Referee #1

In their manuscript "Global terrestrial water storage connectivity revealed using complex climate
network analyses", the authors investigate correlation networks which reflect mutual dependencies
between the temporal variation of terrestrial water storage at different locations. Estimates of
terrestrial water storage (TWS) are based on two data products, the GRACE satellite mission and the
NOAH model (GLDAS-NOAH). The network topology indicates different river basins to show different
connectivity patterns, pointing to teleconnection structures which seem to be present for some basins
(Ganges, Mississippi, Tigris) but not for others (Amazon, Congo, Yangtze). Maps of average node
connection length (in Euclidean sense) reveal regions with long connections (such as the Pacific
Northwest) and those with short connections (such as the Middle East). Nodes of large area-weighted
connectivity (coined "supernode regions" by the authors) seem to reflect combined effects of climate
variations and anthropogenic activities. The manuscript provides a network perspective on global
terrestrial water storage which is a relevant and timely topic for readers of Nonlinear Processes in
Geophysics. Combining insights gained from the network analysis might possibly help to identify TWS
predictors and to improve land surface models. The employed methods - network measures as well as
network inference by thresholding a matrix of Pearson correlation coefficients - are not new and have
been frequently applied in many different scientific disciplines. Applying these methods to GRACE and
GLDAS data products establishes the novelty of this work. | have only minor remarks and recommend
publication after revision.

Reply: Thank you.

Minor remarks:

1) There is a certain ambiguity when defining network nodes which is natural for such datasets.
Nevertheless, how does the spatial resolution of the used data products influence the results of the
network analyses? Are the results reported in this study "stable" when network nodes are defined in a
different way (e.g. after coarse graining)? How does network structures change when the number of
nodes is increased or decreased? | expect the maximum number of reasonably defined nodes of a
network to be constrained by the numbers of degrees of freedom captured in the data (which, in case of
GRACE, seems to be related to the finite resolution of the measuring instruments).

Reply: These are excellent questions. Before addressing these questions, we first present a background
on GRACE data processing done by distribution centers (this information is also available under Section
3 of the paper). The standard GRACE product are sets of spherical harmonic coefficients describing
monthly variations of the earth’s gravity field. Two filters are typically used to post-process the raw
GRACE harmonic coefficients, a de-striping filter that removes correlations between certain spherical
harmonic coefficients, and Gaussian averaging filter with a half-width of 300 km that reduces random
errors in higher degree spherical harmonic coefficients not removed by ““de-striping’’ process; finally,
the gridded GRACE product used by this paper is obtained by converting spherical coordinates into
geographic coordinates to create mass variations at 1-degree globally [Landerer and Swenson, 2012]. A
direct consequence of such a smoothing process is that the pixel-wise correlation and the degree of
centrality are increased. To ensure a fair comparison, a standard practice in the GRACE community is to
apply the same filtering steps to the model data and, in our case, this is the GLDAS-NOAH data.
Therefore, any discrepancy between the networks derived from the two products can be attributed




largely to model assumptions and deficiencies. Given this background, our answers to the particular
guestions are listed below.

How does the spatial resolution of the used data products influence the results of the network analyses?

In general, spatial resolution of a remotely sense product affect the level of details in the calculated
measures. The spatial resolution of data products does not affect our comparison results because the
two datasets have gone through the same spatial filtering process and considered to have the same
“resolution”. The spatial resolution is related to the inherent limitation of the GRACE instrumentation,
not to any of the network techniques we adopted in this paper.

Are the results reported in this study "stable" when network nodes are defined in a different way (e.g.
after coarse graining)?

Yes. The results are stable because the smoothing process essentially reduces the variations/noise and
fixes the degree of freedom. We didn’t do coarse graining or upscaling in this work; all the pre-
processing has been done by NASA/JPL and other distribution centers. Each network node corresponds
to a pixel in the dataset. The edge-density-based correlation cutoff threshold is the only parameter used
for changing the complexity of networks. Figure 1 of the paper shows that the two products show very
similar edge density functions. Because the edge density function is rather smooth, a slight change in
cutoff threshold won’t affect network. Also, the 300-km filtering radius only introduce local smoothing.
The global hotspots are preserved.

How does network structures change when the number of nodes is increased or decreased?

The number of nodes is fixed in this study, which is equal to the number of non-Null, 1-degree pixels
given in each dataset.

2) Figure 6 shows GRACE area-weighted connectivity derived from the maximum of the cross correlation
functions. Does a corresponding map of the identified lags of the maximum cross correlation reveal any
interesting information?

Reply: Accept. We will provide two additional plots in Appendix B of the paper. Figure B1 shows the
maximum correlations for six basins chosen in Figure 2 and Figure B2 shows the corresponding phase
lags. Recall these plots show the correlation between basin centroid and all other cells in the TWSA
dataset. The phase lag plot (normalized by 18) shows that each river basin is in phase with itself and the
immediate surrounding regions, but there are significant phase shifts between each river basin and
other river basins.



Ganges Mississippi

Figure B1. Degree centrality inferred from GRACE TWSA for six river basins, based on the maximum
correlation between each basin centroid and all other cells in the grid, and within a window of [-18,18]
months.



Figure B2. Phase lag of maximum correlations obtained for the six river basins shown in Figure B1
(normalized by 18).



3) p. 788, I. 16: "... \bar{L} provides a measure of network integration." | believe that readers not aware
of the spatial aspect of this network measure will profit from a short interpretation of \bar{L}. For the
grid-like arrangements of nodes considered in this work, low values of \bar{L} would indicate a grid of
nodes which are only locally connected. In a topological sense, this would be a network which is not well
integrated since it comes along with a large average shortest path length (which may be somewhat
counterintuitive for some network scientists not investigating spatial networks).

