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Abstract. Network analysis has become an important ap-
proach in studying complex spatiotemporal behaviour within
geophysical observation and simulation data. This new field
produces increasing amounts of large geo-referenced net-
works to be analysed. Particular focus lies currently on the5

network analysis of the complex statistical interrelationship
structure within climatological fields. The standard proce-
dure for such network analyses is the extraction of network
measures in combination with static standard visualisation
methods. Existing interactive visualisation methods and tools10

for geo-referenced network exploration are often either not
known to the analyst or their potential is not fully exploited.
To fill this gap, we illustrate how interactive visual analytics
methods in combination with geovisualisation can be tailored
for visual climate network investigation. Therefore, the paper15

provides a problem analysis, relating the multiple visualisa-
tion challenges with a survey undertaken with network ana-
lysts from the research fields of climate and complex systems
science. Then, as an overview for the interested practitioner,
we review the state-of-the-art in climate network visualisa-20

tion and provide an overview of existing tools. As a further
contribution, we introduce the visual network analytics tools
CGV and GTX, providing tailored solutions for climate net-
work analysis, including alternative geographic projections,
edge bundling, and 3D network support. Using these tools,25

the paper illustrates the application potentials of visual an-
alytics for climate networks based on several use cases in-
cluding examples from global, regional, and multi-layered
climate networks.

30

1 Introduction

Data visualisation created within scientific contexts aims at
the provision of meaningful visual representations that sup-
port the exchange of working results and provide scientists
with appropriate tools to reveal relations and hidden patterns35

within their data. The advantage of visualisation is that it es-
tablishes a direct interface between digital data in a computer
and the human perceptual and cognitive abilities, as it com-
pactly and intuitively represents abstract relationships.

Visualisation techniques are available for different data40

classes – for instance, for 3D scalar data representing three-
dimensional phenomena such as CT scans (Zhang et al.,
2011), for vector data representing data with a direction such
as air flow around an air plane (Brambilla et al., 2012), and
multivariate data representing multiple data variables simul-45

taneously (Bürger and Hauser, 2007), such as temperature,
humidity, pressure, and wind speed. In scientific contexts, vi-
sualisation is often used in a static manner, producing fixed
images or animations.

However, nowadays, there is a rising acceptance of inter-50

active visualisation, still mainly for the purpose of present-
ing scientific findings. Since 1990, significant advances have
been made in enhancing visualisation as a flexible, easy-to-
use data exploration tool. This includes the possibility to in-
teract directly with a view and having several different linked55

visualisations that immediately reflect any such interaction
or changes of the underlying data, and vice versa. For intro-
ductions to interactive visualisation in climate research see
(Tominski et al., 2011) and (Wong et al., 2014).

Going even beyond this, the new research field of “visual60

analytics” has emerged within the last decade (Thomas and
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Cook, 2005), based on the idea of coupling human percep-
tion abilities with automatised analysis methods and thus al-
lowing new insights into huge complex data sets: “The goal
of visual analytics is the creation of tools and techniques to65

enable people to synthesise information and derive insight
from massive, dynamic, ambiguous, and often conflicting
data, [to] detect the expected and discover the unexpected,
[to] provide timely, defensible, and understandable assess-
ments and [to] communicate assessment effectively for ac-70

tion. [...] The challenge is to identify the best automated al-
gorithm for the analysis task at hand, identify its limits which
cannot be further automated, and then develop a tightly in-
tegrated solution which adequately integrates the best auto-
mated analysis algorithms with appropriate visualisation and75

interaction techniques.” (Keim et al., 2008, 2010). In this
context, this paper reviews how the analysis of large geo-
physical networks such as climate networks, but also earth-
quakes (Davidsen et al., 2008) and networks of rock fractures
or cave passages (Phillips et al., 2015) can strongly benefit80

from visual analytics.
To provide an example from the field of climate network

analysis, similarities of time series from grid or station based
climate data can be transferred into a network structure of
nodes and edges (see, e.g., Tsonis and Roebber, 2004; Ya-85

masaki et al., 2008; Donges et al., 2009a). Then, various
network measures are derived from the network topology
and from the often multivariate and typically time-dependent
data. Finally, a visualisation step is performed to investigate
the spatial or spatiotemporal variability of the network prop-90

erties and link them to the climate context. By applying the
complex network approach to climate data, interesting and
new insights into the climate system can be derived – e.g.,
studying the stability of the global climate with respect to
certain climate phenomena (e.g., Berezin et al., 2012), to95

investigate moisture pathways and propagation of extreme
rainfall events (Boers et al., 2013), or even to develop new
prediction schemes (Steinhaeuser et al., 2010; Boers et al.,
2014; Ludescher et al., 2013, 2014).

