Response to the comments of Referee #1

We are grateful to the reviewer for his/her careful reading of the paper.
The reviewer’s comments helped us greatly to improve the presentation of our
ideas and results. In what follows, we repeat each of the reviewer’s comments
in italic, and provide our response in roman.

General Comments: This manuscript deals with one of the very impor-
tant topics in EnKF data assimilation. The described localization functions
for multiple state variables can be used both in EnKF and Variational En-
semble data assimilation systems. The schemes are extensively described and
easy to follow. In addition, OSSFE results with a low-dimensional system are
presented to document benefit of the new schemes. I suggest accepting this
paper after addressing the following comments.

Specific comments: 1. Is the localization function defined by Eqs. 8-9 a
Gaussian-like function? As shown in Fig. 1, the plotted Askey function is
not a Gaussian-like function, which might make it be problematic to filter a
Gaussian-like error correlation pattern.

The shape of the localization function does not affect the Gaussianity
of the estimate of the distribution of the error, as it affects only second
statistical moments. In other words, the estimate of the error distribution
can still be Gaussian even if we use a localization function with a different
shape, such as the Askey function.

2. Need more details on experiment design, especially on experiment S3
and S4 (P847-848). For experiment S8, values of localization parameters
should be described. For experiment S3 and S, please also explain the ratio-
nales used to specify localization parameters.

The values of the localization parameters p and v are given in the last
paragraph of Section 3.c. We tried a few different values for each of these
parameters and these values seem to work well. Results with various values
for ¢ and 3 are presented in Figs. 4-11.

3. Sensitiwity to number of ensemble members can be further studied.
The presented results (Page 850) showed similar results when using 20- and
40-member ensembles. Is this because the use of localization schemes? The
other question is that what is the critical number of ensemble member to
produce a good multi-variable background error covariance (BEC) modeling
for such a low-dimensional Lorenz-95 system? The BEC with very large



number of ensemble member could be used to valid which localization scheme
15 a better one. I suggest showing figures of the covariance in physical space to
demonstrate the sensitivity with several number of ensemble members (e.q.,

100, 200, 500, ...).

We tried various ensemble sizes and we found that the state estimation
error is not sensitive to the choice of ensemble size between 20 and 40. This
may be due to the fact that we do localization, as the reviewer suggests.

Regarding the “critical number of ensemble members”, it is not our goal
in this paper to find the optimal number of ensemble members. Rather, we
compare various localization schemes given an ensemble size.

We now add experiments with 500-member ensemble in Figures 8-11.
Please see our texts in Section 3.d for our description. The figures show that
the localization scheme S4, which localizes the variance between X and Y
and within each state variable, still performs better overall than the other
localization schemes.

Other minor comments: 1. Page 842, Eqs, 6-7, Please explain beta here.

[ is a parameter, with magnitude less than 1, used to make the matrix
C positive definite (c.f. C in (5)). We hope our explanation on that page is
clear.

2. Page 843, Eqs, 8-9, for real atmospheric data assimilation, do you
have any ideas on rules to specify the related parameters in Eqs. 8-97

The parameters in Eqgs. 8-9 should be determined by the characteristic
of the state variables and their relationship. This obviously depends on the
actual atmospheric data assimilation problem and the dynamic model.

3. Page 836, Line 13, what are values of variances for the two state
variables?

We assume this comment is about page 846 (not page 836). The variances
for X, variances for Y, and covariances between X and Y range from —4 to
4, —0.02 to 0.02, and —0.2 to 0.2, respectively.

4. Page 847, Line 1/, beta(i,j)=beta ?, please explain beta.

£ here plays the same role as in Eqs. 6-7. We modified the sentence in
line 14 to make it clear.



5. Page 847, Line 21-22, Please speak more about the test results.

We presented the test results including figures in Section 3.d in the revi-
sion.

6. Page 850, Lines 14-16. Though I understand the statements are based
on materials in Page 841, it seems to me the statement may confuse general

readers. Actually, use of location functions is expected to alleviate the rank
deficient issue in BEC modeling.

We agree the statement may be confusing, and modified it in the revision.



Response to the comments of Referee #2

We are grateful to the reviewer for his careful reading of the paper. The
reviewer’s comments helped us greatly to improve the presentation of our
ideas and results. In what follows, we repeat each of the reviewer’s comments
in italic, and provide our response in roman.

In most implementations of the Ensemble Kalman Filter (EnKF), en-
semble covariances between distinct variables defined at the same location in
space-time are not attenuated. This paper successfully makes the point that,
in some circumstances, EnKF performance would be improved by attenuating
such inter-variable correlations.

The paper identifies simple ensemble covariance attenuation strategies for co-
variances between variables of different types such as zonal wind and temper-
ature. The proposed strategies all guarantee the symmetry and semi-positive
definiteness of the localized covariance matriz. The utility of the proposed
approaches is evaluated using an idealized chaotic system with fast and slow
variables. For this particular system and a fairly dense observing network,
it is found that attenuating the inter-variable ensemble covariances improves
EnKF performance.

The inter-variable covariance attenuation methods given by equations (6)-(9)
and the associated discussion appear to pertain to the case when there are just
two distinct variables at each grid-point. The paper would be of greater in-
terest if corresponding formulae were given for the general case where there
were M distinct variables at each model grid point.

