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Abstract. In ensemble Kalman filtering (EnKF), the small number of ensemble members that is fea-

sible to use in a practical data assimilation application leads to sampling variability of the estimates

of the background error covariances. The standard approach to reducing the effects of this sampling

variability, which has also been found to be highly efficient in improving the performance of EnKF,

is the localization of the estimates of the covariances. One family of localization techniques is based5

on taking the Schur (element-wise) product of the ensemble-based sample covariance matrix and a

correlation matrix whose entries are obtained by the discretization of a distance-dependent corre-

lation function. While the proper definition of the localization function for a single state variable

has been extensively investigated, a rigorous definition of the localization function for multiple state

variables that exist at the same locations has been seldom considered. This paper introduces two10

strategies for the construction of localization functions for multiple state variables. The proposed lo-

calization functions are tested by assimilating simulated observations experiments into the bivariate

Lorenz 95 model with their help.

1 Introduction

The components of the finite-dimensional state vector of a numerical model of the atmosphere are de-15

fined by the spatial discretization of the state variables considered in the model. An ensemble-based

Kalman filter (EnKF) data assimilation scheme treats the finite-dimensional state vector as a multi-

variate random variable and estimates its probability distribution by an ensemble of samples from the

distribution. To be precise, an EnKF scheme assumes that the probability distribution of the state is

described by a multivariate normal distribution and it estimates the mean and the covariance matrix20

of that distribution by the ensemble (sample) mean and the ensemble (sample) covariance matrix.

The estimate of the mean and the estimate of the covariance matrix of the analysis distribution are

obtained by updating the mean and the covariance matrix of a background (prior) distribution based
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on the latest observations. The background distribution is represented by an ensemble of short-term

forecasts from the previous analysis time. This ensemble is called the background ensemble.25

Because the number of background ensemble members that is feasible to use in a realistic atmo-

spheric model is small, the estimates of weak covariances (the entries with small absolute values in

the background covariance matrix) tend to have large relative estimation errors. These large relative

errors have a strong negative effect on the accuracy of an EnKF estimate of the analysis mean. The

standard approach to alleviating this problem is to apply a physical-distance-dependent localiza-30

tion to the sample background covariances before their use in the state update step of the EnKF. In

essence, localization is a method to introduce the empirical understanding that the true background

covariances tend to rapidly decrease with distance into the state estimation process.

Data assimilation schemes treat the spatially discretized state vector, x, as a multivariate random

variable. We use the conventional notation xb and xa for the background and the analysis state35

vectors, respectively. We also use the notation y◦ for the vector of observations. In an EnKF scheme,

the analysis mean, x̄a, is computed from the background mean, x̄b, by the update equation

x̄a = x̄b +K
(
y◦−h(xb)

)
. (1)

The function h(·) is the observation function, which maps the finite-dimensional state vector into

observables. Thus, h(xb) is the ensemble mean of the prediction of the observations by the back-40

ground. The matrix

K = PbHT
(
HPbHT +R

)−1
(2)

is the Kalman gain matrix, where Pb is the background covariance matrix, H is the linearization

of h about x̄b, and R is the observation error covariance matrix. EnKF schemes usually avoid the

explicit computation of the linearized observation operator H by using approximations to PbHT45

and HPbHT that involve only the computation of h(xb) and h(xb) (e.g., Houtekamer and Mitchell

1998). The entryKij of K determines the effect of the j-th observation on the i-th component of the

analysis mean, x̄a. Under the standard assumption that the observation errors are uncorrelated, the

matrix, R, is diagonal. Hence, the way the effect of the observations is spread from the observations

to the different locations and state variables is determined by Pb and H. The sampling variability50

in the estimates of Pb affects the accuracy of the information propagated in space and between the

different state variables through the matrix products, PbHT and HPbHT . The goal of localization

is to reduce the related effects of sampling variability on the estimates of K.

Over the years, many different localization methods have been proposed. Hamill et al. (2001),

Houtekamer and Mitchell (1998, 2001), Hunt et al. (2007), Ott et al. (2004), and Whitaker and55

Hamill (2002) used localization functions which set the covariance to zero beyond a certain distance

(localization radius). Jun et al. (2011) proposed a nonparametric statistical method to estimate the

covariance. Anderson (2007) used a hierarchical ensemble filter which estimates the covariance
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using an ensemble of ensemble filters. Bishop and Hodyss (2007, 2009a, b) adaptively determined

the width of localization by computing powers of the sample correlations. Buehner and Charron60

(2007) examined the spectral and spatial localization of error covariance. Anderson and Lei (2013)

and Lei and Anderson (2014) proposed an empirical localization function based on the output of an

observing system simulation experiment.

