
Generated using version 3.2 of the official AMS LATEX template

Multivariate Localization Methods for Ensemble Kalman Filtering1

Soojin Roh

Department of Statistics, Texas A&M University, College Station, TX, USA

2

Mikyoung Jun∗

Department of Statistics, Texas A&M University, College Station, TX, USA

3

Istvan Szunyogh

Department of Atmospheric Sciences, Texas A&M University, College Station, TX, USA

4

Marc G. Genton

CEMSE Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

5

∗Corresponding author address: 3143 TAMU, College Station, TX 77843-3143 USA.
Email:mjun@stat.tamu.edu

1



ABSTRACT6

In ensemble Kalman filtering (EnKF), the small number of ensemble members that is feasible to7

use in a practical data assimilation application leads to sampling variability of the estimates of the8

background error covariances. The standard approach to reducing the effects of this sampling9

variability, which has also been found to be highly efficient in improving the performance of10

EnKF, is the localization of the estimates of the covariances. One family of localization techniques11

is based on taking the Schur (element-wise) product of the ensemble-based sample covariance12

matrix and a correlation matrix whose entries are obtained by the discretization of a distance-13

dependent correlation function. While the proper definition of the localization function for a14

single state variable has been extensively investigated, a rigorous definition of the localization15

function for multiple state variables has been seldom considered. This paper introduces two16

strategies for the construction of localization functions for multiple state variables. The proposed17

localization functions are tested by assimilating simulated observations experiments into the18

bivariate Lorenz 95 model with their help.19
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1. Introduction20

The components of the finite-dimensional state vector of a numerical model of the atmosphere21

are defined by the spatial discretization of the state variables considered in the model. An22

ensemble-based Kalman filter (EnKF) data assimilation scheme treats the finite-dimensional23

state vector as a multivariate random variable and estimates its probability distribution by an24

ensemble of samples from the distribution. To be precise, an EnKF scheme assumes that the25

probability distribution of the state is described by a multivariate normal distribution and it26

estimates the mean and the covariance matrix of that distribution by the ensemble (sample)27

mean and the ensemble (sample) covariance matrix. The estimate of the mean and the estimate28

of the covariance matrix of the analysis distribution are obtained by updating the mean and the29

covariance matrix of a background (prior) distribution based on the latest observations. The30

background distribution is represented by an ensemble of short-term forecasts from the previous31

analysis time. This ensemble is called the background ensemble.32

Because the number of background ensemble members that is feasible to use in a realistic33

atmospheric model is small, the estimates of weak covariances (the entries with small absolute34

values in the background covariance matrix) tend to have large relative estimation errors. These35

large relative errors have a strong negative effect on the accuracy of an EnKF estimate of the36

analysis mean. The standard approach to alleviating this problem is to apply a physical-distance-37

dependent localization to the sample background covariances before their use in the state update38

step of the EnKF. In essence, localization is a method to introduce the empirical understand-39

ing that the true background covariances tend to rapidly decrease with distance into the state40

estimation process.41

Data assimilation schemes treat the spatially discretized state vector, x, as a multivariate42
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random variable. We use the conventional notation xb and xa for the background and the43

analysis state vectors, respectively. We also use the notation y◦ for the vector of observations.44

In an EnKF scheme, the analysis mean, x̄a, is computed from the background mean, x̄b, by the45

update equation46

x̄a = x̄b + K
(
y◦ − h (xb)

)
. (1)

The function h(·) is the observation function, which maps the finite-dimensional state vector47

into observables. Thus, h (xb) is the ensemble mean of the prediction of the observations by the48

background. The matrix49

K = PbHT
(
HPbHT + R

)−1
(2)

is the Kalman gain matrix, where Pb is the background covariance matrix, H is the linearization50

of h about x̄b, and R is the observation error covariance matrix. EnKF schemes usually avoid51

the explicit computation of the linearized observation operator H by using approximations to52

PbHT and HPbHT that involve only the computation of h(xb) and h (xb) (e.g., Houtekamer and53

