
Referee #1 

In their manuscript "Global terrestrial water storage connectivity revealed using complex climate 

network analyses", the authors investigate correlation networks which reflect mutual dependencies 

between the temporal variation of terrestrial water storage at different locations. Estimates of 

terrestrial water storage (TWS) are based on two data products, the GRACE satellite mission and the 

NOAH model (GLDAS‐NOAH). The network topology indicates different river basins to show different 

connectivity patterns, pointing to teleconnection structures which seem to be present for some basins 

(Ganges, Mississippi, Tigris) but not for others (Amazon, Congo, Yangtze). Maps of average node 

connection length (in Euclidean sense) reveal regions with long connections (such as the Pacific 

Northwest) and those with short connections (such as the Middle East). Nodes of large area‐weighted 

connectivity (coined "supernode regions" by the authors) seem to reflect combined effects of climate 

variations and anthropogenic activities. The manuscript provides a network perspective on global 

terrestrial water storage which is a relevant and timely topic for readers of Nonlinear Processes in 

Geophysics. Combining insights gained from the network analysis might possibly help to identify TWS 

predictors and to improve land surface models. The employed methods ‐ network measures as well as 

network inference by thresholding a matrix of Pearson correlation coefficients ‐ are not new and have 

been frequently applied in many different scientific disciplines. Applying these methods to GRACE and 

GLDAS data products establishes the novelty of this work. I have only minor remarks and recommend 

publication after revision. 

Reply: Thank you. 

 

Minor remarks: 

1) There is a certain ambiguity when defining network nodes which is natural for such datasets. 

Nevertheless, how does the spatial resolution of the used data products influence the results of the 

network analyses? Are the results reported in this study "stable" when network nodes are defined in a 

different way (e.g. after coarse graining)? How does network structures change when the number of 

nodes is increased or decreased? I expect the maximum number of reasonably defined nodes of a 

network to be constrained by the numbers of degrees of freedom captured in the data (which, in case of 

GRACE, seems to be related to the finite resolution of the measuring instruments).  

Reply: These are excellent questions. Before addressing these questions, we first present a background 

on GRACE data processing done by distribution centers (this information is also available under Section 

3 of the paper). The standard GRACE product are sets of spherical harmonic coefficients describing 

monthly variations of the earth’s gravity field. Two filters are typically used to post‐process the raw 

GRACE harmonic coefficients, a de‐striping filter that removes correlations between certain spherical 

harmonic coefficients, and Gaussian averaging filter with a half‐width of 300 km that reduces random 

errors in higher degree spherical harmonic coefficients not removed by ‘‘de‐striping’’ process; finally, 

the gridded GRACE product used by this paper is obtained by converting spherical coordinates into 

geographic coordinates to create mass variations at 1‐degree globally [Landerer and Swenson, 2012].  A 

direct consequence of such a smoothing process is that the pixel‐wise correlation and the degree of 

centrality are increased. To ensure a fair comparison, a standard practice in the GRACE community is to 

apply the same filtering steps to the model data and, in our case, this is the GLDAS‐NOAH data. 

Therefore, any discrepancy between the networks derived from the two products can be attributed 



largely to model assumptions and deficiencies. Given this background, our answers to the particular 

questions are listed below. 

How does the spatial resolution of the used data products influence the results of the network analyses?  

In general, spatial resolution of a remotely sense product affect the level of details in the calculated 

measures. The spatial resolution of data products does not affect our comparison results because the 

two datasets have gone through the same spatial filtering process and considered to have the same 

“resolution”. The spatial resolution is related to the inherent limitation of the GRACE instrumentation, 

not to any of the network techniques we adopted in this paper.  

Are the results reported in this study "stable" when network nodes are defined in a different way (e.g. 

after coarse graining)?  

Yes. The results are stable because the smoothing process essentially reduces the variations/noise and 

fixes the degree of freedom. We didn’t do coarse graining or upscaling in this work; all the pre‐

processing has been done by NASA/JPL and other distribution centers. Each network node corresponds 

to a pixel in the dataset. The edge‐density‐based correlation cutoff threshold is the only parameter used 

for changing the complexity of networks. Figure 1 of the paper shows that the two products show very 

similar edge density functions. Because the edge density function is rather smooth, a slight change in 

cutoff threshold won’t affect network. Also, the 300‐km filtering radius only introduce local smoothing. 

The global hotspots are preserved.  

How does network structures change when the number of nodes is increased or decreased? 

The number of nodes is fixed in this study, which is equal to the number of non‐Null, 1‐degree pixels 

given in each dataset.  

2) Figure 6 shows GRACE area‐weighted connectivity derived from the maximum of the cross correlation 

functions. Does a corresponding map of the identified lags of the maximum cross correlation reveal any 

interesting information?  

Reply: Accept. We will provide two additional plots in Appendix B of the paper. Figure B1 shows the 

maximum correlations for six basins chosen in Figure 2 and Figure B2 shows the corresponding phase 

lags. Recall these plots show the correlation between basin centroid and all other cells in the TWSA 

dataset. The phase lag plot (normalized by 18) shows that each river basin is in phase with itself and the 

immediate surrounding regions, but there are significant phase shifts between each river basin and 

other river basins.    



Figure B1. Degree centrality inferred from GRACE TWSA for six river basins, based on the maximum 

correlation between each basin centroid and all other cells in the grid, and within a window of [‐18,18] 

months. 



 

Figure B2. Phase lag of maximum correlations obtained for the six river basins shown in Figure B1 

(normalized by 18).  

   



 

3) p. 788, l. 16: "... \bar{L} provides a measure of network integration." I believe that readers not aware 

of the spatial aspect of this network measure will profit from a short interpretation of \bar{L}. For the 

grid‐like arrangements of nodes considered in this work, low values of \bar{L} would indicate a grid of 

nodes which are only locally connected. In a topological sense, this would be a network which is not well 

integrated since it comes along with a large average shortest path length (which may be somewhat 

counterintuitive for some network scientists not investigating spatial networks).  

Reply: In the context of our work, TWS is connected to the global precip patterns, although TWS is not a 

flux and does not move as atmospheric fluxes do. Therefore, it is not surprising that most connections 

are local. Nonetheless, as we mention in the conclusion of the paper, in some regions the connection 

length distribution is bimodal because of long‐range teleconnections (in precipitation). We commented 

in the conclusion that “…In terms of connection lengths, the Middle East region is dominated by local 

connections, whereas regions such as Pacific Northwest, North Central, Colorado River, and North East 

regions of the US, south Africa, and eastern Australia all have strong bimodal connections” 

 

4) p. 796, l. 5: "... which are extended for use with gridded datasets." The authors need to explain how 

exactly they extended the "classic degree of centrality and connection length measures" (l. 4). Is here 

anything novel that is not yet reported in studies on spatial networks?  

