
Response to the comments of Referee #1

We are grateful to the reviewer for his/her careful reading of the paper.
The reviewer’s comments helped us greatly to improve the presentation of our
ideas and results. In what follows, we repeat each of the reviewer’s comments
in italic, and provide our response in roman.

General Comments: This manuscript deals with one of the very impor-
tant topics in EnKF data assimilation. The described localization functions
for multiple state variables can be used both in EnKF and Variational En-
semble data assimilation systems. The schemes are extensively described and
easy to follow. In addition, OSSE results with a low-dimensional system are
presented to document benefit of the new schemes. I suggest accepting this
paper after addressing the following comments.

Specific comments: 1. Is the localization function defined by Eqs. 8-9 a
Gaussian-like function? As shown in Fig. 1, the plotted Askey function is
not a Gaussian-like function, which might make it be problematic to filter a
Gaussian-like error correlation pattern.

The shape of the localization function does not affect the Gaussianity
of the estimate of the distribution of the error, as it affects only second
statistical moments. In other words, the estimate of the error distribution
can still be Gaussian even if we use a localization function with a different
shape, such as the Askey function.

2. Need more details on experiment design, especially on experiment S3
and S4 (P847-848). For experiment S3, values of localization parameters
should be described. For experiment S3 and S4, please also explain the ratio-
nales used to specify localization parameters.

The values of the localization parameters µ and ν are given in the last
paragraph of Section 3.c. We tried a few different values for each of these
parameters and these values seem to work well. Results with various values
for c and β are presented in Figs. 4-11.

3. Sensitivity to number of ensemble members can be further studied.
The presented results (Page 850) showed similar results when using 20- and
40-member ensembles. Is this because the use of localization schemes? The
other question is that what is the critical number of ensemble member to
produce a good multi-variable background error covariance (BEC) modeling
for such a low-dimensional Lorenz-95 system? The BEC with very large
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number of ensemble member could be used to valid which localization scheme
is a better one. I suggest showing figures of the covariance in physical space to
demonstrate the sensitivity with several number of ensemble members (e.g.,
100, 200, 500, . . .).

We tried various ensemble sizes and we found that the state estimation
error is not sensitive to the choice of ensemble size between 20 and 40. This
may be due to the fact that we do localization, as the reviewer suggests.

Regarding the “critical number of ensemble members”, it is not our goal
in this paper to find the optimal number of ensemble members. Rather, we
compare various localization schemes given an ensemble size.

We now add experiments with 500-member ensemble in Figures 8-11.
Please see our texts in Section 3.d for our description. The figures show that
the localization scheme S4, which localizes the variance between X and Y
and within each state variable, still performs better overall than the other
localization schemes.

Other minor comments: 1. Page 842, Eqs, 6-7, Please explain beta here.

β is a parameter, with magnitude less than 1, used to make the matrix
C positive definite (c.f. C in (5)). We hope our explanation on that page is
clear.

2. Page 843, Eqs, 8-9, for real atmospheric data assimilation, do you
have any ideas on rules to specify the related parameters in Eqs. 8-9?

The parameters in Eqs. 8-9 should be determined by the characteristic
of the state variables and their relationship. This obviously depends on the
actual atmospheric data assimilation problem and the dynamic model.

3. Page 836, Line 13, what are values of variances for the two state
variables?

We assume this comment is about page 846 (not page 836). The variances
for X, variances for Y , and covariances between X and Y range from −4 to
4, −0.02 to 0.02, and −0.2 to 0.2, respectively.

4. Page 847, Line 14, beta(i,j)=beta ?, please explain beta.

β here plays the same role as in Eqs. 6-7. We modified the sentence in
line 14 to make it clear.
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5. Page 847, Line 21-22, Please speak more about the test results.

We presented the test results including figures in Section 3.d in the revi-
sion.

6. Page 850, Lines 14-16. Though I understand the statements are based
on materials in Page 841, it seems to me the statement may confuse general
readers. Actually, use of location functions is expected to alleviate the rank
deficient issue in BEC modeling.

We agree the statement may be confusing, and modified it in the revision.
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Response to the comments of Referee #2

We are grateful to the reviewer for his careful reading of the paper. The
reviewer’s comments helped us greatly to improve the presentation of our
ideas and results. In what follows, we repeat each of the reviewer’s comments
in italic, and provide our response in roman.

In most implementations of the Ensemble Kalman Filter (EnKF), en-
semble covariances between distinct variables defined at the same location in
space-time are not attenuated. This paper successfully makes the point that,
in some circumstances, EnKF performance would be improved by attenuating
such inter-variable correlations.
The paper identifies simple ensemble covariance attenuation strategies for co-
variances between variables of different types such as zonal wind and temper-
ature. The proposed strategies all guarantee the symmetry and semi-positive
definiteness of the localized covariance matrix. The utility of the proposed
approaches is evaluated using an idealized chaotic system with fast and slow
variables. For this particular system and a fairly dense observing network,
it is found that attenuating the inter-variable ensemble covariances improves
EnKF performance.
The inter-variable covariance attenuation methods given by equations (6)-(9)
and the associated discussion appear to pertain to the case when there are just
two distinct variables at each grid-point. The paper would be of greater in-
terest if corresponding formulae were given for the general case where there
were M distinct variables at each model grid point.

We appreciate the reviewer’s comments. We agree with the reviewer that
extending to a more general case with M distinct variables is useful. We now
give a general formula for arbitrary number of variables in Eqs. (8) and (11)
of the revision.