We appreciate the reviewer’s comments. We agree with the reviewer that
extending to a more general case with M distinct variables is useful. We now
give a general formula for arbitrary number of variables in Eqgs. (8) and (11)
of the revision.

The numerical experiments performed in this paper would be more infor-
mative if an effort had been made to establish the magnitude of the true error
correlations between the slow (X) and fast (Y) variables in the system con-
sidered. It is only when that number is known that the potential gain of not
zeroing out the inter-variable correlations can be quantified.

We calculated the cross-correlation between X and Y variables with 500
samples drawn from the model (without assimilation) and thus this cross-
correlation can be considered as the true cross-correlation between the two
variables. The magnitude varies between —0.4 and 0.4, thus the correlation
between two variables seems quite strong. We added this statement in the



revision.

Another issue the authors might aim for in revising their paper is to come
up with some rules of thumb to predict from the true error correlation and
known random ensemble size when (a) there would be little to be gained in
attenuating inter-variable ensemble correlations, or (b) there would be little
to be gained in keeping any of the inter-variable ensemble correlation, or (c)
partial attenuation of the inter-variable correlations would be helpful.

We appreciate the reviewer’s comments. We agree that this is a great
point, but given the limited time frame, we could only add an experiment
with 500 ensemble members, under the same setting as the experiment with
20 ensemble members. Based on our additional experiment, we see that,
in the bivariate Lorenz-95 model case (which shows non negligible cross-
correlation between the two state variables), accounting for cross-correlation
and at the same time partially attenuating cross-correlation give the best
result. By trying various [ values, we attempted to pick the best amount of
partial-attenuation of cross-correlation.

3. As a check on the EnKF code and to quantify the upper limit of the
usefulness of X-Y covariances, I think the paper would be stronger if you
added another experiment in which the ensemble size was 16 to 32 times larger
than the 40 member ensemble you considered here. With that experiment, you
should be able to isolate the data assimilation value of accurately estimating
X-Y covariances.

We appreciate this comment and we agree that suggested experiment can
give us more insight. However, as indicated in the previous response, we
could only add an experiment with 500 ensemble members.

4. The conclusions need to admit that the found superiority of the Askey
localization function over the Gaspari-Cohn localization function may not
extend to other chaotic models or observation networks. Askey might be
better when the true correlation function looks more like the Askey function
than the Gaspari-Cohn function and vice-versa?

We agree with your comment, and added in Discussion section that the
Askey function may not be superior to the Gaspari-Cohn function in other
models, and that which correlation function is better depends on what the
true correlation function looks like.

Minor Specific Comments: 5. Abstract, line 8: Change Zentry-wise? to



Zelement-wise?.

Done.

6. Equation (2): Most EnKFs do not use the linearized observation oper-
ator in the definition of the gain. Thus, (2) or the discussion around it needs
to be changed so that the reader is fully aware of the EnKF’s ability to di-
rectly estimate covariances between forecasts of variables that are non-linear
functions of the state and the state variables themselves.

We put the following sentence instead of avoiding the use of “lineariza-
tion”. EnKF schemes usually avoid the explicit computation of the linearized
observation operator H by using approximations to PPH” and HP’H” that

involve only the computation of h(x’) and h(x’) (e.g., Houtekamer and
Mitchell 1998).

7. P843, line 1. To more clearly define s give an example e.q ?if the
state is defined at a particular instant on a latitude, longitude, height grid
then s=37 ¢ if that?s what you mean.

We added that if the state is defined at a particular instant on a grid
formed by latitude, longitude, and height, then s=3.

8. FEquations (12) and (13): The relationship between this model and
model 3 of Lorenz (2005, JAS) needs to be pointed out.

We compared the two models in the beginning of Section 3.b.

9. P847., lines 6-11. I think it would be clearer if you replaced “cross-
covariances are set to zero” with “covariances between X and Y variables are
set to zero” if if that’s what you mean. Also, I'm not sure what you mean
by “marginal covariances”. Do you mean X-X and Y-Y covariances? Please
clarify these issues in the revised text.

Cross-covariance and marginal covariance are defined in Section 2.b, but
we replaced the terms as suggested by the reviewer.

10. Very little was said about Figures 8-11. Fither discuss each one
individually or replace some of them with a summary statement of what they
indicate.

We replaced this with the results with 500-member ensemble with discus-
sion about the results.
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ABSTRACT

In ensemble Kalman filtering (EnKF), the small number of ensemble members that is feasible to
use in a practical data assimilation application leads to sampling variability of the estimates of the
background error covariances. The standard approach to reducing the effects of this sampling
variability, which has also been found to be highly efficient in improving the performance of
EnKF| is the localization of the estimates of the covariances. One family of localization techniques
is based on taking the Schur (element-wise) product of the ensemble-based sample covariance
matrix and a correlation matrix whose entries are obtained by the discretization of a distance-
dependent correlation function. While the proper definition of the localization function for a
single state variable has been extensively investigated, a rigorous definition of the localization
function for multiple state variables has been seldom considered. This paper introduces two
strategies for the construction of localization functions for multiple state variables. The proposed
localization functions are tested by assimilating simulated observations experiments into the

bivariate Lorenz 95 model with their help.
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1. Introduction

The components of the finite-dimensional state vector of a numerical model of the atmosphere
are defined by the spatial discretization of the state variables considered in the model. An
ensemble-based Kalman filter (EnKF) data assimilation scheme treats the finite-dimensional
state vector as a multivariate random variable and estimates its probability distribution by an
ensemble of samples from the distribution. To be precise, an EnKF scheme assumes that the
probability distribution of the state is described by a multivariate normal distribution and it
estimates the mean and the covariance matrix of that distribution by the ensemble (sample)
mean and the ensemble (sample) covariance matrix. The estimate of the mean and the estimate
of the covariance matrix of the analysis distribution are obtained by updating the mean and the
covariance matrix of a background (prior) distribution based on the latest observations. The
background distribution is represented by an ensemble of short-term forecasts from the previous
analysis time. This ensemble is called the background ensemble.

