapt these parameters course of the iterations

will be studied elsewhere.

The base method, used in the computational experiments here, is using sample covariance. How-

ever, there is nothing to prevent the use of more sophisticated variants of EnKS with localization and550

the covariance inflation, and square root filters instead of EnKS with data perturbation, as is done

in related methods in the literature. These issues, as well as, the performance on larger and realistic

problems, will be studied elsewhere.
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Table 1. The root mean square error given by Eq. (34) for the first six Gauss–Newton iterations, for Lorenz 63

problem. The whole state is observed. Ensemble size is 100. The time window length is 50 time steps. Finite

differences parameter is 10−3.

Iteration 1 2 3 4 5 6

RMSE 20.16 15.37 3.73 2.53 0.09 0.09

Table 2. Mean of the objective function from 30 runs of the EnKS-4DVAR algorithm for the Lorenz 63 problem

and for different values of τ (finite differences parameter). The whole state is observed. Ensemble size is 50.

The time window length is 50 time steps.

Iter. τ = 1 τ = 10−1 τ = 10−2 τ = 10−3 τ = 10−4 τ = 10−5 τ = 10−6

Init 5.61e+6 5.61e+6 5.61e+6 5.61e+6 5.61e+6 5.61e+6 5.61e+6

1 1.02e+6 1.39e+9 3.21e+9 3.54e+9 3.58e+9 3.58e+9 3.58e+9

2 1.39e+6 5.27e+7 1.70e+8 1.93e+8 1.96e+8 1.96e+8 1.96e+8

3 1.32e+6 4.14e+6 2.99e+6 3.69e+6 3.76e+6 3.77e+6 3.77e+6

4 1.38e+6 5699 3266 4431 4581.31 4594 4598

5 1.55e+6 1299 89.22 65.69 65.4442 65.41 65.26

6 1.34e+6 830.1 17.08 6.933 6.844 6.856 6.923

7 2.05e+6 826.8 10.75 1.885 1.89082 1.8 1.721

8 1.47e+6 847.4 10.82 1.68 1.63813 1.547 1.641

Table 3. RMSE values calculated by Eq. (34) along the incremental 4DVAR and EnKS-4DVAR iterations for

different values of the regularization parameter γ, for the two-level quasi-geostrophic model (Sect. 5.2.2).

Iter. 4DVAR γ = 0 γ = 10−3 γ = 0.1 γ = 1 γ = 10 γ = 100 γ = 500 γ = 103

Init 5.3026 5.3026 5.3026 5.3026 5.3026 5.3026 5.3026 5.3026 5.3026

1 3.9666 3.9713 3.9716 4.0274 4.4051 4.7046 4.8194 4.8774 4.9028

2 3.8167 3.8879 3.8903 3.8388 4.1949 4.3618 4.7136 4.8233 4.8514

3 3.8394 3.9703 3.9539 4.0927 4.1092 4.4898 4.6993 4.8093 4.8222

4 4.3390 4.1093 4.1891 3.9588 4.0232 4.4697 4.7348 4.7781 4.7771

5 3.9726 3.7723 3.7337 3.9000 3.9490 4.3866 4.7104 4.7802 4.7729

6 3.8984 3.8202 3.7302 3.8222 3.8045 4.3587 4.6785 4.7800 4.7624

7 3.7553 3.8873 3.8004 3.8619 4.0068 4.3369 4.6562 4.7742 4.7533

8 4.005 3.8183 4.1342 4.0614 3.7866 4.3147 4.6521 4.7578 4.7514

9 3.8429 3.7907 4.0450 3.7049 3.7159 4.2962 4.6358 4.7436 4.7409

10 3.8759 3.7177 4.0983 3.7242 3.6996 4.2805 4.6280 4.7239 4.7327
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Figure 1. The Lorenz attractor, initial values x(0) = 1, y(0) = 1, and z(0) = 1, discretization time
step is dt= 0.1 time unit.
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Figure 2. The three components x, y, z of the truth and the first five Gauss–Newton iterations from Lorenz 63

problem, for the first 10 time steps. The initial conditions for the truth are x(0) = 1, y(0) = 1, and z(0) = 1.

Time step is dt = 0.1 time unit. Observations are the full state at each time step. Ensemble size is 100. The

time window length is 50 time steps. Finite differences parameter is 10−3.
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Figure 3. Root square error given by Eq. (33) for the first five Gauss–Newton iterations from Lorenz 63 prob-

lem. The problem setting is the same as in Fig. 2.
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Figure 4. Box plots of objective function values for Lorenz 63 problem. From the left to the right and from the

top to the bottom, the figures correspond to the results of the first, the second, the third and the fourth iteration

respectively. The whole state is observed. Ensemble size is 50. The time window length is 50 time steps. In

each box, the central line presents the median (red line), the edges are the 25th and 75th percentiles (blue line),

the whiskers extend to the most extreme data points the plot algorithm considers to be not outliers (black line),

and the outliers are plotted individually (red dots).
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Figure 5. Same as Fig. 4, but for the fifth, the sixth, the seventh and the eighth iteration respectively.

Figure 6. Comparison of RMSE between EnKF and EnKS-4DVAR from twin experiment for the Lorenz 63

model. EnKS-4DVAR has better performance for larger time interval between the observations as the model

become more nonlinear. See Section 5.1.3 for further details.
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Figure 7. Objective function values along incremental 4DVAR iterations, for two-level quasi-geostrophic prob-

lem from Sect. 5.2.2.
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Figure 8. Objective function values along EnKS-4DVAR with regularization iterations for two-level quasi-

geostrophic problem (Sect. 5.2.2). From the left to the right and from the top to the bottom: γ = 0, γ = 0.001,

γ = 0.1, γ = 1.
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Figure 9. As Fig. 8, but for γ = 10, γ = 100, γ = 500, γ = 1000, respectively.
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