Reply: Gridded datasets are special class of spatial networks. The word “classic” is used to distinguish 

networks that do not require area‐weighting. To avoid future confusion, we will rephrase the sentence 

to “The constructed networks are further analyzed using the degree of centrality and connection length 

measures.” 

 

5) p. 796, l. 19: "... and type of TWS connectivity ...". What do authors mean with "type" here?  

Reply: The connection length distribution is bimodal. Loosely speaking, there are two types of 

connections, the local connection and long‐range connection. We will add the following in parentheses 

after the word type, “…(i.e., local connection vs. teleconnection)…” 

 

6) The authors use the notion "complex climate network theory" (CCN theory) at several places in their 

manuscript. Given that the employed network methods are pretty standard, it is unclear to me what 

exactly establishs a new theory. I recommend to refrain from using the notion "CCN theory". Instead, 

authors could use phrases like "applications of complex network theory to climate science" as they 

already did in their previous publications.  

Reply: Accept. We will replace all appearances of “CCN theory” with either “CCN studies” or “CCN 

applications” in the text. 

 



7) p. 787, l. 10: "... between edge (i,j) ...". Perhaps the authors wanted to write: "... between time series i 

and j ...". 

Reply: Accept. We will replace “…between edge (i,j)…”  to “…between time series available at nodes i and 

j …” 

   



Referee #2 

The paper applies complex network approach to study connectivity patterns in the global terrestrial 

water storage (TWS) data. The authors use two complementary TWS data bases – Gravity Recovery and 

Climate Experiment (GRACE) satellite mission data and the Global Land Data Assimilation (GLDAS) NOAH 

model – with the resolution of 1x1 degree. The network is constructed of the land nodes (cells of 1x1 

degree) that might be connected pairwise depending on the correlation of the respective TWS time 

series. The authors analyze several network statistics – neighbor edge density, connectivity, and 

connection length – to characterize the principal river basins of the World and reveal some significant 

teleconnections in the global water dynamics. The findings of the study are consistent with the existing 

climate teleconnection literature, which supports the validity of the proposed approach. At the same 

time, the examined way of treating TWS time series seems to be novel for this type of data and may 

inform a range of studies focused on the global water cycle. In addition, the study quantifies the 

differences between the two examined global databases, which is an important independent 

contribution. The paper is clearly written and effectively organized. The main conclusions seem to be 

valid and robust with respect to the data noise and time series processing.  

Reply: Thank you. 

 

There are some minor remarks, which should be easily addressed by the authors:  

1) p. 786, ll.1‐2: The sentence is unclear. What is the definition of "relevant edges"? Probably the 

authors refer to the nodes (not edges) that are relevant to each other? This sentence should be revised.  

Reply: Agree. The full sentence is rephrased to “In the pruning step, an appropriate similarity threshold 

(\tau) is imposed to the edge set to retain only those connections that exceed the threshold value.” 

2) p. 787, ll.3‐4: It is unclear what is meant by "all meaningful features". Please be more specific here.  

Reply: Agree. The word “meaningful” is vague, we will change to significant. The full sentence is 

rephrased to “Additional statistical analyses (see Section 4) are performed to ensure that all significant 

connections are retained in the constructed networks.” The last paragraph of Section 4.1 also mentions 

“In this study, the threshold  \tau is set to 0.57 because (a) the corresponding fraction of connected 

edges is relatively small (0.036), at which level more than 96% of edges is removed, (b) the edge 

densities of GRACE and GLDAS happen to be the same at that level; and importantly (c) the cutoff 

threshold is still below the maximum correlation exhibited at all separation distances, as suggested 10 

by Fig. 1b. Thus, the selected \tau value ensures that all important network features are represented by 

the constructed networks.” 

3) p.787, l.10: "correlation between edge" probably means "correlation between nodes i and j" 

Reply: Accept. Please see our reply to Comment #7 from Reviewer 1. 

4) p. 787, l.10: Here and in other places: Please define what you mean by "correlation between time 

series". Is this Pearson cross‐correlation at lag zero?  



Reply: On p.787 L.10, the correlation coefficient doesn’t have to be at lag zero, it can also mean 

maximum correlation. Therefore, we didn’t specify the type of correlation there. Instead, on p.790, L18‐

19, we wrote “Note in the discussion below, R is calculated at zero lag unless otherwise specified.”  

5) p. 788, Eq. (5): Do we need this? There is a lot of network statistics that are not used in this study. 

Why does this particular one needs to be discussed with a dedicated equation?  

Reply:  We presented the classic average distance measure to give rationale for using the measure given 

in Eq 6. A direct application of Eq. 5 is computationally demanding when the number of nodes is large. 

6) p. 788, Eq. (6): I’m not sure that this measure can quantify "average distance between node i and all 

other nodes". Do you have examples or theoretical argument in support of Eq. (6) being a proxy for Eq. 

(5)? Importantly, this statement is probably not necessary. Why not introducing Eq. (6) as a connectivity 

measure used in this study, without referring to the true average distance?  

Reply: The description on p. 788, L. 10 is an oversight. We will rephrase it to “In this work, the average 
distance between node i and other nodes, L_i , is approximated according to…” because we only used 
the first neighbors of L_i to calculate the average distance.  We feel that average (topological) distance is 
still an integration measure, instead of a connectivity measure as the reviewer suggested. 
 
A reference for Eq. 6 can be found in Section 3.3.3 in Donges et al. 2009 [a],  
Donges, J. F., Zou, Y., Marwan, N., and Kurths, J.: Complex networks in climate dynamics, Eur. Phys. J.-
Spec. Top., 174, 157–179, 2009a. 
 
7) p. 788, l. 12: "are included", not "is included"  

Reply:  Accept. Changed to “are included”. 

 

8) p. 789, l. 3: "linear interpolation". Do you refer to linear interpolation between the two neighboring 

values? Do you use deterministic or stochastic linear interpolation? What if more than one value in a 

row is missing? Please describe this process in more detail.  

Reply: Linear interpolation is done between datasets of two months. It’s temporal, not spatial. Such an 

approach has often been used in the GRACE community. Of course, one may seek to do cubic spline, but 

luckily as we mentioned on p789, L3, the missing months are not contiguous, so simple linear 

interpolation suffices for the mildly changing TWS time series. 