Reply: In the context of our work, TWS is connected to the global precip patterns, although TWS is not a
flux and does not move as atmospheric fluxes do. Therefore, it is not surprising that most connections
are local. Nonetheless, as we mention in the conclusion of the paper, in some regions the connection
length distribution is bimodal because of long-range teleconnections (in precipitation). We commented
in the conclusion that “...In terms of connection lengths, the Middle East region is dominated by local
connections, whereas regions such as Pacific Northwest, North Central, Colorado River, and North East
regions of the US, south Africa, and eastern Australia all have strong bimodal connections”

4) p. 796, |. 5: "... which are extended for use with gridded datasets." The authors need to explain how
exactly they extended the "classic degree of centrality and connection length measures” (l. 4). Is here
anything novel that is not yet reported in studies on spatial networks?

Reply: Gridded datasets are special class of spatial networks. The word “classic” is used to distinguish
networks that do not require area-weighting. To avoid future confusion, we will rephrase the sentence
to “The constructed networks are further analyzed using the degree of centrality and connection length
measures.”

5) p. 796, I. 19: "... and type of TWS connectivity ...". What do authors mean with "type" here?

Reply: The connection length distribution is bimodal. Loosely speaking, there are two types of
connections, the local connection and long-range connection. We will add the following in parentheses
after the word type, “...(i.e., local connection vs. teleconnection)...”

6) The authors use the notion "complex climate network theory" (CCN theory) at several places in their
manuscript. Given that the employed network methods are pretty standard, it is unclear to me what
exactly establishs a new theory. | recommend to refrain from using the notion "CCN theory". Instead,
authors could use phrases like "applications of complex network theory to climate science" as they
already did in their previous publications.

Reply: Accept. We will replace all appearances of “CCN theory” with either “CCN studies” or “CCN
applications” in the text.



7) p. 787,1.10: "... between edge (i,j) ...". Perhaps the authors wanted to write: "... between time series i
andj...".

Reply: Accept. We will replace “...between edge (i,j)...” to “...between time series available at nodes i and

o



Referee #2

The paper applies complex network approach to study connectivity patterns in the global terrestrial
water storage (TWS) data. The authors use two complementary TWS data bases — Gravity Recovery and
Climate Experiment (GRACE) satellite mission data and the Global Land Data Assimilation (GLDAS) NOAH
model — with the resolution of 1x1 degree. The network is constructed of the land nodes (cells of 1x1
degree) that might be connected pairwise depending on the correlation of the respective TWS time
series. The authors analyze several network statistics — neighbor edge density, connectivity, and
connection length — to characterize the principal river basins of the World and reveal some significant
teleconnections in the global water dynamics. The findings of the study are consistent with the existing
climate teleconnection literature, which supports the validity of the proposed approach. At the same
time, the examined way of treating TWS time series seems to be novel for this type of data and may
inform a range of studies focused on the global water cycle. In addition, the study quantifies the
differences between the two examined global databases, which is an important independent
contribution. The paper is clearly written and effectively organized. The main conclusions seem to be
valid and robust with respect to the data noise and time series processing.

Reply: Thank you.

There are some minor remarks, which should be easily addressed by the authors:

1) p. 786, I.1-2: The sentence is unclear. What is the definition of "relevant edges"? Probably the
authors refer to the nodes (not edges) that are relevant to each other? This sentence should be revised.

Reply: Agree. The full sentence is rephrased to “In the pruning step, an appropriate similarity threshold
(\tau) is imposed to the edge set to retain only those connections that exceed the threshold value.”

2) p. 787, I1.3-4: It is unclear what is meant by "all meaningful features". Please be more specific here.

Reply: Agree. The word “meaningful” is vague, we will change to significant. The full sentence is
rephrased to “Additional statistical analyses (see Section 4) are performed to ensure that all significant
connections are retained in the constructed networks.” The last paragraph of Section 4.1 also mentions
“In this study, the threshold \tau is set to 0.57 because (a) the corresponding fraction of connected
edges is relatively small (0.036), at which level more than 96% of edges is removed, (b) the edge
densities of GRACE and GLDAS happen to be the same at that level; and importantly (c) the cutoff
threshold is still below the maximum correlation exhibited at all separation distances, as suggested 10
by Fig. 1b. Thus, the selected \tau value ensures that all important network features are represented by
the constructed networks.”

3) p.787, 1.10: "correlation between edge" probably means "correlation between nodes i and j"
Reply: Accept. Please see our reply to Comment #7 from Reviewer 1.

4) p. 787, 1.10: Here and in other places: Please define what you mean by "correlation between time
series". Is this Pearson cross-correlation at lag zero?



Reply: On p.787 L.10, the correlation coefficient doesn’t have to be at lag zero, it can also mean
maximum correlation. Therefore, we didn’t specify the type of correlation there. Instead, on p.790, L18-
19, we wrote “Note in the discussion below, R is calculated at zero lag unless otherwise specified.”

5) p. 788, Eq. (5): Do we need this? There is a lot of network statistics that are not used in this study.
Why does this particular one needs to be discussed with a dedicated equation?

Reply: We presented the classic average distance measure to give rationale for using the measure given
in Eq 6. A direct application of Eq. 5 is computationally demanding when the number of nodes is large.

6) p. 788, Eq. (6): I'm not sure that this measure can quantify "average distance between node i and all
other nodes". Do you have examples or theoretical argument in support of Eq. (6) being a proxy for Eq.
(5)? Importantly, this statement is probably not necessary. Why not introducing Eq. (6) as a connectivity
measure used in this study, without referring to the true average distance?