The focus of the present paper is on the family of schemes that localize the covariances by taking

the Schur (Hadamard) product of the sample background covariance matrix and a correlation matrix65

of the same size, whose entries are obtained by the discretization of a distance-dependent correlation

function with local (compact) support (e.g., Hamill et al., 2001; Houtekamer and Mitchell, 2001;

Whitaker and Hamill, 2002). Such a correlation function is usually called a localization or taper

function. The commonly used localization functions were introduced by Gaspari and Cohn (1999).

Beyond a certain distance, all localization functions become zero, forcing the filtered estimates of the70

background covariance between state variables at locations that are far apart in space to zero. This

property of the filtered background covariances can also be exploited to increase the computational

efficiency of the EnKF schemes.

A realistic atmospheric model has multiple scalar state variables (e.g., temperature, coordinates

of the wind vector, surface pressure, humidity). If a univariate localization function, such as that75

described by Gaspari and Cohn (1999), is applied directly to a multivariate state vector (that is, the

same localization function with the same localization parameters is applied to each state variables),

when the cross-covariances of multiple state variables are not negligible, it may introduce a new

undesirable form of rank deficiency, despite the general significant increase of rank. the resulting

localized background covariance matrix may not be positive-definite. Because Pb is symmetric, its80

eigenvalues are real and non-negative, which implies that Pb is invertible, only if it is also positive-

definite. The matrix Pb has non-negative eigenvalues and is invertible, if it is positive-definite. (An

n×n symmetric matrix A is defined to be positive-definite if xTAx> 0 for all non-zero vectors

x ∈ Rn.) Because the computation of the right-hand-side of Eq. (2) does not require the invertibility

of Pb, the singularity of the localized Pb usually does not lead to a breakdown of the computations85

in practice. An ill-conditioned estimate of Pb, however, can degrade the conditioning (increase the

condition number) of HPbHT +R, making the numerical computation of the right-hand side of

Eq. (2) less stable. This motivates us to seek rigorously-derived multivariate localization functions

for ensemble Kalman filtering. As will be demonstrated, such rigorously-derived multivariate local-

ization functions often produce more accurate analyses than those that apply the same univariate90

localization functions to each scalar component of the state vector. Kang et al. (2011) also intro-

duced a multivariate localization method that zeros out covariances between physically unrelated

variables. Their primary motivation for zeroing out such covariances, however, was to filter appar-

ent spurious covariances, rather than to preserve the positive-definiteness of the background error

covariance matrix.95
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In our search for proper multivariate localization functions, we take advantage of recent develop-

ments in the statistics literature. In particular, we use the localization functions developed in Porcu

et al. (2013), who studied the radial basis functions to construct multivariate correlation functions

with compact support. Note that Sect. 5 in Zhang and Du (2008) described a general methodology

for covariance tapering in the case of multiple state variables. Du and Ma (2013) used a convolution100

approach and a mixture approach to derive covariance matrix functions with compactly supported

covariances. Kleiber and Porcu (2015) constructed nonstationary correlation functions with compact

support for multivariate random fields. Genton and Kleiber (2015) reviewed approaches to building

models for covariances between two different variables such as compactly supported correlation

functions for multivariate Gaussian random fields.105

The rest of the paper is organized as follows. Sect. 2 briefly describes EnKF and localization for

the special case of two state variables. Sect. 3 describes the bivariate Lorenz-95 model we use to test

our ideas. Sect. 4 summarizes the main results of the paper.

2 Methodology

2.1 Univariate localization110

In principle, localization can be implemented by using filtered estimates of the background covari-

ances rather than the raw sample covariances to define the matrix, Pb, used in the computation of K

by Eq. (2). The filtered (localized) version of covariance matrix, P̃b, is obtained by computing the

Schur (element-wise) product:

P̃b = P̂b ◦C, (3)115

where C is a correlation matrix, which has the same dimensions as the sample covariance matrix, P̂b.