9) p. 790, l. 24: Why using the maximum correlation coefficient is representative?  

Reply: This is because the network similarity is based on correlation and we want to make sure the 

maximum correlation at all distances are included. As we show on p790, L8‐10, the main purpose of 

Figure 1b is to show that “the cutoff threshold \tau is still below the maximum correlation exhibited at 

all separation distances.” So from Figure 1b we see that the cutoff value is 0.57, while the maximum 

correlations at all distances are greater than 0.57. Therefore, we can at least say that the most 

statistically significant node pairs are included.  

10) p. 791, ll. 8‐9, item (c): How the cutoff is related to the distribution of the correlations? (This is 

related to my comment immediately above)  



Reply: In the edge density method (Donges et al., 2009a), the cutoff is a correlation value. This should 
be clear after reading Section 4.1 

11) p. 791, ll. 10‐11: Please explain what you mean by "all important network features" 

Reply: Please see our reply to Comment # 9 in the above. 
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Abstract

Terrestrial water storage (TWS) exerts a key control in global water, energy, and biogeo-
chemical cycles. Although certain causal relationships exist

:::::::::::
relationship

::::::
exists

:
between

precipitation and TWS, the latter
:::::::
quantity

:
also reflects impacts of anthropogenic activities.

Thus, quantification of the spatial patterns of TWS will not only help to understand feed-5

backs between climate dynamics and hydrologic cycle, but also provide new
:::::::
insights

::::
and

model calibration constraints for improving the current land surface models. In this work ,
the

::::
This

:::::
work

::
is

::::
the

::::
first

::::::::
attempt

::
to

::::::::
quantify

::::
the

:::::::
spatial connectivity of TWS is quantified

using the climate
:::::
using

::::
the

::::::::
complex

:
network theory, which has received broad attention

in the climate modeling community in recent years. Complex networks of TWS anomalies10

are built using two global TWS datasets, a remote-sensing product that is obtained from
the Gravity Recovery and Climate Experiment (GRACE) satellite mission, and a model-
generated dataset from the global land data assimilation system’s NOAH model (GLDAS-
NOAH). Both datasets have 1 ◦×1 ◦

:::
grid

:
resolutions and cover most global land areas

except for permafrost regions. TWS networks are built by first quantifying pairwise cor-15

relation among all valid TWS anomaly time series, and then applying a statistical cutoff
threshold

:::::
cutoff

:::::::::
threshold

::::::::
derived

::::
from

::::
the

:::::
edge

:::::::
density

::::::::
function to retain only the most im-

portant features in the network. Basinwise network connectivity maps are used to illuminate
connectivity of individual river basins with other regions. The constructed network degree
centrality maps show TWS

:::
the

::::::
TWS

::::::::
anaomly

:
hotspots around the globe and the patterns20

are consistent with recent GRACE studies. Parallel analyses of networks constructed using
the two datasets indicate

::::::
reveal that the GLDAS-NOAH model captures many of the spatial

patterns shown by GRACE, although significant discrepancies exist in some regions. Thus,
our results provide important insights for constraining

::::::
further

::::::::::
measures

:::
for

::::::::::::
constraining

:::
the

::::::
current

:
land surface models, especially in data sparse regions.25
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1 Introduction

Terrestrial water storage (TWS) is defined as vertically integrated water of all forms above
and below the Earth’s surface (e.g., surface water, soil moisture, groundwater, and snow
and ice) (Famiglietti, 2004). It is not only a key control of global water, energy, and bio-
geochemical cycles, but also provides an integrated indicator of water availability and uses5

(Houborg et al., 2012; Lettenmaier and Famiglietti, 2006; Long et al., 2013; Voss et al.,
2013; Guentner et al., 2007). Global TWS has been the subject of modeling studies for
decades, however, validation of modeling results has been challenging historically because
of limited availability of in situ data. Since its launch in 2002, the Gravity Recovery and
Climate Experiment (GRACE) satellite mission has provided an unprecedented opportu-10

nity to study TWS remotely. GRACE detects temporal variations of the Earth’s gravity field
which, over land, are mainly caused by short-term variations or TWS anomalies (TWSA).
Numerous studies conducted in the past decade have confirmed the remarkable capability
of GRACE in tracking continental- and regional-scale TWS changes (e.g., Famiglietti et al.,
2011; Sun et al., 2010; Yeh et al., 2006; Long et al., 2013; Rodell et al., 2009; Swenson15

and Wahr, 2003; Han et al., 2005; Long et al., 2014). So far, the monthly TWSA grids de-
rived from GRACE have been used as an independent source of information for hydrologic
model validation (Ramillien et al., 2008; Syed et al., 2008; Chen et al., 2005), calibration
(Sun et al., 2012; Werth et al., 2009; Lo et al., 2010; Sun et al., 2010; Döll et al., 2014), and
data fusion (Zaitchik et al., 2010; Houborg et al., 2012; Sun, 2013; Forman et al., 2012

:
;
:
;
::
Li20

:::
and

::::::::
Rodell,

:::::
2015).

The global GRACE dataset accumulated over the last decade represents
:
is
:
an impor-

tant type of Big Data that can be mined for discovering information of global water/energy
dynamics, and for helping to illuminate connections among major river basins and within
the river basins themselves. Such information will be complementary to existing

::::::::::
physicically25

::::::
based TWS modeling efforts

:::
and

:::
will

::::::::::
potentially

::::::::
provide

:::::::::
calibration

:::::::::::
constraints

:
(e.g., Guent-

ner et al., 2007; Rodell et al., 2004)and will potentially serve as calibration constraints. In
this study, the complex network theory is adopted to represent GRACE TWSA as a network
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with a large set of interconnected nodes. Patterns of TWS
::::::::
construct

::
a

::::::
global

::::::
TWSA

::::::::
network

:::::
using

::::::::
GRACE

:::::
data.

