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Abstract. We study main parameters of earthquakes from the perspective of the first digit phe-

nomenon: the nonuniform probability of the lower first digit different from zero compared to the

higher ones. We found that source parameters like coseismic slip distributions at the fault and co-

seismic inland displacements show first digit anomaly. We also found the tsunami runups measured

after the earthquake to display the phenomenon. Other parameters found to obey first digit anomaly5

are related to the aftershocks: we show that seismic moment liberation and seismic waiting times

also display an anomaly. We explain this finding by invoking a self-organized criticality frame.

We show that critically organized automata show the first digit signature and we interpret this as a

possible explanation of the behavior of the studied parameters of the Tohoku earthquake.

1 Introduction10

With the advent of modern seismological and geodetical instrumentation, the study of the earth-

quake process has experienced great advances, much of it punctuated by the occurrence of giant

earthquakes. Since 2004, three of these spectacular events occurred, each producing large tsunamis,

followed by human and material losses. These are the 2004 Northern Sumatra (Lay et al., 2005),

the 2010 Central Chile (Vigny et al., 2011) and the 2011 Tohoku Japan (Simons et al., 2011) earth-15

quakes, each of them representing an opportunity to advance in the comprehension of geophysical

phenomena. Three key elements in the understanding of these events are: a) the source process, a

highly nonlinear and heterogeneous phenomenon regarding the initiation, growth and stopping of

the earthquake itself, b) the postseismic relaxation effects, which comprise the later perturbations

at the crust and fault itself after the stop of the slip phase, and c) the water wave produced by the20
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sudden uplift of the ocean floor, its propagation through the ocean and the, often destructive, arrival

inland.

Of the aforementioned events, the Tohoku earthquake is by far the best recorded, at the local

and global level. The Japanese and worldwide effort, lead by universities and public institutions,

gathered a great bulk of information regarding this event, most of it public. We use data and models25

of this event, to assess an establish a regularity of the source and later events known as the first digit

anomaly (Benford, 1938).

This phenomenon consist in the nonuniform statistical distribution of the first digit different from

zero present in a —usually large— population of data d = {d1, . . . , dn} coming from natural sys-

tems. The law states that the probability of finding the number one as the first digit different from30

zero in d is higher than the probability of finding the number two and so on according to the formula:

PD = log10(1 + 1/D), D = 1, 2, ..., 9, (1)

first proposed in the 19 century (Newcomb, 1881) by noticing the wear accumulated in the first pages

of logarithm tables relative to the last ones.

The first digit phenomenon has received considerable attention (Hill, 1998) and is known to be35

found in diverse areas like: physics (Berger et al., 2005; Tolle et al., 2000), mathematics (Cohen

and Katz, 1984), computation (Knuth, 1981), economy (Nigrini, 1996) and recently it has found

some application in geophysics (Sambridge et al., 2010; Nigrini and Miller, 2007; Geyer and Martı́,

2012). From the angle of statistics there are known theorems, some of them regarding scale invariant

properties (Hill, 1995a) and others related to random sampling (Hill, 1995b) and. Moreover it has40

been found that datasets possesing multidecadal range should display the anomaly (Fewster, 2009).

A depth review of these properties is outside of the scope of this work, and we recommend the

paper of Sambridge et al. (2010) for more information. Despite efforts, little is known concerning

why some numbers collected from natural data follow this regularity (Berger and Hill, 2011). How-

ever it is known since the beginning of 20 century that natural processes following geometric laws45

are equidistributed over the circle as long as an irrational base is considered, known as the ergodic

property of geometric maps (Arnol’d, 2014). It has been argued by Tarantola (2006) that the effect

appears related to the so called Jeffreys’ pairs: physical variables endowed with the property of be-

ing as meaningful as their inverses. For instance: period and frequency, conductivity and resistivity

(hydraulic, electric or thermal) or compliance and stiffness. We must note that Jeffreys’ pairs usually50

display large dynamical ranges, a fact evident because of the regular use of logarithm scales when

working with these variables. From now on, we will work under the hypothesis that an underly-

ing physical process connects these elements (random sampling, scale invariance, broad dynamical

range) and could explain the ubiquitous presence of the first digit phenomenon.
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2 The Tohoku earthquake from the point of view of the first digit55

As we pointed out, the first digit phenomenon has recently found some applications in geophysics.

