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Abstract

Network analysis has become an important approach in studying complex spatiotem-
poral behaviour within geophysical observation and simulation data. This new field pro-
duces increasing amounts of large geo-referenced networks to be analysed. Particular
focus lies currently on the network analysis of the complex statistical interrelationship5

structure within climatological fields. The standard procedure for such network analy-
ses is the extraction of network measures in combination with static standard visuali-
sation methods. Existing interactive visualisation methods and tools for geo-referenced
network exploration are often either not known to the analyst or their potential is not fully
exploited. To fill this gap, we illustrate how interactive visual analytics methods in com-10

bination with geovisualisation can be tailored for visual climate network investigation.
Therefore, the paper provides a problem analysis, relating the multiple visualisation
challenges with a survey undertaken with network analysts from the research fields of
climate and complex systems science. Then, as an overview for the interested prac-
titioner, we review the state-of-the-art in climate network visualisation and provide an15

overview of existing tools. As a further contribution, we introduce the visual network
analytics tools CGV and GTX, providing tailored solutions for climate network analysis,
including alternative geographic projections, edge bundling, and 3-D network support.
Using these tools, the paper illustrates the application potentials of visual analytics for
climate networks based on several use cases including examples from global, regional,20

and multi-layered climate networks.

1 Introduction

Data visualisation created within scientific contexts aims at the provision of meaningful
visual representations that support the exchange of working results and provide sci-
entists with appropriate tools to reveal relations and hidden patterns within their data.25

The advantage of visualisation is that it establishes a direct interface between digital
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data in a computer and the human perceptual and cognitive abilities, as it compactly
and intuitively represents abstract relationships.

Visualisation techniques are available for different data classes – for instance, for
3-D scalar data representing three-dimensional phenomena such as CT scans (Zhang
et al., 2011), for vector data representing data with a direction such as air flow around5

an air plane (Brambilla et al., 2012), and multivariate data representing multiple data
variables simultaneously (Fuchs and Hauser, 2009), such as temperature, humidity,
pressure, and wind speed. In scientific contexts, visualisation is often used in a static
manner, producing fixed images or animations.

However, nowadays, there is a rising acceptance of interactive visualisation, still10

mainly for the purpose of presenting scientific findings. Since 1990, significant ad-
vances have been made in enhancing visualisation as a flexible, easy-to-use data
exploration tool. This includes the possibility to interact directly with a view and hav-
ing several different linked visualisations that immediately reflect any such interaction
or changes of the underlying data, and vice versa. For an introduction to interactive15

visualisation in climate research see (Tominski et al., 2011).
Going even beyond this, the new research field of “visual analytics” has emerged

within the last decade (Thomas and Cook, 2005), based on the idea of coupling hu-
man perception abilities with automatised analysis methods and thus allowing new
insights into huge complex data sets: “The goal of visual analytics is the creation of20

tools and techniques to enable people to synthesise information and derive insight
from massive, dynamic, ambiguous, and often conflicting data, [to] detect the expected
and discover the unexpected, [to] provide timely, defensible, and understandable as-
sessments and [to] communicate assessment effectively for action. [. . . ] The challenge
is to identify the best automated algorithm for the analysis task at hand, identify its25

limits which cannot be further automated, and then develop a tightly integrated solution
which adequately integrates the best automated analysis algorithms with appropriate
visualisation and interaction techniques.” (Keim et al., 2008, 2010). In this context, this
paper reviews how the analysis of large geophysical networks such as climate net-

711

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/2/709/2015/npgd-2-709-2015-print.pdf
http://www.nonlin-processes-geophys-discuss.net/2/709/2015/npgd-2-709-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
2, 709–780, 2015

Review: visual
analytics of climate

networks

T. Nocke et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

works, but also earthquakes (Davidsen et al., 2008) and networks of rock fractures or
cave passages (Phillips et al., 2015) can strongly benefit from visual analytics.

To provide an example from the field of climate network analysis, similarities of time
series from grid or station based climate data can be transferred into a network struc-
ture of nodes and edges (see, e.g., Tsonis and Roebber, 2004; Yamasaki et al., 2008;5

Donges et al., 2009a). Then, various network measures are derived from the network
topology and from the often multivariate and typically time-dependent data. Finally, a vi-
sualisation step is performed to investigate the spatial or spatiotemporal variability of
the network properties and link them to the climate context. By applying the complex
network approach to climate data, interesting and new insights into the climate system10

can be derived – e.g., studying the stability of the global climate with respect to certain
climate phenomena (e.g., Berezin et al., 2012), to investigate moisture pathways and
propagation of extreme rainfall events (Boers et al., 2013), or even to develop new pre-
diction schemes (Steinhaeuser et al., 2010; Boers et al., 2014; Ludescher et al., 2013,
2014).15

With respect to the size of the networks consisting of large numbers of edges on one
hand, and due to the restricted availability of suitable visualisation software solutions
on the other hand, visualisation used in this context focuses mainly on the static repre-
sentation of scalar network measures. Figure 1 illustrates typical static representations
of mapping node betweenness (Fig. 1a) and number of edges (Fig. 1b) to a spatial grid20

by using general purpose tools such as Python or MATLAB.
Such plots provide simplified views of the network data, representing the node in-

formation while omitting the structure denoted by the edges. In addition, missing inter-
action options with such static “overview” images restrict the scientists’ investigation
options for detecting possibly interesting, partly unknown features in the data in an25

exploratory sense. Against this background, this article investigates the potentials and
challenges arising from interactive visual analytics methods for networks and examines
available tools for exploring geo-referenced climate networks, including two tailored
solutions developed by the authors. These software solutions tackle major obstacles

712

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/2/709/2015/npgd-2-709-2015-print.pdf
http://www.nonlin-processes-geophys-discuss.net/2/709/2015/npgd-2-709-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
2, 709–780, 2015

Review: visual
analytics of climate

networks

T. Nocke et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

arising in geo-referenced network visualisation, including “edge clutter” (or “spaghetti
plots”), coupled 3-D geo-networks, and performance issues with respect to network
sizes to be handled interactively.

This article is structured as follows: Sect. 2 provides the background of geophysi-
cal climate networks, followed by an in-depth problem analysis including a survey an-5

swered by researchers using network visualisation tools in Sect. 3. Thereafter, Sect. 4
discusses suitable visualisation techniques for such networks and Sect. 5 lists soft-
ware tools in which these techniques are integrated. To illustrate this state-of-the-art,
Sect. 6 presents several visualisation examples for three different types of geophysical
climate networks. Finally, Sect. 7 discusses our main findings, provides conclusions,10

and outlines research challenges for future work.

2 Climate networks

Climate researchers investigate the impact of natural phenomena and human society
on the Earth’s climate and vice versa. These investigations involve a variety of obser-
vational data sources as well as complex models, which in turn produce an enormous15

amount of simulation data. Methods of multivariate statistical analysis, such as empir-
ical orthogonal functions (principal component analysis) (Wallace and Gutzler, 1981;
von Storch and Zwiers, 1999), are currently the standard means to gain insight into
such data.

The analysis of climatological data from the viewpoint of complex network theory20

(Newman, 2003; Boccaletti et al., 2006) is a recent and versatile method for making
sense of the wealth of data that is available to researchers today. The central idea
of climate network analysis is to construct a network (or graph) G = (V ,E ) to repre-
sent the structure of particularly strong or significant pairwise statistical relationships
that are contained within a spatiotemporally resolved data set (Tsonis and Roebber,25

2004), where V and E denote the sets of nodes and edges in the climate network,
respectively. The data sources studied by climate network analysis range from obser-
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vational data, such as raw meteorological readings collected by the German Weather
Service (Rheinwalt et al., 2012), via reanalysis data sets, such as those provided by
the NCEP/NCAR Reanalysis 1 project (Kistler et al., 2001), to model simulations, such
as those generated by Atmospheric and Oceanic General Circulation Models – e.g.,
the WCRP CMIP3 multi-model dataset (Meehl et al., 2007).5

The nodes i ∈ V of a climate network represent measurement stations or model grid
points, where time series data xi (t) describing, e.g., temperature or precipitation vari-
ability, is available. An edge is introduced between pairs of nodes (i , j ) iff the value of
a particular measure of statistical association Ci j between time series xi (t) and xj (t)
(e.g., linear Pearson correlation, nonlinear mutual information, or event synchronisa-10

tion; Donges et al., 2009b; Malik et al., 2012; Runge et al., 2012) exceeds a threshold
Ti j . Accordingly, the network’s adjacency matrix Ai j is given by

Ai j =Θ(Ci j − Ti j )−δi j , (1)

where Θ(·) denotes the Heaviside function and δi j Kronecker’s delta introduced to re-
move self-loops. Usually, a global threshold T is prescribed such that Ti j = T for all (i , j )15

(e.g., Donges et al., 2009a, b, 2011; Tsonis and Roebber, 2004; Tsonis and Swan-
son, 2008; Yamasaki et al., 2008), but the threshold may also be chosen adaptively for
each pair based on suitable statistical significance tests of time series analysis (e.g.,
Steinhaeuser et al., 2010; Boers et al., 2013, 2014).