In practice, however, the localization is often done by taking advantage of the fact that localization

affects the analysis through PbHT and HPbHT , or, ultimately, through K. In particular, because

a distance, d, can be defined for each entry, Kij , of K by the distance between the i-th analyzed

variable and the j-th observation, the simplest localization strategy is to set all entries, Kij , that are120

associated with a distance longer than a prescribed localization radius, R (d > R), to zero, while

leaving the remaining entries unchanged (e.g., Houtekamer and Mitchell, 1998; Ott et al., 2004;

Hunt et al., 2007).

Another approach is to localize PbHT and HPbHT by a tapering function (e.g., Hamill et al.,

2001; Houtekamer and Mitchell, 2001). The usual justification for this approach is that the localized125

matrix products provide good approximations of the products computed by using localized estimates

of Pb. Note that PbHT is the matrix of background covariances between the state variables at the

model grid points and at the observation locations, while HPbHT is the matrix of background co-

variances between the state variables at the observation locations. Thus, a distance can be associated
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with each entry of the two matrix products, which makes the distance-dependent localization of130

the two products possible. The approach becomes problematic, however, when h(·) is not a local

function, which is the typical case for remotely sensed observations (Campbell et al., 2010).

We consider the situation where localization is applied directly to the background error covariance

matrix, P̂b. Recall that the localized covariance matrix is expressed as in Eq. (3). In particular, C

is a positive-definite matrix with strictly positive eigenvalues, while the sample covariance matrix,135

P̂b, may have zero eigenvalues (as it is only non-negative definite). The localization in Eq. (3) helps

to eliminate those zero eigenvalues of P̂b and alleviates the related large relative estimation errors.

The positive-definiteness of C ensures that localization does not introduce new zero eigenvalues

in the process of eliminating the zero eigenvalues of P̂b. The proper definition of the localization

function that ensures that C is positive-definite has been thoroughly investigated for the univariate140

case (N = 1) in the literature (e.g. Gaspari and Cohn (1999)).

2.2 Multivariate localization

We now consider a model with multiple state variables (N > 1). For instance, we take a simple

model based on the hydrostatic primitive equations. This model solves the equations for the two

horizontal components of wind, the surface pressure, the virtual temperature and a couple of atmo-145

spheric constituents. The state of the model is represented by the state vector, x = (x1,x2, . . . ,xN ),

where xi, i= 1,2, . . . ,N , represents the spatially discretized state of the i-th state variable in the

model.

The sample background covariance matrix, P̂b, can be partitioned as

P̂b =


P̂b11 P̂b12 · · · P̂b1N

P̂b21 P̂b22 · · · P̂b2N
...

...
. . .

...

P̂bN1 P̂bN2 · · · P̂bNN

 . (4)150

The entries of the submatrices, P̂bii, i= 1, . . . ,N , are called the marginal-covariances for the i-th

state variable. In practical terms, if the i-th state variable is the virtual temperature, for instance,

each diagonal entry of P̂bii represents the sample variance for the virtual temperature at a given

model grid point, while each off-diagonal entry of P̂bii represents the sample covariances between

the virtual temperatures at a pair of grid points. Likewise, the entries of P̂bij , i 6= j, are called the155

sample cross-covariances between the grid point values of the i-th and the j-th state variables at

pairs of locations, where the two locations for an entry can be the same grid point.

We thus consider matrix-valued localization functions, ρ(d) = {ρij(d)}i,j=1,...,N , which are con-

tinuous functions of d. The component ρij(d) of ρ(d) is the localization function used for the calcu-

lation of the covariances included in the sub-matrix Pbij of Pb. Each entry of the localization matrix160
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C is computed by considering the value of the appropriate component of ρ(d) for a particular pair

of state variables and the separation distance, d, associated with the related entry of P̂b.