The numerical experiments performed in this paper would be more infor-
mative if an effort had been made to establish the magnitude of the true error
correlations between the slow (X) and fast (Y) variables in the system con-
sidered. It is only when that number is known that the potential gain of not
zeroing out the inter-variable correlations can be quantified.

We calculated the cross-correlation between X and Y variables with 500
samples drawn from the model (without assimilation) and thus this cross-
correlation can be considered as the true cross-correlation between the two
variables. The magnitude varies between −0.4 and 0.4, thus the correlation
between two variables seems quite strong. We added this statement in the
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revision.

Another issue the authors might aim for in revising their paper is to come
up with some rules of thumb to predict from the true error correlation and
known random ensemble size when (a) there would be little to be gained in
attenuating inter-variable ensemble correlations, or (b) there would be little
to be gained in keeping any of the inter-variable ensemble correlation, or (c)
partial attenuation of the inter-variable correlations would be helpful.

We appreciate the reviewer’s comments. We agree that this is a great
point, but given the limited time frame, we could only add an experiment
with 500 ensemble members, under the same setting as the experiment with
20 ensemble members. Based on our additional experiment, we see that,
in the bivariate Lorenz-95 model case (which shows non negligible cross-
correlation between the two state variables), accounting for cross-correlation
and at the same time partially attenuating cross-correlation give the best
result. By trying various β values, we attempted to pick the best amount of
partial-attenuation of cross-correlation.

3. As a check on the EnKF code and to quantify the upper limit of the
usefulness of X-Y covariances, I think the paper would be stronger if you
added another experiment in which the ensemble size was 16 to 32 times larger
than the 40 member ensemble you considered here. With that experiment, you
should be able to isolate the data assimilation value of accurately estimating
X-Y covariances.

We appreciate this comment and we agree that suggested experiment can
give us more insight. However, as indicated in the previous response, we
could only add an experiment with 500 ensemble members.

4. The conclusions need to admit that the found superiority of the Askey
localization function over the Gaspari-Cohn localization function may not
extend to other chaotic models or observation networks. Askey might be
better when the true correlation function looks more like the Askey function
than the Gaspari-Cohn function and vice-versa?

We agree with your comment, and added in Discussion section that the
Askey function may not be superior to the Gaspari-Cohn function in other
models, and that which correlation function is better depends on what the
true correlation function looks like.

Minor Specific Comments: 5. Abstract, line 8: Change ?entry-wise? to
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?element-wise?.

Done.

6. Equation (2): Most EnKFs do not use the linearized observation oper-
ator in the definition of the gain. Thus, (2) or the discussion around it needs
to be changed so that the reader is fully aware of the EnKF’s ability to di-
rectly estimate covariances between forecasts of variables that are non-linear
functions of the state and the state variables themselves.

We put the following sentence instead of avoiding the use of “lineariza-
tion”. EnKF schemes usually avoid the explicit computation of the linearized
observation operator H by using approximations to PbHT and HPbHT that
involve only the computation of h(xb) and h (xb) (e.g., Houtekamer and
Mitchell 1998).

7. P843, line 14. To more clearly define s give an example e.g ?if the
state is defined at a particular instant on a latitude, longitude, height grid
then s=3? ? if that?s what you mean.

We added that if the state is defined at a particular instant on a grid
formed by latitude, longitude, and height, then s=3.

8. Equations (12) and (13): The relationship between this model and
model 3 of Lorenz (2005, JAS) needs to be pointed out.

We compared the two models in the beginning of Section 3.b.

9. P847., lines 6-11. I think it would be clearer if you replaced “cross-
covariances are set to zero” with “covariances between X and Y variables are
set to zero” if if that’s what you mean. Also, I’m not sure what you mean
by “marginal covariances”. Do you mean X-X and Y-Y covariances? Please
clarify these issues in the revised text.

Cross-covariance and marginal covariance are defined in Section 2.b, but
we replaced the terms as suggested by the reviewer.

10. Very little was said about Figures 8-11. Either discuss each one
individually or replace some of them with a summary statement of what they
indicate.

We replaced this with the results with 500-member ensemble with discus-
sion about the results.
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ABSTRACT6

In ensemble Kalman filtering (EnKF), the small number of ensemble members that is feasible to7

use in a practical data assimilation application leads to sampling variability of the estimates of the8

background error covariances. The standard approach to reducing the effects of this sampling9

variability, which has also been found to be highly efficient in improving the performance of10

EnKF, is the localization of the estimates of the covariances. One family of localization techniques11

is based on taking the Schur (element-wise) product of the ensemble-based sample covariance12

matrix and a correlation matrix whose entries are obtained by the discretization of a distance-13

dependent correlation function. While the proper definition of the localization function for a14

single state variable has been extensively investigated, a rigorous definition of the localization15

function for multiple state variables has been seldom considered. This paper introduces two16

strategies for the construction of localization functions for multiple state variables. The proposed17

localization functions are tested by assimilating simulated observations experiments into the18

bivariate Lorenz 95 model with their help.19
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1. Introduction20