Reply: The description on p. 788, L. 10 is an oversight. We will rephrase it to “In this work, the average
distance between node i and other nodes, L i, is approximated according to...” because we only used
the first neighbors of L_i to calculate the average distance. We feel that average (topological) distance is
still an integration measure, instead of a connectivity measure as the reviewer suggested.

A reference for Eq. 6 can be found in Section 3.3.3 in Donges et al. 2009 [a],
Donges, J. F., Zou, Y., Marwan, N., and Kurths, J.: Complex networks in climate dynamics, Eur. Phys. J.-
Spec. Top., 174, 157-179, 2009a.

7) p. 788, I. 12: "are included", not "is included"

Reply: Accept. Changed to “are included”.

8) p. 789, I. 3: "linear interpolation". Do you refer to linear interpolation between the two neighboring
values? Do you use deterministic or stochastic linear interpolation? What if more than one value in a
row is missing? Please describe this process in more detail.

Reply: Linear interpolation is done between datasets of two months. It’s temporal, not spatial. Such an
approach has often been used in the GRACE community. Of course, one may seek to do cubic spline, but
luckily as we mentioned on p789, L3, the missing months are not contiguous, so simple linear
interpolation suffices for the mildly changing TWS time series.

9) p. 790, . 24: Why using the maximum correlation coefficient is representative?

Reply: This is because the network similarity is based on correlation and we want to make sure the
maximum correlation at all distances are included. As we show on p790, L8-10, the main purpose of
Figure 1b is to show that “the cutoff threshold \tau is still below the maximum correlation exhibited at
all separation distances.” So from Figure 1b we see that the cutoff value is 0.57, while the maximum
correlations at all distances are greater than 0.57. Therefore, we can at least say that the most
statistically significant node pairs are included.

10) p. 791, Il. 8-9, item (c): How the cutoff is related to the distribution of the correlations? (This is
related to my comment immediately above)



Reply: In the edge density method (Donges et al., 2009a), the cutoff is a correlation value. This should
be clear after reading Section 4.1

11) p. 791, Il. 10-11: Please explain what you mean by "all important network features"

Reply: Please see our reply to Comment # 9 in the above.
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Abstract

Terrestrial water storage (TWS) exerts a key control in global water, energy, and biogeo-
chemical cycles. Although certain causal relationships—exist-relationship exists between
precipitation and TWS, the latter quantity also reflects impacts of anthropogenic activities.
Thus, quantification of the spatial patterns of TWS will not only help to understand feed-
backs between climate dynamics and hydrologic cycle, but also provide new insights and
model calibration constraints for improving the current land surface models. tn-this-work—

the-This work is the first attempt to quantify the spatial connectivity of TWS is-quantified
using-the-elimate-using the complex network theory, which has received broad attention
in the climate modeling community in recent years. Complex networks of TWS anomalies

are built using two global TWS datasets, a remote-sensing product that is obtained from
the Gravity Recovery and Climate Experiment (GRACE) satellite mission, and a model-
generated dataset from the global land data assimilation system’s NOAH model (GLDAS-
NOAH,). Both datasets have 1° x 1° grid resolutions and cover most global land areas
except for permafrost regions. TWS networks are built by first quantifying pairwise cor-
relation among all valid TWS anomaly time series, and then applying a statistical-eutoff
threshold-cutoff threshold derived from the edge density function to retain only the most im-
portant features in the network. Basinwise network connectivity maps are used to illuminate
connectivity of individual river basins with other regions. The constructed network degree
centrality maps show FWS-the TWS anaomly hotspots around the globe and the patterns
are consistent with recent GRACE studies. Parallel analyses of networks constructed using
the two datasets indicate reveal that the GLDAS-NOAH model captures many of the spatial
patterns shown by GRACE, although significant discrepancies exist in some regions. Thus,

our results provide important-insights-forconstraining-further measures for constraining the
current land surface models, especially in data sparse regions.
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1 Introduction

Terrestrial water storage (TWS) is defined as vertically integrated water of all forms above
and below the Earth’s surface (e.g., surface water, soil moisture, groundwater, and snow
and ice) (Famiglietti, 2004). It is not only a key control of global water, energy, and bio-
geochemical cycles, but also provides an integrated indicator of water availability and uses
(Houborg et al., 2012; Lettenmaier and Famiglietti, 2006; Long et al., 2013; Voss et al.,
2013; Guentner et al., 2007). Global TWS has been the subject of modeling studies for
decades, however, validation of modeling results has been challenging historically because
of limited availability of in situ data. Since its launch in 2002, the Gravity Recovery and
Climate Experiment (GRACE) satellite mission has provided an unprecedented opportu-
nity to study TWS remotely. GRACE detects temporal variations of the Earth’s gravity field
which, over land, are mainly caused by short-term variations or TWS anomalies (TWSA).
Numerous studies conducted in the past decade have confirmed the remarkable capability
of GRACE in tracking continental- and regional-scale TWS changes (e.g., Famiglietti et al.,
2011; Sun et al.,, 2010; Yeh et al., 2006; Long et al., 2013; Rodell et al., 2009; Swenson
and Wahr, 2003; Han et al., 2005; Long et al., 2014). So far, the monthly TWSA grids de-
rived from GRACE have been used as an independent source of information for hydrologic
model validation (Ramillien et al., 2008; Syed et al., 2008; Chen et al., 2005), calibration
(Sun et al., 2012; Werth et al., 2009; Lo et al., 2010; Sun et al., 2010; D&l et al., 2014), and
data fusion (Zaitchik et al., 2010; Houborg et al., 2012; Sun, 2013; Forman et al., 2012; ; Li
and Rodell, 2015).