In order to get a proper matrix-valued localization function, ρ, a seemingly obvious approach to

extend the results of Gaspari and Cohn (1999) would be to compute the entries of C based on a

univariate correlation function for a multivariate variable. That is, for the pair of state variables i and165

j, we localize the corresponding sample background covariance matrix, P̂bij , by multiplying a local-

ization matrix from the same correlation function for all i and j. Formally, this would be possible

because the distance d is uniquely defined for each entry of P̂b the same way in the multivariate case

as in the univariate case. This approach, however, cannot guarantee the positive-definiteness of the

resulting matrix, C. As a simple illustrative example, consider the situation where the discretized170

state vector has only two components that are defined by two different scalar state variables at the

same location (e.g., the temperature and the pressure). In this case, if n is the number of locations,

the localization matrix for the two state variables together can be written as

C =

C0 C0

C0 C0

 (5)

independently of the particular choice of the localization function. Here C0 is an n×n localization175

matrix from a univariate localization function. From Eq. (5), it is clear that n eigenvalues of C are

zero and the rank of C is n, while its dimension is 2n× 2n.

As in Eq. (2), although C is rank-deficient and thus so is the localized covariance matrix P̃b (and

thus P̃b may be rank-deficient as well), we may still be able to calculate the inverse of HP̃bHT +R,

as R is a diagonal matrix. The smallest eigenvalue of HP̃bHT +R is the smallest (positive) value of180

R, and thus the matrix, HP̃bHT+R, is still invertible and has positive eigenvalues. However, unless

the diagonal elements of R are large (which implies large observation error variance), the matrix

HP̃bHT +R is seriously ill-conditioned and the computation of its inverse may be numerically

unstable. Therefore, the numerical stability of the computation of the inverse of the matrix heavily

relies on the observation error variance, which is an undesirable property.185

We therefore propose two approaches to construct positive-definite (full rank) matrix-valued lo-

calization functions, ρ(d). The first proposed method takes advantage of the knowledge of a proper

univariate localization function, ρ̃. Instead of using the same correlation function to localize multiple

state variables, for a certain distance lag, we let ρ = ρ̃·B, where B is anN×N symmetric, positive-

definite matrix whose diagonal entries are one. It can be easily verified that ρ is a matrix-valued190

positive-definite function, which makes it a valid multivariate localization function. For instance, in

the hypothetical case where the two components of the state vector are two different state variables

at the same location, making the choice

B =

1 β

β 1

 , (6)
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for β with |β|< 1, leads to195

C =

 C0 βC0

βC0 C0

 (7)

rather than what is given in Eq. (5). Since the eigenvalues of the matrix B are 1±β > 0, it can be

easily verified that the matrix in Eq. (7) is positive-definite. For the case with more than two state

variables (N ≥ 3), the matrix B can be parametrized as B = LLT , where

L =


`1,1 0 · · · 0

`2,1 `2,2 · · · 0
...

...
. . . 0

`N,1 `N,2 · · · `N,N

 (8)200

is a lower triangular matrix with the constraints that
∑i
j=1 `

2
i,j = 1 and `i,i > 0 for all i= 1, . . . ,N .

The constraints are used to have the diagonal entries of B to be one. Other than these constraints,

the elements of L can vary freely in order to guarantee the positive-definiteness of B.

An attractive feature of this approach is that we can take advantage of any known univariate

localization function to produce a multivariate localization function. However, the multivariate lo-205

calization function from this approach is separable in the sense that the multivariate component (i.e.,

B) and the localization function (i.e. ρ̃) are factored. Another limitation of the approach is that the

localization radius and decay rate are the same for each pair of state variables, leaving no flexibility

to account for the potential differences in the correlation lengths and decay rate for the different state

vector components.210

The second proposed method takes advantage of the availability of multivariate compactly sup-

ported functions from the spatial statistics literature. To the best of our knowledge, only a few papers

have been published on this subject; one of them is Porcu et al. (2013). The function class they

considered was essentially a multivariate extension of the Askey function (Askey, 1973), f(d;ν,c) =(
1− d

c

)ν
+
, with c,ν > 0. Here, x+ = max(x,0) for x ∈ R. For instance, a bivariate Askey function,215

which is a special case of the results of Porcu et al. (2013), is given by (i, j = 1,2)

ρij(d;ν,c) = βij

(
1− d

c

)ν+µij

+

, (9)

where c > 0, µ12 = µ21 ≤ 1
2 (µ11 +µ22), ν ≥ [ 12s] + 2, βii = 1 (i= 1,2), β12 = β21, and

|β12| ≤
Γ(1 +µ12)

Γ(1 + ν+µ12)

√
Γ(1 + ν+µ11)Γ(1 + ν+µ22)