The components of the finite-dimensional state vector of a numerical model of the atmosphere21

are defined by the spatial discretization of the state variables considered in the model. An22

ensemble-based Kalman filter (EnKF) data assimilation scheme treats the finite-dimensional23

state vector as a multivariate random variable and estimates its probability distribution by an24

ensemble of samples from the distribution. To be precise, an EnKF scheme assumes that the25

probability distribution of the state is described by a multivariate normal distribution and it26

estimates the mean and the covariance matrix of that distribution by the ensemble (sample)27

mean and the ensemble (sample) covariance matrix. The estimate of the mean and the estimate28

of the covariance matrix of the analysis distribution are obtained by updating the mean and the29

covariance matrix of a background (prior) distribution based on the latest observations. The30

background distribution is represented by an ensemble of short-term forecasts from the previous31

analysis time. This ensemble is called the background ensemble.32

Because the number of background ensemble members that is feasible to use in a realistic33

atmospheric model is small, the estimates of weak covariances (the entries with small absolute34

values in the background covariance matrix) tend to have large relative estimation errors. These35

large relative errors have a strong negative effect on the accuracy of an EnKF estimate of the36

analysis mean. The standard approach to alleviating this problem is to apply a physical-distance-37

dependent localization to the sample background covariances before their use in the state update38

step of the EnKF. In essence, localization is a method to introduce the empirical understand-39

ing that the true background covariances tend to rapidly decrease with distance into the state40

estimation process.41

Data assimilation schemes treat the spatially discretized state vector, x, as a multivariate42
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random variable. We use the conventional notation xb and xa for the background and the43

analysis state vectors, respectively. We also use the notation y◦ for the vector of observations.44

In an EnKF scheme, the analysis mean, x̄a, is computed from the background mean, x̄b, by the45

update equation46

x̄a = x̄b + K
(
y◦ − h (xb)

)
. (1)

The function h(·) is the observation function, which maps the finite-dimensional state vector47

into observables. Thus, h (xb) is the ensemble mean of the prediction of the observations by the48

background. The matrix49

K = PbHT
(
HPbHT + R

)−1
(2)

is the Kalman gain matrix, where Pb is the background covariance matrix, H is the linearization50

of h about x̄b, and R is the observation error covariance matrix. EnKF schemes usually avoid51

the explicit computation of the linearized observation operator H by using approximations to52

PbHT and HPbHT that involve only the computation of h(xb) and h (xb) (e.g., Houtekamer and53

Mitchell 1998). The entry Kij of K determines the effect of the j-th observation on the i-th54

component of the analysis mean, x̄a. Under the standard assumption that the observation errors55

are uncorrelated, the matrix, R, is diagonal. Hence, the way the effect of the observations is56

spread from the observations to the different locations and state variables is determined by Pb
57

and H. The sampling variability in the estimates of Pb affects the accuracy of the information58

propagated in space and between the different state variables through the matrix products, PbHT
59

and HPbHT . The goal of localization is to reduce the related effects of sampling variability on60

the estimates of K.61

Over the years, many different localization methods have been proposed. Hamill et al. (2001),62

Houtekamer and Mitchell (1998, 2001), Hunt et al. (2007), Ott et al. (2004), and Whitaker and63
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Hamill (2002) used localization functions which set the covariance to zero beyond a certain64

distance (localization radius). Jun et al. (2011) proposed a nonparametric statistical method to65

estimate the covariance. Anderson (2007) used a hierarchical ensemble filter which estimates the66

covariance using an ensemble of ensemble filters. Bishop and Hodyss (2007, 2009a,b) adaptively67

determined the width of localization by computing powers of the sample correlations. Buehner68

and Charron (2007) examined the spectral and spatial localization of error covariance. Anderson69

and Lei (2013) and Lei and Anderson (2014) proposed an empirical localization function based70

on the output of an observing system simulation experiment.71

The focus of the present paper is on the family of schemes that localize the covariances72

by taking the Schur (Hadamard) product of the sample background covariance matrix and a73

correlation matrix of the same size, whose entries are obtained by the discretization of a distance-74

dependent correlation function with local (compact) support (e.g., Hamill et al. 2001; Houtekamer75

and Mitchell 2001; Whitaker and Hamill 2002). Such a correlation function is usually called a76

localization or taper function. The commonly used localization functions were introduced by77

Gaspari and Cohn (1999). Beyond a certain distance, all localization functions become zero,78

forcing the filtered estimates of the background covariance between state variables at locations79

that are far apart in space to zero. This property of the filtered background covariances can also80

be exploited to increase the computational efficiency of the EnKF schemes.81

Eqs. (1) and (2) provide the solution of a formulation of the data assimilation problem82

that assumes that Pb is invertible (e.g., sections 4.2.1 and 4.2.3 of Szunyogh 2014). A realistic83

atmospheric model has multiple scalar state variables (e.g., temperature, coordinates of the wind84

vector, surface pressure, humidity). If a univariate localization function, such as that described85

by Gaspari and Cohn (1999), is applied directly to a multivariate state vector, the resulting86

localized background covariance matrix may not be positive-definite. Because Pb is symmetric,87
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its eigenvalues are real and non-negative, which implies that it is invertible, only if it is also88

positive-definite. (An n×n symmetric matrix A is positive-definite if xTAx > 0 for all non-zero89

vectors x ∈ Rn.) Because the computation of the right-hand-side of Eq. (2) does not require90

the invertibility of Pb, singularity of the localized Pb usually does not lead to a breakdown91

of the computations in practice. An ill-conditioned estimate of Pb, however, can degrade the92

conditioning (increase the condition number) of HPbHT +R, making the numerical computation93

of the right-hand side of Eq. (2) less stable. This motivates us to seek rigorously-derived94

multivariate localization functions for ensemble Kalman filtering. As will be demonstrated, such95

rigorously-derived multivariate localization functions often produce more accurate analyses than96

those that apply the same univariate localization functions to each scalar component of the97

state vector. Kang et al. (2011) also introduced a multivariate localization method that zeros98

out covariances between physically unrelated variables. Their motivation for zeroing out such99

covariances, however, was to filter apparent spurious covariances rather than to preserve the100

positive-definiteness of the background error covariance matrix.101

In our search for proper multivariate localization functions, we take advantage of recent102

developments in the statistics literature. In particular, we use the localization functions developed103

in Porcu et al. (2012), who studied the radial basis functions to construct multivariate correlation104

functions with compact support. Note that Section 5 in Zhang and Du (2008) described a general105

methodology for covariance tapering in the case of multiple state variables. Du and Ma (2013)106

used a convolution approach and a mixture approach to derive covariance matrix functions107

with compactly supported covariances. Kleiber and Porcu (2015) constructed nonstationary108

correlation functions with compact support for multivariate random fields. Genton and Kleiber109

