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Abstract

Terrestrial water storage (TWS) exerts a key control in global water, energy, and biogeo-
chemical cycles. Although certain causal relationship exists between precipitation and TWS,
the latter quantity also reflects impacts of anthropogenic activities. Thus, quantification of
the spatial patterns of TWS will not only help to understand feedbacks between climate dy-5

namics and hydrologic cycle, but also provide new insights and model calibration constraints
for improving the current land surface models. This work is the first attempt to quantify the
spatial connectivity of TWS using the complex network theory, which has received broad
attention in the climate modeling community in recent years. Complex networks of TWS
anomalies are built using two global TWS datasets, a remote-sensing product that is ob-10

tained from the Gravity Recovery and Climate Experiment (GRACE) satellite mission, and
a model-generated dataset from the global land data assimilation system’s NOAH model
(GLDAS-NOAH). Both datasets have 1 ◦×1 ◦ grid resolutions and cover most global land
areas except for permafrost regions. TWS networks are built by first quantifying pairwise
correlation among all valid TWS anomaly time series, and then applying a cutoff thresh-15

old derived from the edge density function to retain only the most important features in the
network. Basinwise network connectivity maps are used to illuminate connectivity of individ-
ual river basins with other regions. The constructed network degree centrality maps show
the TWS anaomly hotspots around the globe and the patterns are consistent with recent
GRACE studies. Parallel analyses of networks constructed using the two datasets reveal20

that the GLDAS-NOAH model captures many of the spatial patterns shown by GRACE,
although significant discrepancies exist in some regions. Thus, our results provide further
measures for constraining the current land surface models, especially in data sparse re-
gions.

2



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

1 Introduction

Terrestrial water storage (TWS) is defined as vertically integrated water of all forms above
and below the Earth’s surface (e.g., surface water, soil moisture, groundwater, and snow
and ice) (Famiglietti, 2004). It is not only a key control of global water, energy, and bio-
geochemical cycles, but also provides an integrated indicator of water availability and uses5

(Houborg et al., 2012; Lettenmaier and Famiglietti, 2006; Long et al., 2013; Voss et al.,
2013; Guentner et al., 2007). Global TWS has been the subject of modeling studies for
decades, however, validation of modeling results has been challenging historically because
of limited availability of in situ data. Since its launch in 2002, the Gravity Recovery and
Climate Experiment (GRACE) satellite mission has provided an unprecedented opportu-10

nity to study TWS remotely. GRACE detects temporal variations of the Earth’s gravity field
which, over land, are mainly caused by short-term variations or TWS anomalies (TWSA).
Numerous studies conducted in the past decade have confirmed the remarkable capability
of GRACE in tracking continental- and regional-scale TWS changes (e.g., Famiglietti et al.,
2011; Sun et al., 2010; Yeh et al., 2006; Long et al., 2013; Rodell et al., 2009; Swenson15

and Wahr, 2003; Han et al., 2005; Long et al., 2014). So far, the monthly TWSA grids de-
rived from GRACE have been used as an independent source of information for hydrologic
model validation (Ramillien et al., 2008; Syed et al., 2008; Chen et al., 2005), calibration
(Sun et al., 2012; Werth et al., 2009; Lo et al., 2010; Sun et al., 2010; Döll et al., 2014), and
data fusion (Zaitchik et al., 2010; Houborg et al., 2012; Sun, 2013; Forman et al., 2012; ; Li20

and Rodell, 2015).
The global GRACE dataset accumulated over the last decade is an important type of Big

Data that can be mined for discovering information of global water/energy dynamics, and
for helping to illuminate connections among major river basins and within the river basins
themselves. Such information will be complementary to existing physicically based TWS25

modeling efforts and will potentially provide calibration constraints (e.g., Guentner et al.,
2007; Rodell et al., 2004). In this study, the complex network theory is adopted to construct
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a global TWSA network using GRACE data. The interannual spatial patterns of TWSA are
then quantified through analyses of network topologies.