Such a construction of a climate network, opens up the data to detailed statistical20

analysis using the tools of complex network theory. While most climate studies focus on
standard network measures such as degree or betweenness centralities and their dis-
tributions (Newman, 2003; Boccaletti et al., 2006), a number of extensions thereof has
been proposed for the specific application to climate network analysis, e.g., for hetero-
geneous node sizes (fraction of the Earth’s surface area a node represented) (Heitzig25

et al., 2012) in networks of coupled climate networks (Wiedermann et al., 2013) or
directed and edge-weighted networks (Zemp et al., 2014a, b).
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Climate network analysis has been successfully applied to investigate spatiotempo-
ral climate variability and complex relationships within the climate system and has been
shown to provide insights that complement commonly applied methods of eigen anal-
ysis of climatological data (Donges et al., 2015). Several stability-focused studies have
found evidence that the ENSO phenomenon causes a weakening of spatial statistical5

interrelationships and thermal stability in the global climate system, as well as reduces
predictability (Yamasaki et al., 2008; Tsonis and Swanson, 2008; Berezin et al., 2012).
Climate networks have been used to uncover a backbone structure carrying a consid-
erable amount of matter, energy, and dynamical information flow in the global surface
air temperature field (Donges et al., 2009a, b) and to unravel subtle shifts in climate10

subsystems, e.g., a westward propagation of the multidecadal Atlantic oscillation (Feng
and Dijkstra, 2014) or a stability change of the Atlantic Meridional Overturning Circu-
lation (van der Mheen et al., 2013). In other studies, the spatial variation of extreme
rainfall has been used to uncover typical moisture pathways and extreme rainfall prop-
agation, as well as to investigate involved convergence zones (Malik et al., 2010, 2012;15

Rheinwalt et al., 2012; Boers et al., 2013, 2014). By introducing new concepts for irreg-
ularly sampled time series, palaeo-climate networks have been used to reveal changes
of the influences of the Indian Summer Monsoon on the East Asian Summer Monsoon
during warm and cold periods (Rehfeld et al., 2012). Among the studies focusing on
the El Niño/Southern Oscillation, teleconnections in general or atmospheric circulation20

patterns have been subject of interest – e.g., Rossby waves or the Walker circula-
tion (Runge et al., 2012; Wang et al., 2013).

Furthermore, network communities, partitioning, and the network of networks ap-
proach have been exploited to identify drivers of the global ocean surface temperature
(Tantet and Dijkstra, 2013), to study the interrelationship between North Atlantic and25

equatorial Pacific (Guez et al., 2012, 2013), to improve statistical predictions of fu-
ture climate variability (Steinhaeuser et al., 2010; Ludescher et al., 2013; Boers et al.,
2014), to perform first attempts in inter-model comparison (Steinhaeuser and Tsonis,
2013; Feldhoff et al., 2015; Lange et al., 2015), and to study the cross-correlation struc-
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ture between two or more distinct fields of climate variables providing novel insights into
the atmosphere’s general circulation structure (Donges et al., 2011; Feng et al., 2012;
Wiedermann et al., 2015).

The main aim of climate network analysis is to serve as an explorative technique for
investigating the wealth of information contained in the data’s spatial correlation struc-5

ture. Its validity may be confirmed by showing that known statistical relationships and
structures are picked up by the method in a way that is consistent with physical expec-
tations and the network theoretical interpretation of specific network measures under
study. Moreover, the above cited studies demonstrate that climate network analysis has
the potential to uncover previously hidden or unexpected structures in the data, which10

subsequently have to be put through a process of interpretation and careful analysis
using complementary methods to answer relevant questions of interest and to generate
new insights into the climate system’s functioning (Donges et al., 2015).

3 Problem analysis

After the general background motivation, the following Sect. 3.1 analyses the require-15

ments of climate network analysts regarding visualisation and, based on that, Sect. 3.2
will outline the challenges current visualisation tools are facing with respect to these
requirements.

3.1 A survey of network analysts’ visualisation habits and requirements

Researchers applying climate network analysis have so far mainly relied on static visu-20

alisations of statistical results such as degree and edge length distributions (Tsonis and
Swanson, 2008), time series of the number of edges |E (t)| for time-dependent climate
networks (Yamasaki et al., 2008; Radebach et al., 2013), global maps and scatter plots
of local network measures such as degree, closeness, betweenness centrality, and
local clustering coefficient (Donges et al., 2009a, b), or line plots showing the evolu-25
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tion of global network measures such as average path length or transitivity with height
(Donges et al., 2011). This static approach is not unique to climate network analysis,
but appears to be common practice in the modern analysis of general complex net-
works which is guided by quantitative ideas from physics (most prominently statistical
mechanics), mathematics, and social science (Albert and Barabasi, 2002; Newman,5

2003; Boccaletti et al., 2006).
However, the sheer number of different metrics in complex network theory compli-

cates the process of gaining an overall picture and, hence, a deeper understanding of
climate network structures when following the static approach. This is particularly true
since the spatial embedding as well as the possible time dependence of climate net-10

works add additional dimensions to the problem. To get an overview of the situation in
geophysical network analysis with respect to visualisation issues, we performed a sur-
vey with 19 practitioners within this field at the Potsdam Institute for Climate Impact
Research. We asked them, what characteristics their networks have (the data), what
the intentions behind the visualisation of such networks are (the tasks), what kind of15

visualisation they typically apply (techniques and tools), and what their most pressing
requirements are with respect to geo-network visualisation.

3.1.1 Network data

From the data perspective, geo-referenced networks range from smaller (up to 100
node networks are investigated by 47 % of the interviewed) to larger numbers of nodes20

(up to 10 000 nodes by 68 %, and even up to 100 000 nodes by 32 %). Edges can be
weighted (68 %) or unweighted (53 %) and directional (63 %) or undirectional (74 %).
With respect to edge density, these investigated networks are sparse (42 %), interme-
diate (74 %), or even dense (42 %). In general, speed of hardware and software re-
sources is the limiting factor – otherwise even larger networks would be processed and25

visualised. In addition, in most cases, the used networks are as well geo-referenced
(94 %), and an additional third dimension (e.g., elevation or atmospheric levels, 39 %)
may be present. Geophysical networks investigated are often time-dependent/evolving
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(72 %), and associated with nodes and edges are multiple data attributes, which can
be derived network measures, or data computed or collected at the corresponding lo-
cations (53 %). For an overview see Fig. 2.

3.1.2 Visualisation tasks performed on networks

Interviewed network researchers analyse such networks according to different tasks5

(see Fig. 3). In general, they are interested in getting familiar with the network’s struc-
ture (94 %), in “finding unknown patterns” (89 %), and in presenting results to scientific
audiences (89 %). Less frequently, scientists perform the general tasks “verify hypothe-
ses” (44 %), model validation (33 %), and model structure analysis (33 %) on their net-
works. With respect to the analysis of specific structural details, the identification and10

visual representation of communities/clusters (72 %), the identification of hierarchical
structures (44 %) and of hubs/bottlenecks (56 %) within the networks is of importance
or high importance, whereas loops are not relevant. Addressing general properties of
the visualisation, the correct visualisation generation (100 %), the aesthetics (83 %),
the ease of perception (78 %), and the compactness of the image (56 %) are either15

“important” or “very important”, whereas the possibility to interact with the image is of
importance to only 47 % of the interviewed analysts.

3.1.3 Network visualisation techniques in use

Beside the explicit scalar representation of network measures, most of the interviewed
used node-link diagrams (83 %) as network visualisation technique, whereas matrices20

are used by 28 %, and mixed network/tree visualisation techniques are used by one
person only (6 %).

3.1.4 Visualisation tools in use

In addition, interviewed network researchers provided information about which visual-
isation tools they use for visualising networks (Fig. 4). Most interviewed use (often or25
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sometimes) Python (72 %), CGV (28 %), MATLAB (22 %), Google Earth/Google Maps
(17 %), GraphVis (11 %), Gephi (11 %), or other solutions such as 3Djs (27 %). Tools
such as Matematica, Network Work Bench, Pajek, GUESS, Tulip and even GIS sys-
tems are used only rarely for visual network analytics.

3.1.5 Further pressing requirements5

Several users asked for new interactive tools, and the main issue is speed-up to rep-
resent larger networks interactively. A second issue demanded is the reproducibility of
visualisation views, so solutions combining interactivity and script-based steering are
requested. A tight integration of automatic network analysis methods with interactive
visualisation in the sense of visual analytics is requested by 53 % of the interviewed.10

3.2 Visualisation challenges

As described above, geo-referenced networks are often large complex multivariate
structures. They typically contain |V | =O(103–106) nodes and up to |E | =O(107–108)
edges. In case of the larger networks, any attempt to render them for extracting useful
information from a direct and unprocessed visualisation (plot) of the network structure15

is unfeasible due to the following challenges.

3.2.1 Spatial restrictions/occlusion

Representing climate networks on a 3-D globe results in occlusion of at least half of the
network, which is always hidden on the backside (see Sect. 6 for examples). On the
other hand, representing climate networks in a projected 2-D space results in distortion20

of neighbourhoods and clutter. Nodes that are rather close together can end up at
opposite sides of the 2-D map; edges between such nodes would cross the entire
map and give a wrong impression of the actual geo-distance between nodes. Visibility
problems aggravate when researchers have to analyse networks with an additional 3rd
dimension (see Sect. 6.3).25
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3.2.2 Edge clutter

When the focus lies on the geographic characteristics of the data, node positions need
to be fixed according to their geo-position. In such cases, edge clutter becomes a ma-
jor problem, since large numbers of edges occlude the view. Suitable edge routing
or edge bundling algorithms are needed to resolve this issue. However, current algo-5

rithms reach their limits in interactive analysis settings, where frequent updates and
re-computations are commonplace. More efficient alternatives need to be investigated
and developed.