(2015) reviewed approaches to building models for covariances between two different variables110

such as compactly supported correlation functions for multivariate Gaussian random fields.111
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The rest of the paper is organized as follows. Section 2 briefly describes EnKF and localization112

for the special case of two state variables. Section 3 describes the bivariate Lorenz-95 model we113

use to test our ideas. Section 4 summarizes the main results of the paper.114

2. Methodology115

a. Univariate localization116

In principle, localization can be implemented by using filtered estimates of the background117

covariances rather than the raw sample covariances to define the matrix, Pb, used in the compu-118

tation of K by Eq. (2). The filtered (localized) version of covariance matrix, P̃b, is obtained by119

computing the Schur (element-wise) product:120

P̃b = P̂b ◦C, (3)

where C is a correlation matrix, which has the same dimensions as the sample covariance matrix,121

P̂b. In practice, however, the localization is often done by taking advantage of the fact that122

localization affects the analysis through PbHT and HPbHT , or, ultimately, through K. In123

particular, because a distance, d, can be defined for each entry, Kij, of K by the distance124

between the i-th analyzed variable and the j-th observation, the simplest localization strategy is125

to set all entries, Kij, that are associated with a distance longer than a prescribed localization126

radius, R (d > R), to zero, while leaving the remaining entries unchanged (e.g., Houtekamer and127

Mitchell 1998; Ott et al. 2004; Hunt et al. 2007).128

Another approach is to localize PbHT and HPbHT by a tapering function (e.g., Hamill et al.129
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2001; Houtekamer and Mitchell 2001). The usual justification for this approach is that H is130

typically the linearization of a local interpolation function, h(·), for which the localized matrix131

products provide good approximations of the products computed by using localized estimates of132

Pb. Note that PbHT is the matrix of background covariances between the state variables at the133

model grid points and at the observation locations, while HPbHT is the matrix of background134

covariances between the state variables at the observation locations. Thus, a distance can be135

associated with each entry of the two matrix products, which makes the distance-dependent136

localization of the two products possible. The approach becomes problematic, however, when137

h(·) is not a local function, which is the typical case for remotely sensed observations (Campbell138

et al. 2010).139

We consider the situation where localization is applied directly to the background error co-140

variance matrix, P̂b. Recall that the localized covariance matrix is expressed as in Eq. (3). In141

particular, C is a positive-definite matrix with strictly positive eigenvalues, while the sample142

covariance matrix, P̂b, may have zero eigenvalues (as it is only non-negative definite). The lo-143

calization in (3) helps to eliminate those zero eigenvalues of P̂b and alleviates the related large144

relative estimation errors. The positive-definiteness of C ensures that localization does not in-145

troduce new zero eigenvalues in the process of eliminating the zero eigenvalues of P̂b. The proper146

definition of the localization function that ensures that C is positive-definite has been thoroughly147

investigated for the univariate case (N = 1) in the literature (e.g. Gaspari and Cohn (1999)).148

b. Multivariate localization149

We now consider a model with multiple state variables (N > 1). For instance, we take a150

simple model based on the hydrostatic primitive equations. This model solves the equations151
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for the two horizontal components of wind, the surface pressure, the virtual temperature and a152

couple of atmospheric constituents. The state of the model is represented by the state vector,153

x = (x1,x2, . . . ,xN), where xi, i = 1, 2, . . . , N , represents the spatially discretized state of the154

i-th state variable in the model.155

The sample background covariance matrix, P̂b, can be partitioned as156

P̂b =



P̂b
11 P̂b

12 · · · P̂b
1N

P̂b
21 P̂b

22 · · · P̂b
2N

...
...

. . .
...

P̂b
N1 P̂b

N2 · · · P̂b
NN


. (4)

The entries of the submatrices, P̂b
ii, i = 1, . . . , N , are called the marginal-covariances for the157

i-th state variable. In practical terms, if the i-th state variable is the virtual temperature, for158

instance, each diagonal entry of P̂b
ii represents the sample variance for the virtual temperature at159

a given model grid point, while each off-diagonal entry of P̂b
ii represents the sample covariances160

between the virtual temperatures at a pair of grid points. Likewise, the entries of P̂b
ij, i 6= j, are161

called the sample cross-covariances between the grid point values of the i-th and the j-th state162

variables at pairs of locations, where the two locations for an entry can be the same grid point.163

We thus consider matrix-valued localization functions, ρ(d) = {ρij(d)}i,j=1,...,N , which are164

continuous functions of d. The component ρij(d) of ρ(d) is the localization function used for165

the calculation of the covariances included in the sub-matrix Pb
ij of Pb. Each entry of the166

localization matrix C is computed by considering the value of the appropriate component of167