Mitchell 1998). The entry Kij of K determines the effect of the j-th observation on the i-th54

component of the analysis mean, x̄a. Under the standard assumption that the observation errors55

are uncorrelated, the matrix, R, is diagonal. Hence, the way the effect of the observations is56

spread from the observations to the different locations and state variables is determined by Pb
57

and H. The sampling variability in the estimates of Pb affects the accuracy of the information58

propagated in space and between the different state variables through the matrix products, PbHT
59

and HPbHT . The goal of localization is to reduce the related effects of sampling variability on60

the estimates of K.61

Over the years, many different localization methods have been proposed. Hamill et al. (2001),62

Houtekamer and Mitchell (1998, 2001), Hunt et al. (2007), Ott et al. (2004), and Whitaker and63
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Hamill (2002) used localization functions which set the covariance to zero beyond a certain64

distance (localization radius). Jun et al. (2011) proposed a nonparametric statistical method to65

estimate the covariance. Anderson (2007) used a hierarchical ensemble filter which estimates the66

covariance using an ensemble of ensemble filters. Bishop and Hodyss (2007, 2009a,b) adaptively67

determined the width of localization by computing powers of the sample correlations. Buehner68

and Charron (2007) examined the spectral and spatial localization of error covariance. Anderson69

and Lei (2013) and Lei and Anderson (2014) proposed an empirical localization function based70

on the output of an observing system simulation experiment.71

The focus of the present paper is on the family of schemes that localize the covariances72

by taking the Schur (Hadamard) product of the sample background covariance matrix and a73

correlation matrix of the same size, whose entries are obtained by the discretization of a distance-74

dependent correlation function with local (compact) support (e.g., Hamill et al. 2001; Houtekamer75

and Mitchell 2001; Whitaker and Hamill 2002). Such a correlation function is usually called a76

localization or taper function. The commonly used localization functions were introduced by77

Gaspari and Cohn (1999). Beyond a certain distance, all localization functions become zero,78

forcing the filtered estimates of the background covariance between state variables at locations79

that are far apart in space to zero. This property of the filtered background covariances can also80

be exploited to increase the computational efficiency of the EnKF schemes.81

A realistic atmospheric model has multiple scalar state variables (e.g., temperature, coordi-82

nates of the wind vector, surface pressure, humidity). If a univariate localization function, such83

as that described by Gaspari and Cohn (1999), is applied directly to a multivariate state vector,84

the resulting localized background covariance matrix may not be positive-definite. Because Pb
85

is symmetric, its eigenvalues are real and non-negative, which implies that it is invertible, only86

if it is also positive-definite. (An n × n symmetric matrix A is positive-definite if xTAx > 087
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for all non-zero vectors x ∈ Rn.) Because the computation of the right-hand-side of Eq. (2)88

does not require the invertibility of Pb, singularity of the localized Pb usually does not lead89

to a breakdown of the computations in practice. An ill-conditioned estimate of Pb, however,90

can degrade the conditioning (increase the condition number) of HPbHT + R, making the nu-91

merical computation of the right-hand side of Eq. (2) less stable. This motivates us to seek92

rigorously-derived multivariate localization functions for ensemble Kalman filtering. As will be93

demonstrated, such rigorously-derived multivariate localization functions often produce more ac-94

curate analyses than those that apply the same univariate localization functions to each scalar95

component of the state vector. Kang et al. (2011) also introduced a multivariate localization96

method that zeros out covariances between physically unrelated variables. Their motivation for97

zeroing out such covariances, however, was to filter apparent spurious covariances rather than to98

preserve the positive-definiteness of the background error covariance matrix.99

In our search for proper multivariate localization functions, we take advantage of recent100

developments in the statistics literature. In particular, we use the localization functions developed101

in Porcu et al. (2012), who studied the radial basis functions to construct multivariate correlation102

functions with compact support. Note that Section 5 in Zhang and Du (2008) described a general103

methodology for covariance tapering in the case of multiple state variables. Du and Ma (2013)104

used a convolution approach and a mixture approach to derive covariance matrix functions105

with compactly supported covariances. Kleiber and Porcu (2015) constructed nonstationary106

correlation functions with compact support for multivariate random fields. Genton and Kleiber107

(2015) reviewed approaches to building models for covariances between two different variables108

such as compactly supported correlation functions for multivariate Gaussian random fields.109