With respect to the size of the networks consisting of100

large numbers of edges on one hand, and due to the re-
stricted availability of suitable visualisation software solu-
tions on the other hand, visualisation used in this context fo-
cuses mainly on the static representation of scalar network
measures. Figure 1 illustrates typical static representations of105

mapping node betweenness (Fig. 1(a)) and number of edges
(Fig. 1(b)) to a spatial grid by using general purpose tools
such as Python or MATLAB.

Such plots provide simplified views of the network data,
representing the node information while omitting the struc-110

ture denoted by the edges. In addition, missing interaction
options with such static “overview” images restrict the scien-
tists’ investigation options for detecting possibly interesting,
partly unknown features in the data in an exploratory sense.
Against this background, this article investigates the poten-115

tials and challenges arising from interactive visual analytics

Betweenness (log10(BC+1))

(a)

(b)

Fig. 1: (a) Network visualisation colour-coding scalar node
measures (shortest path betweenness) on the map to study
spatiotemporal relations of the surface air temperature field
(Python/PyNGL, reprinted from Donges et al. (2009a)). (b)
Visualisation highlighting the location of network edges by
colouring the number of edges starting in a selected re-
gion (green box) of the map (Python/matplotlib.basemap,
reprinted from Stolbova et al. (2014)).

methods for networks and examines available tools for ex-
ploring geo-referenced climate networks, including two tai-
lored solutions developed by the authors. These software so-
lutions tackle major obstacles arising in geo-referenced net-120

work visualisation, including “edge clutter” (or “spaghetti
plots”), coupled 3D geo-networks, and performance issues
with respect to network sizes to be handled interactively.

This article is structured as follows: Sec. 2 provides the
background of geophysical climate networks, followed by an125

in-depth problem analysis including a survey answered by re-
searchers using network visualisation tools in Sec. 3. There-
after, Sec. 4 discusses suitable visualisation techniques for
such networks and Sec. 5 lists software tools in which these
techniques are integrated. To illustrate this state-of-the-art,130

Sec. 6 presents several visualisation examples for three dif-
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ferent types of geophysical climate networks. Finally, Sec. 7
discusses our main findings, provides conclusions, and out-
lines research challenges for future work.

2 Climate networks135

Climate researchers investigate the impact of natural phe-
nomena and human society on the Earth’s climate and vice
versa. These investigations involve a variety of observational
data sources as well as complex models, which in turn pro-
duce an enormous amount of simulation data. Methods of140

multivariate statistical analysis, such as empirical orthogonal
functions (principal component analysis) (Wallace and Gut-
zler, 1981; von Storch and Zwiers, 1999), are currently the
standard means to gain insight into such data.

The analysis of climatological data from the viewpoint of145

complex network theory (Newman, 2003; Boccaletti et al.,
2006) is a recent and versatile method for making sense of the
wealth of data that is available to researchers today. The cen-
tral idea of climate network analysis is to construct a network
(or graph) G= (V,E) to represent the structure of partic-150

ularly strong or significant pairwise statistical relationships
that are contained within a spatiotemporally resolved data set
(Tsonis and Roebber, 2004; Tsonis et al., 2007, 2008), where
V and E denote the sets of nodes and edges in the climate
network, respectively. The data sources studied by climate155

network analysis range from observational data, such as raw
meteorological readings collected by the German Weather
Service (Rheinwalt et al., 2012), via reanalysis data sets,
such as those provided by the NCEP/NCAR Reanalysis 1
project (Kistler et al., 2001), to model simulations, such as160

those generated by Atmospheric and Oceanic General Circu-
lation Models – e.g., the WCRP CMIP3 multi-model dataset
(Meehl et al., 2007).