The global GRACE dataset accumulated over the last decade represenis-is an impor-
tant type of Big Data that can be mined for discovering information of global water/energy
dynamics, and for helping to illuminate connections among maijor river basins and within
the river basins themselves. Such information will be complementary to existing physicically

based TWS modeling efforts and will potentially provide calibration constraints (e.g., Guent-
ner et al., 2007; Rodell et al., 2004)and-wit-potentially-serve-as-calibration-constraints. In
this study, the complex network theory is adopted to representGRACETWSA-as-a—network

3

TodeJ UOISSNOSI(]

TodeJ UOISSNOSI(]

TodeJ uOISSNOSI(]

TodeJ UOISSNOSI(]



20

25

with-alarge-setofinterconnected-nodes—Patterns-of- PWS-construct a global TWSA network

using GRACE data. The interannual spatial patterns of TWSA are then quantified through
analyses of network topologies.

Complex network theory has long been used by scientists in various disciplines to study
intricate connections in natural and social phenomena (Jackson, 2008; Newman and Gir-
van, 2004; Rubinov and Sporns, 2010). In recent years, the complex-—climate-network-field
of complex climate networks (CON)theory; which-is-an-extension-of-the-, which involves
applications of traditional complex network analyses to climate systems (Tsonis and Roeb-
ber, 2004; Tsonis et al., 2006), has attracted significant attention. In GEN-theerytypical CCN
applications, cells of a gridded dataset are treated-deemed as nodes of a complex network,
and links (or edges) between nodes are established on the basis of statistical similarity of
the time series associated with the cells. After a climate network is constructed, various
descriptive measures derived from the classical complex network theory are then applied
to quantify network topologies (Donges et al., 2009b; Tsonis et al., 2006; Steinhaeuser
et al.,, 2011). One of the majer-main findings from the previous CCN studies is that cli-
mate networks manifest a “small-world” network property, akin to networks appear in many
other fields (e.g., social networks). In CCN, this can be contributed to the existence of long-
range connections that stabilize the climate system and enhance energy transfers within it
(Donges et al., 2009a, b, 2011). TWS is closely intertwined with soil-vegetation-atmosphere
interactions and is thus expected to show similar spatiotemporal patterns as observed from
climate networks (e.g., precipitation network); however, it is well known that climate only
plays a partial role in TWS changes. Land use changes and other anthropogenic activities
(e.g., deforestation, aquifer mining, and water structures) increasingly stress water avail-
ability in many parts of the world and have been shown to produce global-scale impacts
on the terrestrial water cycle (Vérésmarty and Sahagian, 2000). Such aspects are usually
difficult to be fully captured and quantified without extensive in-sitt—monitoring data. The

lobal coverage of GRACE TWSA, thus, becomes especially important.
Different from the global circulation model outputs analyzed by many previous CCN stud-

ies, GRACE TWSA is a remote sensing productthat-is-stbjected-to-errors-, subjecting to
4
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errors and uncertainties caused by instrumentation and data processing. As a result, the
actual spatial resolution of GRACE TWSA is not 1° x 1°, but much coarser (Houborg et al.,
2012). In other words, the intrinsic degrees of freedom of the GRACE TWS are much-less
than its grid dimension. An important question is then how well a complex network con-
structed using the GRACE TWSA can reflectrepresent the salient features of the global ter-
restrial water cycle. Importantly, how these patterns can be corroborated, at least partially,
using other existing information. Toward this end, we use the TWS dataset (1° x 1°) sim-
ulated by global land data assimilation system (GLDAS) is-used-for comparison. GLDAS
is a global terrestrial modeling system jointly developed by US National Aeronautics and
Space Administration’s (NASA) Goddard Space Flight Center and US National Oceanic and
Atmospheric Administration’s National Centers for Environmental Prediction. GLDAS incor-
porates satellite and in situ observations to produce optimal fields of land surface states and
fluxes in near real time (Rodell et al., 2004). Although GLDAS is only a surrogate of in situ
observations that are ultimately required to validate the GRACE results, previous studies
have shown that GLDAS represents the magnitudes and variability of TWS sufficiently well
(Syed et al., 2008). Thus, GLDAS represents a valuable independent source of informa-
tion for validating GRACE results and has been used by a number of global-scale GRACE
studies (e.g., Syed et al., 2008; Landerer and Swenson, 2012; Chen et al., 2005). In this
study, the network measures inferred from GRACE data are compared to those built from
the GLDAS outputs to cross-examine the two products. Note that GLDAS does not have

an explicit representation of groundwater storage, an aspect that needs to be kept in mind
when performing comparisions.

2 Methodology
2.1 Network construction

A network is commonly represented by a graph G(V, &), which is specified by its node set
V ={1,...,N} and edge set &, with N the number of nodes. Thus, the number of possible

5
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edges in an undirected graph (meaning the links are non-directional) is N(/N — 1)/2. In the
current context, each node corresponds to a grid cell at which a valid monthly time series is
available and N is the total number of such cells in a gridded dataset. Construction of a net-
work generally proceeds in two steps, network growth and pruning. In the network growth
step, similarity between all potential node pairs (i.e., edges) in graph G is quantified. Com-
mon measures of similarity are statistical correlation (either Pearson or Spearman), mutual
information, and synchronization (Boers et al., 2013; Donges et al., 2009a). In the pruning
step, an approprlate similarity threshold ( ) is imposed to the edge set to retain only those

exceed the threshold. The main purpose of network pruning is to improve network analy-
sis efficiency. If the correlation between two time series is used as a measure of statistical
similarity, then 7 represents the minimum correlation coefficient (R) above which a pair of
nodes is considered connected. The absolute value of correlation is used such that both
strongly positive and negative correlations are counted.