Because the number of background ensemble members that is feasible to use in a realistic
atmospheric model is small, the estimates of weak covariances (the entries with small absolute
values in the background covariance matrix) tend to have large relative estimation errors. These
large relative errors have a strong negative effect on the accuracy of an EnKF estimate of the
analysis mean. The standard approach to alleviating this problem is to apply a physical-distance-
dependent localization to the sample background covariances before their use in the state update
step of the EnKF'. In essence, localization is a method to introduce the empirical understand-
ing that the true background covariances tend to rapidly decrease with distance into the state
estimation process.

Data assimilation schemes treat the spatially discretized state vector, x, as a multivariate



43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

random variable. We use the conventional notation x” and x® for the background and the
analysis state vectors, respectively. We also use the notation y° for the vector of observations.
In an EnKF scheme, the analysis mean, X%, is computed from the background mean, X°, by the
update equation

x“:xb+K<y°—W>. (1)

The function h(-) is the observation function, which maps the finite-dimensional state vector

into observables. Thus, h (x?) is the ensemble mean of the prediction of the observations by the

background. The matrix

K = P’H” (HP'H” + R) 2)

is the Kalman gain matrix, where P? is the background covariance matrix, H is the linearization
of h about %, and R is the observation error covariance matrix. EnKF schemes usually avoid
the explicit computation of the linearized observation operator H by using approximations to
P’H” and HP*H” that involve only the computation of h(x?) and h (x?) (e.g., Houtekamer and
Mitchell 1998). The entry K;; of K determines the effect of the j-th observation on the i-th
component of the analysis mean, x*. Under the standard assumption that the observation errors
are uncorrelated, the matrix, R, is diagonal. Hence, the way the effect of the observations is
spread from the observations to the different locations and state variables is determined by P°
and H. The sampling variability in the estimates of P? affects the accuracy of the information
propagated in space and between the different state variables through the matrix products, P’PH”
and HPYH”. The goal of localization is to reduce the related effects of sampling variability on
the estimates of K.

Over the years, many different localization methods have been proposed. Hamill et al. (2001),

Houtekamer and Mitchell (1998, 2001), Hunt et al. (2007), Ott et al. (2004), and Whitaker and
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Hamill (2002) used localization functions which set the covariance to zero beyond a certain
distance (localization radius). Jun et al. (2011) proposed a nonparametric statistical method to
estimate the covariance. Anderson (2007) used a hierarchical ensemble filter which estimates the
covariance using an ensemble of ensemble filters. Bishop and Hodyss (2007, 2009a,b) adaptively
determined the width of localization by computing powers of the sample correlations. Buehner
and Charron (2007) examined the spectral and spatial localization of error covariance. Anderson
and Lei (2013) and Lei and Anderson (2014) proposed an empirical localization function based
on the output of an observing system simulation experiment.

The focus of the present paper is on the family of schemes that localize the covariances
by taking the Schur (Hadamard) product of the sample background covariance matrix and a
correlation matrix of the same size, whose entries are obtained by the discretization of a distance-
dependent correlation function with local (compact) support (e.g., Hamill et al. 2001; Houtekamer
and Mitchell 2001; Whitaker and Hamill 2002). Such a correlation function is usually called a
localization or taper function. The commonly used localization functions were introduced by
Gaspari and Cohn (1999). Beyond a certain distance, all localization functions become zero,
forcing the filtered estimates of the background covariance between state variables at locations
that are far apart in space to zero. This property of the filtered background covariances can also

be exploited to increase the computational efficiency of the EnKF schemes.

atmospheric model has multiple scalar state variables (e.g., temperature, coordinates of the wind

vector, surface pressure, humidity). If a univariate localization function, such as that described
by Gaspari and Cohn (1999), is applied directly to a multivariate state vector, the resulting
localized background covariance matrix may not be positive-definite. Because P’ is symmetric,

4
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its eigenvalues are real and non-negative, which implies that it is invertible, only if it is also
positive-definite. (An n x n symmetric matrix A is positive-definite if x” Ax > 0 for all non-zero
vectors x € R™.) Because the computation of the right-hand-side of Eq. (2) does not require
the invertibility of P’ singularity of the localized P® usually does not lead to a breakdown
of the computations in practice. An ill-conditioned estimate of P°, however, can degrade the
conditioning (increase the condition number) of HP'H” + R, making the numerical computation
of the right-hand side of Eq. (2) less stable. This motivates us to seek rigorously-derived
multivariate localization functions for ensemble Kalman filtering. As will be demonstrated, such
rigorously-derived multivariate localization functions often produce more accurate analyses than
those that apply the same univariate localization functions to each scalar component of the
state vector. Kang et al. (2011) also introduced a multivariate localization method that zeros
out covariances between physically unrelated variables. Their motivation for zeroing out such
covariances, however, was to filter apparent spurious covariances rather than to preserve the
positive-definiteness of the background error covariance matrix.