The nodes i ∈ V of a climate network represent measure-
ment stations or model grid points, where time series data165

xi(t) describing, e.g., temperature or precipitation variabil-
ity, is available. An edge is introduced between pairs of nodes
(i, j) iff the value of a particular measure of statistical asso-
ciation Cij between time series xi(t) and xj(t) (e.g., linear
Pearson correlation, nonlinear mutual information, or event170

synchronisation; Donges et al., 2009b; Malik et al., 2012;
Runge et al., 2012) exceeds a threshold Tij . Accordingly, the
network’s adjacency matrix Aij is given by

Aij = Θ(Cij −Tij)− δij ,

where Θ(·) denotes the Heaviside function and δij Kro-175

necker’s delta introduced to remove self-loops. Usually, a
global threshold T is prescribed such that Tij = T for all
(i, j) (e.g., Donges et al. (2009a,b, 2011); Tsonis and Roeb-
ber (2004); Tsonis and Swanson (2008); Yamasaki et al.
(2008)), but the threshold may also be chosen adaptively for180

each pair based on suitable statistical significance tests of

time series analysis (e.g., Steinhaeuser et al. (2010); Boers
et al. (2013, 2014)).

Such a construction of a climate network, opens up the
data to detailed statistical analysis using the tools of complex185

network theory. While most climate studies focus on stan-
dard network measures such as degree or betweenness cen-
tralities and their distributions (Newman, 2003; Boccaletti
et al., 2006), a number of extensions thereof has been pro-
posed for the specific application to climate network analy-190

sis, e.g., for heterogeneous node sizes (fraction of the Earth’s
surface area a node represented) (Heitzig et al., 2012) in
networks of coupled climate networks (Wiedermann et al.,
2013) or directed and edge-weighted networks (Zemp et al.,
2014a,b).195

Climate network analysis has been successfully applied to
investigate spatiotemporal climate variability and complex
relationships within the climate system and has been shown
to provide insights that complement commonly applied
methods of eigen analysis of climatological data (Donges200

et al., 2015). Several stability-focused studies have found ev-
idence that the ENSO phenomenon causes a weakening of
spatial statistical interrelationships and thermal stability in
the global climate system, as well as reduces predictability
(Yamasaki et al., 2008; Tsonis and Swanson, 2008; Berezin205

et al., 2012). Climate networks have been used to uncover a
backbone structure carrying a considerable amount of matter,
energy, and dynamical information flow in the global surface
air temperature field (Donges et al., 2009a,b) and to unravel
subtle shifts in climate subsystems, e.g., a westward prop-210

agation of the multidecadal Atlantic oscillation (Feng and
Dijkstra, 2014) or a stability change of the Atlantic Merid-
ional Overturning Circulation (van der Mheen et al., 2013).
In other studies, the spatial variation of extreme rainfall has
been used to uncover typical moisture pathways and extreme215

rainfall propagation, as well as to investigate involved con-
vergence zones (Malik et al., 2010, 2012; Rheinwalt et al.,
2012; Boers et al., 2013, 2014). By introducing new concepts
for irregularly sampled time series, palaeo-climate networks
have been used to reveal changes of the influences of the220

Indian Summer Monsoon on the East Asian Summer Mon-
soon during warm and cold periods (Rehfeld et al., 2012).
Among the studies focusing on the El Niño/ Southern Oscil-
lation, teleconnections in general or atmospheric circulation
patterns have been subject of interest – e.g., Rossby waves225

or the Walker circulation (Runge et al., 2012; Wang et al.,
2013).

Furthermore, network communities, partitioning, and the
network of networks approach have been exploited to iden-
tify drivers of the global ocean surface temperature (Tantet230

and Dijkstra, 2013), to study the interrelationship between
North Atlantic and equatorial Pacific (Guez et al., 2012,
2013), to improve statistical predictions of future climate
variability (Steinhaeuser et al., 2010; Ludescher et al., 2013;
Boers et al., 2014), to perform first attempts in inter-model235

comparison (Steinhaeuser and Tsonis, 2013; Feldhoff et al.,
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2014; Lange et al., 2015), and to study the cross-correlation
structure between two or more distinct fields of climate vari-
ables providing novel insights into the atmosphere’s general
circulation structure (Donges et al., 2011; Feng et al., 2012;240