Complex network theory has long been used by scientists in various disciplines to study
intricate connections in natural and social phenomena (Jackson, 2008; Newman and Gir-
van, 2004; Rubinov and Sporns, 2010). In recent years, the field of complex climate net-5

works (CCN), which involves applications of traditional complex network analyses to climate
systems (Tsonis and Roebber, 2004; Tsonis et al., 2006), has attracted significant attention.
In typical CCN applications, cells of a gridded dataset are deemed as nodes of a complex
network, and links (or edges) between nodes are established on the basis of statistical sim-
ilarity of the time series associated with the cells. After a climate network is constructed,10

various descriptive measures derived from the classical complex network theory are then
applied to quantify network topologies (Donges et al., 2009b; Tsonis et al., 2006; Stein-
haeuser et al., 2011). One of the main findings from the previous CCN studies is that cli-
mate networks manifest a “small-world” network property, akin to networks appear in many
other fields (e.g., social networks). In CCN, this can be contributed to the existence of long-15

range connections that stabilize the climate system and enhance energy transfers within it
(Donges et al., 2009a, b, 2011). TWS is closely intertwined with soil-vegetation-atmosphere
interactions and is thus expected to show similar spatiotemporal patterns as observed from
climate networks (e.g., precipitation network); however, it is well known that climate only
plays a partial role in TWS changes. Land use changes and other anthropogenic activities20

(e.g., deforestation, aquifer mining, and water structures) increasingly stress water availabil-
ity in many parts of the world and have been shown to produce global-scale impacts on the
terrestrial water cycle (Vörösmarty and Sahagian, 2000). Such aspects are usually difficult
to be fully captured and quantified without extensive monitoring data. The global coverage
of GRACE TWSA, thus, becomes especially important.25

Different from the global circulation model outputs analyzed by many previous CCN stud-
ies, GRACE TWSA is a remote sensing product, subjecting to errors and uncertainties
caused by instrumentation and data processing. As a result, the actual spatial resolution of
GRACE TWSA is not 1◦× 1◦, but much coarser (Houborg et al., 2012). In other words, the
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intrinsic degrees of freedom of the GRACE TWS are less than its grid dimension. An im-
portant question is then how well a complex network constructed using the GRACE TWSA
can represent the salient features of the global terrestrial water cycle. Importantly, how
these patterns can be corroborated, at least partially, using other existing information. To-
ward this end, we use the TWS dataset (1◦×1◦) simulated by global land data assimilation5

system (GLDAS) for comparison. GLDAS is a global terrestrial modeling system jointly de-
veloped by US National Aeronautics and Space Administration’s (NASA) Goddard Space
Flight Center and US National Oceanic and Atmospheric Administration’s National Centers
for Environmental Prediction. GLDAS incorporates satellite and in situ observations to pro-
duce optimal fields of land surface states and fluxes in near real time (Rodell et al., 2004).10

Although GLDAS is only a surrogate of in situ observations that are ultimately required
to validate the GRACE results, previous studies have shown that GLDAS represents the
magnitudes and variability of TWS sufficiently well (Syed et al., 2008). Thus, GLDAS repre-
sents a valuable independent source of information for validating GRACE results and has
been used by a number of global-scale GRACE studies (e.g., Syed et al., 2008; Landerer15

and Swenson, 2012; Chen et al., 2005). In this study, the network measures inferred from
GRACE data are compared to those built from the GLDAS outputs to cross-examine the
two products. Note that GLDAS does not have an explicit representation of groundwater
storage, an aspect that needs to be kept in mind when performing comparisions.