Several methods have been used in the CCN literature to determine . In the significance
testing method (Tsonis et al., 2006), 7 is based on the two-sided Student’s ¢ test. The critical
t value, t., for a given sample size ns and user-defined significance level o are determined
using the Student’s ¢ cumulative distribution function (CDF), from which the value of 7 can
be solved

Tv/Ng — 2
fe Vi-712’ M)
A similar method uses the probability value (i.e., p value) of test statistics directly: a pair
of nodes is considered connected if the p value is less than a critical value; for instance,
Steinhaeuser et al. (2011) set the critical value to 10710, Yet another method defines 7 from
an edge density function p(7) defined as

ne(7)

p(r) = NN -1)/2 (2)
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where n. is the number of active edges retained in a network when the threshold is set to
7. Thus, edge density is closely related to the CDF of R.

Obviously, all methods involve certain degree of subjectivity. The selection of 7 thus in-
curs a tradeoff between network maneuverability and preservation of network features: if
too many edges are included, the main network features will be obscured, not to mention
a significant increase in computational effort required to characterize a large network. In this
work, the edge density method is used because it allows a direct comparison of network
properties computed from different datasets (Donges et al., 2009a). Additional statistical

analyses (see Sect. 4) are performed to ensure that all meaningful-statistically significant
features are retained in the constructed networks.

2.2 Network measures

The outcome of network construction process is a Boolean-valued, symmetric N x N ma-
trix, referred to as the adjacency matrix and denoted by A. Elements of A, a;;, are set
according to the following rule

o ]., if |RU‘ >T
s = {0, otherwise } ®)

in which |R;;| is the absolute value of correlation between edge{#;7)time series at nodes i
and j. A number of network measures can then be applied on A to quantify network topol-
ogy. The main metrics adopted in this work include the degree of centrality and connection
length.

The degree of centrality of a node, k;, is defined as the number of first neighbors of node
¢ and reflects the importance of node ¢ in a network. Regions having high k; values are
referred to as “supernodes” in network theory because these nodes tend to have not only
local connections, but also long-range connections or teleconnections. However, k; itself
does not reveal the actual type of connections. Because of nonuniformity of cell areas at
different latitudes, the degree of centrality k; is usually weighted by cell areas, leading to

7
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the area-weighted connectivity, AC; (Tsonis et al., 2006; Heitzig et al., 2012),

N
ACi:Zcos/\j/Zcos)\j, i=1,....,N (4)
j=1

JEN;

where n; is the set of all first neighbors of the node 4, and \; is the latitude of its j-th first
neighbor. Thus, AC; is a normalized value representing the fraction of the Earth’s surface
area that a node is connected to.

A classic measure of network integration is the average distance between node ¢ and all
other nodes, D;, and is defined as (Rubinov and Sporns, 2010)

Di:]\fl—l,z 'dij, i=1,...,N, (5)
JEV,jF#i
where d;; is the number of edges traversed along the shortest path between node pair (3, j).
If (¢,7) is not connected, d;; is defined as infinity. The characteristic path length of the net-
work is obtained by taking average of all D; and it represents the average number of edges
to be traversed along the distance between two randomly selected nodes in a network.
Calculation of pairwise shortest path lengths becomes computationally expensive when the
number of node pairs is large. In this work, the average distance between node ¢ and all

other nodes, L;, is guantifiec-approximated according to

1
L;= T le‘j, (6)

jen;

where only the first neighbors of node i is-inetuded-are included in the calculation, and [;; is
the physical distance between node pair (i,j) measured by using the respective cell-center
latitudes and longitudes, (\;, ¢;) and (), ¢;). The physical-based characteristic path length
of the network, L, is simply the average of all L; (i = 1,...,N). The probability distribution
of L; provides a sense of the average edge lengths in a network and L provides a measure
of network integration.

8
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3 Data and data processing

The GRACE TWSA dataset used in this study was downloaded from Jet Propulsion Labora-
tory (JPL)’s Tellus site, (http://grace.jpl.nasa.gov/index.cfm). The dataset is based on RL05
GRACE solutions (in the form of spherical harmonics) released by the Center for Space
Studies at the University of Texas Austin. It includes 121 epochs from January 2003 to
July 2013 at approximately monthly intervals. The 6 missing months, which are not contigu-
ous, were reconstructed using linear interpolation (temporal only). The grid dimensions are
360 x 180 and ocean area is masked out, resulting ~ 25000 cells in each TWSA grid. In
generating the gridded TWSA product, a number of postprocessing algorithms have been
applied, as documented in details in Landerer and Swenson (2012). In particular, a destrip-
ing filter is applied to minimize the effect of north—south-oriented stripes in GRACE monthly
solutions, and a 300 km Gaussian filter is then used to reduce random errors in high-degree
spherical harmonic coefficients not removed by destriping. The GRACE gravity field solu-
tions are typically truncated at a spectral degree less than 60. To restore signal attenuation
caused by truncation and filtering, the JPL dataset also includes a spatially distributed and
temporally invariant scaling factor field. This scaling factor field is not used in this study
because it does not affect pairwise correlations.

Outputs from GLDAS’s NOAH model were obtained from NASA (http://disc.sci.gsfc.nasa.
gov/services/grads-gds/gldas). GLDAS covers latitudes between —60° and 90°, and does
not model permafrost regions such as Greenland and Antarctica (Rodell et al., 2004). Its
grid dimensions are 360 x 150 and the temporal span is from January 1979 to the present
(GLDAS V1). The number of cells in each GLDAS monthly grid is N = 14540. The GLDAS
TWS is defined as the sum of water mass from all four soil layers represented by NOAH
(up to 2m depth) and snow water equivalent. Thus, GLDAS TWS mainly includes surface
and root zone storages, but not the deeper groundwater stroage. The GRACE grids are
masked using the smaller GLDAS coverage during network construction. To ensure a fair
consistent comparison, the GLDAS dataset was processed using the same truncation and
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filtering techniques applied to the GRACE data, which has been a standard practice in the
literature (e.g., Chen et al., 2010; Rodell et al., 2009).