The rest of the paper is organized as follows. Section 2 briefly describes EnKF and localization110

for the special case of two state variables. Section 3 describes the bivariate Lorenz-95 model we111
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use to test our ideas. Section 4 summarizes the main results of the paper.112

2. Methodology113

a. Univariate localization114

In principle, localization can be implemented by using filtered estimates of the background115

covariances rather than the raw sample covariances to define the matrix, Pb, used in the compu-116

tation of K by Eq. (2). The filtered (localized) version of covariance matrix, P̃b, is obtained by117

computing the Schur (element-wise) product:118

P̃b = P̂b ◦C, (3)

where C is a correlation matrix, which has the same dimensions as the sample covariance matrix,119

P̂b. In practice, however, the localization is often done by taking advantage of the fact that120

localization affects the analysis through PbHT and HPbHT , or, ultimately, through K. In121

particular, because a distance, d, can be defined for each entry, Kij, of K by the distance122

between the i-th analyzed variable and the j-th observation, the simplest localization strategy is123

to set all entries, Kij, that are associated with a distance longer than a prescribed localization124

radius, R (d > R), to zero, while leaving the remaining entries unchanged (e.g., Houtekamer and125

Mitchell 1998; Ott et al. 2004; Hunt et al. 2007).126

Another approach is to localize PbHT and HPbHT by a tapering function (e.g., Hamill127

et al. 2001; Houtekamer and Mitchell 2001). The usual justification for this approach is that128

the localized matrix products provide good approximations of the products computed by using129
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localized estimates of Pb. Note that PbHT is the matrix of background covariances between130

the state variables at the model grid points and at the observation locations, while HPbHT is131

the matrix of background covariances between the state variables at the observation locations.132

Thus, a distance can be associated with each entry of the two matrix products, which makes133

the distance-dependent localization of the two products possible. The approach becomes prob-134

lematic, however, when h(·) is not a local function, which is the typical case for remotely sensed135

observations (Campbell et al. 2010).136

We consider the situation where localization is applied directly to the background error co-137

variance matrix, P̂b. Recall that the localized covariance matrix is expressed as in Eq. (3). In138

particular, C is a positive-definite matrix with strictly positive eigenvalues, while the sample139

covariance matrix, P̂b, may have zero eigenvalues (as it is only non-negative definite). The lo-140

calization in (3) helps to eliminate those zero eigenvalues of P̂b and alleviates the related large141

relative estimation errors. The positive-definiteness of C ensures that localization does not in-142

troduce new zero eigenvalues in the process of eliminating the zero eigenvalues of P̂b. The proper143

definition of the localization function that ensures that C is positive-definite has been thoroughly144

investigated for the univariate case (N = 1) in the literature (e.g. Gaspari and Cohn (1999)).145

b. Multivariate localization146

We now consider a model with multiple state variables (N > 1). For instance, we take a147

simple model based on the hydrostatic primitive equations. This model solves the equations148

for the two horizontal components of wind, the surface pressure, the virtual temperature and a149

couple of atmospheric constituents. The state of the model is represented by the state vector,150

x = (x1,x2, . . . ,xN), where xi, i = 1, 2, . . . , N , represents the spatially discretized state of the151
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i-th state variable in the model.152

The sample background covariance matrix, P̂b, can be partitioned as153

P̂b =



P̂b
11 P̂b

12 · · · P̂b
1N

P̂b
21 P̂b

22 · · · P̂b
2N

...
...

. . .
...

P̂b
N1 P̂b

N2 · · · P̂b
NN


. (4)

The entries of the submatrices, P̂b
ii, i = 1, . . . , N , are called the marginal-covariances for the154

i-th state variable. In practical terms, if the i-th state variable is the virtual temperature, for155

instance, each diagonal entry of P̂b
ii represents the sample variance for the virtual temperature at156

a given model grid point, while each off-diagonal entry of P̂b
ii represents the sample covariances157

between the virtual temperatures at a pair of grid points. Likewise, the entries of P̂b
ij, i 6= j, are158

called the sample cross-covariances between the grid point values of the i-th and the j-th state159

variables at pairs of locations, where the two locations for an entry can be the same grid point.160