3.2.3 Multi-faceted analysis

Climate network data are rich and complex sources of information. They may contain10

spatial, temporal, structural, and attribute components. It is obvious that such an abun-
dance of information cannot be encoded into a single visual representation. It is rather
necessary to use multiple linked views to enable climate researchers to focus on the
aspects relevant to the task at hand and to compare and relate different aspects in-
teractively. This requires sophisticated techniques that help the users (1) to navigate15

and orientate within the visual representations, which is particularly relevant for 3-D ap-
proaches, (2) to dynamically filter the data for detailed analysis, and (3) to coordinate
visualisation and interaction across multiple views and potentially across application
boundaries.

While existing network visualisation tools may support the one or the other require-20

ment, they are not tailored to the context of climate network analysis. Given this chal-
lenging situation, interactive visualisation promises to provide an intuitive way of com-
bining information from the actual network structure, the network’s spatial embedding
and several statistical network quantifiers, e.g., degree and shortest-path (edge-) be-
tweenness (Newman, 2003), to generate and test hypotheses ultimately based on the25

underlying climate data set.
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4 Techniques for geo-referenced network visualisation

Several overview publications on network visualisation in general and on individual as-
pects have been published in recent years. von Landesberger et al. (2011) provide an
overview on visualisation techniques available for large networks. Hadlak et al. (2015)
discuss the visual integration of multiple facets given with the networks, namely hier-5

archies/clusters on top of the network as well as network attributes, dynamics, and
spatialisation, which are all relevant for climate networks, too. In particular for networks
with given geo-references, overview articles are available from a graph drawing per-
spective (Wolff, 2013), as well as from a cartography perspective (Rodgers, 2005).

Due to the typical size of climate networks, simplification mechanisms are mandatory10

for reducing the network complexity, else resulting in cluttered “hairball” images. The
simplification must be flexible in order to account for various data attributes and analysis
tasks, and it must be reproducible (e.g., re-apply stored filters). For an overview of
clutter reduction methods in the visualisation field see Ellis and Dix (2007).

This simplification can be performed in each of the three visualisation process steps:15

(1) filtering/pre-processing, (2) mapping, and (3) rendering. The filtering/pre-processing
step prepares the data set for visualisation, the mapping step constructs 2-D or 3-D
geometric primitives from the data and parameterises them (for instance, with colour),
and the rendering step generates the images from this scene of geometric primitives.
In the following, along with these three main visualisation processing steps, we review20

the state-of-the-art of techniques relevant for the visualisation of climate networks.

4.1 Filtering techniques

First, the network itself can be simplified before converting it into a geometric represen-
tation. This can be done interactively or automatically. Interactive filtering reduces the
number of items rendered by visualising only those nodes and edges that are neces-25

sary for the analysis task at hand. Automatic methods reduce the number of nodes and
edges based on the network structure or on network measures. The simplification can
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be done globally for the whole network, or locally for a region of interest, for instance
using lens interaction (see, e.g., Fig. 10).

4.1.1 Node filtering

Two general node filtering methods can be distinguished: (1) indiscriminate and (2) se-
lective filtering. Indiscriminate node reduction methods sample the nodes of a network,5

such as the traversal-based sampling which maintains the network connectivity. For an
overview of indiscriminate sampling methods see Hu and Lau (2013).

Selective node filters reduce the node set based on their properties, either provided
with or calculated for the nodes. Typically, “uninteresting” nodes are removed using net-
work measures (e.g., node cardinality or betweenness centrality), but as well by given10

(climate) parameters provided with the nodes. Also the focus on selected regions or
separating land and ocean nodes are one kind of selective node filters (“masking”).
A univariate or multivariate node filtering can be applied, filtering out nodes using
thresholds or providing a maximum number of nodes to be visualised (e.g., by showing
only the N nodes of largest degree).15

On the one hand, this can be done interactively by the user, who changes thresh-
olds/maximum numbers until a suitable, uncluttered image is constructed (see, e.g.,
Figs. 15 and 18, which are based on node betweenness filters). However, such a choice
can lead to arbitrary sub-networks, so a good knowledge of the network and network
measure properties is required. Thus, on the other hand, thresholds can be derived20

based on objective properties of the network structure. An example of such objective
properties is to represent only the n most important nodes in terms of betweenness
centrality.

To generalise this approach, in the visualisation field the concept of degree-of-
interest functions (DOI) was introduced (for an overview see Abello et al., 2014), pro-25

viding flexible means to attach an interest value to a data entity, in this case to nodes
(see, e.g., a-priori interestingness and distance to focus by Furnas, 1986, user interest
by van Ham and Perer, 2009, and navigation history by Gladisch et al., 2013).
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Beside the discussed filters, an alternative is the reduction of redundant or similar
nodes, typically done by a similarity clustering of partial networks (see, e.g., Abello and
Pogel, 2006). The result is a network of networks, were – to produce an overview im-
age – individual partial networks can be represented as individual nodes, thus strongly
reducing the network complexity. Then, in combination with an adjusted node layout5

(see Sect. 4.2), they can be unfolded on demand, providing the required degree of
network complexity to the user (Hadlak et al., 2011). However, for geo-referenced net-
works, a geospatial neighbourhood of the clustered nodes is required, otherwise it will
be hard to interpret (see Fig. 5).

4.1.2 Edge filtering10

Simplification of the node set has an additional advantage: it reduces the edge set as
well, as the removal of nodes implies the removal of incident edges. Beyond that, ad-
ditional methods are available for reducing the edge clutter in a network visualisation.
First of all, the most basic edge filter is the thresholding procedure when reconstructing
the network from data using correlation measures. An objective criterion can be cho-15

sen in such a way that edges represent only significant interrelations of a preselected
p value (Donges et al., 2009b; Boers et al., 2014). Next, in the same manner as selec-
tive node filters, selective edge filters can be applied, either by (interactively) filtering
edges by derived edge measures such as edge shortest-path betweenness (Newman,
2003) or geodesic distance (Donges et al., 2009b) as well as by data given with the20

edges, or by defining a maximum number of edges to be displayed in combination with
a DOI function. In visualisation, such measures have successfully been used to cut
down the number of edges – mainly to ensure a proper unfolding of the layout, which
tends to become a hairball for small-world (i.e., dense) graphs. For example, van Ham
and Wattenberg (2008) use a centrality-based filtering of edges, whereas Nocaj et al.25

(2014) use a measure of embeddedness. Note that both approaches add the removed
edges back in after the layout, as the edge removal is a mere intermediate step to
reduce the hairball effect during the computation of the layout.
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In addition to these direct edge removal techniques, in the recent decade a new class
of methods reducing edge clutter (in particular for cases of a fixed layout) has been de-
veloped: edge bundling, which trades edge clutter for overplotting. As edge bundling
does change the geometry of the edges and their geometric properties without remov-
ing individual edges totally, we discuss it in the following section (see Sect. 4.2.2).5

4.2 Mapping

Network visualisation techniques applicable for climate networks include network mea-
sure charts/maps, node-link diagrams, and matrix representations. Network measure
charts/maps reduce the problem to the visualisation of scalar data, representing net-
work structure properties instead of the original network structure (and topology). In10

contrast, the other two classes represent the structure directly – either as node-link
diagrams or as matrix representations. Since showing the nodes in columns and rows
in matrices does not allow an explicit geo-referencing of the nodes, we argue that
node-link diagrams are the most promising (and challenging) class representing cli-
mate network structures and thus, will be reviewed in more detail.15

Typical graphical primitives

For node-link diagrams, network entities are mapped directly to graphical primitives,
graphically connecting nodes (e.g., represented as nodes, circles, or spheres) and
edges (e.g., represented as straight lines, curves, and cylinders). Depending on the
particular type of techniques, network measures and additionally given data at nodes20

or edges are encoded in visual properties such as colour, size, or thickness. Often,
DOI values can be used to steer such visual properties (e.g., mapping it to saturation,
transparency, or size).
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4.2.1 Node layout

Fixed 2-D geo-spatial layouts

Most often, climate networks are represented on a 2-D plane, typically using rectangu-
lar or Mercator projection. Edges are drawn as straight or curved lines. Two different
kinds of mapping of edges can be observed: (1) edges are drawn directly from one5

position to the other, independent of their positions (see, e.g., Fig. 15b), or for global
climate networks, (2) edges with nodes close to the cylindrical latitudinal cuts of the
projection, which would produce a long line through the map, are represented as split
lines, ending at or beyond the horizontal map borders (see Fig. 6). In the first case,
cluttered images with crossing edges (often in the equatorial regions) of global cli-10

mate networks are produced, whereas the second case impedes the mental tracking
of individual split lines. An example overcoming these drawbacks based on alternative
projections is introduced in Sect. 6.1.