::::
The

:::::::::::
interannual

:::::::
spatial

::::::::
patterns

:::
of

::::::
TWSA

:
are then quantified through

analyses of network topologies.
Complex network theory has long been used by scientists in various disciplines to study

intricate connections in natural and social phenomena (Jackson, 2008; Newman and Gir-5

van, 2004; Rubinov and Sporns, 2010). In recent years, the complex climate network
::::
field

::
of

::::::::
complex

::::::::
climate

:::::::::
networks

:
(CCN)theory, which is an extension of the

:
,
::::::
which

::::::::
involves

:::::::::::
applications

::
of

:
traditional complex network analyses to climate systems (Tsonis and Roeb-

ber, 2004; Tsonis et al., 2006), has attracted significant attention. In CCN theory
::::::
typical

:::::
CCN

:::::::::::
applications, cells of a gridded dataset are treated

::::::::
deemed as nodes of a

::::::::
complex network,10

and links (or edges) between nodes are established on the basis of statistical similarity of
the time series associated with the cells. After a climate network is constructed, various
descriptive measures derived from the classical complex network theory are then applied
to quantify network topologies (Donges et al., 2009b; Tsonis et al., 2006; Steinhaeuser
et al., 2011). One of the major

:::::
main

:
findings from the previous CCN studies is that cli-15

mate networks manifest a “small-world” network property, akin to networks appear in many
other fields (e.g., social networks). In CCN, this can be contributed to the existence of long-
range connections that stabilize the climate system and enhance energy transfers within it
(Donges et al., 2009a, b, 2011). TWS is closely intertwined with soil-vegetation-atmosphere
interactions and is thus expected to show similar spatiotemporal patterns as observed from20

climate networks (e.g., precipitation network); however, it is well known that climate only
plays a partial role in TWS changes. Land use changes and other anthropogenic activities
(e.g., deforestation, aquifer mining, and water structures) increasingly stress water avail-
ability in many parts of the world and have been shown to produce global-scale impacts
on the terrestrial water cycle (Vörösmarty and Sahagian, 2000). Such aspects are usually25

difficult to be fully captured and quantified without extensive in situ monitoring data.
::::
The

::::::
global

:::::::::
coverage

::
of

::::::::
GRACE

:::::::
TWSA,

:::::
thus,

:::::::::
becomes

::::::::::
especially

::::::::::
important.

Different from the global circulation model outputs analyzed by many previous CCN stud-
ies, GRACE TWSA is a remote sensing productthat is subjected to errors ,

:::::::::::
subjecting

::
to

4
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:::::
errors

:::::
and

::::::::::::
uncertainties

:
caused by instrumentation and data processing. As a result, the

actual spatial resolution of GRACE TWSA is not 1◦× 1◦, but much coarser (Houborg et al.,
2012). In other words, the intrinsic degrees of freedom of the GRACE TWS are much less
than its grid dimension. An important question is then how well a complex network con-
structed using

:::
the

:
GRACE TWSA can reflect

:::::::::
represent the salient features of the global ter-5

restrial water cycle. Importantly, how these patterns can be corroborated,
:::
at

:::::
least

::::::::
partially,

:::::
using

:::::
other

::::::::
existing

:::::::::::
information. Toward this end,

::
we

::::
use

:
the TWS dataset (1◦× 1◦) sim-

ulated by global land data assimilation system (GLDAS) is used for comparison. GLDAS
is a global terrestrial modeling system jointly developed by US National Aeronautics and
Space Administration’s (NASA) Goddard Space Flight Center and US National Oceanic and10

Atmospheric Administration’s National Centers for Environmental Prediction. GLDAS incor-
porates satellite and in situ observations to produce optimal fields of land surface states and
fluxes in near real time (Rodell et al., 2004). Although GLDAS is only a surrogate of in situ
observations that are ultimately required to validate the GRACE results, previous studies
have shown that GLDAS represents the magnitudes and variability of TWS sufficiently well15

(Syed et al., 2008). Thus, GLDAS represents a valuable independent source of informa-
tion for validating GRACE results and has been used by a number of global-scale GRACE
studies (e.g., Syed et al., 2008; Landerer and Swenson, 2012; Chen et al., 2005). In this
study, the network measures inferred from GRACE data are compared to those built from
the GLDAS outputs to cross-examine the two products.

::::
Note

::::
that

::::::::
GLDAS

:::::
does

::::
not

:::::
have20

::
an

:::::::
explicit

::::::::::::::
representation

:::
of

::::::::::::
groundwater

::::::::
storage,

:::
an

::::::
aspect

:::::
that

::::::
needs

::
to

:::
be

:::::
kept

::
in

:::::
mind

:::::
when

::::::::::
performing

::::::::::::::
comparisions.

2 Methodology

2.1 Network construction

A network is commonly represented by a graph G(V,E), which is specified by its node set25

V = {1, . . . ,N} and edge set E , with N the number of nodes. Thus, the number of possible

5



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

edges in an undirected graph (meaning the links are non-directional) is N(N − 1)/2. In the
current context, each node corresponds to a grid cell at which a valid monthly time series is
available and N is the total number of such cells in a gridded dataset. Construction of a net-
work generally proceeds in two steps, network growth and pruning. In the network growth
step, similarity between all potential node pairs (i.e., edges) in graph G is quantified. Com-5

mon measures of similarity are statistical correlation (either Pearson or Spearman), mutual
information, and synchronization (Boers et al., 2013; Donges et al., 2009a). In the pruning
step, an appropriate similarity threshold (τ ) is imposed to the edge set to retain only those
edges that are considered relevant to each other, out of all possible edges

:::::::::::
connections

::::
that

:::::::
exceed

:::
the

::::::::::
threshold. The main purpose of network pruning is to improve network analy-10

sis efficiency. If the correlation between two time series is used as a measure of statistical
similarity, then τ represents the minimum correlation coefficient (R) above which a pair of
nodes is considered connected. The absolute value of correlation is used such that both
strongly positive and negative correlations are counted.

Several methods have been used in the CCN literature to determine τ . In the significance15

testing method (Tsonis et al., 2006), τ is based on the two-sided Student’s t test. The critical
t value, tc, for a given sample size ns and user-defined significance level α are determined
using the Student’s t cumulative distribution function (CDF), from which the value of τ can
be solved

tc =
τ
√
ns− 2√
1− τ2

. (1)20

A similar method uses the probability value (i.e., p value) of test statistics directly: a pair
of nodes is considered connected if the p value is less than a critical value; for instance,
Steinhaeuser et al. (2011) set the critical value to 10−10. Yet another method defines τ from
an edge density function ρ(τ) defined as

ρ(τ) =
nc(τ)

N(N − 1)/2
, (2)25

6
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where nc is the number of active edges retained in a network when the threshold is set to
τ . Thus, edge density is closely related to the CDF of R.