2 Methodology20

2.1 Network construction

A network is commonly represented by a graph G(V,E), which is specified by its node set
V = {1, . . . ,N} and edge set E , with N the number of nodes. Thus, the number of possible
edges in an undirected graph (meaning the links are non-directional) is N(N − 1)/2. In the
current context, each node corresponds to a grid cell at which a valid monthly time series25

is available and N is the total number of such cells in a gridded dataset. Construction of

5
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a network generally proceeds in two steps, network growth and pruning. In the network
growth step, similarity between all potential node pairs (i.e., edges) in graph G is quantified.
Common measures of similarity are statistical correlation (either Pearson or Spearman),
mutual information, and synchronization (Boers et al., 2013; Donges et al., 2009a). In the
pruning step, an appropriate similarity threshold (τ ) is imposed to the edge set to retain5

only those connections that exceed the threshold. The main purpose of network pruning is
to improve network analysis efficiency. If the correlation between two time series is used as
a measure of statistical similarity, then τ represents the minimum correlation coefficient (R)
above which a pair of nodes is considered connected. The absolute value of correlation is
used such that both strongly positive and negative correlations are counted.10

Several methods have been used in the CCN literature to determine τ . In the significance
testing method (Tsonis et al., 2006), τ is based on the two-sided Student’s t test. The critical
t value, tc, for a given sample size ns and user-defined significance level α are determined
using the Student’s t cumulative distribution function (CDF), from which the value of τ can
be solved15

tc =
τ
√
ns− 2√
1− τ2

. (1)

A similar method uses the probability value (i.e., p value) of test statistics directly: a pair
of nodes is considered connected if the p value is less than a critical value; for instance,
Steinhaeuser et al. (2011) set the critical value to 10−10. Yet another method defines τ from
an edge density function ρ(τ) defined as20

ρ(τ) =
nc(τ)

N(N − 1)/2
, (2)

where nc is the number of active edges retained in a network when the threshold is set to
τ . Thus, edge density is closely related to the CDF of R.

Obviously, all methods involve certain degree of subjectivity. The selection of τ thus in-
curs a tradeoff between network maneuverability and preservation of network features: if25
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too many edges are included, the main network features will be obscured, not to mention
a significant increase in computational effort required to characterize a large network. In this
work, the edge density method is used because it allows a direct comparison of network
properties computed from different datasets (Donges et al., 2009a). Additional statistical
analyses (see Sect. 4) are performed to ensure that all statistically significant features are5

retained in the constructed networks.

2.2 Network measures

The outcome of network construction process is a Boolean-valued, symmetric N ×N ma-
trix, referred to as the adjacency matrix and denoted by A. Elements of A, aij , are set
according to the following rule10

aij =

{
1, if |Rij |> τ
0, otherwise

}
(3)

in which |Rij | is the absolute value of correlation between time series at nodes i and j.
A number of network measures can then be applied on A to quantify network topology. The
main metrics adopted in this work include the degree of centrality and connection length.

The degree of centrality of a node, ki, is defined as the number of first neighbors of node15

i and reflects the importance of node i in a network. Regions having high ki values are
referred to as “supernodes” in network theory because these nodes tend to have not only
local connections, but also long-range connections or teleconnections. However, ki itself
does not reveal the actual type of connections. Because of nonuniformity of cell areas at
different latitudes, the degree of centrality ki is usually weighted by cell areas, leading to20

the area-weighted connectivity, ACi (Tsonis et al., 2006; Heitzig et al., 2012),

ACi =
∑
j∈ni

cosλj
/ N∑

j=1

cosλj , i= 1, . . . ,N (4)

7
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where ni is the set of all first neighbors of the node i, and λj is the latitude of its j-th first
neighbor. Thus, ACi is a normalized value representing the fraction of the Earth’s surface
area that a node is connected to.