We thus consider matrix-valued localization functions, ρ(d) = {ρij(d)}i,j=1,...,N , which are161

continuous functions of d. The component ρij(d) of ρ(d) is the localization function used for162

the calculation of the covariances included in the sub-matrix Pb
ij of Pb. Each entry of the163

localization matrix C is computed by considering the value of the appropriate component of164

ρ(d) for a particular pair of state variables and the distance, d, associated with the related entry165

of P̂b.166

In order to get a proper matrix-valued localization function, ρ, a seemingly obvious approach167

to extend the results of Gaspari and Cohn (1999) would be to compute the entries of C based168

on a univariate correlation function for a multivariate variable. That is, for the pair of state169
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variables i and j, we localize the corresponding sample background covariance matrix, P̂b
ij, by170

multiplying a localization matrix from the same correlation function for all i and j. Formally,171

this would be possible because the distance d is uniquely defined for each entry of P̂b the same172

way in the multivariate case as in the univariate case. This approach, however, cannot guarantee173

the positive-definiteness of the resulting matrix, C. As a simple illustrative example, consider174

the situation where the discretized state vector has only two components that are defined by175

two different scalar state variables at the same location (e.g., the temperature and the pressure).176

In this case, if n is the number of locations, the localization matrix for the two state variables177

together can be written as178

C =

C0 C0

C0 C0

 (5)

independently of the particular choice of the localization function. Here C0 is an n×n localization179

matrix from a univariate localization function. From Eq. (5), it is clear that n eigenvalues of C180

are zero and the rank of C is n, while its dimension is 2n× 2n.181

As in Eq. (2), although C is rank-deficient and thus so is the localized covariance matrix182

P̃b, we may still be able to calculate the inverse of HP̃bHT + R, as R is a diagonal matrix.183

The smallest eigenvalue of HP̃bHT + R is the smallest (positive) value of R, and thus the184

matrix, HP̃bHT +R, is still invertible and has positive eigenvalues. However, unless the diagonal185

elements of R are large (which implies large observation error variance), the matrix HP̃bHT +R186

is seriously ill-conditioned and the computation of its inverse may be numerically unstable.187

Therefore, the numerical stability of the computation of the inverse of the matrix heavily relies188

on the observation error variance, which is an undesirable property.189

We therefore propose two approaches to construct positive-definite (full rank) matrix-valued190

localization functions, ρ(d). The first proposed method takes advantage of the knowledge of191
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a proper univariate localization function, ρ̃. Instead of using the same correlation function to192

localize multiple state variables, for a certain distance lag, we let ρ = ρ̃ ·B, where B is an N ×N193

symmetric, positive-definite matrix whose diagonal entries are one. It can be easily verified that194

ρ is a matrix-valued positive-definite function, which makes it a valid multivariate localization195

function. For instance, in the hypothetical case where the two components of the state vector196

are two different state variables at the same location, making the choice197

B =

1 β

β 1

 , (6)

for β with |β| < 1, leads to198

C =

 C0 βC0

βC0 C0

 (7)

rather than what is given in Eq. (5). Since the eigenvalues of the matrix B are 1 ± β > 0, it199

can be easily verified that the matrix in (7) is positive-definite. For the case with more than two200

state variables (N ≥ 3), the matrix B can be parametrized as B = LLT , where201

L =



`1,1 0 · · · 0

`2,1 `2,2 · · · 0

...
...

. . . 0

`N,1 `N,2 · · · `N,N


(8)

is a lower triangular matrix with the constraints that
∑i

j=1 `
2
i,j = 1 and `i,i > 0 for all i =202

1, . . . , N . The constraints are used to have the diagonal entries of B to be one. Other than these203

constraints, the elements of L can vary freely in order to guarantee the positive-definiteness of204

10



B.205

An attractive feature of this approach is that we can take advantage of any known univariate206

localization function to produce a multivariate localization function. However, the multivariate207

localization function from this approach is separable in the sense that the multivariate component208

(i.e., B) and the localization function (i.e. ρ̃) are factored. Another limitation of the approach is209

that the localization radius and decay rate are the same for each pair of state variables, leaving210

no flexibility to account for the potential differences in the correlation lengths and decay rate for211

the different state vector components.212

The second proposed method takes advantage of the availability of multivariate compactly213

supported functions from the spatial statistics literature. To the best of our knowledge, only a214

few papers have been published on this subject; one of them is Porcu et al. (2012). The function215

class they considered was essentially a multivariate extension of the Askey function (Askey 1973),216

f(d; ν, c) =
(
1− d

c

)ν
+
, with c, ν > 0. Here, x+ = max(x, 0) for x ∈ R. For instance, a bivariate217