Node position changing layouts

To facilitate the network structure perception, avoiding crossing edges and edge clutter,15

in particular for large networks, layout algorithms changing node positions are applied.
Such algorithms try to minimise the number of crossing edges and emphasise the
network structure by optimising the spatial alignment of nodes (Díaz et al., 2002). DOI
functions can be used to shift clutter from nodes with a higher DOI values to nodes with
lower DOI values, for instance adjusting weights in force-based layout algorithms.20

An important feature of climate networks, however, is that they are geo-referenced.
The position of nodes therefore corresponds to a geographic position on the Earth,
which is important to interpret the data, for instance, to relate teleconnections in
such networks with actual physical processes. Therefore, graph layout algorithms that
change node positions based on the network structure, can be applied only in con-25
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junction with a geo-referenced layout, for instance Fruchterman and Reingold (1991)’s
algorithm applied with an initial geo-layout (see Fig. 7).

Such readjustments can be categorised in (1) distribution of the nodes (e.g. overlap
removal, Fig. 7b), (2) removing of nodes (layout coarsening, see Sect. 4.1.1), and (3)
clustering of nodes (to meta-nodes, see Sect. 4.1.1). To provide examples, Gansner5

et al. (2005) combine removal and distribution of nodes, whereas Hadlak et al. (2011)
and Brodkorb et al. (2015) represent sub-networks either as meta-nodes, or integrate
alternative visualisation methods or data scales within the geo-referenced node-link
layout.

Using smooth, animated transitions between such a geo-layout and a slightly read-10

justed layout allows the (climate) network analyst to preserve a mental relation between
the original geo-location of the nodes within node-position changing layouts (see as
well Hadlak et al., 2011). We tested several force-directed layout algorithms, which we
initiated with a geo-layout and parameterised them such that they change the node
position only locally (e.g. Fruchterman and Reingold (1991) or Jacomy et al. (2014), by15

reducing the typical parameter strength of these algorithms such as spring forces), see
Fig. 7.

Virtual globes

In addition to the 2-D approaches, interactive 2.5-D visualisation techniques can be ap-
plied, typically using virtual globes and perspective projections. For example, by map-20

ping the length of an edge to the height of a 3-D arch, short and long teleconnection
can be visually distinguished more easily. Under certain circumstances, the network
can also be used to “imprint” the virtual globe by deforming it accordingly, as it was
proposed by (Alper et al., 2007). However, such visualisations can further intensify the
edge clutter problem, and generate additional issues such as perspective distortion25

and occlusion (Elmqvist and Tsigas, 2008). Section 6 discusses two examples from
this class.
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4.2.2 Edge Bundling

The challenges for visual analysis of large climate networks arise from their geo-
reference, which impedes a modification of node positions, because the spatial node
embedding is essential for the interpretation of the network. Therefore, standard net-
work layout algorithms, which change the node positions in order to minimise edge5

overlaps, can be used only in slightly readjusted mode (see above). Thus, because
most part of the “edge clutter” cannot be avoided, algorithms to bundle edges with
similar properties have been developed. Such edge bundling algorithms reduce the
number of individual line segments, and therefore the amount of visual clutter, by per-
forming a spatial clustering and routing of close-by edges through the same path. In10

that sense, edge bundling can reveal macro-structures of a network, i.e., connections
between different subsets of nodes, but at the same time it also conceals direct con-
nections between individual nodes.

Various edge bundling algorithms have been developed over the last years. They
differ in what kind of data they are applicable to, their bundling performance, and their15

visual results, such as strength of bundling or the readability of the resulting bundles.
In the following, we compare different edge bundling algorithms with regard to their
potential application to climate networks.

Hierarchical edge bundling methods (HEB) (Holten, 2006) use inherent hierarchy
information in the data to construct the routing of edges between the levels of the hier-20

archy. This method needs hierarchical data and is therefore not applicable to general
networks, such as in the case of climate networks.

Geometry-based edge bundling (GBEB) (Cui et al., 2008) works on general net-
works, but needs a so-called “control mesh” that guides the bundling process. This
control mesh can either be created manually or it can be derived automatically from25

the network data by analysing edge patterns. A drawback of this method is that the
chosen control mesh, such as a regular grid, has a strong visual influence on the re-
sulting bundling geometry, which can lead to a bundling that may not represent the

727

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/2/709/2015/npgd-2-709-2015-print.pdf
http://www.nonlin-processes-geophys-discuss.net/2/709/2015/npgd-2-709-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
2, 709–780, 2015

Review: visual
analytics of climate

networks

T. Nocke et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

underlying edge patterns very well and creates visually unpleasing results such as
a lot of “zig-zag” edges due to the underlying control mesh.

As an example of edge bundling methods that do not need an additional control
geometry, force-directed edge bundling (FDEB) (Holten and van Wijk, 2009) is an al-
gorithm that works on general undirected networks. It uses a physics-based model5

(Fig. 8a) in which edges attract each other, causing control points to move towards the
other edge, while spring forces for each edge act in the opposite direction (keeping
the edges intact). By simulating these forces, edges are bundled in a natural looking
way and the bundling process can be modified by adjusting the force factors. However,
due to the quadratic complexity of the algorithm (the forces have to be simulated for10

each pair of edges), it is not well suited for large networks, e.g., the authors report
that bundling for an example data set of migrations with approx. 10 000 edges took
about 80 s. This is not suitable for large climate networks, which range between a few
hundred to hundreds of thousands of edges.

Using a fast agglomerative bundling approach, the MINGLE algorithm (Gansner15

et al., 2011) is able to bundle the same migration data set in approx. one second. This
algorithm is based on a recursive approach to bundle edges, using an optimisation
function based on the principle of “saving ink” (Fig. 8b). It employs spatial data struc-
tures and approximative nearest neighbour tests to quickly calculate neighbour graphs
for edges and find compatible edges, which are then merged into bundles recursively.20

In addition, the curvature of bundles can be influenced by setting a maximal turning
angle allowed for edges. This approach is scalable for large networks, but offers fewer
parameters for controlling the bundling process and produces lesser bundled results
as compared to FDEB.

In the search for efficient bundling methods of general networks, image based tech-25

niques for edge bundling have been developed, which allow efficient implementations
on modern GPU graphics hardware and are, therefore, sufficient for large networks. As
a first approach, skeleton-based edge bundling (SBEB) (Ersoy et al., 2011) achieves
the bundling effect by calculating the skeleton of edge clusters and attracting the edges
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towards their centre lines. However, the calculation of 2-D skeletons is computationally
expensive. Hence, the method was generalised and simplified by using kernel density
estimation edge bundling (KDEEB) (Hurter et al., 2012), which computes a density map
of the edge drawings using a filter kernel and then moves the graph edges according
to the resulting gradients in the density map (Fig. 8c).5

While edge bundling helps to reduce edge clutter in large networks, it can also reveal
high-level patterns in a data set, in particular, it represents groups of nodes which are
connected with other groups of nodes. Detection and analysis of those high-level struc-
tures can provide additional insight into a data set. Therefore, challenges lie not only
in the calculation of edge bundles on a network, but also in the visual representation10

of such bundles. For example, visualising the bundling strength of edges can help to
visually detect and analyse strong connections between groups of nodes in a network.

Initially, edge bundles are often rendered as curves, e.g., using Bézier curves or B-
splines, to emphasise the bundling structure and to generate visually pleasing results
by smoothing the direction of edges along their bundles. Yet, this further distorts the15

actual connections between individual nodes.
Additionally, a visualisation of the bundling structure itself is desired, e.g., to visually

communicate the strength of bundles. This can be achieved by a simple mapping ap-
proach, such as depicting bundling strength by colour. Another approach is to improve
the visual representation of bundles by means of shading. Lambert et al. (2010) applied20

a bump mapping approach to enhance the 3-D impression of edge bundled networks.
This approach influences the colour and brightness of pixels by modifying their sur-
face normals, to create the impression of a “bumpy” 3-D surface without modifying the
actual geometry. Using this approach, strong bundles appear higher than other ones
and therefore stick out visually. Telea and Ersoy (2010) developed an approach for vi-25

sualising edge bundling layouts by constructing individual shapes for each cluster and
rendering these shapes with an image-based technique. In this step, shading is ap-
plied to map attributes of the bundles to visual properties, such as colour, luminance,
or saturation.
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Finally, while edge bundling can reveal high-level structures of a network, it can
also be misleading, since it obfuscates the actual connections between individual
nodes. Therefore, in addition to analysing high-level patterns of a bundled network, re-
searchers must also be able to access the initial edges of a network without bundling.
This can be enabled by interaction techniques that allow a local unbundling of edges,5

such as brushing and interactive lenses, which reveal the connections of nodes inside
the radius of a lens, while the edges outside the lens are bundled. Using this method,
the connections of selected nodes can be interactively inspected, while the rest of the
view remains uncluttered by the applied edge bundling (Hurter et al., 2011).