A classic measure of network integration is the average distance between node i and all
other nodes, Di, and is defined as (Rubinov and Sporns, 2010)5

Di =
1

N − 1

∑
j∈V,j 6=i

dij , i= 1, . . . ,N, (5)

where dij is the number of edges traversed along the shortest path between node pair (i, j).
If (i, j) is not connected, dij is defined as infinity. The characteristic path length of the net-
work is obtained by taking average of all Di and it represents the average number of edges
to be traversed along the distance between two randomly selected nodes in a network.10

Calculation of pairwise shortest path lengths becomes computationally expensive when the
number of node pairs is large. In this work, the average distance between node i and all
other nodes, Li, is approximated according to

Li =
1

ki

∑
j∈ni

lij , (6)

where only the first neighbors of node i are included in the calculation, and lij is the physical15

distance between node pair (i, j) measured by using the respective cell-center latitudes
and longitudes, (λi,φi) and (λj ,φj). The physical-based characteristic path length of the
network, L, is simply the average of all Li (i= 1, . . . ,N ). The probability distribution of Li

provides a sense of the average edge lengths in a network and L provides a measure of
network integration.20

3 Data and data processing

The GRACE TWSA dataset used in this study was downloaded from Jet Propulsion Labora-
tory (JPL)’s Tellus site, (http://grace.jpl.nasa.gov/index.cfm). The dataset is based on RL05
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GRACE solutions (in the form of spherical harmonics) released by the Center for Space
Studies at the University of Texas Austin. It includes 121 epochs from January 2003 to
July 2013 at approximately monthly intervals. The 6 missing months, which are not contigu-
ous, were reconstructed using linear interpolation (temporal only). The grid dimensions are
360× 180 and ocean area is masked out, resulting ∼ 25000 cells in each TWSA grid. In5

generating the gridded TWSA product, a number of postprocessing algorithms have been
applied, as documented in details in Landerer and Swenson (2012). In particular, a destrip-
ing filter is applied to minimize the effect of north–south-oriented stripes in GRACE monthly
solutions, and a 300 km Gaussian filter is then used to reduce random errors in high-degree
spherical harmonic coefficients not removed by destriping. The GRACE gravity field solu-10

tions are typically truncated at a spectral degree less than 60. To restore signal attenuation
caused by truncation and filtering, the JPL dataset also includes a spatially distributed and
temporally invariant scaling factor field. This scaling factor field is not used in this study
because it does not affect pairwise correlations.

Outputs from GLDAS’s NOAH model were obtained from NASA (http://disc.sci.gsfc.nasa.15

gov/services/grads-gds/gldas). GLDAS covers latitudes between −60◦ and 90◦, and does
not model permafrost regions such as Greenland and Antarctica (Rodell et al., 2004). Its
grid dimensions are 360× 150 and the temporal span is from January 1979 to the present
(GLDAS V1). The number of cells in each GLDAS monthly grid is N = 14540. The GLDAS
TWS is defined as the sum of water mass from all four soil layers represented by NOAH (up20

to 2m depth) and snow water equivalent. Thus, GLDAS TWS mainly includes surface and
root zone storages, but not the deeper groundwater stroage. The GRACE grids are masked
using the smaller GLDAS coverage during network construction. To ensure a consistent
comparison, the GLDAS dataset was processed using the same truncation and filtering
techniques applied to the GRACE data, which has been a standard practice in the literature25

(e.g., Chen et al., 2010; Rodell et al., 2009).
Monthly time series contains high-frequency noise. Because the main interest in this

study is on interannual correlations of TWSA, the high frequency noise in each TWSA
time series are removed. Several methods have been used for such purpose. The z-score

9
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method has been employed in the CCN literature to remove seasonal variability (Donges
et al., 2009b; Steinbach et al., 2003; Tsonis et al., 2006). It entails normalizing each monthly
data point using the mean and standard deviation calculated for the corresponding month
and over the entire record length. The least squares method, which is extensively used
in the GRACE literature (e.g., Yeh et al., 2006; Crowley et al., 2006), models the intraan-5

nual variability using Fourier series (two annual sine/cosine terms and two semi-annual
sine/cosine terms) and then removes the variability, together with a slowly moving trend.
Our numerical tests show the two methods give very similar results. Lags existing between
time series may weaken linear correlation. Thus, to examine the effect of temporal lags, the
same interannual correlation analysis is repeated using a temporal window of 36 months10

(i.e., the maximum correlation observed within ±1.5 years of the zero lag).