Monthly time series contains high-frequency noise. Because the main interest in this
study is on interannual correlations of TWSA, the high frequency noise in each TWSA
time series are removed. Several methods have been used for such purpose. The z-score
method has been employed in the CCN literature to remove seasonal variability (Donges
et al., 2009b; Steinbach et al., 2003; Tsonis et al., 2006). It entails normalizing each monthly
data point using the mean and standard deviation calculated for the corresponding month
and over the entire record length. The least squares method, which is extensively used
in the GRACE literature (e.g., Yeh et al., 2006; Crowley et al., 2006), models the intraan-
nual variability using Fourier series (two annual sine/cosine terms and two semi-annual
sine/cosine terms) and then removes the variability, together with a slowly moving trend.
Our numerical tests show the two methods give very similar results. Lags existing between
time series may weaken linear correlation. Thus, to examine the effect of temporal lags, the
same interannual correlation analysis is repeated using a temporal window of 36 months
(i.e., the maximum correlation observed within 1.5 years of the zero lag).

4 Results and discussion
4.1 Edge density

The number of possible edges represented by the TWS datasets is more than 100 million for
N = 14540. After removing seasonal trends from GRACE and GLDAS and calculating the
correlation coefficient R for all node pairs, the edge density method is applied to determine
a similarity threshold 7. Note in the discussion below, R is calculated at zero lag unless
otherwise specified.

Figure 1a shows edge density functions constructed using GRACE and GLDAS TWS
data, respectively, both are monotonically decreasing (i.e., fewer connected edges at higher
T values) and are similar in shape. As mentioned in Sect. 2, edge density provides an in-
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dicator of the fraction of connected edges at different threshold values. Figure 1b plots the
maximum correlation coefficient as a function of edge length, which is defined as the short-
est physical distance between a pair of nodes in this work. To arrive at Fig. 1b, all R values
are first sorted according to nodal separation distances, a bin width of 250 km is applied to
the resulting distribution, and the maximum R value within each bin is recorded. Figure 1b
suggests that the maximum correlation stays relatively high (> 0.7) for most distances. Re-
call that the main purpose of network pruning is to improve the computational efficiency of
network characterization while preserving the most impertant-significant network features.
In this study, we set the threshold 7 is-set-to 0.57 because (a) the corresponding fraction
of connected edges is relatively small (0.036), at which level more than 96 % of edges is
removed, (b) the edge densities of GRACE and GLDAS happen to be the same at that level;
and importantly (c) the cutoff 7 threshold is still below the maximum correlation exhibited
at all separation distances, as suggested by Fig. 1b. Thus, the selected 7 value ensures

that all impertant-statistically signficant network features are represented-by-retained in the
constructed networks.

4.2 Basin analyses

A basin analysis is useful for helping visualize the TWSA connection patterns at the basin
level. As some examples, Figure 2 shows the results for six river basins around the world.
To generate a plot in Fig. 2, a cell is first fixed, and all its edges are colored according
to the actual R (not the absolute values). For our purpose, the centroid of each basin is
used. While the basin centroid may not be representative of the connection patterns of an
entire basin (especially when the basin spans several climatic regions), it serves as a basis
for comparing multiple basins at a qualitative level. Figure 3 applies the cutoff threshold 7
defined in Fig. 1 to all plots in Fig. 2. Results suggest that interannual TWSA connections
in Amazon and Congo Basins are dominated by local connections. The mid-latitude basins
(Ganges, Mississippi, and Tigris) generally show more teleconnections, although Yangtze
is an exception. In the case of Tigris basin, a large number of strongly positive and negative
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correlations are observed and the local connections extend far beyond the basin boundary.
A detailed interpretation of this observation will be given in the next section.

Extensive teleconnection is an advantage from forecasting perspective because climate
indices, such as El Nino—Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO),
can be used as possible indicators of future changes. For those basins without strong tele-
connection, water resources planning must rely mainly on regional data. Such distinction
sheds light on the significance of GRACE data to long-term basin planning and natural
hazard mitigation strategies, as we will elaborate in the following sections.

As a sensitivity study, Fig. 4 (left column) shows the results of basin analysis for Mis-
sissippi basin, the largest basin in North America, using different thresholds corresponding
to 7 values of 0.41, 0.57 (the base case), and 0.76, respectively. The corresponding edge
density is labeled in the figure. Because the cutoff threshold increases as p decreases,
a significant reduction in number of edges can be observed. For comparison, the modeled
TWS connections obtained from GLDAS are provided in the second column of Fig. 4. In
general, the connections modeled by GLDAS are much weaker (i.e., smaller in spatial ex-
tent) than those obtained from GRACE. In some cases, the locations of connections are
also different. For example, the negative correlation obtained by GLDAS in North Africa
for p=0.1 is not seen by GRACE. The complex networks thus provide a useful tool for
examining the agreement, or the lack of it, between GLDAS and GRACE.

4.3 Connectivity

Using the selected cutoff 7, a network adjacency matrix A is formed and various network
measures described under Sect. 2 are applied to quantify network topology. Figure 5a
shows the area-weighted connectivity map constructed using GRACE data. On the map,
red colors highlight regions of high connectivity. Recall that a high degree of connectivity
indicates that a node interacts strongly with the rest of the nodes in a network (i.e., a su-
pernode); however, the connectivity map itself does not tell the type of connections per se,
and needs to be analyzed jointly with the connection length map to be shown in the next
section. The largest cluster of supernodes appears in the Middle East region, where the
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connected neighbors account for more than 0.16 of the global area. To a lesser extent, the
Pacific Northwest and east coast of the US, southern Africa, southern South America, and
eastern Australia show smaller supernode regions. In contrast, most of Asia, central US,
and Europe exhibit little or no connectivity (blue color). These observations are consistent
with patterns observed during basin analyses (see Figs. 3 and 4).