Since exploration and analysis of a data set take place interactively, the applied al-10

gorithms need to be fast enough to support user interaction, e.g., for adjusting bundling
options or to perform fast re-bundling of edges after filtering options have been modi-
fied. Therefore, edge bundling does not necessarily need to be performed in real-time,
but with a short enough response time for users to support an interactive analysis. Also,
the generally high number of edges in climate networks demand for a high bundling per-15

formance in order to bundle a few hundred thousand edges in a few seconds. From the
described bundling algorithms, MINGLE and KDEEB fulfil these requirements, as they
both offer high bundling performance on large data sets. KDEEB, due to its image-
based approach, can be easily integrated into a GPU-based rendering pipeline for
network visualisation and can be used as a flexible bundling approach, e.g., to enable20

filter-aware re-bundling of edges. MINGLE, on the other hand, offers the potential to
be applied to 3-D-edges, e.g., to independently bundle several network layers as well
as cross-layer edges in the case of coupled 3-D networks (Donges et al., 2011; Feng
et al., 2012).
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4.2.3 Further mapping aspects

Temporal/evolving networks

Typically, time-dependent geo-referenced networks are visualised using animation or
space–time cubes (see, e.g., Bach et al., 2013). In the visualisation community widely
known techniques such as geographical flow diagrams (e.g., Phan et al., 2005 or Zhu5

and Guo, 2014) and movement data visualisation approaches (Andrienko et al., 2013)
are less relevant for climate networks representing teleconnections, where no flow is
directly associated with the edges. However, if it comes to vulnerability analyses of
time-dependent energy networks (e.g., Menck et al., 2014) or supply chain networks
(e.g., Bierkandt et al., 2014) with physical flows associated, such techniques can be10

useful. In any case, algorithms preserving frame-to-frame coherence of the network
geometry representation such as temporal edge bundling (Hurter et al., 2014) can be
beneficial for analysing temporal climate networks, such as those studied by Yamasaki
et al. (2008) or Radebach et al. (2013).

Node labelling15

If climate networks are defined based on measurements, labelling of stations can be
relevant to understand local network properties. Then, labels have to be integrated in
the occlusion reduction mechanisms.

3-D spatially embedded networks

If the phenomena represented by the climate network are 3-D in longitude, latitude,20

altitude – such as networks based on 3-D atmospheric or oceanic data sets – the
occlusion problems are further aggravated. As a typical solution, the visualisation is
restricted to two selected layers and their internal and inter-layer edges (see Figs. 9
and 21 for examples). Interactive spatial selection and edge bundling techniques for
such real 3-D data sets have been developed for neuronal network visualisation (Blaas25
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et al., 2005; Böttger et al., 2014), however, have not yet been applied to 3-D climate
networks.

4.3 Rendering

In the rendering phase, several methods can be used to reduce visual clutter and to
highlight structures. Alpha blending is a common tool for handling overlapping edges,5

turning regions of high edge density more opaque. More advanced are specific shading
techniques, improving the structure perception, e.g., use lightness adaptation for trees
(Schulz et al., 2011) and 3-D illustrative shading techniques for bundled edges (e.g., in
Hurter et al., 2012). Finally, interactive lenses have been developed to reduce the local
clutter around a user specified focus region (Hurter et al., 2011; Krüger et al., 2013;10

Tominski et al., 2014). Either, such lenses distort the optics around a network repre-
sentation region (changing the local rendering properties, so called geometric lenses,
thus providing more display space) or change the local primitive mapping (semantic
lenses), which can, for instance, regionally show more nodes, change the node layout,
hide region crossing edges or highlight edges starting/ending in the lens region (see15

Fig. 10).
In particular for climate visualisation on 3-D visual globes, rendering performance

becomes a bottleneck for most network visualisation environments, because geomet-
rically complex representations of nodes (3-D spheres) and edges (multiple line seg-
ments) result in several million geometric primitives even for medium sized climate20

networks. However, 3-D scene interactions such as zooming, rotating, and panning as
well as scene changes by filtering nodes and edges or a modification of data mapping
and rendering options must provide interactive feedback, otherwise a visual exploration
of such networks is strongly hampered. As a result, the rendering implementation must
be highly optimised to support visualisation and analysis of medium-sized to large net-25

works at interactive frame rates.
Techniques for improving the rendering performance for climate networks include

both the minimisation of geometric primitives and the optimisation of rendering meth-
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ods. For example, tessellation and rendering of complex 3-D spheres representing the
nodes of a network can be supplanted by billboard techniques that render only a sim-
ple quad geometry and use GPU fragment shaders to create the visual appearance of
a perfect sphere with regard to the current screen resolution. This drastically reduces
both geometry size and rendering time (see as well our own solutions in Sect. 5.2).5

The rendering of polylines, that represent the edges of a network, can be optimised
by dynamic (re-)tesselation and level-of-detail techniques: depending on the size of an
edge and its distance to the virtual camera, edges which occupy only a small space
on the screen can be rendered at lower detail, thus reducing geometric complexity and
improving rendering performance.10

5 Visualisation systems

To support the analysis of climate networks, tools enabling scientists to visually anal-
yse and present large climate networks are crucial. Relevant features of such tools
are sophisticated methods for visualisation and interaction in conjunction with detailed
cartographic information.15

5.1 Tool review

There are a number of relevant graph visualisation tools and systems, including Pajek
(de Nooy et al., 2005), GUESS (Adar, 2006), and Gephi (Bastian et al., 2009), sum-
marised in Table 1. In the following, we review important properties of these systems
with respect to the requirements of climate networks.20

5.1.1 Computational scalability

The size of a network, in particular the number of edges, is often a major criterion for
the general applicability for climate network visualisation. This is influenced by inter-
nal data structures, for instance effective handling of sparse matrices, as well as by
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the effectiveness and efficiency of provided (layout) algorithms (e.g., hierarchic net-
work handling and GPU implementations). Tools usable for large networks (more than
100 000 edges) include Gephi, CGV, GTX, and Tulip.

5.1.2 Interactive network filtering

Interactive filtering allows the user to specify network parts of interest, e.g., to reduce5

the displayed network size or to highlight parts of the network, thus avoiding perceptive
overload and visual clutter. Whether a certain tool can handle large networks inter-
actively depends strongly on its computational scalability. The filtering can be done
either interactively, by directly selecting/deselecting nodes or edges of interest in the
network structure, or by selections based on additional facets of the network such as10

node/edge attributes, clusters/hierarchies, time stamps, or spatial regions. CGV, Gephi,
GTX, Network Work Bench, GUESS, MATLAB, and Tulip provide interactive network
filtering mechanisms.

5.1.3 Visual scalability

Even if a large network can be computed and visualised interactively, the resulting vi-15

sualisation technique itself or its implementation might not be scalable with respect to
the display and the human perception system. Typical visualisation techniques support
hundreds to several thousand nodes. In particular, if node layout algorithms are not
suitable (e.g., because of the geo-reference of the nodes), specialised interaction tech-
niques and edge bundling become relevant. Interactive lenses are supported by CGV20

and Tulip. Edge bundling is supported by CGV (FDEB), GTX (MINGLE), GraphViz
(MINGLE), and Tulip (based on Lambert et al., 2010). Edge bundling for hierarchical
data in circular layouts is supported by the Python package GraphTool and by GraphVis
(based on Holten, 2006).
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5.1.4 Layouts

Node layout algorithms are of minor relevance for visualising climate networks, however
for certain questions they can be a supportive feature (see Fig. 7). Gephi, the Graph-
Tool package, GraphVis, GUESS, MATLAB, the Network Work Bench, the NetworkX
package, Pajek, and Tulip all support a multitude of layout algorithms.5

5.1.5 Geo-embedding

Functionalities mapping the network within its geographic reference are very important
for the interpretation of climate networks. Either planar (CGV, Gephi, GTX, Tulip, Graph
Stream) or spherical projections (CGV, GoogleEarth, GTX, Tulip) can be applied to
explicitly given node positions in longitude and latitude coordinates. Three different10

levels of geo-integration can be distinguished:

1. equidistant cylindrical projection without any geographic layers (by scripting
GUESS, Network Work Bench, or MATLAB, Graph Stream, and as plugin in
Gephi),

2. equidistant cylindrical or spherical projection with several predefined layers, such15

as topography, land cover, and land use (CGV, Tulip), and in addition

3. multiple flexible projections (GTX) or inclusion of self-defined GIS layers
(GoogleEarth).

5.1.6 Support of 3-D spatial networks

Climate networks can contain nodes at different heights, e.g., to represent several at-20

mospheric layers. To visualise such coupled networks, tools need to support the vi-
sualisation of 3-D spatial networks. For the interactive visualisation of spatial 3-D bio-
logical networks such as neuronal networks, several tools and techniques have been
developed (Blaas et al., 2005; Böttger et al., 2014). Unfortunately, they are not directly
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usable for climate networks with an additional level coordinate because of the missing
geo-embedding, and to the best of our knowledge, none of the standard tools pro-
vide both functionalities. To fill this gap, we integrated a mapping of a third dimension
into our own solutions CGV and GTX (see Sect. 6.3). Beyond the node mapping it-
self, representing 3-D spatial networks further increases edge clutter, therefore 3-D5

edge bundling solutions are requested (such as the solution from Böttger et al., 2014).
However, we did not find a freely available network visualisation system providing this
feature.

5.1.7 Support of temporal/evolving networks

Networks that change over time are supported only weakly in most visualisation tools10

(such as Gephi and Pajek). Events altering the network include node/edge creation,
deletion, and attribute change. Graph Stream provides the strongest support for evolv-
ing networks, providing a flexible event handling and smooth change of the network
layout/representation.

5.1.8 Application domain15

The majority of tools have been developed domain independently, however, some tools
were originally tailored for specific application domains (King for bio-networks, NodeTrix
for social networks). In addition, our own solutions CGV und GTX provide functionalities
designed for the characteristics of geo-referenced climate networks such as readers
supporting the climate network data characteristics, mappings for 3-D climate networks20

(see above), and other GIS related features.