Γ(1 +µ11)Γ(1 +µ22)
. (10)

Here, Γ(·) is the gamma function (e.g., Wilks, 2006), s is the dimension of the Euclidean space220

where the state variable is defined. If the state is defined at a particular instant on a grid formed by

latitude, longitude, and height, then s= 3. Here, [x] is the largest integer that is equal to or smaller
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than x. The Askey function in Eq. (9) has the support c because it sets covariances beyond a distance

c to zero. It can be seen from Eq. (10) that, if the scalars, µij , are chosen to be the same for all values

of i and j, the condition on β12 for ρ to be valid is |β12| ≤ 1. (Note that the case of equality here,225

with the same µij’s, reduces to the rank-deficient case where the multivariate localization matrix has

zero eigenvalues, similarly to the case of β = 1 in Eq. (7).) For this choice, the second method is

essentially the same as the first method with the Askey function set to ρ̃. The localization function

given by Eq. (9) is more flexible than the functions of the first method with the Askey function set

to ρ̃ because µij can be chosen to be different for each pair of indexes, i and j. The localization230

length, however, is still the same for the different pairs of the state variables. The multivariate Askey

function is formed by

ρij(d;ν,c) = cν+1B(µij + 1,ν+ 1)

(
1− |d|

c

)ν+µij+1

, |d|< c (11)

and 0 otherwise, where ν ≥ (s+ 1)/2, µij = (µi +µj)/2, and µi > 0 for all i= 1, . . . ,N . Here, B

is the beta function (Porcu et al., 2013; Genton and Kleiber, 2015).235

To illustrate the differences between the shape of the Gaspari-Cohn and the Askey functions,

we show the Gaspari-Cohn function for c= 25 and the univariate Askey function for c= 50, and

ν = 1, . . . ,4 (Fig. 1). This figure shows that for a given support, the Askey functions are narrower.

3 Experiments

3.1 The EnKF Scheme240

There are many different formulations of the EnKF update equations, which produce not only an

updated estimate of the mean, but also the ensemble of analysis perturbations that are added to the

mean to obtain an ensemble of analyses. This ensemble of analyses serves as the ensemble of initial

conditions for the model integration that produce the background ensemble. In our experiments, we

use the method of perturbed observations. It obtains the analysis mean and the ensemble of analysis245

perturbations by the equations

x̄a = x̄b +K(y−Hx̄b), (12)

xa
′

k = xb
′

k +K(yo
′

k −Hxb
′

k ), (13)

where x
′

k, k = 1,2, . . . ,M are the ensemble perturbations and yo
′

k , k = 1,2, . . . ,M are random draws

from the probability distribution of observation errors. As the notation suggests, we consider a linear250

observation function in our experiments. This choice is made for the sake of simplicity and limits

the generality of our findings much less than the use of an idealized model of atmospheric dynamics.

For the case of multiple state variables, the ensemble members are considered to be in a single

ensemble, that is, not being grouped into distinct sub-ensembles.
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3.2 The Bivariate Lorenz Model255

Lorenz (1995) discussed the bivariate Lorenz-95 model, which mimics the nonlinear dynamics of

two linearly coupled atmospheric state variables,X and Y , on a latitude circle. This model provides a

simple and conceptually satisfying representation of basic atmospheric processes, but is not suitable

for some atmospheric processes. The model 3 in Lorenz (2005) made it more realistic and suitable

with sacrifice of simplicity, by producing a rapidly varying small-scale activity superposed on the260

smooth large-scale waves. We use the Lorenz-95 model for simplicity in our following experiments.

In the bivariate Lorenz-95 model, the variable, X , is a “slow” variable represented by K discrete

values,Xk, and Y is a “fast” variable represented by J×K discrete values. The governing equations

are

dXk

dt
=−Xk−1(Xk−2−Xk+1)−Xk − (ha/b)

J∑
j=1

Yj,k +F, (14)265

dYj,k
dt

=−abYj+1,k(Yj+2,k −Yj−1,k)− aYj,k + (ha/b)Xk, (15)

where Yj−J,k = Yj,k−1 and Yj+J,k = Yj,k+1 for k = 1, . . . ,K and j = 1, . . . ,J . The “boundary con-

dition” is periodic; that is,Xk−K =Xk+K =Xk, and Yj,k−K = Yj,k+K = Yj,k. In our experiments,