Sambridge et al. (2010) demonstrated that the initial signal of an earthquake, as viewed in a typical

seismogram, displays Benford’s anomaly. This effect was proposed as an event trigger, because the

noise registered in the seismogram, displays a kind of gaussian behavior very different from first

digit phenomenon. Our insight is that this property of the earthquake arrival is directly related to the60

seismic source and related processes. To go further into this track, we revisited some published data

from the Tohoku earthquake in terms of the first digit distribution.

Leaving aside seismograms, we studied physical parameters closely related to the coseismic and

postseismic processes. We choose to review data from the Tohoku earthquake mainly because of

data quality. The data used comes from direct measurements of earthquake effects and indirect65

estimations as well. Care was taken in regard to the statistical significance of the samples selected,

as we left out interesting data with few samples.

In Table 1 we present first digit statistics of various parameters closely related to the seismic source

process in the case of the Tohoku earthquake. For each parameter, a χ2 goodness of fit test with 9

degrees of freedom is presented. Also, each test is accompanied with the 5% significance level p,70

values of this last parameter close to one indicate statistical agreement with the hypothesis of the

empirical data following the first digit anomaly. First, we show the finite fault model, as regularly

published by the U.S. Geological Survey (Hayes, 2011a). This set is showed in Fig. 1, the data

corresponds to an inversion of P wave, SH wave and long period surface waves of the source from

globally located stations (Ji et al., 2002; Hayes, 2011b). We collected the 240 slips (∆u) and seismic75

moments (M0) which give form to the finite fault model of the earthquake. We found the slips to

follow the first digit anomaly. Seismic moments present the anomaly as well, and this is expected

because seismic moment is a affine scaling of slips at the fault. From Fig. 1 the high dynamical range

of the data can be clearly evidenced, and as it was mentioned this is one of the known characteristics

of parameters showing first digit anomaly. Second, we used a GPS inversion of the coseismic inland80

deformation. This inversion uses data from the GPS Earth Observation Network (GEONET Ozawa

et al. (2011)) and it represents an ensemble of 357 points inverted, showed in Fig. 2 are the total

displacement magnitudes, which describe the effect of slip distribution on the fault and the effects

over the Earth’s surface from geodetic data, observe the high dynamical range of displacements.

The absolute value of the deformation |uc| shows a clear first digit anomaly as shown in Table 1.85

Third, from the same dataset, we studied the first digit distribution of the postseismic relaxation

process |up| proposed by the authors. The data shown in Fig. 3 present the expected dynamical

range for data which shows agreement with the expected probabilities. Fourth, Sambridge et al.

(2011) showed that the waiting times between earthquakes presented first digit anomaly. Also in

Table 1 we show selected events of the aftershock series as recorded by the Global Centroid Moment90

Tensor (GCMT Ekström et al. (2012)) of the Tohoku earthquake. We collected data from 11 March
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2011 until 31 January 2012, considering a restricted geographic location of the earthquake, to avoid

sophisticated filtering of events. The aftershock series is composed of 172 events, located between

12 and 80 kilometres depth and ranging from moment magnitude 4.9 to 9.1 a representation of the

aftershock series can be seen in Fig. 4, the color of the circles clearly show the high dynamical range95

reached by waiting times. From this set, the first digit distribution of the seismic moment released

M0(t) is remarkable and the waiting times ∆τ between aftershocks was found to obey a weak

statistical significant first digit anomaly at the 5% level. Fifth, regarding the tsunami phenomenon,

we analyzed runups (r) data measured by Mori et al. (2011). This data set comprises 5260 points,

each of them representing the maximum height inland reached by the water wave generated by the100

dislocation in the ocean floor. An image is presented in Fig. 5, where the different scale colors

present in tsunami data can be appreciated. This data set also presents first digit anomaly.

As a summary, parameters closely related to the source process display Benford’s effect and those

parameters include: slip and moment distribution on the fault inverted from seismic data, surface

deformation inverted from geodetic data, tsunami heights (possibly related to the source itself) sur-105

veyed directly and the GCMT aftershock series’ moment release and waiting times.