In our search for proper multivariate localization functions, we take advantage of recent
developments in the statistics literature. In particular, we use the localization functions developed
in Porcu et al. (2012), who studied the radial basis functions to construct multivariate correlation
functions with compact support. Note that Section 5 in Zhang and Du (2008) described a general
methodology for covariance tapering in the case of multiple state variables. Du and Ma (2013)
used a convolution approach and a mixture approach to derive covariance matrix functions
with compactly supported covariances. Kleiber and Porcu (2015) constructed nonstationary
correlation functions with compact support for multivariate random fields. Genton and Kleiber
(2015) reviewed approaches to building models for covariances between two different variables

such as compactly supported correlation functions for multivariate Gaussian random fields.
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The rest of the paper is organized as follows. Section 2 briefly describes EnKF and localization
for the special case of two state variables. Section 3 describes the bivariate Lorenz-95 model we

use to test our ideas. Section 4 summarizes the main results of the paper.

2. Methodology

a. Univariate localization

In principle, localization can be implemented by using filtered estimates of the background
covariances rather than the raw sample covariances to define the matrix, P?, used in the compu-
tation of K by Eq. (2). The filtered (localized) version of covariance matrix, PP, is obtained by

computing the Schur (element-wise) product:

P’ =P’ C, (3)

where C is a correlation matrix, which has the same dimensions as the sample covariance matrix,
P’. In practice, however, the localization is often done by taking advantage of the fact that
localization affects the analysis through P°H” and HP’H?, or, ultimately, through K. In
particular, because a distance, d, can be defined for each entry, K;;, of K by the distance
between the i-th analyzed variable and the j-th observation, the simplest localization strategy is

to set all entries, K;;, that are associated with a distance longer than a prescribed localization

79
radius, R (d > R), to zero, while leaving the remaining entries unchanged (e.g., Houtekamer and

Mitchell 1998; Ott et al. 2004; Hunt et al. 2007).

Another approach is to localize PPH? and HP’H” by a tapering function (e.g., Hamill et al.
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2001; Houtekamer and Mitchell 2001). The usual justification for this approach is that H-is
tvpically the dinearization of a Jocal interpolation function. hi- 1o which the Tocalized matris
products provide good approximations of the products computed by using localized estimates of
P®. Note that P’HT” is the matrix of background covariances between the state variables at the
model grid points and at the observation locations, while HP’H” is the matrix of background
covariances between the state variables at the observation locations. Thus, a distance can be
associated with each entry of the two matrix products, which makes the distance-dependent
localization of the two products possible. The approach becomes problematic, however, when
h(-) is not a local function, which is the typical case for remotely sensed observations (Campbell
et al. 2010).

We consider the situation where localization is applied directly to the background error co-
variance matrix, P’. Recall that the localized covariance matrix is expressed as in Eq. (3). In
particular, C is a positive-definite matrix with strictly positive eigenvalues, while the sample
covariance matrix, f’b, may have zero eigenvalues (as it is only non-negative definite). The lo-
calization in (3) helps to eliminate those zero eigenvalues of P? and alleviates the related large
relative estimation errors. The positive-definiteness of C ensures that localization does not in-
troduce new zero eigenvalues in the process of eliminating the zero eigenvalues of P’. The proper

definition of the localization function that ensures that C is positive-definite has been thoroughly

investigated for the univariate case (N = 1) in the literature (e.g. Gaspari and Cohn (1999)).

b. Multivariate localization

We now consider a model with multiple state variables (N > 1). For instance, we take a

simple model based on the hydrostatic primitive equations. This model solves the equations
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for the two horizontal components of wind, the surface pressure, the virtual temperature and a
couple of atmospheric constituents. The state of the model is represented by the state vector,
X = (X1,X2,...,Xy), where x;, i = 1,2,..., N, represents the spatially discretized state of the
i-th state variable in the model.

The sample background covariance matrix, P?, can be partitioned as

Plﬁ Plfz Pl{N
pb_ Pg1 PgQ PSN (4)
Ph Phy - Phy
The entries of the submatrices, f’fz, t = 1,..., N, are called the marginal-covariances for the

i-th state variable. In practical terms, if the i-th state variable is the virtual temperature, for
instance, each diagonal entry of l?’fZ represents the sample variance for the virtual temperature at
a given model grid point, while each off-diagonal entry of PZ represents the sample covariances
between the virtual temperatures at a pair of grid points. Likewise, the entries of Pfj, 1 #£ j, are
called the sample cross-covariances between the grid point values of the i-th and the j-th state
variables at pairs of locations, where the two locations for an entry can be the same grid point.