Obviously, all methods involve certain degree of subjectivity. The selection of τ thus in-
curs a tradeoff between network maneuverability and preservation of network features: if
too many edges are included, the main network features will be obscured, not to mention5

a significant increase in computational effort required to characterize a large network. In this
work, the edge density method is used because it allows a direct comparison of network
properties computed from different datasets (Donges et al., 2009a). Additional statistical
analyses (see Sect. 4) are performed to ensure that all meaningful

::::::::::
statistically

::::::::::
significant

features are retained in the constructed networks.10

2.2 Network measures

The outcome of network construction process is a Boolean-valued, symmetric N ×N ma-
trix, referred to as the adjacency matrix and denoted by A. Elements of A, aij , are set
according to the following rule

aij =

{
1, if |Rij |> τ
0, otherwise

}
(3)15

in which |Rij | is the absolute value of correlation between edge (i, j)
::::
time

::::::
series

::
at

:::::::
nodes

:
i

:::
and

::
j. A number of network measures can then be applied on A to quantify network topol-

ogy. The main metrics adopted in this work include the degree of centrality and connection
length.

The degree of centrality of a node, ki, is defined as the number of first neighbors of node20

i and reflects the importance of node i in a network. Regions having high ki values are
referred to as “supernodes” in network theory because these nodes tend to have not only
local connections, but also long-range connections or teleconnections. However, ki itself
does not reveal the actual type of connections. Because of nonuniformity of cell areas at
different latitudes, the degree of centrality ki is usually weighted by cell areas, leading to25

7
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the area-weighted connectivity,
:
ACi (Tsonis et al., 2006; Heitzig et al., 2012),

ACi =
∑
j∈ni

cosλj
/ N∑

j=1

cosλj , i= 1, . . . ,N (4)

where ni is the set of all first neighbors of the node i, and λj is the latitude of its j-th first
neighbor. Thus, ACi is a normalized value representing the fraction of the Earth’s surface
area that a node is connected to.5

A classic measure of network integration is the average distance between node i and all
other nodes, Di, and is defined as (Rubinov and Sporns, 2010)

Di =
1

N − 1

∑
j∈V,j 6=i

dij , i= 1, . . . ,N, (5)

where dij is the number of edges traversed along the shortest path between node pair (i, j).
If (i, j) is not connected, dij is defined as infinity. The characteristic path length of the net-10

work is obtained by taking average of all Di and it represents the average number of edges
to be traversed along the distance between two randomly selected nodes in a network.
Calculation of pairwise shortest path lengths becomes computationally expensive when the
number of node pairs is large. In this work, the average distance between node i and all
other nodes, Li, is quantified

:::::::::::::
approximated according to15

Li =
1

ki

∑
j∈ni

lij , (6)

where only the first neighbors of node i is included
:::
are

::::::::
included

::
in

:::
the

:::::::::::
calculation, and lij is

the physical distance between node pair (i, j) measured by using the respective cell-center
latitudes and longitudes, (λi,φi) and (λj ,φj). The physical-based characteristic path length
of the network, L, is simply the average of all Li (i= 1, . . . ,N ). The probability distribution20

of Li provides a sense of the average edge lengths in a network and L provides a measure
of network integration.

8
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3 Data and data processing

The GRACE TWSA dataset used in this study was downloaded from Jet Propulsion Labora-
tory (JPL)’s Tellus site, (http://grace.jpl.nasa.gov/index.cfm). The dataset is based on RL05
GRACE solutions (in the form of spherical harmonics) released by the Center for Space
Studies at the University of Texas Austin. It includes 121 epochs from January 2003 to5

July 2013 at approximately monthly intervals. The 6 missing months, which are not contigu-
ous, were reconstructed using linear interpolation

:::::::::
(temporal

:::::
only). The grid dimensions are

360× 180 and ocean area is masked out, resulting ∼ 25000 cells in each TWSA grid. In
generating the gridded TWSA product, a number of postprocessing algorithms have been
applied, as documented in details in Landerer and Swenson (2012). In particular, a destrip-10

ing filter is applied to minimize the effect of north–south-oriented stripes in GRACE monthly
solutions, and a 300 km Gaussian filter is then used to reduce random errors in high-degree
spherical harmonic coefficients not removed by destriping. The GRACE gravity field solu-
tions are typically truncated at a spectral degree less than 60. To restore signal attenuation
caused by truncation and filtering, the JPL dataset also includes a spatially distributed and15

temporally invariant scaling factor field. This scaling factor field is not used in this study
because it does not affect pairwise correlations.

Outputs from GLDAS’s NOAH model were obtained from NASA (http://disc.sci.gsfc.nasa.
gov/services/grads-gds/gldas). GLDAS covers latitudes between −60◦ and 90◦, and does
not model permafrost regions such as Greenland and Antarctica (Rodell et al., 2004). Its20

grid dimensions are 360× 150 and the temporal span is from January 1979 to the present
(GLDAS V1). The number of cells in each GLDAS monthly grid is N = 14540. The GLDAS
TWS is defined as the sum of water mass from all four soil layers represented by NOAH
(up to 2m depth) and snow water equivalent. Thus, GLDAS TWS mainly includes surface
and root zone storages,

::::
but

::::
not

::::
the

:::::::
deeper

::::::::::::
groundwater

::::::::
stroage. The GRACE grids are25

masked using the smaller GLDAS coverage during network construction. To ensure a fair

:::::::::
consistent

:
comparison, the GLDAS dataset was processed using the same truncation and

9

http://grace.jpl.nasa.gov/index.cfm
http://disc.sci.gsfc.nasa.gov/services/grads-gds/gldas
http://disc.sci.gsfc.nasa.gov/services/grads-gds/gldas
http://disc.sci.gsfc.nasa.gov/services/grads-gds/gldas
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filtering techniques applied to the GRACE data, which has been a standard practice in the
literature (e.g., Chen et al., 2010; Rodell et al., 2009).

Monthly time series contains high-frequency noise. Because the main interest in this
study is on interannual correlations of TWSA, the high frequency noise in each TWSA
time series are removed. Several methods have been used for such purpose. The z-score5

method has been employed in the CCN literature to remove seasonal variability (Donges
et al., 2009b; Steinbach et al., 2003; Tsonis et al., 2006). It entails normalizing each monthly
data point using the mean and standard deviation calculated for the corresponding month
and over the entire record length. The least squares method, which is extensively used
in the GRACE literature (e.g., Yeh et al., 2006; Crowley et al., 2006), models the intraan-10

nual variability using Fourier series (two annual sine/cosine terms and two semi-annual
sine/cosine terms) and then removes the variability, together with a slowly moving trend.
Our numerical tests show the two methods give very similar results. Lags existing between
time series may weaken linear correlation. Thus, to examine the effect of temporal lags, the
same interannual correlation analysis is repeated using a temporal window of 36 months15

(i.e., the maximum correlation observed within ±1.5 years of the zero lag).