Wiedermann et al., 2015).
Temporal climate networks have been applied to investi-

gate the complex spatio-temporal variability of ENSO tele-
connections on regional and global scales relying on standard
network measures computed from individual time-slices sep-245

arately (Yamasaki et al., 2008; Radebach et al., 2013; Lude-
scher et al., 2013, 2014). More advanced methods and algo-
rithms from the theory of temporal networks promise further
deep insights into nonstationary climate system dynamics in
the future (Holme and Saramäki, 2012; Iwayama et al., 2012;250

Lehnertz et al., 2014).
The main aim of climate network analysis is to serve as an

explorative technique for investigating the wealth of infor-
mation contained in the data’s spatial correlation structure.
Its validity may be confirmed by showing that known statis-255

tical relationships and structures are picked up by the method
in a way that is consistent with physical expectations and the
network theoretical interpretation of specific network mea-
sures under study. Moreover, the above cited studies demon-
strate that climate network analysis has the potential to un-260

cover previously hidden or unexpected structures in the data,
which subsequently have to be put through a process of inter-
pretation and careful analysis using complementary methods
to answer relevant questions of interest and to generate new
insights into the climate system’s functioning (Donges et al.,265

2015).

3 Problem analysis

After the general background motivation, the following
Sec. 3.1 analyses the requirements of climate network ana-
lysts regarding visualisation and, based on that, Sec. 3.2 will270

outline the challenges current visualisation tools are facing
with respect to these requirements.

3.1 A survey of network analysts’ visualisation habits
and requirements

Researchers applying climate network analysis have so far275

mainly relied on static visualisations of statistical results
such as degree and edge length distributions (Tsonis and
Swanson, 2008), time series of the number of edges |E(t)|
for time-dependent climate networks (Yamasaki et al., 2008;
Radebach et al., 2013), global maps and scatter plots of lo-280

cal network measures such as degree, closeness, between-
ness centrality, and local clustering coefficient (Donges et al.,
2009a,b), or line plots showing the evolution of global net-
work measures such as average path length or transitivity
with height (Donges et al., 2011). This static approach is not285

unique to climate network analysis, but appears to be com-

mon practice in the modern analysis of general complex net-
works which is guided by quantitative ideas from physics
(most prominently statistical mechanics), mathematics, and
social science (Albert and Barabasi, 2002; Newman, 2003;290

Boccaletti et al., 2006).
However, the sheer number of different metrics in com-

plex network theory complicates the process of gaining an
overall picture and, hence, a deeper understanding of climate
network structures when following the static approach. This295

is particularly true since the spatial embedding as well as
the possible time dependence of climate networks add ad-
ditional dimensions to the problem. To get an overview of
the situation in geophysical network analysis with respect to
visualisation issues, we performed a survey with 19 practi-300

tioners within this field at the Potsdam Institute for Climate
Impact Research. We asked them, what characteristics their
networks have (the data), what the intentions behind the vi-
sualisation of such networks are (the tasks), what kind of vi-
sualisation they typically apply (techniques and tools), and305

what their most pressing requirements are with respect to
geo-network visualisation.

Network data. From the data perspective, geo-referenced
networks range from smaller (up to 100 node networks are
investigated by 47% of the interviewed) to larger numbers of310

nodes (up to 10,000 nodes by 68%, and even up to 100,000
nodes by 32%). Edges can be weighted (68%) or unweighted
(53%) and directional (63%) or undirectional (74%). With re-
spect to edge density, these investigated networks are sparse
(42%), intermediate (74%), or even dense (42%). In gen-315

eral, speed of hardware and software resources is the limiting
factor – otherwise even larger networks would be processed
and visualised. In addition, in most cases, the used networks
are as well geo-referenced (94%), and an additional third di-
mension (e.g., elevation or atmospheric levels, 39%) may be320

present. Geophysical networks investigated are often time-
dependent / evolving (72%), and associated with nodes and
edges are multiple data attributes, which can be derived net-
work measures, or data computed or collected at the corre-
sponding locations (53%). For an overview see Figure 2.325