We thus consider matrix-valued localization functions, p(d) = {p;;(d)} which are

ij =1, N7
continuous functions of d. The component p;;(d) of p(d) is the localization function used for
the calculation of the covariances included in the sub-matrix P? of P’. Each entry of the
localization matrix C is computed by considering the value of the appropriate component of

p(d) for a particular pair of state variables and the distance, d, associated with the related entry

of P?.
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In order to get a proper matrix-valued localization function, p, a seemingly obvious approach
to extend the results of Gaspari and Cohn (1999) would be to compute the entries of C based
on a univariate correlation function for a multivariate variable. That is, for the pair of state
variables ¢ and j, we localize the corresponding sample background covariance matrix, lsfj, by
multiplying a localization matrix from the same correlation function for all = and j. Formally,
this would be possible because the distance d is uniquely defined for each entry of P’ the same
way in the multivariate case as in the univariate case. This approach, however, cannot guarantee
the positive-definiteness of the resulting matrix, C. As a simple illustrative example, consider
the situation where the discretized state vector has only two components that are defined by
two different scalar state variables at the same location (e.g., the temperature and the pressure).

In this case, if n is the number of locations, the localization matrix for the two state variables

together can be written as
Cy Gy
C= (5)
Cy Gy
independently of the particular choice of the localization function. Here Cj is an n xn localization
matrix from a univariate localization function. From Eq. (5), it is clear that n eigenvalues of C
are zero and the rank of C is n, while its dimension is 2n X 2n.

As in Eq. (2), although C is rank-deficient and thus so is the localized covariance matrix
P’, we may still be able to calculate the inverse of HPPH” + R, as R is a diagonal matrix.
The smallest eigenvalue of HP?H” + R is the smallest (positive) value of R, and thus the
matrix, Hf’bHT+R, is still invertible and has positive eigenvalues. However, unless the diagonal
elements of R are large (which implies large observation error variance), the matrix HP*H” + R

is seriously ill-conditioned and the computation of its inverse may be numerically unstable.

Therefore, the numerical stability of the computation of the inverse of the matrix heavily relies
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on the observation error variance, which is an undesirable property.

We therefore propose two approaches to construct positive-definite (full rank) matrix-valued
localization functions, p(d). The first proposed method takes advantage of the knowledge of
a proper univariate localization function, p. Instead of using the same correlation function to
localize multiple state variables, for a certain distance lag, we let p = p- B, where B isan N x N
symmetric, positive-definite matrix whose diagonal entries are one. It can be easily verified that
p is a matrix-valued positive-definite function, which makes it a valid multivariate localization
function. For instance, in the hypothetical case where the two components of the state vector

are two different state variables at the same location, making the choice

L g
B= , (6)
g1
for § with |B| < 1, leads to
Co BCo
C= (7)
BCo  Co

rather than what is given in Eq. (5). Since the eigenvalues of the matrix B are 1 £ 5 > 0, it
can be easily verified that the matrix in (7) is positive-definite. For the case with more than two

state variables (N > 3), the matrix B can be parametrized as B = LL?, where

0y 0 0
lo1 lap 0
L= 8)
0
Iy U (NN

10
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is a lower triangular matrix with the constraints that Z}:1 622] = 1land ¢;; > 0 for all i =

1,..., N. The constraints are used to have the diagonal entries of B to be one. Fuarthermeore—we

orderto-havethe-diagonal-entriesof B-to-be-one— Other than these constraints, the elements of

L can vary freely in order to guarantee the positive-definiteness of B.

An attractive feature of this approach is that we can take advantage of any known univariate
localization function to produce a multivariate localization function. However, the multivariate
localization function from this approach is separable in the sense that the multivariate component
(i.e., B) and the localization function (i.e. p) are factored. Another limitation of the approach is
that the localization radius and decay rate are the same for each pair of state variables, leaving
no flexibility to account for the potential differences in the correlation lengths and decay rate for
the different state vector components.

The second proposed method takes advantage of the availability of multivariate compactly
supported functions from the spatial statistics literature. To the best of our knowledge, only a
few papers have been published on this subject; one of them is Porcu et al. (2012). The function
class they considered was essentially a multivariate extension of the Askey function (Askey 1973),
f(d;v,c) = (1 — £l)y with ¢,v > 0. Here, 2, = max(z,0) for x € R. For instance, a bivariate

c/+?

Askey function, which is a special case of the results of Porcu et al. (2012), is given by (i, 7 = 1,2)

d Vtphig

+

where ¢ > 0, pi1a = po1 < 3(pa1 + pa2), v > (28] + 2, By =1 (i = 1,2), 12 = Ba1, and

L(L+ o) \/m v )DL+ v i) (10)

<
[Bra] < D(1+ v+ pi19) P14 )P (1 + pi22)

11
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Here, I'(+) is the gamma function (e.g., Wilks 2006), s is the dimension of the Euclidean space
where the state variable is defined. If the state is defined at a particular instant on a grid formed
by latitude, longitude, and height, then s = 3. Here, [z] is the largest integer that is equal to or
smaller than x. The Askey function in (9) has the support ¢ because it sets covariances beyond
a distance c to zero. It can be seen from (10) that, if the scalars, j,;, are chosen to be the same
for all values of ¢ and j, the condition on 15 for p to be valid is |f12| < 1. Nete-that For this
choice, the second method is essentially the same as the first method with the Askey function
set to p. The localization function given by (9) is more flexible than the functions of the first
method with the Askey function set to p because ji;; can be chosen to be different for each pair
of indexes, ¢ and j. The localization length, however, is still the same for the different pairs of

the state variables. The multivariate Askey function is formed by
| ‘ vt +1
pij(d;v,c) = ¢ By + 1,0 + 1) (1 N ) , ldl <e (11)
c

and 0 otherwise, where v > (s +1)/2, p;; = (pti + p5)/2, and p; > 0 for all 4 = 1,..., N. Here,
B is the beta function (Porcu et al. 2012; Genton and Kleiber 2015).