4 Results and discussion

4.1 Edge density

The number of possible edges represented by the TWS datasets is more than 100 million for
N = 14540. After removing seasonal trends from GRACE and GLDAS and calculating the20

correlation coefficient R for all node pairs, the edge density method is applied to determine
a similarity threshold τ . Note in the discussion below, R is calculated at zero lag unless
otherwise specified.

Figure 1a shows edge density functions constructed using GRACE and GLDAS TWS
data, respectively, both are monotonically decreasing (i.e., fewer connected edges at higher25

τ values) and are similar in shape. As mentioned in Sect. 2, edge density provides an in-

10
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dicator of the fraction of connected edges at different threshold values. Figure 1b plots the
maximum correlation coefficient as a function of edge length, which is defined as the short-
est physical distance between a pair of nodes in this work. To arrive at Fig. 1b, all R values
are first sorted according to nodal separation distances, a bin width of 250 km is applied to
the resulting distribution, and the maximum R value within each bin is recorded. Figure 1b5

suggests that the maximum correlation stays relatively high (> 0.7) for most distances. Re-
call that the main purpose of network pruning is to improve the computational efficiency of
network characterization while preserving the most important

:::::::::
significant

:
network features.

In this study,
:::
we

::::
set the threshold τ is set to 0.57 because (a) the corresponding fraction

of connected edges is relatively small (0.036), at which level more than 96 % of edges is10

removed, (b) the edge densities of GRACE and GLDAS happen to be the same at that level;
and importantly (c) the cutoff τ threshold is still below the maximum correlation exhibited
at all separation distances, as suggested by Fig. 1b. Thus, the selected τ value ensures
that all important

::::::::::
statistically

:::::::::
signficant

:
network features are represented by

:::::::
retained

:::
in the

constructed networks.15

4.2 Basin analyses

A basin analysis is useful for helping visualize the TWSA connection patterns at the basin
level.

:::
As

::::::
some

::::::::::
examples, Figure 2 shows the results for six river basins around the world.

To generate a plot in Fig. 2, a cell is first fixed, and all its edges are colored according
to the actual R (not the absolute values). For our purpose, the centroid of each basin is20

used. While the basin centroid may not be representative of the connection patterns of an
entire basin (especially when the basin spans several climatic regions), it serves as a basis
for comparing multiple basins at a qualitative level. Figure 3 applies the cutoff threshold τ
defined in Fig. 1 to all plots in Fig. 2. Results suggest that interannual TWSA connections
in Amazon and Congo Basins are dominated by local connections. The mid-latitude basins25

(Ganges, Mississippi, and Tigris) generally show more teleconnections, although Yangtze
is an exception. In the case of Tigris basin, a large number of strongly positive and negative

11
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correlations are observed and the local connections extend far beyond the basin boundary.
A detailed interpretation of this observation will be given in the next section.

Extensive teleconnection is an advantage from forecasting perspective because climate
indices, such as El Niño–Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO),
can be used as possible indicators of future changes. For those basins without strong tele-5

connection, water resources planning must rely mainly on regional data. Such distinction
sheds light on the significance of GRACE data to long-term basin planning and natural
hazard mitigation strategies, as we will elaborate in the following sections.

As a sensitivity study, Fig. 4 (left column) shows the results of basin analysis for Mis-
sissippi basin, the largest basin in North America, using different thresholds corresponding10

to τ values of 0.41, 0.57 (the base case), and 0.76, respectively. The corresponding edge
density is labeled in the figure. Because the cutoff threshold increases as ρ decreases,
a significant reduction in number of edges can be observed. For comparison, the modeled
TWS connections obtained from GLDAS are provided in the second column of Fig. 4. In
general, the connections modeled by GLDAS are much weaker (i.e., smaller in spatial ex-15

tent) than those obtained from GRACE. In some cases, the locations of connections are
also different. For example, the negative correlation obtained by GLDAS in North Africa
for ρ= 0.1 is not seen by GRACE. The complex networks thus provide a useful tool for
examining the agreement, or the lack of it, between GLDAS and GRACE.

4.3 Connectivity20

Using the selected cutoff τ , a network adjacency matrix A is formed and various network
measures described under Sect. 2 are applied to quantify network topology. Figure 5a
shows the area-weighted connectivity map constructed using GRACE data. On the map,
red colors highlight regions of high connectivity. Recall that a high degree of connectivity
indicates that a node interacts strongly with the rest of the nodes in a network (i.e., a su-25

pernode); however, the connectivity map itself does not tell the type of connections per se,
and needs to be analyzed jointly with the connection length map to be shown in the next
section. The largest cluster of supernodes appears in the Middle East region, where the

12
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connected neighbors account for more than 0.16 of the global area. To a lesser extent, the
Pacific Northwest and east coast of the US, southern Africa, southern South America, and
eastern Australia show smaller supernode regions. In contrast, most of Asia, central US,
and Europe exhibit little or no connectivity (blue color). These observations are consistent
with patterns observed during basin analyses (see Figs. 3 and 4).5

The supernode regions shown in Fig. 5a reflect the superposed effects of climate vari-
ations and anthropogenic activities. These can be explained in terms of global precipita-
tion and atmospheric circulation patterns. In general, the poorly connected regions have
stronger precipitation variations over shorter spatial scales, leading to the emergence of
high precipitation gradients which, in turn, are responsible for regional extreme events that10

are more localized in time and space (Scarsoglio et al., 2013). Those with high connectivity
tend to be directly influenced by ocean and climatic oscillations (e.g., ENSO and NAO).
Kahya and Dracup (1993) studied streamflow variations in the contiguous US and identi-
fied Northeast, North Central, Pacific Northwest, and Gulf of Mexico states as regions with
potentially significant streamflow responses to ENSO forcing. These four regions can be15

easily identified on Fig. 5a, among which the Gulf of Mexico region shows the weakest con-
nection. Similarly, Chiew et al. (1998) reported that the ENSO can be used to help forecast
spring runoff in south-east Australia and summer runoff in the north-east and east coasts
of Australia. This teleconnection pattern is also indicated clearly by Fig. 5a.