Askey function, which is a special case of the results of Porcu et al. (2012), is given by (i, j = 1, 2)218

ρij(d; ν, c) = βij

(
1− d

c

)ν+µij
+

, (9)

where c > 0, µ12 = µ21 ≤ 1
2
(µ11 + µ22), ν ≥ [1

2
s] + 2, βii = 1 (i = 1, 2), β12 = β21, and219

|β12| ≤
Γ(1 + µ12)

Γ(1 + ν + µ12)

√
Γ(1 + ν + µ11)Γ(1 + ν + µ22)

Γ(1 + µ11)Γ(1 + µ22)
. (10)

Here, Γ(·) is the gamma function (e.g., Wilks 2006), s is the dimension of the Euclidean space220

where the state variable is defined. If the state is defined at a particular instant on a grid formed221

by latitude, longitude, and height, then s = 3. Here, [x] is the largest integer that is equal to or222
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smaller than x. The Askey function in (9) has the support c because it sets covariances beyond223

a distance c to zero. It can be seen from (10) that, if the scalars, µij, are chosen to be the same224

for all values of i and j, the condition on β12 for ρ to be valid is |β12| ≤ 1. For this choice, the225

second method is essentially the same as the first method with the Askey function set to ρ̃. The226

localization function given by (9) is more flexible than the functions of the first method with the227

Askey function set to ρ̃ because µij can be chosen to be different for each pair of indexes, i and228

j. The localization length, however, is still the same for the different pairs of the state variables.229

The multivariate Askey function is formed by230

ρij(d; ν, c) = cν+1B(µij + 1, ν + 1)

(
1− |d|

c

)ν+µij+1

, |d| < c (11)

and 0 otherwise, where ν ≥ (s + 1)/2, µij = (µi + µj)/2, and µi > 0 for all i = 1, . . . , N . Here,231

B is the beta function (Porcu et al. 2012; Genton and Kleiber 2015).232

To illustrate the differences between the shape of the Gaspari-Cohn and the Askey functions,233

we show the Gaspari-Cohn function for c = 25 and the univariate Askey function for c = 50,234

and ν = 1, . . . , 4 (Fig. 1). This figure shows that for a given support, the Askey functions are235

narrower.236

3. Experiments237

a. The EnKF Scheme238

There are many different formulations of the EnKF update equations, which produce not239

only an updated estimate of the mean, but also the ensemble of analysis perturbations that are240
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added to the mean to obtain an ensemble of analyses. This ensemble of analyses serves as the241

ensemble of initial conditions for the model integration that produce the background ensemble.242

In our experiments, we use the method of perturbed observations. It obtains the analysis mean243

and the ensemble of analysis perturbations by the equations244

x̄a = x̄b + K(y −Hx̄b), (12)

xa
′

k = xb
′

k + K(yo
′

k −Hxb
′

k ), (13)

where x
′

k, k = 1, 2, . . . ,M are the ensemble perturbations and yo
′

k , k = 1, 2, . . . ,M are random245

draws from the probability distribution of observation errors. As the notation suggests, we246

consider a linear observation function in our experiments. This choice is made for the sake of247

simplicity and limits the generality of our findings much less than the use of an idealized model248

of atmospheric dynamics.249

For the case of multiple state variables, the ensemble members are considered to be in a single250

ensemble, that is, not being grouped into distinct sub-ensembles.251

b. The Bivariate Lorenz Model252

Lorenz (1995) discussed the bivariate Lorenz-95 model, which mimics the nonlinear dynamics253

of two linearly coupled atmospheric state variables, X and Y , on a latitude circle. This model254

provides a simple and conceptually satisfying representation of basic atmospheric processes, but255

is not suitable for some atmospheric processes. The model 3 in Lorenz (2005) made it more256

realistic and suitable with sacrifice of simplicity, by producing a rapidly varying small-scale257

activity superposed on the smooth large-scale waves. We use the Lorenz-95 model for simplicity258
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in our following experiments.259