ρ(d) for a particular pair of state variables and the distance, d, associated with the related entry168

of P̂b.169
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In order to get a proper matrix-valued localization function, ρ, a seemingly obvious approach170

to extend the results of Gaspari and Cohn (1999) would be to compute the entries of C based171

on a univariate correlation function for a multivariate variable. That is, for the pair of state172

variables i and j, we localize the corresponding sample background covariance matrix, P̂b
ij, by173

multiplying a localization matrix from the same correlation function for all i and j. Formally,174

this would be possible because the distance d is uniquely defined for each entry of P̂b the same175

way in the multivariate case as in the univariate case. This approach, however, cannot guarantee176

the positive-definiteness of the resulting matrix, C. As a simple illustrative example, consider177

the situation where the discretized state vector has only two components that are defined by178

two different scalar state variables at the same location (e.g., the temperature and the pressure).179

In this case, if n is the number of locations, the localization matrix for the two state variables180

together can be written as181

C =

C0 C0

C0 C0

 (5)

independently of the particular choice of the localization function. Here C0 is an n×n localization182

matrix from a univariate localization function. From Eq. (5), it is clear that n eigenvalues of C183

are zero and the rank of C is n, while its dimension is 2n× 2n.184

As in Eq. (2), although C is rank-deficient and thus so is the localized covariance matrix185

P̃b, we may still be able to calculate the inverse of HP̃bHT + R, as R is a diagonal matrix.186

The smallest eigenvalue of HP̃bHT + R is the smallest (positive) value of R, and thus the187

matrix, HP̃bHT +R, is still invertible and has positive eigenvalues. However, unless the diagonal188

elements of R are large (which implies large observation error variance), the matrix HP̃bHT +R189

is seriously ill-conditioned and the computation of its inverse may be numerically unstable.190

Therefore, the numerical stability of the computation of the inverse of the matrix heavily relies191
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on the observation error variance, which is an undesirable property.192

We therefore propose two approaches to construct positive-definite (full rank) matrix-valued193

localization functions, ρ(d). The first proposed method takes advantage of the knowledge of194

a proper univariate localization function, ρ̃. Instead of using the same correlation function to195

localize multiple state variables, for a certain distance lag, we let ρ = ρ̃ ·B, where B is an N ×N196

symmetric, positive-definite matrix whose diagonal entries are one. It can be easily verified that197

ρ is a matrix-valued positive-definite function, which makes it a valid multivariate localization198

function. For instance, in the hypothetical case where the two components of the state vector199

are two different state variables at the same location, making the choice200

B =

1 β

β 1

 , (6)

for β with |β| < 1, leads to201

C =

 C0 βC0

βC0 C0

 (7)

rather than what is given in Eq. (5). Since the eigenvalues of the matrix B are 1 ± β > 0, it202

can be easily verified that the matrix in (7) is positive-definite. For the case with more than two203

state variables (N ≥ 3), the matrix B can be parametrized as B = LLT , where204

L =



`1,1 0 · · · 0

`2,1 `2,2 · · · 0

...
...

. . . 0

`N,1 `N,2 · · · `N,N


(8)
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is a lower triangular matrix with the constraints that
∑i

j=1 `
2
i,j = 1 and `i,i > 0 for all i =205

1, . . . , N . The constraints are used to have the diagonal entries of B to be one. Furthermore, we206

need the constraint that for each row of L, the sum of all of the squared elements should be 1 in207

order to have the diagonal entries of B to be one. Other than these constraints, the elements of208

L can vary freely in order to guarantee the positive-definiteness of B.209

An attractive feature of this approach is that we can take advantage of any known univariate210

localization function to produce a multivariate localization function. However, the multivariate211

localization function from this approach is separable in the sense that the multivariate component212

(i.e., B) and the localization function (i.e. ρ̃) are factored. Another limitation of the approach is213

that the localization radius and decay rate are the same for each pair of state variables, leaving214

no flexibility to account for the potential differences in the correlation lengths and decay rate for215

the different state vector components.216

The second proposed method takes advantage of the availability of multivariate compactly217

supported functions from the spatial statistics literature. To the best of our knowledge, only a218

few papers have been published on this subject; one of them is Porcu et al. (2012). The function219

class they considered was essentially a multivariate extension of the Askey function (Askey 1973),220

f(d; ν, c) =
(
1− d

c

)ν
+
, with c, ν > 0. Here, x+ = max(x, 0) for x ∈ R. For instance, a bivariate221

Askey function, which is a special case of the results of Porcu et al. (2012), is given by (i, j = 1, 2)222

ρij(d; ν, c) = βij

(
1− d

c

)ν+µij
+

, (9)

where c > 0, µ12 = µ21 ≤ 1
2
(µ11 + µ22), ν ≥ [1

2
s] + 2, βii = 1 (i = 1, 2), β12 = β21, and223

|β12| ≤
Γ(1 + µ12)

Γ(1 + ν + µ12)

√
Γ(1 + ν + µ11)Γ(1 + ν + µ22)

Γ(1 + µ11)Γ(1 + µ22)
. (10)
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Here, Γ(·) is the gamma function (e.g., Wilks 2006), s is the dimension of the Euclidean space224

where the state variable is defined. If the state is defined at a particular instant on a grid formed225

by latitude, longitude, and height, then s = 3. Here, [x] is the largest integer that is equal to or226

smaller than x. The Askey function in (9) has the support c because it sets covariances beyond227

a distance c to zero. It can be seen from (10) that, if the scalars, µij, are chosen to be the same228

for all values of i and j, the condition on β12 for ρ to be valid is |β12| ≤ 1. Note that For this229

choice, the second method is essentially the same as the first method with the Askey function230

set to ρ̃. The localization function given by (9) is more flexible than the functions of the first231

method with the Askey function set to ρ̃ because µij can be chosen to be different for each pair232

of indexes, i and j. The localization length, however, is still the same for the different pairs of233

the state variables. The multivariate Askey function is formed by234

ρij(d; ν, c) = cν+1B(µij + 1, ν + 1)