At the global scale, Dai et al. (2009) studied the monthly streamflow records of the world’s20

925 largest ocean-reaching rivers from 1948 to 2004. They concluded that (a) the interan-
nual variations of streamflows are correlated with the ENSO events for discharge into the
Atlantic, Pacific, Indian, and the global ocean as a whole and (b) the effects of anthropogenic
activities on annual streamflow are likely to be small compared to those of climate varia-
tions; however, anthropogenic activities can create more disturbances in arid and semi-arid25

regions, where the discharge magnitudes are low (e.g., Indus, Yellow, and Tigris–Euphrates
River Basin). To elaborate the latter point further, Fig. A1 in Appendix A plots the proportion
of total renewable water resources withdrawn by country for human uses in the agricultural,
municipal, and industrial sectors, using long-term data compiled by the Food Agricultural

13
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Organization of United Nations. Figure A1 indicates that the Middle East and North African
countries show the highest withdraw proportions. In a recent GRACE study focusing on
north-central Middle East, Voss et al. (2013) reported that GRACE data show an “alarm-
ing rate” of decrease in TWS of approximately 143.6 km3 during 2003–2009. Thus, the
resemblance between Fig. 5a and Fig. A1 in those regions is not coincidental and can be5

corroborated using multiple sources. Because interannual TWS anomalies are well con-
nected in clustered supernode regions, these regions tend to exhibit more vulnerability to
both climate and human-induced disturbances.

Having elaborated the close relationship between GRACE TWSA and climate patterns,
it is important to point out that the TWS also includes effects of soil moisture and ground-10

water storage (mostly unconfined aquifers) changes that may not synchronize with climate
patterns.

Figure 5b shows the same area-weighted connectivity map, but constructed using the
GLDAS-NOAH outputs. Although GLDAS-NOAH shows many of the similar patterns de-
tected by GRACE, it also indicates stronger connectivity in Arabian Peninsula, North Africa,15

and in middle South America, and much weaker connectivity in southern Africa. These
discrepancies may be caused by GLDAS-NOAH’s parameterization and other errors. The
other main reason is that GLDAS does not resolve groundwater storage well

:::
the

::::
lack

:::
of

:::::::::::::
representation

:::
of

:::
the

:::::::
deeper

::::::::::::
groundwater

:::::::
storage

::
in

::::::::
GLDAS. The discrepancies highlighted

here provide additional spatial calibration constraints for land surface models.
::
In

::::::
areas20

::::::::::
dominated

:::
by

:::::::
shallow

:::::
TWS

:::::::::::::
components,

:::::::
GLDAS

:::::::
needs

::
to

::::::
show

::::::
similar

:::::::::
patterns

::
as

::::::
those

:::::::
derived

:::::
from

:::::::::
GRACE,

::::::::
whereas

::::::::::::::
discrepancies

::::
are

:::::
only

:::::::::
expected

::
in

::::::
areas

:::::::::::
dominated

:::
by

:::::
deep

:::::
TWS

::::::::::::
components

::::::
and/or

:::::::::
impacted

:::
by

:::::::::
signficant

::::::::::::::
anthropogenic

:::::::::
activities. We empha-

size here the connectivity maps shown in Fig. 5 are for TWSA. Thus, the high-precipitation
areas (e.g., Amazon basin) do not necessarily exhibit high anomaly connectivity after re-25

moving the intraannual variability.
So far, all results have been based on zero-lag correlations. The effect of temporal lag on

connectivity is examined in Fig. 6, in which the connectivity map is built using the maximum
(absolute) correlation found between −18 and +18 monthly lags of each node pair. The

14



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

figure suggests that incorporation of lagged correlation further strengthens connectivity.
The supernode regions are

:::::
more

:
expanded in space, notably in eastern Australia and in

the Colorado River Basin and Gulf Coast states in the US.
::::::::
Further,

:::::::::
Appendix

::
B

:::::::
shows

:::
the

:::::::::
maximum

:::::::::::
correlation

::::
and

::::::
phase

:::::
lags

:::
for

::::
the

:::
six

:::::::
basins

::::::::
studied

::
in

::::
Fig.

:::
2,

::::::
which

::::::::
suggest

:::
that

::::::
each

::::
river

::::::
basin

::
is

:::
in

::::::
phase

::::
with

::::::
most

::::
cells

:::
in

:::::
itself

::::
and

::::
the

::::::::::
immediate

:::::::::::::
surroundings.5

:::::::::
However,

:::::::::
significant

:::::::
phase

::::
lags

:::::
exist

::::::::
between

:::::
each

:::::
river

:::::
basin

::::
and

::::::
other

::::
river

::::::::
basins.

4.4 Connection length

Figure 7a shows maps of the physical-based average nodal connection length Li (i=
1, . . . ,N ). Nodes that exhibit the longest connection lengths are mostly located in south-
ern part of South America (∼ 12000 km). Other regions with relatively long connections are10

found in Pacific Northwest, North Central, Colorado River, and North East regions of the
US, south Africa, and eastern Australia. Interestingly, the Middle East region is mostly char-
acterized by connection lengths less than 5000 km; thus, the supernodes in that region are
dominated by local connections. The connection length patterns observed here support the
previous discussions in the context of teleconnection and forecasting potential. Importantly,15

the connection length map can help evaluate the influence of teleconnection on TWS for
a particular region.

The average nodal connection length map constructed using GLDAS data suggests much
wider connections, although most are local. Again this can be attributed to model param-
eterization schemes, forcing resolution, and spatial correlation constraints, as discussed20

before.
The probability distribution of the average connection length, Li, is shown in Fig. 8. Most

nodes in the GRACE network are dominated by short-range edges with lengths less than
2000 km, although several other smaller modes appear in the 4000–6000, 6000–8000, and
8000–10 000 km ranges. In contrast, the GLDAS network shows a weaker local connection25

mode in < 2000 km range, but a wider and more persistent second mode in 4000–6000 km.
Interestingly, the two modes of GLDAS coincide with those of GRACE. The characteristic
path length (L) is 2300 km for GRACE and 4000 km for GLDAS, respectively.

15
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5 Summary and conclusions

In this work, the CCN
::::::::
complex

::::::::
network

:
theory is applied to analyzing

::::::
spatial

:
connection

patterns in TWS. A comparative study is conducted using two global TWS datasets derived
from GRACE and GLDAS, respectively, with an emphasis on interannual variability. Both
datasets are large and have more than 100 million potential connections. An edge-density5

method is adopted to define an appropriate network pruning threshold. The constructed
networks are further analyzed using the classic degree of centrality and connection length
measures, which are extended for use with gridded datasets.

Our results show that CCN theory provides a powerful tool for characterizing
::::::::
complex

::::::::
networks

::::
and

::::::::
GRACE

:::::::
TWSA

::::
can

:::
be

:::::
used

:::
to

:::::::
identify global TWSA hotspots or supernode10

regions. The area-weighted connectivity is a local measure that reveals nodes with a large
number of connections (edges), whereas the connection length helps identify the dominat-
ing type of connections .