K = 36 and J = 10. The parameter h controls the strength of the coupling between X and Y , a is

the ratio of the characteristic time scales of the slow motion of X to the fast motion of Y , b is the270

ratio of the characteristic amplitudes of X to Y , and F is a forcing term. We choose the parameters

to be a= 10, b= 10, F = 10, and h= 2. These values of the model parameters are equal to those

originally suggested by Lorenz (1995), except for the value of the coupling coefficient h, which is

twice as large in our case. We made this change in h to increase the covariances between the errors

in the estimates ofX and Y , which makes the model more sensitive to the choices of the localization275

parameters. We use a fourth-order Runge-Kutta time integration scheme with a time step of 0.005

non-dimensional units as Lorenz (1995) did. We define the physical distances betweenXk1 andXk2 ,

between Yj1,k1 and Yj2,k2 , and betweenXk1 and Yj1,k2 by |10(k1−k2)|, |10(k1−k2)+j1−j2|, and

|10(k1−k2)− j1|, respectively. Figure 2 shows a typical state of the model for the selected parame-

ters. The figure shows that X tends to drive the evolution of Y : the hypothetical process represented280

by Y is more active (its variability is higher) with higher values of X .

3.3 Experimental Design

Since the estimates of the cross-covariances play a particularly important role at locations where one

of the variables is unobserved, we expect an improved treatment of the cross-covariances to lead to

analysis improvements at locations where only one of the state variables is observed. This motivates285

us to consider an observation scenario in which X and Y are partially observed. The variable X

is observed at randomly chosen 20% of all locations and Y is observed at randomly chosen 90%

of those locations where X is not observed. Spatial locations of the partially observed X and Y
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are illustrated in Fig. 3. The results from this experiment are compared to those from a control

experiment, in which both X and Y are fully observed.290

We first generate a time series of “true” model states by a 2,000-time-step integration of the model.

We initialize an ensemble by adding the standard Gaussian noise to the true state; then, discarding

the first 3,000 time steps. We then generate simulated observations by adding random observation

noise of mean zero and variance 0.02 to the the appropriate components of the “true” state of X

at each time step. We use the same procedure to generate simulated observations of Y , except that295

the variance of the observation noise is 0.005. Observations are assimilated at every time step by

first using a 20-member ensemble with a constant covariance inflation factor of 1.015. The error in

the analysis at a given verification time is measured by the root-mean-square distance between the

analysis mean and the true state. We refer to the resulting measure as the root-mean-square error

(RMSE). The probability distribution of the RMSE for the last 1,000 time steps of 50 different300

realizations of each experiment is shown by a boxplot. The boxplot is an effective way of displaying

a summary of the distribution of numbers. The lower and upper bounds of the box respectively give

the 25th and 75th percentiles. The thick line going across the interior of the box gives the median.

The whisker depends on the interquartile range (IQR) that is precisely equal to the vertical length

of the box. The whiskers extend to the extreme values which are no more than 1.5 IQR from the305

box. Any values that fall outside of the end points of whiskers are considered outliers and they are

displayed as circles.

In the boxplot figures in the next section, we compare the RMSE for four different localization

schemes. We use the following notation to distinguish between them in the figures:

1. S1–the bivariate sample background covariance is used without localization;310

2. S2–same as S1 except that the cross-covariances between X and Y are replaced by zeros;

3. S3–a univariate localization function is used to filter the marginal covariances within X and

Y , respectively, while the cross-covariances between X and Y are replaced by zeros;

4. S4–one of the bivariate localization methods described in Sect. 2.2 is used to filter both the

marginal- and the cross-covariances.315

In the experiments identified by S4, we consider two different bivariate localization functions: The

first one is ρ(1)(·) = {βijρ(1)(·)}i,j=1,2 with βii = 1 (i= 1,2) and βij = β (i 6= j) for some β such

that |β|< 1. We use the fifth-order piecewise-rational function of Gaspari and Cohn (1999) to define

the univariate correlation function, ρ(1), in the following form,

ρ(1)(d;c) =


− 1

4 (|d|/c)5 + 1
2 (d/c)4 + 5

8 (|d|/c)3− 5
3 (d/c)2 + 1, 0≤ |d| ≤ c,

1
12 (|d|/c)5− 1

2 (d/c)4 + 5
8 (|d|/c)3 + 5

3 (d/c)2− 5(|d|/c) + 4− 2
3c/|d|, c≤ |d| ≤ 2c,

0, 2c≤ |d|.