(
1− |d|

c

)ν+µij+1

, |d| < c (11)

and 0 otherwise, where ν ≥ (s + 1)/2, µij = (µi + µj)/2, and µi > 0 for all i = 1, . . . , N . Here,235

B is the beta function (Porcu et al. 2012; Genton and Kleiber 2015).236

To illustrate the differences between the shape of the Gaspari-Cohn and the Askey functions,237

we show the Gaspari-Cohn function for c = 25 and the univariate Askey function for c = 50,238

and ν = 1, . . . , 4 (Fig. 1). This figure shows that for a given support, the Askey functions are239

narrower.240
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3. Experiments241

a. The EnKF Scheme242

There are many different formulations of the EnKF update equations, which produce not243

only an updated estimate of the mean, but also the ensemble of analysis perturbations that are244

added to the mean to obtain an ensemble of analyses. This ensemble of analyses serves as the245

ensemble of initial conditions for the model integration that produce the background ensemble.246

In our experiments, we use the method of perturbed observations. It obtains the analysis mean247

and the ensemble of analysis perturbations by the equations248

x̄a = x̄b + K(y −Hx̄b), (12)

xa
′

k = xb
′

k + K(yo
′

k −Hxb
′

k ), (13)

where x
′

k, k = 1, 2, . . . ,M are the ensemble perturbations and yo
′

k , k = 1, 2, . . . ,M are random249

draws from the probability distribution of observation errors. As the notation suggests, we250

consider a linear observation function in our experiments. This choice is made for the sake of251

simplicity and limits the generality of our findings much less than the use of an idealized model252

of atmospheric dynamics.253

For the case of multiple state variables, the ensemble members are considered to be in a single254

ensemble, that is, not being grouped into distinct sub-ensembles.255

b. The Bivariate Lorenz Model256

Lorenz (1995) discussed the bivariate Lorenz-95 model, which mimics the nonlinear dynamics257
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of two linearly coupled atmospheric state variables, X and Y , on a latitude circle. This model258

provides a simple and conceptually satisfying representation of basic atmospheric processes, but259

is not suitable for some atmospheric processes. The model 3 in Lorenz (2005) made it more260

realistic and suitable with sacrifice of simplicity, by producing a rapidly varying small-scale261

activity superposed on the smooth large-scale waves. We use the Lorenz-95 model for simplicity262

in our following experiments.263

The idealized model we use is the bivariate Lorenz-95 model (Lorenz 1995). The model mim-264

ics the nonlinear dynamics of two linearly coupled atmospheric state variables, X and Y , on a265

latitude circle. In the bivariate Lorenz-95 model, the variable, X, is a “slow” variable represented266

by K discrete values, Xk, and Y is a “fast” variable represented by J ×K discrete values. The267

governing equations are268

dXk

dt
= −Xk−1(Xk−2 −Xk+1)−Xk − (ha/b)

J∑
j=1

Yj,k + F, (14)

dYj,k
dt

= −abYj+1,k(Yj+2,k − Yj−1,k)− aYj,k + (ha/b)Xk, (15)

where Yj−J,k = Yj,k−1 and Yj+J,k = Yj,k+1 for k = 1, . . . , K and j = 1, . . . , J . The “boundary269

condition” is periodic; that is, Xk−K = Xk+K = Xk, and Yj,k−K = Yj,k+K = Yj,k. In our270

experiments, K = 36 and J = 10. The parameter h controls the strength of the coupling271

between X and Y , a is the ratio of the characteristic time scales of the slow motion of X to the272

fast motion of Y , b is the ratio of the characteristic amplitudes of X to Y , and F is a forcing273

term. We choose the parameters to be a = 10, b = 10, F = 10, and h = 2. These values of the274

model parameters are equal to those originally suggested by Lorenz (1995), except for the value275

of the coupling coefficient h, which is twice as large in our case. We made this change in h to276
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increase the covariances between the errors in the estimates of X and Y , which makes the model277

more sensitive to the choices of the localization parameters. We use a fourth-order Runge-Kutta278

time integration scheme with a time step of 0.005 non-dimensional units as Lorenz (1995) did.279

We define the physical distances between Xk1 and Xk2 , between Yj1,k1 and Yj2,k2 , and between280

Xk1 and Yj1,k2 by |10(k1− k2)|, |10(k1− k2) + j1− j2|, and |10(k1− k2)− j1|, respectively. Fig. 2281

shows a typical state of the model for the selected parameters. The figure shows that X tends to282

drive the evolution of Y : the hypothetical process represented by Y is more active (its variability283

is higher) with higher values of X.284

c. Experimental Design285

Since the estimates of the cross-covariances play a particularly important role at locations286

where one of the variables is unobserved, we expect an improved treatment of the cross-287

covariances to lead to analysis improvements at locations where only one of the state variables is288

observed. This motivates us to consider an observation scenario in which X and Y are partially289

observed. The variable X is observed at randomly chosen 20% of all locations and Y is observed290

at randomly chosen 90% of those locations where X is not observed. Spatial locations of the291

partially observed X and Y are illustrated in Fig. 3. The results from this experiment are292

compared to those from a control experiment, in which both X and Y are fully observed.293