5.1.9 Scripting

Most of the presented tools provide a scripting interface, which allows the user to pre-
cisely adjust and reproduce network visualisation properties (such as node/edge filters,
camera positions) and to hand it to her scientific colleagues. In particular, scripting in25
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the sense of an interaction history storage is essential for building scientists’ trust when
applying interactively steerable visual analytics tools (GTX, Tulip and Gephi). In addi-
tion to that, scripting can also allow scientists to extend the visualisation tool by creating
and applying new analysis functions for the data and feeding the results back into the
interactive visualisation. This requires the possibility to access and modify network data5

from within the scripting interface.

5.1.10 Additional features

Beyond the discussed characteristics, there are several other features of network visu-
alisation tools potentially relevant for climate networks. In particular, this includes the
ability to integrate other facets such as networks that come with an additional hierarchy10

on top of the network (CGV) and the provision of additional linked visualisation views
to display network measures and additional data provided with the nodes and edges
(GCV, Tulip, 3Djs). Interactive lenses, which provide local highlighting and reduction
of clutter, are provided by Tulip, CGV, and 3Djs. Finally, a very important feature that
our survey with climate network analysts revealed was the option to derive network15

measures on the fly (Gephi, Tulip, Graph Stream, and using the Python packages Net-
workX, GraphTool, and igraph).

In summary, there is a large bandwidth of tools available for climate network visu-
alisation, ranging from static, 2-D plotting tools with strengths in computational ana-
lytics, to highly interactive tools supporting multiple facets. In the class of interactive20

tools, Tulip and Gephi are most advanced and freely available. Tulip (Fig. 12) is the
most sophisticated, providing geo-embedding and combining network views with stan-
dard information visualisation techniques. In addition, there is a new category of pro-
grammable APIs emerging, which provide easy-to-program graphical user interfaces in
combination with full-fledged network and other information visualisation views (Graph25

Stream, 3Djs, NodeTrix), however, which are typically not scalable for more than 1000
nodes and for intermediate or dense networks.
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5.2 Research prototypes

Unfortunately, the existing solutions do not integrate all features required by the in-
teractive visual analytics of climate networks. Either, the spatial reference of the data
(e.g., real 3-D networks on the globe) and relevant additional cartographic information
is not sufficiently supported, or the size of the networks with up to 1 000 000 edges re-5

quires efficient data handling in combination with fast GPU-aware rendering and visual
clutter reduction mechanisms such as edge bundling. Because of that, we developed
two research prototypes to illustrate directions of future visualisation developments for
geo-referenced networks.

5.2.1 CGV10

The CGV system (Tominski et al., 2009) can visualise climate networks in a variety of
ways. CGV offers parallel coordinates, geographic 2-D map with edge bundling (based
on Holten and van Wijk, 2009), 3-D globe, and density-based representations. All views
are coordinated, meaning highlighting graph entities in one view also highlights the
same entities in all other views. This facilitates understanding the different aspects15

communicated in the different views.
The focus of CGV is on interactive exploration. To this end, CGV integrates several

interaction techniques. These include an extended dynamic filtering, elaborate naviga-
tion techniques, and graph lenses.

CGV’s dynamic filtering mechanism supports the flexible logical combination of20

threshold filters and interval filters on the attributes of nodes and edges of the climate
network. The visual representation reflects the filtering results in two different ways.
Either the filtered nodes and edges are omitted or they are dimmed.

To facilitate the navigation of large climate networks, CGV provides a technique
called edge-based traveling. Instead of using manual zoom and pan operations, the25

user can navigate the network by clicking on its edges. A smooth animation will take
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the user along the clicked edge from one node to the other. Such a navigation aid is
particularly useful when working on problems related to paths in the climate network.

CGV integrates interactive lenses to support exploratory analysis tasks. Particularly
useful are the edge lens, which reduces edge clutter (see Fig. 10), and the layout lens,
which generates local overviews of the connectivity of selected nodes of interest.5

Figure 13 illustrates a CGV session with a climate data set. The figure shows a 2-D
map representation (centre left) and a 3-D globe with an embedded network visuali-
sation (centre right). Additionally, a search box enables label-based node search (top
left), a splat view shows the node density of the network (top middle), and a parallel
coordinates view abstractly depicts the node attributes (top right). A dynamic interval10

filter (bottom) has been applied to filter out nodes with low betweenness values.

5.2.2 GTX

While CGV provides a multi-view environment, this comes at additional rendering costs,
because each view has to render the climate network. Although CGV can handle larger
and/or time-dependent networks, it reaches its limits when huge networks are visu-15

alised in multiple views. As an alternative, we are currently developing a single-view
tool, named GTX, to provide flexible cartographic information at different levels focused
on interactive 3-D visualisation of large time-dependent data sets. GTX has been de-
veloped both for visual analytics of spatio-temporal trajectory data such as air-traffic
movements (Buschmann et al., 2014a) and for interactive visualisation of large geo-20

referenced (climate-)networks.
GTX is able to process up to 1 000 000 edges at interactive frame rates by combining

sophisticated computer graphics and GIS technologies. In particular, data representa-
tion and processing is optimised by storing attributed network data in graphics card
memory and creating complex geometry on the GPU during rendering, instead of pre-25

computing it on the CPU (Buschmann et al., 2014b). This reduces memory consump-
tion and facilitates interaction by avoiding slow re-computation and updates of geom-
etry data from CPU to GPU memory. As a result, it allows for filtering, mapping, and
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rendering options to be configured interactively and updated on the fly, thus enabling
interactive exploration and analysis by giving direct visual feedback to user interac-
tion. In addition, rendering is optimised by minimising the geometric complexity, using
techniques such as billboards to render spheres without tessellation and level-of-detail
(LOD) to reduce the visual complexity for edges based on the distance from the virtual5

camera.
GTX supports both 3-D globe representations and 2-D geographic projections such

as Mercator, transverse Mercator, and circular projection. These representations can
be changed on the fly by user interaction, enabling quick comparisons of different pro-
jections. Due to the hardware-accelerated implementation, both filtering and mapping10

options can be configured interactively.
Finally, all of these visualisation options in GTX (i.e., filtering, mapping, geographic

projections, and camera options) can be accessed by a scripting interface, using
JavaScript as its programming language. This enables scientists to reproduce and
share their visualisation configurations, to enhance or implement their own analysis15

functions on climate network data and visualise their results, and to script reproducible
screenshots or even videos for presentation purposes.

Figure 14 shows an exemplary screenshot of the GTX user interface, visualising
a two-layered network (see Sect. 6.3) with height-level depicted by colour and cross-
betweenness depicted by node size. A node filter for the attribute “cross-betweenness”20

has been applied interactively. The tool can be provided to interested researchers on
demand.

Further research prototypes potentially relevant for the field of climate network vi-
sualisation have been developed for the interactive exploration of spatially-embedded
networks (MoleView, Hurter et al., 2011) and for trajectory visualisation (e.g., Krüger25

et al., 2013).
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6 Examples for visual analytics of climate networks

When analysing climate networks, the geographic nature of those networks plays an
important role. Features found in the network structure may correlate with geographic
characteristics, indicating a relation between, e.g., topography and the investigated
climate phenomena. To detect such interrelationships is an important task of climate5

network analysis, which should therefore be supported by applied visualisation meth-
ods. With our network visualisation solutions GTX and CGV, climate networks are dis-
played as node-link diagrams, which are embedded in a geographical map, either pla-
nar, using a 2-D geographical projection (Fig. 15), or as a spherical view on top of
a 3-D interactive globe (Figs. 16 and 18). The configurable map layer can be used to10

quickly cross-reference network data with topological or thematic features. Therefore,
it provides exchangeable maps for different analysis tasks, e.g., topological or thematic
maps.

The node-link diagram is then displayed on top of the map layer. Within this visu-
alisation, nodes are represented as spheres, while 3-D polylines depict the edges of15

the network. It is important to note that, while the positions of nodes correspond to the
actual geographical locations of the input data, edges do not necessarily have a ge-
ographical meaning. As an edge merely represents a statistical relationship between
climate time series at two nodes, the geographical extent of an edge should not be
misinterpreted as representing an actual geographical phenomenon. In addition to the20

network structure, network measures, such as degree and shortest-path betweenness,
which can be interpreted as attributes belonging to either nodes or edges, are impor-
tant when analysing climate networks. To visualise such measures, node and edge
attributes can be mapped to visual properties. Node properties include the size and
colour of spheres. Edge properties include colour, width, and arc height.25

In the following, we provide several examples to illustrate the process of data prepro-
cessing and the subsequent visual analytics for global (Sect. 6.1), regional (Sect. 6.2),
and coupled climate networks (Sect. 6.3). In discussing these examples, a case will be
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made for the added scientific value of advanced computer graphics visualisations of
climate networks when compared to commonly used visualisation techniques such as
contour plots or coloured maps of scalar fields.

6.1 Global climate networks

To illustrate the visual analytics of global climate networks, we investigate the correla-5

tion structure of the monthly averaged global surface air temperature (SAT) field taken
from a 20th century reference run (20c3m, as defined in the IPCC AR4 (Solomon et al.,
2007)) by the HadCM3 model (Meehl et al., 2007) covering the time span from Jan-
uary 1860 through December 1999. Following the protocol of Donges et al. (2009a,
b), a global threshold T is chosen such that 0.5% of all possible edges associated to10

the largest values of Pearson correlation (without lag) between SAT time series are
included in the climate network. The resulting network contains approximately 6000
nodes and 115 000 edges.