The supernode regions shown in Fig. 5a reflect the superposed effects of climate vari-
ations and anthropogenic activities. These can be explained in terms of global precipita-
tion and atmospheric circulation patterns. In general, the poorly connected regions have
stronger precipitation variations over shorter spatial scales, leading to the emergence of
high precipitation gradients which, in turn, are responsible for regional extreme events that
are more localized in time and space (Scarsoglio et al., 2013). Those with high connectivity
tend to be directly influenced by ocean and climatic oscillations (e.g., ENSO and NAO).
Kahya and Dracup (1993) studied streamflow variations in the contiguous US and identi-
fied Northeast, North Central, Pacific Northwest, and Gulf of Mexico states as regions with
potentially significant streamflow responses to ENSO forcing. These four regions can be
easily identified on Fig. 5a, among which the Gulf of Mexico region shows the weakest con-
nection. Similarly, Chiew et al. (1998) reported that the ENSO can be used to help forecast
spring runoff in south-east Australia and summer runoff in the north-east and east coasts
of Australia. This teleconnection pattern is also indicated clearly by Fig. 5a.

At the global scale, Dai et al. (2009) studied the monthly streamflow records of the world’s
925 largest ocean-reaching rivers from 1948 to 2004. They concluded that (a) the interan-
nual variations of streamflows are correlated with the ENSO events for discharge into the
Atlantic, Pacific, Indian, and the global ocean as a whole and (b) the effects of anthropogenic
activities on annual streamflow are likely to be small compared to those of climate varia-
tions; however, anthropogenic activities can create more disturbances in arid and semi-arid
regions, where the discharge magnitudes are low (e.g., Indus, Yellow, and Tigris—Euphrates
River Basin). To elaborate the latter point further, Fig. A1 in Appendix A plots the proportion
of total renewable water resources withdrawn by country for human uses in the agricultural,
municipal, and industrial sectors, using long-term data compiled by the Food Agricultural
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Organization of United Nations. Figure A1 indicates that the Middle East and North African
countries show the highest withdraw proportions. In a recent GRACE study focusing on
north-central Middle East, Voss et al. (2013) reported that GRACE data show an “alarm-
ing rate” of decrease in TWS of approximately 143.6 km3 during 2003—2009. Thus, the
resemblance between Fig. 5a and Fig. A1 in those regions is not coincidental and can be
corroborated using multiple sources. Because interannual TWS anomalies are well con-
nected in clustered supernode regions, these regions tend to exhibit more vulnerability to
both climate and human-induced disturbances.

Having elaborated the close relationship between GRACE TWSA and climate patterns,
it is important to point out that the TWS also includes effects of soil moisture and ground-
water storage (mostly unconfined aquifers) changes that may not synchronize with climate
patterns.

Figure 5b shows the same area-weighted connectivity map, but constructed using the
GLDAS-NOAH outputs. Although GLDAS-NOAH shows many of the similar patterns de-
tected by GRACE, it also indicates stronger connectivity in Arabian Peninsula, North Africa,
and in middle South America, and much weaker connectivity in southern Africa. These
discrepancies may be caused by GLDAS-NOAH’s parameterization and other errors. The

other main reason is that-GLBAS-dees—notreselve-groundwater-storage—wellthe lack of
representation of the deeper groundwater storage in GLDAS. The discrepancies highlighted
here provide additional spatial calibration constraints for land surface models. In areas
derived from GRAGE, whereas discrepancies are only expected in areas dominated by

deep TWS components and/or impacted by signficant anthropogenic activities. We empha-
size here the connectivity maps shown in Fig. 5 are for TWSA. Thus, the high-precipitation

areas (e.g., Amazon basin) do not necessarily exhibit high anomaly connectivity after re-
moving the intraannual variability.

So far, all results have been based on zero-lag correlations. The effect of temporal lag on
connectivity is examined in Fig. 6, in which the connectivity map is built using the maximum
(absolute) correlation found between —18 and +18 monthly lags of each node pair. The
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figure suggests that incorporation of lagged correlation further strengthens connectivity.
The supernode regions are more expanded in space, notably in eastern Australia and in
the Colorado River Basin and Gulf Coast states in the US. Further, Appendix B shows the

maximum correlation and phase lags for the six basins studied in Fig. 2, which suggest
that each river basin is in phase with most cells in itself and the immediate surroundings.
However, significant phase lags exist between each river basin and other river basins.

4.4 Connection length

Figure 7a shows maps of the physical-based average nodal connection length L; (i =
1,...,N). Nodes that exhibit the longest connection lengths are mostly located in south-
ern part of South America (~ 12000 km). Other regions with relatively long connections are
found in Pacific Northwest, North Central, Colorado River, and North East regions of the
US, south Africa, and eastern Australia. Interestingly, the Middle East region is mostly char-
acterized by connection lengths less than 5000 km; thus, the supernodes in that region are
dominated by local connections. The connection length patterns observed here support the
previous discussions in the context of teleconnection and forecasting potential. Importantly,
the connection length map can help evaluate the influence of teleconnection on TWS for
a particular region.

The average nodal connection length map constructed using GLDAS data suggests much
wider connections, although most are local. Again this can be attributed to model param-
eterization schemes, forcing resolution, and spatial correlation constraints, as discussed
before.