To illustrate the differences between the shape of the Gaspari-Cohn and the Askey functions,
we show the Gaspari-Cohn function for ¢ = 25 and the univariate Askey function for ¢ = 50,
and v = 1,...,4 (Fig. 1). This figure shows that for a given support, the Askey functions are

narrower.
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3. Experiments
a. The EnKF Scheme

There are many different formulations of the EnKF update equations, which produce not
only an updated estimate of the mean, but also the ensemble of analysis perturbations that are
added to the mean to obtain an ensemble of analyses. This ensemble of analyses serves as the
ensemble of initial conditions for the model integration that produce the background ensemble.
In our experiments, we use the method of perturbed observations. It obtains the analysis mean

and the ensemble of analysis perturbations by the equations

x* =x"+ K(y — Hx"), (12)
xj, =x; +K(yi — Hx}), (13)
where X;g, k=1,2,..., M are the ensemble perturbations and yzl, k=1,2,..., M are random

draws from the probability distribution of observation errors. As the notation suggests, we
consider a linear observation function in our experiments. This choice is made for the sake of
simplicity and limits the generality of our findings much less than the use of an idealized model
of atmospheric dynamics.

For the case of multiple state variables, the ensemble members are considered to be in a single

ensemble, that is, not being grouped into distinct sub-ensembles.

b. The Bivariate Lorenz Model

Lorenz (1995) discussed the bivariate Lorenz-95 model, which mimics the nonlinear dynamics
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of two linearly coupled atmospheric state variables, X and Y, on a latitude circle. This model
provides a simple and conceptually satisfying representation of basic atmospheric processes, but
is not suitable for some atmospheric processes. The model 3 in Lorenz (2005) made it more
realistic and suitable with sacrifice of simplicity, by producing a rapidly varying small-scale

activity superposed on the smooth large-scale waves. We use the Lorenz-95 model for simplicity

in our following experiments.

latitude-eirele- In the bivariate Lorenz-95 model, the variable, X, is a “slow” variable represented
by K discrete values, X, and Y is a “fast” variable represented by J x K discrete values. The

governing equations are

J
dX;,

T — X1 (X2 — Xiy1) — X — (ha/b) ;Y}k + F, (14)
dYp

at —abYj1 x(Yirow — Y1) — a¥jp + (ha/b) X, (15)

where Y;_j;, = Y1 and Y5, = Y1 for k =1,...,K and j = 1,...,J. The “boundary
condition” is periodic; that is, Xj_x = Xpix = X, and Yj_x = Yjpyx = Yjr In our
experiments, K = 36 and J = 10. The parameter h controls the strength of the coupling
between X and Y, a is the ratio of the characteristic time scales of the slow motion of X to the
fast motion of Y, b is the ratio of the characteristic amplitudes of X to Y, and F' is a forcing
term. We choose the parameters to be a = 10, b = 10, F' = 10, and h = 2. These values of the
model parameters are equal to those originally suggested by Lorenz (1995), except for the value

of the coupling coefficient h, which is twice as large in our case. We made this change in h to
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increase the covariances between the errors in the estimates of X and Y, which makes the model
more sensitive to the choices of the localization parameters. We use a fourth-order Runge-Kutta
time integration scheme with a time step of 0.005 non-dimensional units as Lorenz (1995) did.
We define the physical distances between Xj, and Xj,, between Y i, and Y}, ,, and between
X, and Yj, k, by [10(ky — k2)|, |10(ky — k2) + 71 — Jj2|, and |10(ky — ka) — 1|, respectively. Fig. 2
shows a typical state of the model for the selected parameters. The figure shows that X tends to
drive the evolution of Y: the hypothetical process represented by Y is more active (its variability

is higher) with higher values of X.

c. Fxperimental Design

Since the estimates of the cross-covariances play a particularly important role at locations
where one of the variables is unobserved, we expect an improved treatment of the cross-
covariances to lead to analysis improvements at locations where only one of the state variables is
observed. This motivates us to consider an observation scenario in which X and Y are partially
observed. The variable X is observed at randomly chosen 20% of all locations and Y is observed
at randomly chosen 90% of those locations where X is not observed. Spatial locations of the
partially observed X and Y are illustrated in Fig. 3. The results from this experiment are
compared to those from a control experiment, in which both X and Y are fully observed.