This SAT climate network is visualised as a node-link diagram, where the positions
of nodes are fixed at the geographical locations of the corresponding model grid points15

(Fig. 16). Using dynamic filtering facilities as described in Sect. 5.1, we can interactively
filter for nodes and edges with large shortest-path betweenness, therefore highlighting
structures of particular importance for matter and energy flow in the climate system
that tend to preferentially follow shortest paths in the network (Molkenthin et al., 2014;
Tupikina et al., 2014).20

Two-dimensional latitude–longitude projections of the filtered network (Fig. 15) re-
veal patterns that are in accordance with the backbone structure of significantly in-
creased node betweenness discussed in Donges et al. (2009a) (compare Fig. 1a).
The transverse Mercator (Fig. 15b) and spherical projections (Fig. 15c) avoid most of
the mainly tropical edge clutter induced by the commonly used standard Mercator pro-25

jection (Fig. 15a). Specifically, the transverse Mercator appears particularly useful for
climate network analysis of global climatological fields, because it allows viewing the
whole network and at the same time avoids strong geometric distortions near the poles.

742

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/2/709/2015/npgd-2-709-2015-print.pdf
http://www.nonlin-processes-geophys-discuss.net/2/709/2015/npgd-2-709-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
2, 709–780, 2015

Review: visual
analytics of climate

networks

T. Nocke et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

For example, in the SAT network, this projection provides a clearly arranged overview
of the chains of high betweenness nodes emerging around the coasts of Antarctica
and the Arctic as well as their global connectivity (Fig. 15b).

Compared to commonly used visual representations of climate network properties,
such as the shortest-path node betweenness maps shown in Figs. 1a and 19, a par-5

ticular advantage of the visualisations presented here is that information on node and
edge attributes can be viewed simultaneously and intuitively, while in classical tools,
edge-based network properties are usually displayed in colour-coded matrix views,
see, e.g., Donner et al. (2010, Fig. 13). In the global SAT climate network, this shows
that edges with large shortest-path betweenness tend to fall into one of two categories:10

very short or very long edges. This observation is most clearly pronounced in spherical
representations of the filtered climate network (Figs. 16 and 18) which show less visual
clutter than the two-dimensional projections (Fig. 1), but restrict the view to one visible
hemisphere only.

Based on both views, hypotheses on some of these short and long range edges15

with large shortest-path betweenness can be formulated. For example, high between-
ness short range edges as part of the substrate lattice (Radebach et al., 2013) of the
SAT field may represent advection of heat by strong surface ocean currents such as
the Canary current along the West coasts of Europe and North Africa (Fig. 16) or the
Peru (Fig. 18) and California currents along the West coasts of the Americas (Fig. 16).20

Our visualisations furthermore reveal that short high betweenness edges often connect
high betweenness nodes with comparably low degree (see, e.g., the structure resem-
bling parts of the California current along the West coast of North America in Fig. 18).
Hence, these nodes can indeed be considered as parts of critical bottleneck or back-
bone structures in the global surface air temperature network that channel shortest-25

path connections between a large fraction of pairs of regions on the Earth’s surface
while bearing few direct connections themselves (Donges et al., 2009a; Molkenthin
et al., 2014; Tupikina et al., 2014). Long range edges with large shortest-path between-
ness correspond to teleconnection patterns such as the El Niño-Southern Oscillation
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(ENSO) region in the tropical Pacific (Radebach et al., 2013) or the tropical Walker
circulation with edges connecting regions over the Pacific, Atlantic, and Indian Oceans
along the equator (Figs. 15, 16, and 18). Visual analytics also reveals further unex-
pected structures such as the chain of high betweenness nodes and edges crossing
South America roughly from East to West (Figs. 15 and 16) that call for further research5

to understand the underlying processes and their potential significance for climate dy-
namics.

In the case of longer distant edges the visual clutter can be reduced using edge
bundling. Figure 17 illustrates how a bundling can be used for the SAT network. Zoom-
ing into a certain region, bundling allows for a compact representation of major network10

structures by simplifying dense crossing edge regions. Thus agglomerate directions of
teleconnections within the network can be better perceived.

Finally it should be noted that interactively varying the filter criteria is useful to eval-
uate the robustness of such patterns when testing hypotheses on underlying climatic
processes and selecting regions or network substructures for further, more detailed15

analysis. In this spirit, Figs. 15, 16, and 18 have been generated applying differing
thresholds for the node and edge shortest-path betweenness filters, respectively.

6.2 Regional climate networks

Regional climate networks are a special case of spatially embedded networks, because
they are confined by an artificial boundary. The boundary cuts potential network edges20

and can, therefore, influence the network statistics and requires specific correction
schemes (Rheinwalt et al., 2012). Nevertheless, the visualisation of the edges of the
regional network is useful and allows for investigations of climate interactions.

As an example, we consider the climate network of interrelations between local rain-
fall variation over Africa. Here, the boundaries are mainly defined by the African coast.25

Instead of using continuous data, such as air temperature, we are interested in the rain-
fall variation. On a daily scale, rainfall occurs as events, therefore, Pearson correlation
cannot be applied and other methods for studying interrelations are more appropriate,

744

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/2/709/2015/npgd-2-709-2015-print.pdf
http://www.nonlin-processes-geophys-discuss.net/2/709/2015/npgd-2-709-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
2, 709–780, 2015

Review: visual
analytics of climate

networks

T. Nocke et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

e.g., event synchronisation (Malik et al., 2010; Boers et al., 2013; Stolbova et al., 2014).
In our example, we focus on a monthly scale and, therefore, will be able to use Pearson
correlation. The data covers the period between 1901 and 2003 and is equally spaced
on a regular grid of size 0.5◦ ×0.5◦ (source CRU; New et al., 2002). We reconstruct
climate networks for the months July and January separately using a fixed threshold5

for the correlation coefficient of 0.75 (Fig. 19).
For a planar visualisation of node attributes, we show an exemplary representation

of the node betweenness prepared with MATLAB (Fig. 19). High values of between-
ness characterise regions with high convection activity. These regions correspond to
the Intertropical Convergence Zone (ITCZ). The seasonally separated view highlights10

the seasonal movement of the ITZC from its northern position in summer to a more
southern position in winter. Moreover, it indicates further convergence zones, such as
the Kongo air boundary, crossing Africa from the Red Sea/Gulf of Aden towards and
along the Congo river (Nicholson, 2000).

A CGV based network visualisation (Fig. 20) allows for a combined view of the net-15

work edges together with node degree (node size) and betweenness (node colour).
Applying a filtering procedure hiding all nodes of low betweenness can unveil such
regions that correspond to known convergence zones.

6.3 Coupled climate networks

Coupled climate networks (CCNs) have been developed as an extension of climate net-20

work analysis that aims at systematically studying the complex structure of statistical
interrelationships between different climatological fields such as surface air tempera-
ture and pressure (Donges et al., 2011). In this way, CCNs complement classical meth-
ods such as coupled pattern or maximum covariance analysis that are frequently used
for the statistical analysis of multiple climatological fields (Petrova, 2012; Donges et al.,25

2015). CCN analysis has been applied to study vertical wind field interactions between
different isobaric surfaces in the atmosphere (Donges et al., 2011), ocean–atmosphere
coupling in the tropics (Feng et al., 2012) and the Northern Hemisphere (Wiedermann
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et al., 2015), interrelationships between precipitation and evaporation fields (Donges
et al., 2015), as well as for predicting El Niño events (Ludescher et al., 2013, 2014).
Coupled climate networks typically call for three-dimensional geographically embed-
ded network visualisations using either available latitude, longitude, and height infor-
mation for each node (e.g., for the three-dimensional geopotential height field studied5

in Donges et al., 2011) or displaying overlapping surface fields as two or more stacked
layers of nodes (e.g., for the evaporation and precipitation fields analysed in Petrova,
2012; Donges et al., 2015).

Here, we reconsider vertical interactions in global atmospheric geostrophic wind dy-
namics as studied in Donges et al. (2011). The coupled climate network is constructed10

from the monthly averaged and vertically resolved geopotential height field from Re-
analysis 1 data provided by the National Center for Environmental Prediction/National
Center for Atmospheric Research (NCEP/NCAR) (Kistler et al., 2001), covering the
time span from January 1948 through February 2009. To study the vertical interac-
tion structure between near surface and upper tropospheric geostrophic wind, we se-15

lect data on isobaric surfaces at 1000 and 600 mbar, respectively, and interpolate to
an icosahedral grid for each layer separately, resulting in a total of 2×2562 = 5124
nodes in the CCN. All nodes in each layer are assigned to one of two subnetworks
needed for statistically analysing the interaction structure between the two isobaric
surfaces (Donges et al., 2011). Finally, an edge is added for each pair of nodes within20

and between isobaric surfaces where the Pearson correlation (without lag) of the cor-
responding geopotential height time series is ≥ 0.5.