In the bivariate Lorenz-95 model, the variable, X, is a “slow” variable represented by K260

discrete values, Xk, and Y is a “fast” variable represented by J × K discrete values. The261

governing equations are262

dXk

dt
= −Xk−1(Xk−2 −Xk+1)−Xk − (ha/b)

J∑
j=1

Yj,k + F, (14)

dYj,k
dt

= −abYj+1,k(Yj+2,k − Yj−1,k)− aYj,k + (ha/b)Xk, (15)

where Yj−J,k = Yj,k−1 and Yj+J,k = Yj,k+1 for k = 1, . . . , K and j = 1, . . . , J . The “boundary263

condition” is periodic; that is, Xk−K = Xk+K = Xk, and Yj,k−K = Yj,k+K = Yj,k. In our264

experiments, K = 36 and J = 10. The parameter h controls the strength of the coupling265

between X and Y , a is the ratio of the characteristic time scales of the slow motion of X to the266

fast motion of Y , b is the ratio of the characteristic amplitudes of X to Y , and F is a forcing267

term. We choose the parameters to be a = 10, b = 10, F = 10, and h = 2. These values of the268

model parameters are equal to those originally suggested by Lorenz (1995), except for the value269

of the coupling coefficient h, which is twice as large in our case. We made this change in h to270

increase the covariances between the errors in the estimates of X and Y , which makes the model271

more sensitive to the choices of the localization parameters. We use a fourth-order Runge-Kutta272

time integration scheme with a time step of 0.005 non-dimensional units as Lorenz (1995) did.273

We define the physical distances between Xk1 and Xk2 , between Yj1,k1 and Yj2,k2 , and between274

Xk1 and Yj1,k2 by |10(k1− k2)|, |10(k1− k2) + j1− j2|, and |10(k1− k2)− j1|, respectively. Fig. 2275

shows a typical state of the model for the selected parameters. The figure shows that X tends to276

drive the evolution of Y : the hypothetical process represented by Y is more active (its variability277
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is higher) with higher values of X.278

c. Experimental Design279

Since the estimates of the cross-covariances play a particularly important role at locations280

where one of the variables is unobserved, we expect an improved treatment of the cross-281

covariances to lead to analysis improvements at locations where only one of the state variables is282

observed. This motivates us to consider an observation scenario in which X and Y are partially283

observed. The variable X is observed at randomly chosen 20% of all locations and Y is observed284

at randomly chosen 90% of those locations where X is not observed. Spatial locations of the285

partially observed X and Y are illustrated in Fig. 3. The results from this experiment are286

compared to those from a control experiment, in which both X and Y are fully observed.287

We first generate a time series of “true” model states by a 2, 000-time-step integration of288

the model. We initialize an ensemble by adding the standard Gaussian noise to the true state;289

then, discarding the first 3, 000 time steps. We then generate simulated observations by adding290

random observation noise of mean zero and variance 0.02 to the the appropriate components291

of the “true” state of X at each time step. We use the same procedure to generate simulated292

observations of Y , except that the variance of the observation noise is 0.005. Observations are293

assimilated at every time step by first using a 20-member ensemble with a constant covariance294

inflation factor of 1.015. The error in the analysis at a given verification time is measured by295

the root-mean-square distance between the analysis mean and the true state. We refer to the296

resulting measure as the root-mean-square error (RMSE). The probability distribution of the297

RMSE for the last 1, 000 time steps of 50 different realizations of each experiment is shown by a298

boxplot. The boxplot is an effective way of displaying a summary of the distribution of numbers.299
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The lower and upper bounds of the box respectively give the 25th and 75th percentiles. The300

thick line going across the interior of the box gives the median. The whisker depends on the301

interquartile range (IQR) that is precisely equal to the vertical length of the box. The whiskers302

extend to the extreme values which are no more than 1.5 IQR from the box. Any values that fall303

outside of the end points of whiskers are considered outliers and they are displayed as circles.304

