Response to the comments of Referee #1

We are grateful to the reviewer for his careful reading of the paper once
again. The reviewer’s comments helped us greatly to further improve the
presentation of our ideas and results. The changes made in the revised
manuscript, following the reviewer’s suggestion, are marked red (new ad-
dition) and gray (deleted parts). In what follows, we repeat each of the
reviewer’s comments in italic, and provide our response in roman.

The revised paper has added material that attempts to support the (new)
sentence (Lines 414-416) The central argument of this paper is that apply-
ing a single localization function for the localization of covariances between
multiple state variables in an EnKF scheme may lead to a rank deficient
estimate of the background covariance matriz. As I describe in the Matters
which require attention portion of my review, much of the supporting ma-
terial for this new sentence is either unsubstantiated or incorrect. As such,
despite improvements that have been made to other parts of the paper and de-
spite the fact that I still think that their suggested methods for inter-variable
localization and their description of the generalized multi-variate Askey lo-
calization function would be of interest to readers of non-linear processes in
geophysics, I do not think the paper should be published in its current form.
My overall recommendation is to accept the paper after revisions that address
the concerns outlined below.

Matters which require attention

1. Lines 85-87 suggest that the Schur product between a semi-positive
definite symmetric matriz (like that of the Gaspari-Cohn localization matriz)
and a pre-existing positive definite matriz may result in a matriz that has zero
eigenvalues. If understand localization correctly, it is incorrect to suggest
that uniwariate localization will reduce the rank of the original covariance
matriz. In most practical examples, it massively increases the rank of the
covariance matrix (without creating negative eigenvalues) and this is one of
the main reasons it has proven to be so useful. If the authors have a relevant
example where univariate localization reduces the rank of the matriz to which
the localization is applied, please include it in an Appendix. Otherwise drop
this sentence.

We agree with the reviewer about univariate localization. Our point there
was about the localization, in the system with multiple state variables, with
the same localization function (with the same localization length for each
variable), and when the cross-covariance between multiple state variables



are not negligible. In that case, localization may not work as efficiently as it
would for the univariate case, due to the problem of rank deficiency of the
localization matrix.

We modifed the sentence to avoid confusion.

2. Lines 87-88 suggest that the symmetry of a matriz implies that its
eigenvalues are non-negative. This is also incorrect. For example, the nega-
tive of the identity matriz is symmetric but both of its eigenvalues are nega-
tive. Symmetry does not imply positive eigenvalues.

We did not mean that symmetric matrices have non-negative eigenvalues
(it is clearly false). Rather, we meant that P® which is positive semi-definite
in its nature, is also symmetric and has non-negative eigenvalues. We agree
that our comment can be confusing and we modified the sentence.

3. Lines 99-101. Do the authors know that Kang et al. (2011) was not
also motivated by the need to achieve a semi-positive definite background er-
ror covariance matrix? Zeroing out the inter-variable covariances does not
produce negative eigenvalues. Many researchers have been trying to find lo-
calization functions that filter spurious correlations AND do not produce neg-
ative eigenvalues. I think you need to justify your claim that Kang was not
interested in preserving semi-positive definiteness or drop the statement.

It appears to us that the primary goal of Kang et al. (2011) is to introduce
the localization method that filters the spurious correlation between distinct
variables, not about prserving positive-definiteness or rank of the matrix.
We checked the reference again to make sure. Words such as “positive-
definiteness”, “rank”, or “eigenvalues” were never mentioned.

We did not mean to say that they were not interested in preserving pos-
itive definiteness, or they were ignoring it. We just stated that it was not
their motivation. We slightly modified the sentence to make this clear.

4. Lines 182-184. The statement “although C' is rank-deficient and thus
so s the localized covariance matrix” is incorrect. To see this, take the ele-
ment wise-product of the localization matriz defined by (5) with the identity
matrix one then will recover the identity matriz which has full rank and is
not rank deficient.

The reviewer is correct. Whether the localized covariance matrix P°
is rank-deficient or not depends on the structure of P’ (your example of
P’ =1 is an extreme case that P’ is of full rank with zero off-diagonal block
matrices. However, usually P?’s are not in this “nice” shape.). We modified



the statement to avoid confusion.