4 Results and discussion

4.1 Edge density

The number of possible edges represented by the TWS datasets is more than 100 million for
N = 14540. After removing seasonal trends from GRACE and GLDAS and calculating the15

correlation coefficient R for all node pairs, the edge density method is applied to determine
a similarity threshold τ . Note in the discussion below, R is calculated at zero lag unless
otherwise specified.

Figure 1a shows edge density functions constructed using GRACE and GLDAS TWS
data, respectively, both are monotonically decreasing (i.e., fewer connected edges at higher20

τ values) and are similar in shape. As mentioned in Sect. 2, edge density provides an in-
dicator of the fraction of connected edges at different threshold values. Figure 1b plots the
maximum correlation coefficient as a function of edge length, which is defined as the short-
est physical distance between a pair of nodes in this work. To arrive at Fig. 1b, all R values
are first sorted according to nodal separation distances, a bin width of 250 km is applied to25

the resulting distribution, and the maximum R value within each bin is recorded. Figure 1b

10
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suggests that the maximum correlation stays relatively high (> 0.7) for most distances. Re-
call that the main purpose of network pruning is to improve the computational efficiency
of network characterization while preserving the most significant network features. In this
study, we set the threshold τ to 0.57 because (a) the corresponding fraction of connected
edges is relatively small (0.036), at which level more than 96 % of edges is removed, (b) the5

edge densities of GRACE and GLDAS happen to be the same at that level; and importantly
(c) the cutoff τ threshold is still below the maximum correlation exhibited at all separation
distances, as suggested by Fig. 1b. Thus, the selected τ value ensures that all statistically
signficant network features are retained in the constructed networks.

4.2 Basin analyses10

A basin analysis is useful for helping visualize the TWSA connection patterns at the basin
level. As some examples, Figure 2 shows the results for six river basins around the world.
To generate a plot in Fig. 2, a cell is first fixed, and all its edges are colored according
to the actual R (not the absolute values). For our purpose, the centroid of each basin is
used. While the basin centroid may not be representative of the connection patterns of an15

entire basin (especially when the basin spans several climatic regions), it serves as a basis
for comparing multiple basins at a qualitative level. Figure 3 applies the cutoff threshold τ
defined in Fig. 1 to all plots in Fig. 2. Results suggest that interannual TWSA connections
in Amazon and Congo Basins are dominated by local connections. The mid-latitude basins
(Ganges, Mississippi, and Tigris) generally show more teleconnections, although Yangtze20

is an exception. In the case of Tigris basin, a large number of strongly positive and negative
correlations are observed and the local connections extend far beyond the basin boundary.
A detailed interpretation of this observation will be given in the next section.

Extensive teleconnection is an advantage from forecasting perspective because climate
indices, such as El Niño–Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO),25

can be used as possible indicators of future changes. For those basins without strong tele-
connection, water resources planning must rely mainly on regional data. Such distinction

11
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sheds light on the significance of GRACE data to long-term basin planning and natural
hazard mitigation strategies, as we will elaborate in the following sections.

As a sensitivity study, Fig. 4 (left column) shows the results of basin analysis for Mis-
sissippi basin, the largest basin in North America, using different thresholds corresponding
to τ values of 0.41, 0.57 (the base case), and 0.76, respectively. The corresponding edge5

density is labeled in the figure. Because the cutoff threshold increases as ρ decreases,
a significant reduction in number of edges can be observed. For comparison, the modeled
TWS connections obtained from GLDAS are provided in the second column of Fig. 4. In
general, the connections modeled by GLDAS are much weaker (i.e., smaller in spatial ex-
tent) than those obtained from GRACE. In some cases, the locations of connections are10

also different. For example, the negative correlation obtained by GLDAS in North Africa
for ρ= 0.1 is not seen by GRACE. The complex networks thus provide a useful tool for
examining the agreement, or the lack of it, between GLDAS and GRACE.