In the boxplot figures in the next section, we compare the RMSE for four different localization305

schemes. We use the following notation to distinguish between them in the figures:306

i. S1–the bivariate sample background covariance is used without localization;307

ii. S2–same as S1 except that the cross-covariances between X and Y are replaced by zeros;308

iii. S3–a univariate localization function is used to filter the marginal covariances within X309

and Y , respectively, while the cross-covariances between X and Y are replaced by zeros;310

iv. S4–one of the bivariate localization methods described in Section 2.b is used to filter both311

the marginal- and the cross-covariances.312

In the experiments identified by S4, we consider two different bivariate localization functions:313

The first one is ρ(1)(·) = {βijρ(1)(·)}i,j=1,2 with βii = 1 (i = 1, 2) and βij = β (i 6= j) for some β314

such that |β| < 1. We use the fifth-order piecewise-rational function of Gaspari and Cohn (1999)315

to define the univariate correlation function, ρ(1), in the following form,316

ρ(1)(d; c) =



−1
4
(|d|/c)5 + 1

2
(d/c)4 + 5

8
(|d|/c)3 − 5

3
(d/c)2 + 1, 0 ≤ |d| ≤ c,

1
12

(|d|/c)5 − 1
2
(d/c)4 + 5

8
(|d|/c)3 + 5

3
(d/c)2 − 5(|d|/c) + 4− 2

3
c/|d|, c ≤ |d| ≤ 2c,

0, 2c ≤ |d|.

(16)
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This correlation function attenuates the covariances with increasing distance, setting all the317

covariances to zero beyond distance 2c. So this function has the support 2c. If |β| < 1 and c is318

the same for both the marginal- and the cross-covariances, the matrix-valued function, ρ(1), is319

positive-definite and of full rank. We test various values of the localization parameters c and β,320

and present the test results in next section.321

The second multivariate correlation function we consider, ρ(2), is the bivariate Askey function322

described in Section 2.b. In particular, we use µ11 = 0, µ22 = 2, µ12 = 1, and ν = 3. According323

to Eq. (10), for these choices of parameters, the one remaining parameter, β12, must be chosen324

such that |β12| < 0.79.325

d. Results326

Figure 4 shows the distribution of RMSE for variable X for different configurations of the327

localization scheme in the case where the state is only partially observed. This figure compares328

the Askey function and Gaspari-Cohn function which have the same support (localization radius),329

so setting all the covariances to zero beyond the same distance. We recall that because X is330

much more sparsely observed than Y , we expect to see some sensitivity of the analyses of X to331

the treatment of the cross-covariance terms. The figure confirms this expectation. A comparison332

of the results for configurations S1 and S2 suggests that ignoring the cross-covariances is a better333

strategy than to use them without localization. This conclusion does not hold once a univariate334

localization is applied to the marginal covariances, as using configuration S3 produces worse335

results than applying no localization at all (S1).336

Figure 4 also shows that the distribution of the state estimation error is less sensitive to the337

choice of localization strategy for the larger values of support. Of all localization schemes, S4 with338
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β = 0.1 performs best regardless of the localization radius: the distribution of the state estimation339

error is narrow with a mean value that is lower than those for the other configurations of the340

localization scheme. For this choice of localization scheme and β, the Askey function produces341

smaller errors than the Gaspari-Cohn function, particularly, for smaller localization radii.342

Figure 5 is the same as Fig. 4, except for variable Y rather than for variable X. A striking343

feature of the results shown in this figure is that the Askey function clearly performs better344

than the Gaspari-Cohn function. Another obvious conclusion is that using a smaller localization345

radius (a lower value of support) is clearly advantageous for the estimation of Y . This result is346

not surprising, considering that Y is densely observed and its spatial variability is much higher347

than that of X. In contrast to the results for variable X, configuration S3 produces much more348

accurate estimates of variable Y than do configurations S1 or S2. In addition, configuration S4349

performs only slightly better, and only for the lowest value of support, than does configuration350

S3. The latter observations indicate that the marginal covariances play a more important role351

than do the cross-covariances in the estimation of the densely observed Y . The proper filtering352

of the marginal covariances can thus greatly increase the accuracy of the estimates of Y . In other353

words, the densely observed Y is primarily estimated based on observations of Y . Hence, the354

low signal-to-noise ratio for the sample estimate of the marginal covariances for Y greatly limits355

the value of the observations of Y at longer distances.356

Figure 6 is the same as Fig. 4, except for the case of a fully observed state. By comparing357

the two figures, we see that the analysis is far less sensitive to the localization radius in the fully358

observed case than in the partially observed case. As can be expected, the state estimates are359

also more accurate in the fully observed case. In the fully observed case, localization strategy360