::::
(i.e.,

:::::
local

:::::::::::
connections

:::
vs.

:::::::::::::::::
teleconnections). In terms of connectiv-

ity, the largest cluster of supernodes appears in the Middle East region, while other promi-
nent ones are found in Pacific Northwest and eastern US, southern Africa, southern South15

America, and eastern Australia. In terms of connection lengths, the Middle East region is
dominated by local connections, whereas regions such as Pacific Northwest, North Central,
Colorado River, and North East regions of the US, south Africa, and eastern Australia all
have strong bimodal connections.

While many of the TWSA network features found here can be explained by established20

climate teleconnection theories, the TWS, as an integrated indicator of global water storage,
is unique in its own way. It shows the impact of both climate and anthropogenic activities.
Knowledge of both the strength and type of TWS connectivity can help identify useful TWS
predictors and provide insight to further improve current land surface models.

GLDAS outputs have been used extensively in validating GRACE results at various25

scales. Less focused is the consistency of spatial correlation between
:::::::::::
represented

:::
by

GLDAS and GRACE data. Results from this study statistically quantify the
::::::::
similarity

::::
and

discrepancies between the two datasets.
:
In

:::::
this

:::::
case,

::::
the

::::::::::
observed

:::::::::::::
discrepancies

:::::
may

16
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::
be

::::::::::
attributed

::
to

::::::::
missing

:::::::
surface

::::
and

:::::::::::::
groundwater

::::::::::::
components

::
in

::::
the

:::::::
GLDAS

:::::::
model,

:::
or

::
to

:::::::
GRACE

:::::::::::::
uncertainties

::::::
(Syed

::
et

::::
al.,

::::::
2008;

::
Li

::::
and

:::::::
Rodell,

:::::::
2015).

:::::::::
Although

:::::
data

:::::::::::
assimilation

:::
has

::::::
been

:::::
used

:::
to

:::::::
reduce

:::::::::::::
discrepancies

:::
in

:::::
land

:::::::
surface

::::::::
models,

::::
the

::::::::::::
geometrical,

:::::::
spatial

::::::::::
connection

::::::::
patterns

:::::
have

::::
not

:::::
been

::::::
used

:::::::
before.

:
A main conclusion

:::::
from

::::
this

:::::
work is that

network connectivity measures should be incorporated as an additional model calibration5

and validation criterion when developing the future-generation of GLDAS models.

Appendix A

According to FAO, the proportion of total renewable water resources withdrawn is defined
as the total volume of fresh groundwater and surface water withdrawn from their sources for
human use (in the agricultural, municipal and industrial sectors), expressed as a percentage10

of the total actual renewable water resources. The data used in Fig. A1 are compiled from
2005 data published by FAO http://www.fao.org/nr/aquastat. In several cases where 2005
data are not available, 2000 data are used as best estimates.

:::::::::
Appendix

:::
B

:::
Fig.

::::
B1

::::::
shows

::::
the

::::::::::
maximum

:::::::::::
correlations

:::
for

::::
the

:::
six

:::::::
basins

:::::::
chosen

:::
in

::::
Fig.

::
2,

:::::
and

::::
Fig.

:::
B215

::::::
shows

:::
the

::::::::::::::
corresponding

::::::
phase

:::::
lags.

::::::
Recall

::::::
these

:::::
plots

:::::
show

:::
the

:::::::::::
correlation

::::::::
between

:::::
each

:::::
basin

::::::::
centroid

::::
and

::
all

::::::
other

::::
cells

::
in

::::
the

::::::
TWSA

::::::::
dataset.

::::
The

::::::
phase

:::
lag

::::
plot

::::::::::::
(normalized

::
by

:::
18

::::::::
months)

::::::
shows

::::
that

:::::
each

:::::
river

:::::
basin

:::
is

::
in

::::::
phase

::::
with

:::::
most

:::::
cells

::
in
:::::
itself

::::
and

::::
the

::::::::::
immediate

:::::::::::
surrounding

::::::::
regions,

:::
but

::::::
there

:::
can

:::
be

::::::::::
significant

::::::
phase

::::::
shifts

::::::::
between

:::::
each

:::::
river

:::::
basin

::::
and

:::::
other

::::
river

:::::::
basins.

:
20

17
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Figure 1. (a) Edge density function ρ(τ) of GRACE and GLDAS (the value of τ selected for network
pruning is 0.57, corresponding to an edge density 0.036); (b) maximum correlation as a function of
edge lengths.
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Figure 2. Patterns of connection inferred from GRACE TWSA for six river basins, in which connec-
tion pattern is based on correlation between the basin centroid and all other cells in the grid.
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Figure 3. GRACE connection patterns after cutoff threshold τ = 0.57 is applied (the green solid line
delineates basin boundaries).
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Figure 4. Sensitivity of connection patterns to cutoff threshold, demonstrated using Mississippi River
Basin’s centroid. Left column, GRACE results; right column, GLDAS results.

25



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Figure 5. Area-weighted connectivity map obtained using (a) GRACE and (b) GLDAS data (zero-lag
correlation).
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Figure 6. Effect of lagged-correlation on GRACE area-weighted connectivity, where the window of
lagged correlation is [−18, 18] months.
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Figure 7. Map of average node connection lengths derived based on (a) GRACE and (b) GLDAS.
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Figure 8. Distribution of average edge lengths in GRACE and GLDAS networks, where Li denotes
the average distance between node i and its neighbors.
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Figure A1. Proportion of total renewable water resources used by country (Data source: Food Agri-
cultural Organization (FAO) of the United Nations, http://www.fao.org/nr/aquastat)
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Figure B1.
::::::
Degree

:::::::::
centrality

:::::::
inferred

:::::
from

:::::::
GRACE

:::::::
TWSA

:::
for

:::
six

:::::
river

:::::::
basins,

::::::
based

:::
on

::::
the

::::::::
maximum

::::::::::
correlation

:::::::
between

:::::
each

:::::
basin

:::::::
centroid

:::
and

:::
all

:::::
other

::::
cells

::
in

:::
the

::::
grid,

::::
and

:::::
within

:
a
:::::::
window

::
of [

::::::
−18,18]

:::::::
months.
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Figure B2.
:::::
Phase

:::
lag

::
of
:::::::::
maximum

:::::::::::
correlations

:::::::
obtained

:::
for

:::
the

:::
six

::::
river

::::::
basins

::::::
shown

::
in
::::::
Figure

:::
B1

::::::::::
(normalized

::
by

::::
18).
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