(16)320
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This correlation function attenuates the covariances with increasing distance, setting all the covari-

ances to zero beyond distance 2c. So this function has the support 2c. If |β|< 1 and c is the same for

both the marginal- and the cross-covariances, the matrix-valued function, ρ(1), is positive-definite

and of full rank. We test various values of the localization parameters c and β, and present the test

results in the next section.325

The second multivariate correlation function we consider, ρ(2), is the bivariate Askey function

described in Sect. 2.2. In particular, we use µ11 = 0, µ22 = 2, µ12 = 1, and ν = 3. According to

Eq. (10), for these choices of parameters, the one remaining parameter, β12, must be chosen such

that |β12|≤0.79.

3.4 Results330

Figure 4 shows the distribution of RMSE for variable X for different configurations of the localiza-

tion scheme in the case where the state is only partially observed. This figure compares the Askey

function and Gaspari-Cohn function which have the same support (localization radius), so setting all

the covariances to zero beyond the same distance. We recall that because X is much more sparsely

observed than Y , we expect to see some sensitivity of the analyses of X to the treatment of the335

cross-covariance terms. The figure confirms this expectation. A comparison of the results for config-

urations S1 and S2 suggests that ignoring the cross-covariances is a better strategy than to use them

without localization. This conclusion does not hold once a univariate localization is applied to the

marginal covariances, as using configuration S3 produces worse results than applying no localization

at all (S1).340

Figure 4 also shows that the distribution of the state estimation error is less sensitive to the choice

of localization strategy for the larger values of support. Of all localization schemes, S4 with β = 0.1

performs best regardless of the localization radius: the distribution of the state estimation error is

narrow with a mean value that is lower than those for the other configurations of the localization

scheme. For this choice of localization scheme and β, the Askey function produces smaller errors345

than the Gaspari-Cohn function, particularly, for smaller localization radii.

Figure 5 is the same as Fig. 4, except for variable Y rather than for variable X . A striking feature

of the results shown in this figure is that the Askey function clearly performs better than the Gaspari-

Cohn function. Another obvious conclusion is that using a smaller localization radius (a lower value

of support) is clearly advantageous for the estimation of Y . This result is not surprising, considering350

that Y is densely observed and its spatial variability is much higher than that of X . In contrast to

the results for variable X , configuration S3 produces much more accurate estimates of variable Y

than do configurations S1 or S2. In addition, configuration S4 performs only slightly better, and only

for the lowest value of support, than does configuration S3. The latter observations indicate that the

marginal covariances play a more important role than do the cross-covariances in the estimation of355

the densely observed Y . The proper filtering of the marginal covariances can thus greatly increase the
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accuracy of the estimates of Y . In other words, the densely observed Y is primarily estimated based

on observations of Y . Hence, the low signal-to-noise ratio for the sample estimate of the marginal

covariances for Y greatly limits the value of the observations of Y at longer distances.

Figure 6 is the same as Fig. 4, except for the case of a fully observed state. By comparing the two360

figures, we see that the analysis is far less sensitive to the localization radius in the fully observed

case than in the partially observed case. As can be expected, the state estimates are also more accurate

in the fully observed case. In the fully observed case, localization strategy S3 performs much better

than do strategies S1 and S2 and similarly to S4. This result indicates that in the fully observed case,

X is primarily analyzed based on observations of X , making the analysis of X more sensitive to365

the localization of the marginal covariances than to the localization of the cross-covariances. Similar

to the partially observed case, the Askey function tends to perform better than the Gaspari-Cohn

function, but the differences between the accuracy of the state estimates for the two filter functions

are negligible, except for the shortest localization radius.

Figure 7 shows the distribution of the errors for variable Y in the fully observed case. The best370

results are obtained by using a short localization radius with the Askey function, even though the

variability of the error is relatively large in that case. The fact that localization strategies S3 and S4

perform similarly well shows that the estimates of the cross-covariances do not play an important

role in this case; that is, X is primarily estimated based on observations of X , and Y is dominantly

estimated based on observations of Y .375

We also investigated the performance of EnKF with 500-member ensemble. The results for the

500-member ensemble are shown in Figs. 8 to 11. We use an inflation factor of 1.005 for 500 en-

sembles, because the optimal value of the inflation factor is typically smaller for a larger ensemble.