Visualisation tasks performed on networks. Interviewed
network researchers analyse such networks according to dif-
ferent tasks (see Fig. 3). In general, they are interested in get-
ting familiar with the network’s structure (94%), in “finding
unknown patterns” (89%), and in presenting results to sci-330

entific audiences (89%). Less frequently, scientists perform
the general tasks “verify hypotheses” (44%), model valida-
tion (33%), and model structure analysis (33%) on their net-
works. With respect to the analysis of specific structural de-
tails, the identification and visual representation of commu-335

nities/ clusters (72%), the identification of hierarchical struc-
tures (44%) and of hubs/ bottlenecks (56%) within the net-
works is of importance or high importance, whereas loops
are not relevant. Addressing general properties of the visual-
isation, the correct visualisation generation (100%), the aes-340

thetics (83%), the ease of perception (78%), and the com-
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Fig. 2: Network characteristics provided by interviewed network researchers.

pactness of the image (56%) are either “important” or “very
important”, whereas the possibility to interact with the image
is of importance to only 47% of the interviewed analysts.

Network visualisation techniques in use. Beside the ex-345

plicit scalar representation of network measures, most of the
interviewed used node-link diagrams (83%) as network visu-
alisation technique, whereas matrices are used by 28%, and
mixed network / tree visualisation techniques are used by one
person only (6%).350

Visualisation tools in use. In addition, interviewed net-
work researchers provided information about which visu-
alisation tools they use for visualising networks (Fig. 4).
Most interviewed use (often or sometimes) Python (72%),
CGV (28%), MATLAB (22%), Google Earth/ Google Maps355

(17%), GraphVis (11%), Gephi (11%), or other solutions
such as 3Djs (27%). Tools such as Matematica, Network
Work Bench, Pajek, GUESS, Tulip and even GIS systems
are used only rarely for visual network analytics.

Further pressing requirements. Several users asked for360

new interactive tools, and the main issue is speed-up to
represent larger networks interactively. A second issue de-
manded is the reproducibility of visualisation views, so so-
lutions combining interactivity and script-based steering are
requested. A tight integration of automatic network analysis365

methods with interactive visualisation in the sense of visual
analytics is requested by 53% of the interviewed.
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Fig. 3: Tasks performed with network visualisation (a,b) and relevance of general visualisation characteristics (c).
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3.2 Visualisation challenges

As described above, geo-referenced networks are often
large complex multivariate structures. They typically con-370

tain |V |=O(103−106) nodes and up to |E|=O(107−108)
edges. In case of the larger networks, any attempt to render
them for extracting useful information from a direct and un-
processed visualisation (plot) of the network structure is un-
feasible due to the following challenges.375

Spatial restrictions/ occlusion: Representing climate net-
works on a 3D globe results in occlusion of at least half of
the network, which is always hidden on the backside (see
Sec. 6 for examples). On the other hand, representing cli-
mate networks in a projected 2D space results in distortion380

of neighbourhoods and clutter. Nodes that are rather close
together can end up at opposite sides of the 2D map; edges
between such nodes would cross the entire map and give a
wrong impression of the actual geo-distance between nodes.
Visibility problems aggravate when researchers have to anal-385

yse networks with an additional 3rd dimension (see Sec. 6.3).
Edge clutter: When the focus lies on the geographic char-

acteristics of the data, node positions need to be fixed ac-
cording to their geo-position. In such cases, edge clutter be-
comes a major problem, since large numbers of edges oc-390

clude the view. Suitable edge routing or edge bundling al-
gorithms are needed to resolve this issue. However, current
algorithms reach their limits in interactive analysis settings,
where frequent updates and re-computations are common-

place. More efficient alternatives need to be investigated and395

developed.
Multi-faceted analysis: Climate network data are rich and

complex sources of information. They may contain spatial,
temporal, structural, and attribute components. It is obvious
that such an abundance of information cannot be encoded400

into a single visual representation. It is rather necessary to
use multiple linked views to enable climate researchers to
focus on the aspects relevant to the task at hand and to com-
pare and relate different aspects interactively. This requires
sophisticated techniques that help the users (1) to navigate405

and orientate within the visual representations, which is par-
ticularly relevant for 3D approaches, (2) to dynamically filter
the data for detailed analysis, and (3) to coordinate visuali-
sation and interaction across multiple views and potentially
across application boundaries.410

While existing network visualisation tools may support the
one or the other requirement, they are not tailored to the con-
text of climate network analysis. Given this challenging sit-
uation, interactive visualisation promises to provide an in-
tuitive way of combining information from the actual net-415

work structure, the network’s spatial embedding and several
statistical network quantifiers, e.g., degree and shortest-path
(edge-) betweenness (Newman, 2003), to generate and test
hypotheses ultimately based on the underlying climate data
set.420