S3 performs much better than do strategies S1 and S2 and similarly to S4. This result indicates361

that in the fully observed case, X is primarily analyzed based on observations of X, making362
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the analysis of X more sensitive to the localization of the marginal covariances than to the363

localization of the cross-covariances. Similar to the partially observed case, the Askey function364

tends to perform better than the Gaspari-Cohn function, but the differences between the accuracy365

of the state estimates for the two filter functions are negligible, except for the shortest localization366

radius.367

Figure 7 shows the distribution of the errors for variable Y in the fully observed case. The best368

results are obtained by using a short localization radius with the Askey function, even though369

the variability of the error is relatively large in that case. The fact that localization strategies370

S3 and S4 perform similarly well shows that the estimates of the cross-covariances do not play371

an important role in this case; that is, X is primarily estimated based on observations of X, and372

Y is dominantly estimated based on observations of Y .373

We also investigated the performance of EnKF with 500-member ensemble. The results for374

the 500-member ensemble are shown in Figures 8 to 11. We use an inflation factor of 1.005 for375

500 ensembles, because the optimal value of the inflation factor is typically smaller for a larger376

ensemble. The rank of the 500-member ensemble covariance matrix is significantly larger than377

that of the 20-member ensemble covariance matrix, as expected.378

Figures 8 to 11 show that, overall, S4 still performs better than the other localization schemes379

regardless of the choice of localization radius, as in the case of the 20-member ensemble. In380

particular, when observations are partially observed, S4 with β = 0.01 provides the smallest381

RMSE. The cross-correlation between X and Y , calculated using 500-member ensembles without382

assimilating any observation, varies from −0.4 to 0.4, which indicates that the cross-correlation383

between the two variables are not negligible. Therefore, improved treatment of cross-covariance384

tends to lead to an improved accuracy in the state estimation.385

The results with the 500-member ensemble also show that the distribution of the state estima-386
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tion error is in general less sensitive to the choice of the localization function or the localization387

radius, compared to the 20-member ensemble case. Figure 8, however, shows that for the estima-388

tion of sparsely observed X, the localization scheme S3 with smaller localization radius performs389

worse than that with larger localization radius. For variable Y in the partially observed case390

(Figure 8) and both variables X and Y in the fully observed case (Figures 10 and 11), the best391

results are obtained with S3 and S4 regardless of the localization radius. They also shows that392

the state estimation error is not sensitive but stable to the choice of localization radius.393

Figures 10 and 11 show that the localization schemes, S3 and S4, perform in a similar way,394

and obviously perform better than the other two localization schemes. This might imply that395

the cross-covariances do not have much influence on the state estimation in the fully observed396

case, once the covariances within each state variable are localized.397

4. Discussion398

The central argument of this paper is that applying a single localization function for the399

localization of covariances between multiple state variables in an EnKF scheme may lead to a400

rank deficient estimate of the background covariance matrix. We suggested two different ap-401

proaches for the construction of positive-definite filtered estimates of the background covariance402

matrix. One of them takes advantage of the knowledge of a proper univariate localization func-403

tion, whereas the other uses a multivariate extension of the Askey function. The results of our404

numerical experiments show that a mathematically proper localization function often leads to405

improved state estimates. The results of the numerical experiments also suggest that of the two406

approaches we introduced, the one based on the Askey function produces more accurate state407
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estimates than that based on the Gaspari-Cohn function. This fact, however, does not mean408

that the Askey function is always superior to the Gaspari-Cohn function in other chaotic models409

or observation networks. Which correlation function is superior depends on what the true error410

correlation looks like.411
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Figure 2: A snapshot of the variables X and Y from a numerical integration of the system of
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Figure 6: Same as 4, except for the case when the system is fully observed.
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Figure 7: Same as 6, except for variable Y .
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Figure 8: Same as 4, except for 500 ensemble members.
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Figure 9: Same as 5, except for 500 ensemble members.
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Figure 10: Same as 6, except for 500 ensemble members.
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Figure 11: Same as 7, except for 500 ensemble members.
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