The rank of the 500-member ensemble covariance matrix is significantly larger than that of the 20-

member ensemble covariance matrix, as expected.380

Figures 8 to 11 show that, overall, S4 still performs better than the other localization schemes

regardless of the choice of localization radius, as in the case of the 20-member ensemble. In partic-

ular, when observations are partially observed, S4 with β = 0.01 provides the smallest RMSE. The

cross-correlation between X and Y , calculated using 500-member ensembles without assimilating

any observation, varies from −0.4 to 0.4, which indicates that the cross-correlation between the two385

variables are not negligible. Therefore, improved treatment of cross-covariance tends to lead to an

improved accuracy in the state estimation.

The results with the 500-member ensemble also show that the distribution of the state estimation

error is in general less sensitive to the choice of the localization function or the localization radius,

compared to the 20-member ensemble case. Figure 8, however, shows that for the estimation of390

sparsely observed X , the localization scheme S3 with smaller localization radius performs worse

than that with larger localization radius. For variable Y in the partially observed case (Fig. 8) and

both variables X and Y in the fully observed case (Figs. 10 and 11), the best results are obtained
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with S3 and S4 regardless of the localization radius. They also shows that the state estimation error

is not sensitive but stable to the choice of localization radius.395

Figures 10 and 11 show that the localization schemes, S3 and S4, perform in a similar way, and

obviously perform better than the other two localization schemes. This might imply that the cross-

covariances do not have much influence on the state estimation in the fully observed case, once the

covariances within each state variable are localized.

4 Discussion400

The central argument of this paper is that applying a single localization function for the localization

of covariances between multiple state variables in an EnKF scheme may not sufficiently increase

the rank of the estimate of the background covariance matrix. In the light of this, we suggested two

different approaches for the construction of positive-definite filtered estimates of the background

covariance matrix. One of them takes advantage of the knowledge of a proper univariate localiza-405

tion function, whereas the other uses a multivariate extension of the Askey function. The results

of our numerical experiments show that a mathematically proper localization function often leads

to improved state estimates. The results of the numerical experiments also suggest that of the two

approaches we introduced, the one based on the Askey function produces more accurate state es-

timates than that based on the Gaspari-Cohn function. This fact, however, does not mean that the410

Askey function is always superior to the Gaspari-Cohn function in other chaotic models or obser-

vation networks. Which correlation function is superior depends on what the true error correlation

looks like.
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Figure 1. The Gaspari-Cohn covariance function with a localization constant c= 25 (support of 50) and the

Askey covariance function f(d;ν,c) =
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Figure 2. A snapshot of the variablesX and Y from a numerical integration of the system of Eqs. (14) and (15)

with K = 36, J = 10, F = 10, a= 10, b= 10, and h= 2.
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Figure 4. The box plot of RMSE for variable X in the case when the system is only partially observed. Results

are shown for different localization strategies. For the definitions of localization strategies S1, S2, S3 and S4,

see the text. The title of each panel indicates the localization radius (length of support). The lower and upper

bounds of the box respectively give the 25th and 75th percentiles. The thick line going across the interior of

the box gives the median. The whisker depends on the interquartile range (IQR) that is precisely equal to the

vertical length of the box. The whiskers extend to the extreme values which are no more than 1.5 IQR from the

box. Any values that fall outside of the end points of whiskers are considered outliers and they are displayed as

circles. The numbers below S4 indicate the value of β. There is no box plot for β = 1 for the S4 with the Askey

function, since the Askey function is not defined with β = 1 (|β| ≤ 0.79, see Sect. 3.3).
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Figure 5. Same as Fig. 4, except for variable Y .
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Figure 6. Same as Fig. 4, except for the case when the system is fully observed.
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Figure 7. Same as Fig. 6, except for variable Y .
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Figure 8. Same as Fig. 4, except for 500 ensemble members.
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Figure 9. Same as Fig. 5, except for 500 ensemble members.
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Figure 10. Same as Fig. 6, except for 500 ensemble members.
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Figure 11. Same as Fig. 7, except for 500 ensemble members.
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