4 Techniques for geo-referenced network visualisation

Several overview publications on network visualisation in
general and on individual aspects have been published in re-
cent years. von Landesberger et al. (2011) and Hu and Shi
(2015) provide overviews on visualisation techniques avail-425

able for large networks. Hadlak et al. (2015) discuss the vi-
sual integration of multiple facets given with the networks,
namely hierarchies/clusters on top of the network as well as
network attributes, dynamics, and spatialisation, which are
all relevant for climate networks, too. In particular for net-430

works with given geo-references, overview articles/books are
available from a graph drawing (Wolff, 2013), from an in-
formation visualization (Withall et al., 2007; Rozenblat and
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Melançon, 2013), and as well as from a cartography perspec-
tive (Rodgers, 2005).435

Due to the typical size of climate networks, simplification
mechanisms are mandatory for reducing the network com-
plexity, else resulting in cluttered “hairball” images. The sim-
plification must be flexible in order to account for various
data attributes and analysis tasks, and it must be reproducible440

(e.g., re-apply stored filters). For an overview of clutter re-
duction methods in the visualisation field see Ellis and Dix
(2007).

This simplification can be performed in each of the three
visualisation process steps: (1) filtering/ pre-processing, (2)445

mapping, and (3) rendering. The filtering/ pre-processing
step prepares the data set for visualisation, the mapping step
constructs 2D or 3D geometric primitives from the data and
parameterises them (for instance, with colour), and the ren-
dering step generates the images from this scene of geometric450

primitives. In the following, along with these three main vi-
sualisation processing steps, we review the state-of-the-art of
techniques relevant for the visualisation of climate networks.

4.1 Filtering techniques

First, the network itself can be simplified before converting455

it into a geometric representation. This can be done interac-
tively or automatically. Interactive filtering reduces the num-
ber of items rendered by visualising only those nodes and
edges that are necessary for the analysis task at hand. Auto-
matic methods reduce the number of nodes and edges based460

on the network structure or on network measures. The sim-
plification can be done globally for the whole network, or
locally for a region of interest, for instance using lens inter-
action (see, e.g., Fig. 10).

4.1.1 Node filtering465

Two general node filtering methods can be distinguished:
(1) indiscriminate and (2) selective filtering. Indiscriminate
node reduction methods sample the nodes of a network,
such as the traversal-based sampling which maintains the
network connectivity. For an overview of indiscriminate sam-470

pling methods see Hu and Lau (2013).
Selective node filters reduce the node set based on their

properties, either provided with or calculated for the nodes.
Typically, “uninteresting” nodes are removed using network
measures (e.g., node cardinality or betweenness centrality),475

but as well by given (climate) parameters provided with
the nodes. Also the focus on selected regions or separating
land and ocean nodes are one kind of selective node filters
(“masking”). A univariate or multivariate node filtering can
be applied, filtering out nodes using thresholds or providing a480

maximum number of nodes to be visualised (e.g., by showing
only the N nodes of largest degree).

On the one hand, this can be done interactively by the user,
who changes thresholds/ maximum numbers until a suitable,

uncluttered image is constructed (see, e.g., Figs. 15 and 18,485

which are based on node betweenness filters). However, such
a choice can lead to arbitrary sub-networks, so a good knowl-
edge of the network and network measure properties is re-
quired. Thus, on the other hand, thresholds can be derived
based on objective properties of the network structure. An490

example of such objective properties is to represent only the
n most important nodes in terms of betweenness centrality.

To generalise this approach, in the visualisation field the
concept of degree-of-interest functions (DOI) was intro-
duced (for an overview see Abello et al., 2014), providing495

flexible means to attach an interest value to a data entity, in
this case to nodes (see, e.g., a-priori interestingness and dis-
tance to focus by Furnas (1986), user interest by van Ham
and Perer (2009), and navigation history by Gladisch et al.
(2013)).500

Beside the discussed filters, an alternative is the reduction
of redundant or similar nodes, typically done by a similar-
ity clustering of partial networks (see, e.g., Abello and Pogel,
2006). The result is a network of networks, were – to pro-
duce an overview image – individual partial networks can be505

represented as individual nodes, thus strongly reducing the
network complexity. Then, in combination with an adjusted
node layout (see Sec. 4.2), they can be unfolded on demand,
providing the required degree of network complexity to the
user (Hadlak et al., 2011). However, for geo-referenced net-510

works, a geospatial neighbourhood of the clustered nodes is
required, otherwise it will be hard to interpret (see Fig. 5).