We first generate a time series of “true” model states by a 2, 000-time-step integration of294

the model. We initialize an ensemble by adding the standard Gaussian noise to the true state;295

then, discarding the first 3, 000 time steps. We then generate simulated observations by adding296

random observation noise of mean zero and variance 0.02 to the the appropriate components297

of the “true” state of X at each time step. We use the same procedure to generate simulated298
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observations of Y , except that the variance of the observation noise is 0.005. Observations are299

assimilated at every time step by first using a 20-member ensemble with a constant covariance300

inflation factor of 1.015. The error in the analysis at a given verification time is measured by301

the root-mean-square distance between the analysis mean and the true state. We refer to the302

resulting measure as the root-mean-square error (RMSE). The probability distribution of the303

RMSE for the last 1, 000 time steps of 50 different realizations of each experiment is shown by a304

boxplot. The boxplot is an effective way of displaying a summary of the distribution of numbers.305

The lower and upper bounds of the box respectively give the 25th and 75th percentiles. The306

thick line going across the interior of the box gives the median. The whisker depends on the307

interquartile range (IQR) that is precisely equal to the vertical length of the box. The whiskers308

extend to the extreme values which are no more than 1.5 IQR from the box. Any values that fall309

outside of the end points of whiskers are considered outliers and they are displayed as circles.310

In the boxplot figures in the next section, we compare the RMSE for four different localization311

schemes. We use the following notation to distinguish between them in the figures:312

i. S1–the bivariate sample background covariance is used without localization;313

ii. S2–same as S1 except that the cross-covariances between X and Y are replaced by zeros;314

iii. S3–a univariate localization function is used to filter the marginal covariances within X315

and Y , respectively, while the cross-covariances between X and Y are replaced by zeros;316

iv. S4–one of the bivariate localization methods described in Section 2.b is used to filter both317

the marginal- and the cross-covariances.318

In the experiments identified by S4, we consider two different bivariate localization functions:319

The first one is ρ(1)(·) = {βijρ(1)(·)}i,j=1,2 with βii = 1 (i = 1, 2) and βij = β (i 6= j) for some β320
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such that |β| < 1. We use the fifth-order piecewise-rational function of Gaspari and Cohn (1999)321

to define the univariate correlation function, ρ(1), in the following form,322

ρ(1)(d; c) =



−1
4
(|d|/c)5 + 1

2
(d/c)4 + 5

8
(|d|/c)3 − 5

3
(d/c)2 + 1, 0 ≤ |d| ≤ c,

1
12

(|d|/c)5 − 1
2
(d/c)4 + 5

8
(|d|/c)3 + 5

3
(d/c)2 − 5(|d|/c) + 4− 2

3
c/|d|, c ≤ |d| ≤ 2c,

0, 2c ≤ |d|.

(16)

This correlation function attenuates the covariances with increasing distance, setting all the323

covariances to zero beyond distance 2c. So this function has the support 2c. If |β| < 1 and c is324

the same for both the marginal- and the cross-covariances, the matrix-valued function, ρ(1), is325

positive-definite and of full rank. We test various values of the localization parameters c and β,326

and present the test results in next section.327

The second multivariate correlation function we consider, ρ(2), is the bivariate Askey function328

described in Section 2.b. In particular, we use µ11 = 0, µ22 = 2, µ12 = 1, and ν = 3. According329

to Eq. (10), for these choices of parameters, the one remaining parameter, β12, must be chosen330

such that |β12| < 0.79.331

d. Results332

Figure 4 shows the distribution of RMSE for variable X for different configurations of the333

localization scheme in the case where the state is only partially observed. This figure compares334

the Askey function and Gaspari-Cohn function which have the same support (localization radius),335

so setting all the covariances to zero beyond the same distance. We recall that because X is336

much more sparsely observed than Y , we expect to see some sensitivity of the analyses of X to337
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the treatment of the cross-covariance terms. The figure confirms this expectation. A comparison338

of the results for configurations S1 and S2 suggests that ignoring the cross-covariances is a better339

strategy than to use them without localization. This conclusion does not hold once a univariate340

localization is applied to the marginal covariances, as using configuration S3 produces worse341

results than applying no localization at all (S1).342

Figure 4 also shows that the distribution of the state estimation error is less sensitive to the343

choice of localization strategy for the larger values of support. Of all localization schemes, S4 with344

β = 0.1 performs best regardless of the localization radius: the distribution of the state estimation345

error is narrow with a mean value that is lower than those for the other configurations of the346

localization scheme. For this choice of localization scheme and β, the Askey function produces347

smaller errors than the Gaspari-Cohn function, particularly, for smaller localization radii.348

Figure 5 is the same as Fig. 4, except for variable Y rather than for variable X. A striking349

feature of the results shown in this figure is that the Askey function clearly performs better350

than the Gaspari-Cohn function. Another obvious conclusion is that using a smaller localization351

radius (a lower value of support) is clearly advantageous for the estimation of Y . This result is352

not surprising, considering that Y is densely observed and its spatial variability is much higher353

than that of X. In contrast to the results for variable X, configuration S3 produces much more354

accurate estimates of variable Y than do configurations S1 or S2. In addition, configuration S4355

performs only slightly better, and only for the lowest value of support, than does configuration356

S3. The latter observations indicate that the marginal covariances play a more important role357

than do the cross-covariances in the estimation of the densely observed Y . The proper filtering358

of the marginal covariances can thus greatly increase the accuracy of the estimates of Y . In other359

words, the densely observed Y is primarily estimated based on observations of Y . Hence, the360

low signal-to-noise ratio for the sample estimate of the marginal covariances for Y greatly limits361
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the value of the observations of Y at longer distances.362