5. Lines 414-416. Here we here that the central argument of the revised
paper s that applying a single localization function for the localization of co-
variances between multiple state variables in an EnKF scheme may lead to
a rank deficient estimate of the background covariance matrix. I do not be-
lieve that rank-deficiency is the primary problem with univariate localization
so making this the central argument of the revised paper has decreased the
papers appeal for me. Suppose I have many more ensemble members than
variable types; e.g. I might have 5 model variables at each grid point and 80
ensemble members. In this case, I could use a univariate localization matrix
of the form given by equation (5), where each of the Cy matrices was the iden-
tity matrix and then apply this to my 80 member ensemble covariance matriz.
The resulting covariance matriz would almost certainly have full rank even
if the number of model grid points was in the tens of millions because the lo-
calization has zeroed out all inter-grid-point covariances leaving 80 ensemble
members to describe the covariance between the 5 model variables on each
grid point. Without doubt the rank of the matriz obtained using (5) would
be very much higher than the rank 79 of the unlocalized ensemble covariance
matrix. Note that it is easy to construct dynamical data assimilation systems
where the rank of the true forecast error covariance matriz is rank deficient
(e.g. Bishop et al., 2003, J.Atmos. Sci.). Hence, the best localization strate-
gies may be those that stop short of making the localized ensemble covariance
matriz full rank. I think there is broad agreement that the localization matriz
should attenuate spurious correlations and also ensure that the localized co-
variance matriz has no negative eigenvalues. (To ensure this, one only needs
to ensure that the localization matriz is semi-positive definite). The value of
your study is that you have presented new and effective methods for gener-
ating multi-variate semi-positive definite localization matrices. In my view,
thats the only argument you have to make.

We completely agree with the reviewer. As we mentioned in our previous
response, whether or not the rank of localized covariance matrix increases or
not depends on the structure (or rank) of the original matrix P® and as the
reviewer points out, if you have large enough ensemble members, then P°
may be close to be of full rank.

The line numbers the reviewer gave about this point do not seem correct
(lines 414-416 are part of the acknowledgment). We guess that the reviewer
commented on the first sentence of our Discussion section. We modified this
following the reviewer’s suggestion.



Minor comments:

1. Line 16. Abstract: In order to be just a bit clearer, change multiple
state variables to multiple state variables that exist at the same location

Done.

2. Line 165: Replace of d by of the separation distance d

Done.

3. Eqs (9)-(11) please add more discussion of the meaning of the terms
fi2, p11 and g in equations (9) through (11). Perhaps mention the values
you ended up choosing to use for these parameters in your experiments? In
equation (9) and (11) can one think of the factors beta and B as simply being
normalization factors that ensure that the correlation between the variables
becomes equal to unity when the distance between the variables is equal to
zero?

The values of j1;;’s used in the experiments have been mentioned at the
end of Section 3.c. We are not sure if we could give physical meanings to
the parameters p;;’s. Obviously allowing these terms to vary (rather than
fixing them at a value) makes the functions in (9) and (11) more flexible.
Part of the role of ;s and the function B is, as the reviewer mentions,
normalization so that p;; is a proper correlation function. However, a more
important role for ;;’s and B is to introduce cross-correlation structure and
to ensure positive-definiteness of the resulting localized marix.

4. Figure 4. Please give more explanation of Figure 4 within the figure
caption. What is the difference between the circles and the squares? Perhaps
reiterate the percentile significance of the box and whiskers plots. Clarify that
the reason that there are no grey lines for the S4, beta=1 case is because
the Askey function is not defined in this case, etc. Consider adding more
explanation of what the figure is showing to the other figures as well.

Done.

5. Figure 3. Consider rephrasing the caption to For the partially observed
case, locations of observations of X and Y are indicated by the black dots and
grey circles, respectively.

Done.



Remark
Please also note that the year of the paper cited (Porcu et al.) has been
corrected from 2012 to 2013.