Fig. 5: Climate network visualisation of regional node clus-
ters (reprinted from Hlinka et al., 2014).

4.1.2 Edge filtering

Simplification of the node set has an additional advantage:
it reduces the edge set as well, as the removal of nodes im-515

plies the removal of incident edges. Beyond that, additional
methods are available for reducing the edge clutter in a net-
work visualisation. First of all, the most basic edge filter is
the thresholding procedure when reconstructing the network
from data using correlation measures. An objective criterion520

can be chosen in such a way that edges represent only sig-
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nificant interrelations of a preselected p-value (Donges et al.,
2009b; Boers et al., 2014). Next, in the same manner as selec-
tive node filters, selective edge filters can be applied, either
by (interactively) filtering edges by derived edge measures525

such as edge shortest-path betweenness (Newman, 2003) or
geodesic distance (Donges et al., 2009b) as well as by data
given with the edges, or by defining a maximum number of
edges to be displayed in combination with a DOI function.
In visualisation, such measures have successfully been used530

to cut down the number of edges – mainly to ensure a proper
unfolding of the layout, which tends to become a hairball for
small-world (i.e., dense) graphs. For example, van Ham and
Wattenberg (2008) use a centrality-based filtering of edges,
whereas Nocaj et al. (2014) use a measure of embeddedness.535

Note that both approaches add the removed edges back in
after the layout, as the edge removal is a mere intermedi-
ate step to reduce the hairball effect during the computation
of the layout. A tailored solution for the specifics of the cli-
mate background was introduced by Ebert-Uphoff and Deng540

(2010), who reduce the edge set based on causal relationships
within the climate network.

In addition to these direct edge removal techniques, in the
recent decade a new class of methods reducing edge clutter
(in particular for cases of a fixed layout) has been developed:545

edge bundling, which trades edge clutter for overplotting. As
edge bundling does change the geometry of the edges and
their geometric properties without removing individual edges
totally, we discuss it in the following section (see Sec. 4.2.2).

4.2 Mapping550

Network visualisation techniques applicable for climate net-
works include network measure charts/ maps, node-link dia-
grams, and matrix representations. Network measure charts/
maps reduce the problem to the visualisation of scalar data,
representing network structure properties instead of the orig-555

inal network structure (and topology). In contrast, the other
two classes represent the structure directly – either as node-
link diagrams or as matrix representations. Since showing
the nodes in columns and rows in matrices does not allow
an explicit geo-referencing of the nodes, we argue that node-560

link diagrams are the most promising (and challenging) class
representing climate network structures and thus, will be re-
viewed in more detail.

Typical graphical primitives. For node-link diagrams,
network entities are mapped directly to graphical primitives,565

graphically connecting nodes (e.g., represented as nodes, cir-
cles, or spheres) and edges (e.g., represented as straight lines,
curves, and cylinders). Depending on the particular type of
techniques, network measures and additionally given data
at nodes or edges are encoded in visual properties such as570

colour, size, or thickness. Often, DOI values can be used to
steer such visual properties (e.g., mapping it to saturation,
transparency, or size).

4.2.1 Node layout

Fixed 2D geo-spatial layouts. Most often, climate networks575

are represented on a 2D plane, typically using rectangular or
Mercator projection. Edges are drawn as straight or curved
lines. Two different kinds of mapping of edges can be ob-
served: (1) edges are drawn directly from one position to the
other, independent of their positions (see, e.g., Fig. 15b), or580

for global climate networks, (2) edges with nodes close to
the cylindrical latitudinal cuts of the projection, which would
produce a long line through the map, are represented as split
lines, ending at or beyond the horizontal map borders (see
Fig. 6). In the first case, cluttered images with crossing edges585

(often in the equatorial regions) of global climate networks
are produced, whereas the second case impedes the men-
tal tracking of individual split lines. An example overcom-
ing these drawbacks based on alternative projections is intro-
duced in Sec. 6.1.