4.3 Connectivity

Using the selected cutoff τ , a network adjacency matrix A is formed and various network15

measures described under Sect. 2 are applied to quantify network topology. Figure 5a
shows the area-weighted connectivity map constructed using GRACE data. On the map,
red colors highlight regions of high connectivity. Recall that a high degree of connectivity
indicates that a node interacts strongly with the rest of the nodes in a network (i.e., a su-
pernode); however, the connectivity map itself does not tell the type of connections per se,20

and needs to be analyzed jointly with the connection length map to be shown in the next
section. The largest cluster of supernodes appears in the Middle East region, where the
connected neighbors account for more than 0.16 of the global area. To a lesser extent, the
Pacific Northwest and east coast of the US, southern Africa, southern South America, and
eastern Australia show smaller supernode regions. In contrast, most of Asia, central US,25

and Europe exhibit little or no connectivity (blue color). These observations are consistent
with patterns observed during basin analyses (see Figs. 3 and 4).

12
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The supernode regions shown in Fig. 5a reflect the superposed effects of climate vari-
ations and anthropogenic activities. These can be explained in terms of global precipita-
tion and atmospheric circulation patterns. In general, the poorly connected regions have
stronger precipitation variations over shorter spatial scales, leading to the emergence of
high precipitation gradients which, in turn, are responsible for regional extreme events that5

are more localized in time and space (Scarsoglio et al., 2013). Those with high connectivity
tend to be directly influenced by ocean and climatic oscillations (e.g., ENSO and NAO).
Kahya and Dracup (1993) studied streamflow variations in the contiguous US and identi-
fied Northeast, North Central, Pacific Northwest, and Gulf of Mexico states as regions with
potentially significant streamflow responses to ENSO forcing. These four regions can be10

easily identified on Fig. 5a, among which the Gulf of Mexico region shows the weakest con-
nection. Similarly, Chiew et al. (1998) reported that the ENSO can be used to help forecast
spring runoff in south-east Australia and summer runoff in the north-east and east coasts
of Australia. This teleconnection pattern is also indicated clearly by Fig. 5a.

At the global scale, Dai et al. (2009) studied the monthly streamflow records of the world’s15

925 largest ocean-reaching rivers from 1948 to 2004. They concluded that (a) the interan-
nual variations of streamflows are correlated with the ENSO events for discharge into the
Atlantic, Pacific, Indian, and the global ocean as a whole and (b) the effects of anthropogenic
activities on annual streamflow are likely to be small compared to those of climate varia-
tions; however, anthropogenic activities can create more disturbances in arid and semi-arid20

regions, where the discharge magnitudes are low (e.g., Indus, Yellow, and Tigris–Euphrates
River Basin). To elaborate the latter point further, Fig. A1 in Appendix A plots the proportion
of total renewable water resources withdrawn by country for human uses in the agricultural,
municipal, and industrial sectors, using long-term data compiled by the Food Agricultural
Organization of United Nations. Figure A1 indicates that the Middle East and North African25

countries show the highest withdraw proportions. In a recent GRACE study focusing on
north-central Middle East, Voss et al. (2013) reported that GRACE data show an “alarm-
ing rate” of decrease in TWS of approximately 143.6 km3 during 2003–2009. Thus, the
resemblance between Fig. 5a and Fig. A1 in those regions is not coincidental and can be

13
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corroborated using multiple sources. Because interannual TWS anomalies are well con-
nected in clustered supernode regions, these regions tend to exhibit more vulnerability to
both climate and human-induced disturbances.

Having elaborated the close relationship between GRACE TWSA and climate patterns,
it is important to point out that the TWS also includes effects of soil moisture and ground-5

water storage (mostly unconfined aquifers) changes that may not synchronize with climate
patterns.