The resulting coupled climate network is visualised on the sphere in a three-
dimensional view in GTX (Fig. 21). Here, the vertical dimension is strongly ex-
aggerated, because the average vertical distance between the two isobaric sur-25

faces (O(101) km) is much smaller than the typical horizontal separation of nodes
(O(103) km). The network was filtered for nodes with large cross-shortest path be-
tweenness (Donges et al., 2011) to highlight regions that are potentially particularly
important for channeling vertical interactions between geostrophic wind field dynamics
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on both isobaric surfaces. Specifically, on the surface layer, we observe a circumpolar
band of nodes with high cross-betweenness over the Arctic that is particularly pro-
nounced over the Pacific side of the Arctic Ocean (white nodes in Fig. 21). Nodes
in this circumpolar band are connected to high cross-betweenness nodes in the up-
per troposphere (red nodes in Fig. 21) over Europe, the Pacific Ocean, and above5

the East coast of North America. These observations indicate that the Arctic vortex
is particularly important for mediating vertical interactions between near-surface and
upper tropospheric atmospheric dynamics. While the Arctic circumpolar band of high
betweenness nodes was already evident in the classical two-dimensional contour plots
analysed in Donges et al. (2011), being able to intuitively display the connectivity of this10

region with nodes in the upper troposphere presents a large added value of the visual
analytics approach in this particular use case.

From a visualisation point-of-view, it is desirable to be able to interactively visu-
alise and study the full three-dimensional CNN including all 17 layers of nodes of the
geopotential height field provided by the NCEP/NCAR reanalysis data set, to use three-15

dimensional edge bundling and related techniques to reduce clutter, and to also overlay
this network visualisation with additional data sources such as vector-valued wind di-
rection and speed or atmospheric moisture content.

7 Conclusion

In summary, the visualisation of climate data is an important means to gain insights20

in climate and climate related science and to communicate those insights. However,
most frequently, climate data is processed using conventional statistical methods such
as empirical orthogonal function analysis, and visualisation is often used for produc-
ing a final static image. This is appropriate for presentation purposes (such as in the
IPCC reports), however, it does not exploit the power of the human visual system in25

combination with the strengths of computer-based automatic data analysis. Such an
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in-depth climate data analysis – tightly coupling statistics and visualisation – is subject
of ongoing research.

In general, interactive visual analytics of large, time-dependent, geo-referenced cli-
mate networks is still a challenging problem. The combined application of interactive
methods provided by visualisation and geographic information systems and of non-5

linear analysis methods is still hampered for climate science users. Hence, we strive to
integrate existing approaches and to develop novel concepts for practical solutions for
climate scientists.

In particular, there is the pressing issue of time-dependency of climate networks (Ya-
masaki et al., 2008; Radebach et al., 2013). Time-dependency implies additional con-10

ceptual and technical challenges, because the dimension of time can be structured in
a number of different ways and because the data size is multiplied by the number of
time steps (Aigner et al., 2011). Up to now, in most visualisation systems, individual
time steps have to be loaded separately, which hinders the exploration of temporal
trends and patterns in the data. New visualisation views have to be integrated to ad-15

dress this problem.
Additionally, uncertainty of model structure and hence of the generated data will play

an increasingly important role. As a result, we have to consider the 3-D visualisation of
uncertain network structures with uncertain attributes, which we think is a formidable
challenge.20

A further not yet solved problem with the interactive visualisation approach is that fil-
ter settings are not derived from quantitative criteria, thereby rendering the results can
be arbitrary to some degree. Thus, a direction for future research in visual climate net-
works analytics will be to identify objective filter thresholds (e.g., based on the network
stability) and to provide these thresholds as reference filter values to network analysts25

within a visualisation session. It should be noted that visualisations such as the one
presented in Fig. 18 have already proven highly valuable and successful in visually
exploring large climate networks, as well as intuitively conveying the basic ideas and
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results of climate network analysis to scientific audiences at international conferences
(see, e.g., Zou et al., 2011).

The Supplement related to this article is available online at
doi:10.5194/-15-709-2015-supplement.
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Table 1. Overview of existing tools applicable for climate network visualisation.

Tool name Availability Additional properties Url

3Djs open source multiple additional information visu-
alization techniques

github.com/mbostock/d3

CGV prototype executable/web
service

multiple linked InfoVis techniques; 3-
D spherical networks

www.informatik.
uni-rostock.de/~ct/
software/CGV/CGV.html

Gephi open source network measure calculation gephi.github.io

Google Earth closed source; web service multiple GIS functionalities earth.google.com

Graph stream open source evolving networks; network measure
calculation

graphstream-project.org

GraphTool open source (python) network measure calculation graph-tool.skewed.de

GraphVis open source www.graphviz.org

GTX prototype executable alternative geographic projections;
3-D spherical networks

www.gtx-vis.org

GUESS open source development stopped (since 2007) graphexploration.cond.org

igraph open source (python) network measure calculation igraph.org

KiNG open source development stopped (since 2012) kinemage.biochem.duke.
edu

Matlab Graph
Visualization

commercial network measure calculation www.mathworks.de/
products/matlab

Network Work
Bench

free for non-commercial/
closed source

development stopped (since 2009) nwb.cns.iu.edu

NetworkX open source (python) network measure calculation networkx.github.io

Node Trix open source www.aviz.fr/Research/
Nodetrix

Pajek free for non-commercial/
closed source

http://pajek.imfm.si

Tulip open source network measure calculation; multi-
ple linked InfoVis techniques

tulip.labri.fr
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(a)
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Figure 1. (a) Network visualisation colour-coding scalar node measures (shortest path be-
tweenness) on the map to study spatiotemporal relations of the surface air temperature field
(Python/PyNGL, reprinted from Donges et al., 2009a). (b) Visualisation highlighting the location
of network edges by colouring the number of edges starting in a selected region (green box) of
the map (Python/matplotlib.basemap, reprinted from Stolbova et al., 2014).
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Figure 2. Network characteristics provided by interviewed network researchers.
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Figure 3. Tasks performed with network visualisation (a, b) and relevance of general visualisa-
tion characteristics (c).
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Figure 4. Tools used to visualise networks.
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Figure 5. Climate network visualisation of regional node clusters (reprinted from Hlinka et al.,
2014).
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Figure 6. Node-link diagram with split edges: dipoles extracted from the sea level pressure field
(SLP) from NCEP2 reanalysis data, edge shared reciprocal nearest neighbors density mapped
to colour (reprinted from Ganguly et al., 2014).
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Figure 7. Node-link diagram for a German measurement station based precipitation network
(Gephi); node betweeness centrality mapped to circle size, closeness centrality of nodes/edges
mapped to circle/line colour (Rheinwalt et al., 2012).
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Figure 8. Edge bundling algorithms for geo-referenced networks from the literature. (a) ©
The Eurographics Association, reprinted from Holten and van Wijk (2009) (b) © 2011 IEEE,
reprinted from Gansner et al. (2011) (c) © The Eurographics Association, reprinted from Hurter
et al. (2012).
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Figure 9. Two-layered network visualisation; © Springer, reprinted from Feng et al. (2012);
orginal caption: “The graph of bilayer air–sea interaction networks: the dots with olive color
and cyan color represent the nodes with weighted node degree greater than 0.18 for the lower
layer subnetwork and 0.14 for the upper layer subnetwork, respectively. The red dots represent
the cross nodes with weighted node degree greater than 0.06. The black dashes or solid lines
represent edges”.
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Figure 10. Circular lens within a network visualisation (CGV): increased saturation and removal
of overlapping edges (see as well Tominski et al., 2014).
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Figure 11. Gephi screenshot: geo-layout of the African January precipitation network (see
Sect. 6.2), filtered by node betweenness (≥ 5.5).
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Figure 12. Tulip screenshot visualising the African January precipitation network (see
Sect. 6.2), filtered by node betweenness (≥ 5.0) with edge bundling (edge routing) and node
betweenness encoded in colour.
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Figure 13. CGV visualises climate networks in multiple coordinated views and provides ad-
vanced interaction.
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Figure 14. GTX screenshot showing 3-D network visualisation, mapping configuration, interac-
tive filtering, and scripting console.
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Figure 15. Visualisation of a global surface air temperature climate network using different 2-D
map projections (GTX). Filtering has been applied to highlight nodes with large shortest-path
betweenness.
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Figure 16. Visualisation of a global surface air temperature climate network embedded on the
surface of a 3-D virtual planet using two different filtering criteria (GTX).
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Figure 17. Surface air temperature network (GTX) zoomed to the equatorial Atlantic ocean
based on a node betweenness filtering (≥ 100 000) and an edge angular distance filtering (≥
0.26), illustrating the effect of edge bundling: straight edges (left), bundled edges (right).
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Figure 18. Spherical three-dimensional globe representation of a surface air temperature net-
work (CGV). Node colour (green for small values, red for large values) and size encode the
node attributes degree and shortest-path betweenness, respectively.
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Figure 19. Shortest-path betweenness of regional African rainfall networks for July and January
(Matlab).
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Figure 20. Rainfall network of Africa for July and January unveiling regions that correspond to
known convergence zones (CGV). The network visualisation (bottom row) has been filtered to
hide nodes with low shortest-path betweenness to highlight regions corresponding to important
moisture convergence zones. Additionally, the node attributes degree (node size) and shortest-
path betweenness (node colour: blue shades→ small values, red shades→ large values) are
displayed.
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Figure 21. Coupled climate network constructed from the geopotential height field on two iso-
baric surfaces (GTX): near-surface (1000 mbar, white nodes) and upper troposphere (600 mbar,
red nodes). The network visualisation has been filtered to highlight nodes with large cross-
betweenness indicating regions that are potentially important for mediating vertical interac-
tions in the atmosphere’s geostrophic wind dynamics, e.g., the circumpolar band of high cross-
betweenness nodes above the Arctic.
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