The probability distribution of the average connection length, L;, is shown in Fig. 8. Most
nodes in the GRACE network are dominated by short-range edges with lengths less than
2000 km, although several other smaller modes appear in the 4000—-6000, 6000—-8000, and
8000-10000 km ranges. In contrast, the GLDAS network shows a weaker local connection
mode in < 2000 km range, but a wider and more persistent second mode in 4000-6000 km.
Interestingly, the two modes of GLDAS coincide with those of GRACE. The characteristic
path length (L) is 2300 km for GRACE and 4000 km for GLDAS, respectively.
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5 Summary and conclusions

In this work, the €EN-complex network theory is applied to analyzing spatial connection
patterns in TWS. A comparative study is conducted using two global TWS datasets derived
from GRACE and GLDAS, respectively, with an emphasis on interannual variability. Both
datasets are large and have more than 100 million potential connections. An edge-density
method is adopted to define an appropriate network pruning threshold. The constructed
networks are further analyzed using the etassic-degree of centrality and connection length

measures;-which-are-extended-foruse-with-gridded-datasets.
Our results show that EEN-theery-provides—apowerful-toot-for-characterizing-complex

networks and GRACE TWSA can be used to identify global TWSA hotspots or supernode
regions. The area-weighted connectivity is a local measure that reveals nodes with a large

number of connections (edges), whereas the connection length helps identify the dominat-
ing type of connections —(i.e., local connections vs. teleconnections). In terms of connectiv-
ity, the largest cluster of supernodes appears in the Middle East region, while other promi-
nent ones are found in Pacific Northwest and eastern US, southern Africa, southern South
America, and eastern Australia. In terms of connection lengths, the Middle East region is
dominated by local connections, whereas regions such as Pacific Northwest, North Central,
Colorado River, and North East regions of the US, south Africa, and eastern Australia all
have strong bimodal connections.

While many of the TWSA network features found here can be explained by established
climate teleconnection theories, the TWS, as an integrated indicator of global water storage,
is unigue in its own way. It shows the impact of both climate and anthropogenic activities.
Knowledge of both the strength and type of TWS connectivity can help identify useful TWS
predictors and provide insight to further improve current land surface models.

GLDAS outputs have been used extensively in validating GRACE results at various
scales. Less focused is the consistency of spatial correlation between-represented by
GLDAS and GRACE data. Results from this study statistically quantify the similarity and

discrepancies between the two datasets. In this case, the observed discrepancies ma
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be attributed to missing surface and groundwater components in the GLDAS model, or to
GRACE uncertainties (Syed et al., 2008; Li and Rodell, 2015). Although data assimilation

has been used to reduce discrepancies in land surface models, the geometrical, spatial
connection patterns have not been used before. A main conclusion from this work is that
network connectivity measures should be incorporated as an additional model calibration
and validation criterion when developing the future-generation of GLDAS models.

Appendix A

According to FAO, the proportion of total renewable water resources withdrawn is defined
as the total volume of fresh groundwater and surface water withdrawn from their sources for
human use (in the agricultural, municipal and industrial sectors), expressed as a percentage
of the total actual renewable water resources. The data used in Fig. A1 are compiled from
2005 data published by FAO http://www.fao.org/nr/aquastat. In several cases where 2005
data are not available, 2000 data are used as best estimates.

Appendix B

Fig. B1 shows the maximum correlations for the six basins chosen in Fig. 2, and Fig. B2
shows the corresponding phase lags. Recall these plots show the correlation between each
basin centroid and all other cells in the TWSA dataset. The phase lag plot (normalized by 18

surrounding regions, but there can be significant phase shifts between each river basin and
other river basins.
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Figure 1. (a) Edge density function p(7) of GRACE and GLDAS (the value of 7 selected for network
pruning is 0.57, corresponding to an edge density 0.036); (b) maximum correlation as a function of
edge lengths.
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Amazon

Figure 2. Patterns of connection inferred from GRACE TWSA for six river basins, in which connec-
tion pattern is based on correlation between the basin centroid and all other cells in the grid.
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Amazon

Figure 3. GRACE connection patterns after cutoff threshold 7 = 0.57 is applied (the green solid line
delineates basin boundaries).
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GRACE GLDAS

p=0.1,1=0.44

Figure 4. Sensitivity of connection patterns to cutoff threshold, demonstrated using Mississippi River
Basin’s centroid. Left column, GRACE results; right column, GLDAS results.
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Figure 5. Area-weighted connectivity map obtained using (a) GRACE and (b) GLDAS data (zero-lag

correlation).
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Figure 6. Effect of lagged-correlation on GRACE area-weighted connectivity, where the window of
lagged correlation is [—18, 18] months.
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Figure 7. Map of average node connection lengths derived based on (a) GRACE and (b) GLDAS.
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Figure 8. Distribution of average edge lengths in GRACE and GLDAS networks, where L; denotes

the average distance between node ¢ and its neighbors.

29

todeq uorssnosyq | Jedeg uwoissnostq | Iodeq uorssnosyq | 1edeq uorssnosi(q



90°

15(=°W 12CI!°W QO:W GO:W SO:W DI“ 30I°E 60I°E

90I°E 12?°E 15(I)°E 18I0°

6o°N] =

30°N-

o .

30°S]

Figure A1. Proportion of total renewable water resources used by country (Data source: Food Agri-

] o [ I NoData

<5
Lsoon || 5-10

[ 11020

o [ 20-40
>40

-30°S

T T T T T T T T
180°  150°W 120°W  90°W  60°W  30°W 0° 30°E  60°E

T T T
90°E  120°E 150°E  180°

cultural Organization (FAO) of the United Nations, http://www.fao.org/nr/aquastat)
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Figure B1. Degree centralit

inferred from GRACE TWSA for six river basins, based on th

e

maximum correlation between each basin centroid and all other cells in the grid, and within a window

of [-18,18] months.
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Amazon

Figure B2. Phase lag of maximum correlations obtained for the six river basins shown in Figure B1

normalized by 18).
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