Figure 5b shows the same area-weighted connectivity map, but constructed using the
GLDAS-NOAH outputs. Although GLDAS-NOAH shows many of the similar patterns de-
tected by GRACE, it also indicates stronger connectivity in Arabian Peninsula, North Africa,10

and in middle South America, and much weaker connectivity in southern Africa. These dis-
crepancies may be caused by GLDAS-NOAH’s parameterization and other errors. The other
main reason is the lack of representation of the deeper groundwater storage in GLDAS. The
discrepancies highlighted here provide additional spatial calibration constraints for land sur-
face models. In areas dominated by shallow TWS components, GLDAS needs to show15

similar patterns as those derived from GRACE, whereas discrepancies are only expected
in areas dominated by deep TWS components and/or impacted by signficant anthropogenic
activities. We emphasize here the connectivity maps shown in Fig. 5 are for TWSA. Thus,
the high-precipitation areas (e.g., Amazon basin) do not necessarily exhibit high anomaly
connectivity after removing the intraannual variability.20

So far, all results have been based on zero-lag correlations. The effect of temporal lag on
connectivity is examined in Fig. 6, in which the connectivity map is built using the maximum
(absolute) correlation found between −18 and +18 monthly lags of each node pair. The
figure suggests that incorporation of lagged correlation further strengthens connectivity.
The supernode regions are more expanded in space, notably in eastern Australia and in25

the Colorado River Basin and Gulf Coast states in the US. Further, Appendix B shows the
maximum correlation and phase lags for the six basins studied in Fig. 2, which suggest
that each river basin is in phase with most cells in itself and the immediate surroundings.
However, significant phase lags exist between each river basin and other river basins.

14
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4.4 Connection length

Figure 7a shows maps of the physical-based average nodal connection length Li (i=
1, . . . ,N ). Nodes that exhibit the longest connection lengths are mostly located in south-
ern part of South America (∼ 12000 km). Other regions with relatively long connections are
found in Pacific Northwest, North Central, Colorado River, and North East regions of the5

US, south Africa, and eastern Australia. Interestingly, the Middle East region is mostly char-
acterized by connection lengths less than 5000 km; thus, the supernodes in that region are
dominated by local connections. The connection length patterns observed here support the
previous discussions in the context of teleconnection and forecasting potential. Importantly,
the connection length map can help evaluate the influence of teleconnection on TWS for10

a particular region.
The average nodal connection length map constructed using GLDAS data suggests much

wider connections, although most are local. Again this can be attributed to model param-
eterization schemes, forcing resolution, and spatial correlation constraints, as discussed
before.15

The probability distribution of the average connection length, Li, is shown in Fig. 8. Most
nodes in the GRACE network are dominated by short-range edges with lengths less than
2000 km, although several other smaller modes appear in the 4000–6000, 6000–8000, and
8000–10 000 km ranges. In contrast, the GLDAS network shows a weaker local connection
mode in < 2000 km range, but a wider and more persistent second mode in 4000–6000 km.20

Interestingly, the two modes of GLDAS coincide with those of GRACE. The characteristic
path length (L) is 2300 km for GRACE and 4000 km for GLDAS, respectively.

5 Summary and conclusions

In this work, the complex network theory is applied to analyzing spatial connection pat-
terns in TWS. A comparative study is conducted using two global TWS datasets derived25

from GRACE and GLDAS, respectively, with an emphasis on interannual variability. Both

15
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datasets are large and have more than 100 million potential connections. An edge-density
method is adopted to define an appropriate network pruning threshold. The constructed
networks are further analyzed using the degree of centrality and connection length mea-
sures.

Our results show that complex networks and GRACE TWSA can be used to identify5

global TWSA hotspots or supernode regions. The area-weighted connectivity is a local
measure that reveals nodes with a large number of connections (edges), whereas the con-
nection length helps identify the dominating type of connections (i.e., local connections vs.
teleconnections). In terms of connectivity, the largest cluster of supernodes appears in the
Middle East region, while other prominent ones are found in Pacific Northwest and eastern10

US, southern Africa, southern South America, and eastern Australia. In terms of connection
lengths, the Middle East region is dominated by local connections, whereas regions such as
Pacific Northwest, North Central, Colorado River, and North East regions of the US, south
Africa, and eastern Australia all have strong bimodal connections.