We first generate a time series of “true” model states by a 2, 000-time-step integration of
the model. We initialize an ensemble by adding the standard Gaussian noise to the true state;
then, discarding the first 3,000 time steps. We then generate simulated observations by adding
random observation noise of mean zero and variance 0.02 to the the appropriate components

of the “true” state of X at each time step. We use the same procedure to generate simulated
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observations of Y, except that the variance of the observation noise is 0.005. Observations are
assimilated at every time step by first using a 20-member ensemble with a constant covariance
inflation factor of 1.015. The error in the analysis at a given verification time is measured by
the root-mean-square distance between the analysis mean and the true state. We refer to the
resulting measure as the root-mean-square error (RMSE). The probability distribution of the
RMSE for the last 1,000 time steps of 50 different realizations of each experiment is shown by a
boxplot. The boxplot is an effective way of displaying a summary of the distribution of numbers.
The lower and upper bounds of the box respectively give the 25th and 75th percentiles. The
thick line going across the interior of the box gives the median. The whisker depends on the
interquartile range (IQR) that is precisely equal to the vertical length of the box. The whiskers
extend to the extreme values which are no more than 1.5 IQR from the box. Any values that fall
outside of the end points of whiskers are considered outliers and they are displayed as circles.
In the boxplot figures in the next section, we compare the RMSE for four different localization

schemes. We use the following notation to distinguish between them in the figures:
i. Sl-the bivariate sample background covariance is used without localization;
ii. S2-same as S1 except that the cross-covariances between X and Y are replaced by zeros;

iii. S3—a univariate localization function is used to filter the marginal covariances within X

and Y, respectively, while the cross-covariances between X and Y are replaced by zeros;

iv. S4-one of the bivariate localization methods described in Section 2.b is used to filter both

the marginal- and the cross-covariances.

In the experiments identified by S4, we consider two different bivariate localization functions:

The first one is pV(+) = {Bi;pM () }ij=12 With 8 =1 (i = 1,2) and B;; = B (i # j) for some 3
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such that || < 1. We use the fifth-order piecewise-rational function of Gaspari and Cohn (1999)

to define the univariate correlation function, p(!), in the following form,

—3(ldl/e)* + 3(d/e)* + §(|d] /e)* = 3(d/e)* + 1, 0<l[dl <

PV(di€) = § L(|d|/c)® — L(d/c)* + 2(|d|/c)* + 2(d/e)? — 5(|d| /) + 4 — 2c/ld], < |d] < 2¢,(16)

0, 2¢ < |d|.

This correlation function attenuates the covariances with increasing distance, setting all the
covariances to zero beyond distance 2c. So this function has the support 2c. If |5| < 1 and ¢ is
the same for both the marginal- and the cross-covariances, the matrix-valued function, p(, is
positive-definite and of full rank. We test various values of the localization parameters ¢ and f3,
and present the test results in next section.

The second multivariate correlation function we consider, p, is the bivariate Askey function
described in Section 2.b. In particular, we use p17 = 0, po2 = 2, 12 = 1, and v = 3. According
to Eq. (10), for these choices of parameters, the one remaining parameter, (1, must be chosen

such that |512| < 0.79.

d. Results

Figure 4 shows the distribution of RMSE for variable X for different configurations of the
localization scheme in the case where the state is only partially observed. This figure compares
the Askey function and Gaspari-Cohn function which have the same support (localization radius),
so setting all the covariances to zero beyond the same distance. We recall that because X is

much more sparsely observed than Y, we expect to see some sensitivity of the analyses of X to
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the treatment of the cross-covariance terms. The figure confirms this expectation. A comparison
of the results for configurations S1 and S2 suggests that ignoring the cross-covariances is a better
strategy than to use them without localization. This conclusion does not hold once a univariate
localization is applied to the marginal covariances, as using configuration S3 produces worse
results than applying no localization at all (S1).

Figure 4 also shows that the distribution of the state estimation error is less sensitive to the
choice of localization strategy for the larger values of support. Of all localization schemes, S4 with
B = 0.1 performs best regardless of the localization radius: the distribution of the state estimation
error is narrow with a mean value that is lower than those for the other configurations of the
localization scheme. For this choice of localization scheme and [, the Askey function produces
smaller errors than the Gaspari-Cohn function, particularly, for smaller localization radii.

Figure 5 is the same as Fig. 4, except for variable Y rather than for variable X. A striking
feature of the results shown in this figure is that the Askey function clearly performs better
than the Gaspari-Cohn function. Another obvious conclusion is that using a smaller localization
radius (a lower value of support) is clearly advantageous for the estimation of Y. This result is
not surprising, considering that Y is densely observed and its spatial variability is much higher
than that of X. In contrast to the results for variable X, configuration S3 produces much more
accurate estimates of variable Y than do configurations S1 or S2. In addition, configuration S4
performs only slightly better, and only for the lowest value of support, than does configuration
S3. The latter observations indicate that the marginal covariances play a more important role
than do the cross-covariances in the estimation of the densely observed Y. The proper filtering
of the marginal covariances can thus greatly increase the accuracy of the estimates of Y. In other
words, the densely observed Y is primarily estimated based on observations of Y. Hence, the
low signal-to-noise ratio for the sample estimate of the marginal covariances for Y greatly limits
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the value of the observations of Y at longer distances.

Figure 6 is the same as Fig. 4, except for the case of a fully observed state. By comparing
the two figures, we see that the analysis is far less sensitive to the localization radius in the fully
observed case than in the partially observed case. As can be expected, the state estimates are
also more accurate in the fully observed case. In the fully observed case, localization strategy
S3 performs much better than do strategies S1 and S2 and similarly to S4. This result indicates
that in the fully observed case, X is primarily analyzed based on observations of X, making
the analysis of X more sensitive to the localization of the marginal covariances than to the
localization of the cross-covariances. Similar to the partially observed case, the Askey function
tends to perform better than the Gaspari-Cohn function, but the differences between the accuracy
of the state estimates for the two filter functions are negligible, except for the shortest localization
radius.