3 A possible explanation of the ubiquity of Benford’s law

As has been shown, the first digit anomaly appears in various variables regarding the process of

seismic rupture. The earthquake, now viewed not just as the slip phase, contains this signature and it

seems natural to search for a unique mechanism, which could explain the anomaly. Indeed a model110

capable of accounting for global features of earthquake has already been proposed and it is known as

self-organized criticality, SOC (Bak and Tang, 1989; Ito and Matsuzaki, 1990; Sornette and Sornette,

1989). We will not try to demonstrate that SOC is the mechanism behind earthquakes, as there is

a considerable debate about the relation between SOC and earthquakes (Ramos, 2010) but we will

show that the paradigm of SOC, the two-dimensional sand pile cellular automaton (Bak et al., 1988)115

shows a remarkable first digit anomaly.

A SOC state is a special equilibrium reached by extended systems which are governed by non-

linear rules generally under dissipative conditions. This regimen is characterized by power laws

and fractal geometries. The existence of various laws of this type in seismology: Gutenberg-

Richer, Omori, Båth and lately aftershock density distance decay (Felzer and Brodsky, 2006) are120

the strongest evidence of some critical mechanism at work, although the exact conditions are still

unknown. For a recent view of current research see Pruessner (2012) and for a throughout exposition

of the subject see Christensen and Moloney (2005) and Jensen (1998).

We tested two cellular automata, known to present very different behaviors: the one-dimensional

sand pile (Bak et al., 1988) and the two-dimensional Bak-Tang-Wiesenfeld (BTW) automaton (Bak125

et al., 1987, 1988). The one-dimensional pile consists of an array of L integers subjected to ran-

4



dom forcing. When a threshold is reached, the forced cell yield, transferring its burden to the next

neighbour. Those rules are played asynchronously for a period of time T until meaningful statistics

revealing the special equilibrium reached can be collected. This automaton does not present the

properties of SOC since the correlation between cells is weak so that the global energy distribution130

of the pile (the number of consecutive transfers or avalanche) presents exponential properties, the

interactions decay fast. On the other hand, the BTW automaton is formed by a bidimensional grid

of L×L points. Again the cells are submitted to random forcing, a threshold is set, and when a cell

yields, it transfers its burden to four neighbours. On both automata the borders of the grid are the

dissipative points (1/4 of the burden is lost in the 2D case). After asynchronously playing of the135

rules, the BTW automaton reaches a state of dynamic equilibrium characterized by avalanches of all

sizes. These simple rules give rise to a highly correlated state in time and space as well. The global

energy distribution of the automaton is a self-similar power law.

In Table 2, we show the results of the one-dimensional sand pile. We present statistics of automata

of different sizes, ranging from the small 11 points grid automaton to the bigger 301 one. It is shown140

that waiting times between avalanches show Benford’s anomaly while the energyE release does not.

The explanation to this is quite simple: as the pile does not reach whole size avalanches, because

of the weak correlation, most of the events represent avalanches of size one or two, giving to the

digits 1 and 2 such high frequencies. On the other hand, the automaton was run for a very long time

relative to its size, this long time allows it to reach a diverse population of times between avalanches145

with first digit anomaly.

In Table 3 we show the BTW sand pile. Again the statistics are shown for automata of different

sizes. The range of size is wider because of the higher dimension of the automata. The waiting times

and the energetics of the automaton show a remarkable Benford’s effect. It should be noted that the

lower size automaton exposes weak correlation effect, likewise the 1D sand pile. This is related to150

the finite size of the grid (Bak et al., 1987); the higher the automaton size, the better the first digit

anomaly.

There are other models that are more akin to model seismicity. One of the more severe criticisms to

the BTW model, is the lack of aftershocks, a common and well established property of earthquakes.