While many of the TWSA network features found here can be explained by established15

climate teleconnection theories, the TWS, as an integrated indicator of global water storage,
is unique in its own way. It shows the impact of both climate and anthropogenic activities.
Knowledge of both the strength and type of TWS connectivity can help identify useful TWS
predictors and provide insight to further improve current land surface models.

GLDAS outputs have been used extensively in validating GRACE results at various20

scales. Less focused is the consistency of spatial correlation represented by GLDAS and
GRACE data. Results from this study statistically quantify the similarity and discrepancies
between the two datasets. In this case, the observed discrepancies may be attributed to
missing surface and groundwater components in the GLDAS model, or to GRACE uncer-
tainties (Syed et al., 2008; Li and Rodell, 2015). Although data assimilation has been used25

to reduce discrepancies in land surface models, the geometrical, spatial connection pat-
terns have not been used before. A main conclusion from this work is that network con-
nectivity measures should be incorporated as an additional model calibration and validation
criterion when developing the future-generation of GLDAS models.

16
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Appendix A

According to FAO, the proportion of total renewable water resources withdrawn is defined
as the total volume of fresh groundwater and surface water withdrawn from their sources for
human use (in the agricultural, municipal and industrial sectors), expressed as a percentage
of the total actual renewable water resources. The data used in Fig. A1 are compiled from5

2005 data published by FAO http://www.fao.org/nr/aquastat. In several cases where 2005
data are not available, 2000 data are used as best estimates.

Appendix B

Fig. B1 shows the maximum correlations for the six basins chosen in Fig. 2, and Fig. B2
shows the corresponding phase lags. Recall these plots show the correlation between each10

basin centroid and all other cells in the TWSA dataset. The phase lag plot (normalized by 18
months) shows that each river basin is in phase with most cells in itself and the immediate
surrounding regions, but there can be significant phase shifts between each river basin and
other river basins.
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Figure 1. (a) Edge density function ρ(τ) of GRACE and GLDAS (the value of τ selected for network
pruning is 0.57, corresponding to an edge density 0.036); (b) maximum correlation as a function of
edge lengths.
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Figure 2. Patterns of connection inferred from GRACE TWSA for six river basins, in which connec-
tion pattern is based on correlation between the basin centroid and all other cells in the grid.
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Figure 3. GRACE connection patterns after cutoff threshold τ = 0.57 is applied (the green solid line
delineates basin boundaries).
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Figure 4. Sensitivity of connection patterns to cutoff threshold, demonstrated using Mississippi River
Basin’s centroid. Left column, GRACE results; right column, GLDAS results.
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Figure 5. Area-weighted connectivity map obtained using (a) GRACE and (b) GLDAS data (zero-lag
correlation).
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Figure 6. Effect of lagged-correlation on GRACE area-weighted connectivity, where the window of
lagged correlation is [−18, 18] months.
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Figure 7. Map of average node connection lengths derived based on (a) GRACE and (b) GLDAS.
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Figure 8. Distribution of average edge lengths in GRACE and GLDAS networks, where Li denotes
the average distance between node i and its neighbors.
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Figure A1. Proportion of total renewable water resources used by country (Data source: Food Agri-
cultural Organization (FAO) of the United Nations, http://www.fao.org/nr/aquastat)
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Figure B1. Degree centrality inferred from GRACE TWSA for six river basins, based on the maxi-
mum correlation between each basin centroid and all other cells in the grid, and within a window of
[−18,18] months.
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Figure B2. Phase lag of maximum correlations obtained for the six river basins shown in Figure B1
(normalized by 18).
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