Figure 6 is the same as Fig. 4, except for the case of a fully observed state. By comparing363

the two figures, we see that the analysis is far less sensitive to the localization radius in the fully364

observed case than in the partially observed case. As can be expected, the state estimates are365

also more accurate in the fully observed case. In the fully observed case, localization strategy366

S3 performs much better than do strategies S1 and S2 and similarly to S4. This result indicates367

that in the fully observed case, X is primarily analyzed based on observations of X, making368

the analysis of X more sensitive to the localization of the marginal covariances than to the369

localization of the cross-covariances. Similar to the partially observed case, the Askey function370

tends to perform better than the Gaspari-Cohn function, but the differences between the accuracy371

of the state estimates for the two filter functions are negligible, except for the shortest localization372

radius.373

Figure 7 shows the distribution of the errors for variable Y in the fully observed case. The best374

results are obtained by using a short localization radius with the Askey function, even though375

the variability of the error is relatively large in that case. The fact that localization strategies376

S3 and S4 perform similarly well shows that the estimates of the cross-covariances do not play377

an important role in this case; that is, X is primarily estimated based on observations of X, and378

Y is dominantly estimated based on observations of Y .379

We also investigated the performance of EnKF with 500-member ensemble. The results for380

the 500-member ensemble are shown in Figures 8 to 11. We use an inflation factor of 1.005 for381

500 ensembles, because the optimal value of the inflation factor is typically smaller for a larger382

ensemble. The rank of the 500-member ensemble covariance matrix is significantly larger than383

that of the 20-member ensemble covariance matrix, as expected.384

Figures 8 to 11 show that, overall, S4 still performs better than the other localization schemes385
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regardless of the choice of localization radius, as in the case of the 20-member ensemble. In386

particular, when observations are partially observed, S4 with β = 0.01 provides the smallest387

RMSE. The cross-correlation between X and Y , calculated using 500-member ensembles without388

assimilating any observation, varies from −0.4 to 0.4, which indicates that the cross-correlation389

between the two variables are not negligible. Therefore, improved treatment of cross-covariance390

tends to lead to an improved accuracy in the state estimation.391

The results with the 500-member ensemble also show that the distribution of the state estima-392

tion error is in general less sensitive to the choice of the localization function or the localization393

radius, compared to the 20-member ensemble case. Figure 8, however, shows that for the estima-394

tion of sparsely observed X, the localization scheme S3 with smaller localization radius performs395

worse than that with larger localization radius. For variable Y in the partially observed case396

(Figure 8) and both variables X and Y in the fully observed case (Figures 10 and 11), the best397

results are obtained with S3 and S4 regardless of the localization radius. They also shows that398

the state estimation error is not sensitive but stable to the choice of localization radius.399

Figures 10 and 11 show that the localization schemes, S3 and S4, perform in a similar way,400

and obviously perform better than the other two localization schemes. This might imply that401

the cross-covariances do not have much influence on the state estimation in the fully observed402

case, once the covariances within each state variable are localized.403

Figures 8 -11 show the results for the 40-member ensemble. We use an inflation factor of404

1.005, because the optimal value of the inflation factor is typically smaller for a larger ensemble.405

Figure 8 shows that the ensemble size has little effect on the estimates of X in the case of the406

partially observed state. For variable Y in the partially observed case (Fig. 8) and both variables407

X and Y in the fully observed case (Figs. 10 and 11), however, the best results are obtained408

with a larger localization radius than in the case of the 20-member ensemble. This behavior is409
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expected, as a larger ensemble can more accurately estimate the weaker covariances associated410

with the longer distances. As for the 20-member ensemble, the localization schemes using the411

Askey function perform better than those using the Gaspari-Cohn function.412

4. Discussion413

The central argument of this paper is that applying a single localization function for the414

localization of covariances between multiple state variables in an EnKF scheme may lead to a415

rank deficient estimate of the background covariance matrix. We suggested two different ap-416

proaches for the construction of positive-definite filtered estimates of the background covariance417

matrix. One of them takes advantage of the knowledge of a proper univariate localization func-418

tion, whereas the other uses a multivariate extension of the Askey function. The results of our419

numerical experiments show that a mathematically proper localization function often leads to420

improved state estimates. The results of the numerical experiments also suggest that of the two421

approaches we introduced, the one based on the Askey function produces more accurate state422

estimates than that based on the Gaspari-Cohn function. This fact, however, does not mean423

that the Askey function is always superior to the Gaspari-Cohn function in other chaotic models424

or observation networks. Which correlation function is superior depends on what the true error425

correlation looks like.426
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Figure 1: The Gaspari-Cohn covariance function with a localization constant c = 25 (support of
50) and the Askey covariance function f(d; ν, c) =
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Figure 2: A snapshot of the variables X and Y from a numerical integration of the system of
Eqs. (14) and (15) with K = 36, J = 10, F = 10, a = 10, b = 10, and h = 2.
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Figure 3: Spatial locations of partial observation of X and Y .
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Figure 4: The probability distribution of RMSE for variable X in the case when the system is
only partially observed. Results are shown for different localization strategies. For the definitions
of localization strategies S1, S2, S3 and S4, see the text. The title of each panel indicates the
localization radius (length of support). The numbers below S4 indicate the value of β.
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Figure 5: Same as 4, except for variable Y .
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Figure 6: Same as 4, except for the case when the system is fully observed.
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Figure 7: Same as 6, except for variable Y .
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Figure 8: Same as 4, except for 500 ensemble members.
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Figure 9: Same as 5, except for 500 ensemble members.
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Figure 10: Same as 6, except for 500 ensemble members.
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Figure 11: Same as 7, except for 500 ensemble members.
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