Figure 7 shows the distribution of the errors for variable Y in the fully observed case. The best
results are obtained by using a short localization radius with the Askey function, even though
the variability of the error is relatively large in that case. The fact that localization strategies
S3 and S4 perform similarly well shows that the estimates of the cross-covariances do not play
an important role in this case; that is, X is primarily estimated based on observations of X, and
Y is dominantly estimated based on observations of Y.

We also investigated the performance of EnKF with 500-member ensemble. The results for
the 500-member ensemble are shown in Figures 8 to 11. We use an inflation factor of 1.005 for
500 ensembles, because the optimal value of the inflation factor is typically smaller for a larger
ensemble. The rank of the 500-member ensemble covariance matrix is significantly larger than
that of the 20-member ensemble covariance matrix, as expected.

Figures 8 to 11 show that, overall, S4 still performs better than the other localization schemes
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regardless of the choice of localization radius, as in the case of the 20-member ensemble. In
particular, when observations are partially observed, S4 with § = 0.01 provides the smallest
RMSE. The cross-correlation between X and Y, calculated using 500-member ensembles without
assimilating any observation, varies from —0.4 to 0.4, which indicates that the cross-correlation
between the two variables are not negligible. Therefore, improved treatment of cross-covariance
tends to lead to an improved accuracy in the state estimation.

The results with the 500-member ensemble also show that the distribution of the state estima-
tion error is in general less sensitive to the choice of the localization function or the localization
radius, compared to the 20-member ensemble case. Figure 8, however, shows that for the estima-
tion of sparsely observed X, the localization scheme S3 with smaller localization radius performs
worse than that with larger localization radius. For variable Y in the partially observed case
(Figure 8) and both variables X and Y in the fully observed case (Figures 10 and 11), the best
results are obtained with S3 and S4 regardless of the localization radius. They also shows that
the state estimation error is not sensitive but stable to the choice of localization radius.

Figures 10 and 11 show that the localization schemes, S3 and S4, perform in a similar way,
and obviously perform better than the other two localization schemes. This might imply that

the cross-covariances do not have much influence on the state estimation in the fully observed

case, once the covariances within each state variable are localized.
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4. Discussion

The central argument of this paper is that applying a single localization function for the
localization of covariances between multiple state variables in an EnKF scheme may lead to a
rank deficient estimate of the background covariance matrix. We suggested two different ap-
proaches for the construction of positive-definite filtered estimates of the background covariance
matrix. One of them takes advantage of the knowledge of a proper univariate localization func-
tion, whereas the other uses a multivariate extension of the Askey function. The results of our
numerical experiments show that a mathematically proper localization function often leads to
improved state estimates. The results of the numerical experiments also suggest that of the two
approaches we introduced, the one based on the Askey function produces more accurate state
estimates than that based on the Gaspari-Cohn function. This fact, however, does not mean
that the Askey function is always superior to the Gaspari-Cohn function in other chaotic models
or observation networks. Which correlation function is superior depends on what the true error

correlation looks like.
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The Gaspari-Cohn covariance function with a localization constant ¢ = 25 (sup-
port of 50) and the Askey covariance function f(d; v, c) = (1 — %)i , with a support
parameter ¢ = 50 and various shape parameters.

A snapshot of the variables X and Y from a numerical integration of the system
of Egs. (14) and (15) with K =36, J =10, F' =10, a = 10, b = 10, and h = 2.
Spatial locations of partial observation of X and Y.

The probability distribution of RMSE for variable X in the case when the system is
only partially observed. Results are shown for different localization strategies. For
the definitions of localization strategies S1, S2, S3 and S4, see the text. The title
of each panel indicates the localization radius (length of support). The numbers
below S4 indicate the value of f3.

Same as 4, except for variable Y.

Same as 4, except for the case when the system is fully observed.

Same as 6, except for variable Y.

Same as 4, except for 500 ensemble members.

Same as 5, except for 500 ensemble members.

Same as 6, except for 500 ensemble members.

Same as 7, except for 500 ensemble members.
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Figure 1: The Gaspari-Cohn covariance function with a localization constant ¢ = 25 (support of
50) and the Askey covariance function f(d;v,c) = (1 — g): , with a support parameter ¢ = 50
and various shape parameters.
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Figure 2: A snapshot of the variables X and Y from a numerical integration of the system of

Eqs. (14) and (15) with K = 36, J = 10, F = 10, a = 10, b = 10, and h = 2.
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Figure 3: Spatial locations of partial observation of X and Y.
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Figure 4: The probability distribution of RMSE for variable X in the case when the system is
only partially observed. Results are shown for different localization strategies. For the definitions
of localization strategies S1, S2, S3 and S4, see the text. The title of each panel indicates the
localization radius (length of support). The numbers below S4 indicate the value of f.
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Figure 6: Same as 4, except for the case when the system is fully observed.
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Figure 7: Same as 6, except for variable Y.
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Figure 8: Same as 4, except for 500 ensemble members.
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Figure 9: Same as 5, except for 500 ensemble members.
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Figure 10: Same as 6, except for 500 ensemble members.
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Figure 11: Same as 7, except for 500 ensemble members.
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