However Ito and Matsuzaki (1990) showed an automaton with minor changes in relation to the155

BTW model that display aftershocks and is capable of reproducing Omori’s law. There are even

models with no stochastic mechanisms, like the Carlson-Langer model (Carlson and Langer, 1989)

in the tradition of the well known Burridge-Knopoff model (Burridge and Knopoff, 1967). Moreover

there are automata with nonconservative rules like the Olami-Feder-Christensen (OFC) (Olami et al.,

1992), all of them are believed to present self-organized critical equilibria. If they show Benford’s160

effect, then they will be the subject of future studies. But we believe that the first digit anomaly is a

symptom of these systems.

Recent studies on these systems (Sarlis et al., 2011a) revealed a striking similarity of the fluc-
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tuations of the order parameter, e.g. in the OFC model (Sarlis et al., 2011b), with seismicity. Fo-

cusing on these fluctuations before the Tohoku earthquake, it has been found that they exhibit an165

unprecendented minimum almost two months before in the beginning of January 2011 (Sarlis et al.,

2013, 2015; Varotsos et al., 2012, 2014) these fluctuations could be mapped to the exponent in the

Gutenberg-Richter law (see figure 6 and the discusion) therefore the first digit anomaly may be used

as a general proxy regarding the dynamics of these phenomena.

4 Discussion170

Concerning the actual relationship between earthquakes and SOC, we are bringing new information

to light. What we have learnt is that if SOC is the underlying mechanism behind the complexity of

earthquakes, revealed in power laws, then its first digit imprint is translated into the main observables

of seismicity like the energy, tsunami runups and waiting times. That’s the case of the earthquake

source parameters presented. The aftershocks are an interesting matter as it is believed that the175

heterogeneous stress drop at the fault generates barriers, which at the end generate the complex

patterns found in aftershock series, with Omori’s law as one of the main characteristics (Aki, 1979).

That the first digit phenomenon encounters stable parameters, like the released seismic moment and

waiting times is a strong indication that SOC is at work not only on the generation process, but also

on the later liberation at the fault itself.180

How far this mechanism could be pushed? Actually the spectral analysis at the core of the criti-

cality (the so called pink noise fingerprint) offers a very general explanation. In figure 6 we present

a theoretical variable K which describes some parameter of a natural phenomena at hand, it maybe

dissipated energy, waiting times or some other observable. The controlling parameter is the power

law behavior with respect to the variable k, modeled as K ∼ k−ζ , with the exponent a real number.185

If we observe the first decade only, one may find the geometrical roots of the first digit anomaly,

because the space between 1 and 2 (populated with numbers all starting with 1) is 30.1% of the

total decade, the space between 2 and 3 is 17.6% and so on. Therefore the uniform sampling of the

process with respect to k implies the first digit anomaly in K, as long as the power law scaling is

valid. More important is the repetitive nature of this process: what happens with the first decade,190

happens all over the available range in K, or in mathematical terms we may map a process ranging

various orders of magnitude to the behavior at the first decade, this implies a map from the real line

into the circle, generally know as periodicity. The conditions imposed over this supposed system are

very general, consequently we expect this behavior to be common in nature, in concordance with the

reported analysis of Sambridge et al. (2010). Is it possible to recover a specific SOC model from first195

digit anomaly alone? At this stage we can not distinguish between them. As discussed, the scaling

structure of a critical model is mapped into a periodic space where first digit statistics are calculated,

so just with the anomaly it is not possible to retrieve the original SOC model. With respect to the
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studied parameters. We are considering two kinds of data. Observed and recorded. As long as the

models or the instrumentation do not filter out the scaling of the phenomena, turning the power law200

into something else, we expect the first digit anomaly to be clearly recognized. How many features

of the studied phenomena do we need to stablish criticality? It is not clear to us if there is a specific

number data to collect or a fixed number of models to ran, but we expect the spectral content to be

the key, i.e. we need to preserve the power law scaling.

5 Conclusions205

The first digit phenomenon has been taken for a simple mathematical property, but it has proven

to be hard to elucidate the true origins of it (Berger and Hill, 2011). We have demonstrated that

the phenomenon is not only present in the seismic source process, but it is also present in one of

the most remarkable explanations of the earthquake phenomena. We claim that an imprint of the

SOC mechanism could be traced back by way of Benford’s effect, by the study of time and space210

observables be those indirectly derived or measured in situ.

The main properties seems to be: 1) the stochastic nature of the earthquake phenomena in study,

2) a scale independent mechanism, ranging in various orders of magnitude, from short period GPS

source inversions to long period seismic wave imaging and 3) nonlinear laws of interaction powering

the long range correlations.215

Acknowledgements. We are specially grateful to professor Armando Cisternas for the critical review of the first

drafts. Special thanks go to Lily Seidman who made a throughout review of the english writing. PT and SR

were partially supported by postgraduate Conicyt fellowships. JC was partially supported by Fondecyt grant

1130636.

7



References220

Aki, K.: Characterization of barriers on an earthquake fault, Journal of Geophysical Research, 84, 6140–6148,

1979.

Arnol’d, V. I.: Mathematical understanding of nature, American Mathematical Society, 2014.

Bak, P. and Tang, C.: Earthquakes as a self-organized critical phenomenon, Journal of Geophysical Research,

94, 15 635–15, 1989.225

Bak, P., Tang, C., and Wiesenfeld, K.: Self-organized criticality: An explanation of the 1/f noise, Physical

Review Letters, 59, 381–384, 1987.

Bak, P., Tang, C., and Wiesenfeld, K.: Self-organized criticality, Physical Review A, 38, 364–374, 1988.

Benford, F.: The law of anomalous numbers, Proceedings of the American Philosophical Society, pp. 551–572,

1938.230

Berger, A. and Hill, T.: Benford’s Law strikes back: No simple explanation in sight for mathematical gem, The

Mathematical Intelligencer, 33, 85–91, 2011.

Berger, A., Bunimovich, L., and Hill, T.: One-dimensional dynamical systems and Benford’s law, Transactions

of the American Mathematical Society, 357, 197–220, 2005.

Burridge, R. and Knopoff, L.: Model and theoretical seismicity, Bulletin of the Seismological Society of Amer-235

ica, 57, 341–371, 1967.

Carlson, J. and Langer, J.: Mechanical model of an earthquake fault, Physical Review A, 40, 6470, 1989.

Christensen, K. and Moloney, N. R.: Complexity and criticality, vol. 1, Imperial College Press, 2005.

Cohen, D. and Katz, T.: Prime numbers and the first digit phenomenon, Journal of Number Theory, 18, 261–

268, 1984.240
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Fig. 2. Coseismic slip distribution (Ozawa et al., 2011). Displacement in meters. Note the dynamical range of

data spanning four orders of magnitude.
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Fig. 3. Postseismic slip distribution (Ozawa et al., 2011). Displacement in meters. Dynamical range of data

clearly evidenced from color distribution of circles running at least four orders of magnitude.
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Fig. 4. Selected events of the aftershock series, from 11 March 2012 until 31 January 2012, from GCMT

database (Ekström et al., 2012). Dynamical range of waiting times is at least four orders of magnitude.
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Fig. 5. Runup data measured by Mori et al. (2011). Colorbar in meters. Different scales present in runup data

clearly evident from populations present in figure spanning at least 4 orders of magnitude.
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Table 1. Benford’s law probabilities PD in conjunction with the first digit distribution of various parameters

related to the source of the Tohoku earthquake and related phenomena.

D PD Finite Faulta Surface GPSb GCMT Aftershockc Runupsd

∆u M0 |uc| |up| M0(t) ∆τ r

1 0.301 0.346 0.325 0.340 0.387 0.314 0.327 0.360

2 0.176 0.163 0.154 0.154 0.190 0.169 0.123 0.173

3 0.125 0.113 0.142 0.101 0.078 0.140 0.070 0.104

4 0.097 0.096 0.104 0.101 0.064 0.093 0.076 0.080

5 0.079 0.067 0.104 0.078 0.059 0.070 0.053 0.062

6 0.067 0.058 0.050 0.064 0.056 0.087 0.070 0.062

7 0.058 0.046 0.042 0.064 0.062 0.041 0.058 0.057

8 0.051 0.046 0.025 0.045 0.053 0.052 0.152 0.054

9 0.046 0.067 0.054 0.053 0.050 0.035 0.070 0.049

χ2
9−1 0.340 0.583 0.0123 0.451 0.271 4.628 0.161

p 1.000 1.000 1.000 1.000 1.000 0.797 1.000

n 240 240 377 357 172 172 5260

aSlips and Seismic Moment from Hayes (2011b).
bCoseismic and Postseismic displacements from Ozawa et al. (2011).
cMoment and waiting times aftershock data from GCMT (Ekström et al. (2012)). From 11 March 2011 to 31

January 2012.
dRunups data from Mori et al. (2011).
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Table 2. Sand pile 1D Cellular automaton (Bak et al., 1988). First digit statistics for various 1D cellular

automata of different sizes.

L 11 21 31 101 201 301

D PD ∆τ E ∆τ E ∆τ E ∆τ E ∆τ E ∆τ E

1 0.301 0.335 0.786 0.328 0.733 0.326 0.796 0.322 0.780 0.315 0.802 0.318 0.812

2 0.176 0.217 0.181 0.204 0.201 0.191 0.163 0.186 0.168 0.189 0.160 0.184 0.154

3 0.125 0.173 0.030 0.137 0.053 0.140 0.034 0.140 0.041 0.139 0.030 0.136 0.028

4 0.097 0.066 0.004 0.093 0.010 0.103 0.006 0.107 0.008 0.103 0.006 0.104 0.005

5 0.079 0.077 0.000 0.083 0.003 0.080 0.001 0.079 0.002 0.080 0.001 0.081 0.001

6 0.067 0.055 0.000 0.058 0.000 0.056 0.001 0.061 0.001 0.063 0.000 0.062 0.000

7 0.058 0.026 0.000 0.044 0.000 0.042 0.000 0.045 0.000 0.048 0.000 0.049 0.000

8 0.051 0.022 0.000 0.026 0.000 0.037 0.000 0.035 0.000 0.035 0.000 0.037 0.000

9 0.046 0.029 0.000 0.027 0.000 0.023 0.000 0.025 0.000 0.028 0.000 0.029 0.000

χ2
9−1 1.110 9.100 0.550 8.130 0.450 9.080 0.410 8.760 0.310 9.200 0.260 9.380

p 1.000 0.330 1.000 0.420 1.000 0.340 1.000 0.360 1.000 0.330 1.000 0.310

T 1210 4410 9610 102010 404010 906010

Table 3. BTW 2D Cellular automaton (Bak et al., 1987, 1988). First digit statistics for various 2D cellular

automata of different sizes.

L× L 11× 11 21× 21 31× 31 101× 101 201× 201 301× 301

D PD ∆τ E ∆τ E ∆τ E ∆τ E ∆τ E ∆τ E

1 0.301 0.333 0.512 0.438 0.360 0.384 0.327 0.387 0.360 0.368 0.337 0.364 0.318

2 0.176 0.231 0.242 0.185 0.230 0.219 0.165 0.206 0.183 0.209 0.184 0.207 0.183

3 0.125 0.190 0.130 0.148 0.153 0.130 0.133 0.135 0.115 0.138 0.126 0.136 0.131

4 0.097 0.095 0.072 0.105 0.105 0.100 0.107 0.088 0.087 0.091 0.094 0.095 0.099

5 0.079 0.061 0.025 0.038 0.060 0.076 0.084 0.063 0.066 0.065 0.073 0.063 0.078

6 0.067 0.041 0.012 0.043 0.042 0.023 0.064 0.043 0.059 0.048 0.058 0.051 0.061

7 0.058 0.027 0.004 0.016 0.024 0.026 0.048 0.037 0.050 0.035 0.049 0.036 0.051

8 0.051 0.007 0.003 0.019 0.017 0.023 0.039 0.026 0.043 0.024 0.042 0.027 0.042

9 0.046 0.014 0.000 0.008 0.009 0.021 0.033 0.015 0.038 0.021 0.036 0.021 0.036

χ2
9−1 2.120 4.590 2.250 1.810 1.500 0.200 1.120 0.180 0.930 0.140 0.830 0.110

p 0.980 0.800 0.970 0.990 0.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000

T 1210 4410 9610 102010 404010 906010
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