Fig. 6: Node-link diagram with split edges: dipoles extracted
from the sea level pressure field (SLP) from NCEP2 reanal-
ysis data, edge shared reciprocal nearest neighbours density
mapped to colour (reprinted from Ganguly et al., 2014).

590

Node position changing layouts. To facilitate the network
structure perception, avoiding crossing edges and edge clut-
ter, in particular for large networks, layout algorithms chang-
ing node positions are applied. Such algorithms try to min-
imise the number of crossing edges and emphasise the net-595

work structure by optimising the spatial alignment of nodes
(Dı́az et al., 2002). DOI functions can be used to shift clutter
from nodes with a higher DOI values to nodes with lower
DOI values, for instance adjusting weights in force-based
layout algorithms.600

An important feature of climate networks, however, is that
they are geo-referenced. The position of nodes therefore cor-
responds to a geographic position on the Earth, which is im-
portant to interpret the data, for instance, to relate telecon-
nections in such networks with actual physical processes.605

Therefore, graph layout algorithms that change node posi-
tions based on the network structure, can be applied only
in conjunction with a geo-referenced layout, for instance
Fruchterman and Reingold (1991)’s algorithm applied with
an initial geo-layout (see Fig. 7).610
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(a) Geo-layout (b) Fruchterman-Reingold layout
based on initial Geo-layout

Fig. 7: Node-link diagram for a German measurement station
based precipitation network (Gephi); node betweenness cen-
trality mapped to circle size, closeness centrality of nodes /
edges mapped to circle / line colour (Rheinwalt et al., 2012).

Such readjustments can be categorised in (1) distribution
of the nodes (e.g. overlap removal, Fig. 7b), (2) removing of
nodes (layout coarsening, see Sec. 4.1.1), and (3) clustering
of nodes (to meta-nodes, see Sec. 4.1.1). To provide exam-
ples, Gansner et al. (2005) combine removal and distribution615

of nodes, whereas Hadlak et al. (2011) and Brodkorb et al.
(2015) represent sub-networks either as meta-nodes, or inte-
grate alternative visualisation methods or data scales within
the geo-referenced node-link layout.

Using smooth, animated transitions between such a geo-620

layout and a slightly readjusted layout allows the (cli-
mate) network analyst to preserve a mental relation between
the original geo-location of the nodes within node-position
changing layouts (see as well Hadlak et al., 2011). We tested
several force-directed layout algorithms, which we initiated625

with a geo-layout and parameterised them such that they
change the node position only locally (e.g. Fruchterman and
Reingold (1991) or Jacomy et al. (2014), by reducing the typ-
ical parameter strength of these algorithms such as spring
forces), see Fig. 7.630

Virtual globes. In addition to the 2D approaches, interac-
tive 2.5D visualisation techniques can be applied, typically
using virtual globes and perspective projections. For exam-
ple, by mapping the length of an edge to the height of a 3D
arch, short and long teleconnection can be visually distin-635

guished more easily. Under certain circumstances, the net-
work can also be used to “imprint” the virtual globe by de-
forming it accordingly, as it was proposed by (Alper et al.,
2007). However, such visualisations can further intensify the
edge clutter problem, and generate additional issues such as640

perspective distortion and occlusion (Elmqvist and Tsigas,
2008). Section 6 discusses two examples from this class.

4.2.2 Edge Bundling

The challenges for visual analysis of large climate networks
arise from their geo-reference, which impedes a modifica-645

tion of node positions, because the spatial node embedding
is essential for the interpretation of the network. Therefore,
standard network layout algorithms, which change the node
positions in order to minimise edge overlaps, can be used
only in slightly readjusted mode (see above). Thus, because650

most part of the “edge clutter” cannot be avoided, algorithms
to bundle edges with similar properties have been developed.
Such edge bundling algorithms reduce the number of individ-
ual line segments, and therefore the amount of visual clutter,
by performing a spatial clustering and routing of close-by655

edges through the same path. In that sense, edge bundling
can reveal macro-structures of a network, i.e., connections
between different subsets of nodes, but at the same time it
also conceals direct connections between individual nodes.

Various edge bundling algorithms have been developed660

over the last years. They differ in what kind of data they
are applicable to, their bundling performance, and their vi-
sual results, such as strength of bundling or the readability
of the resulting bundles. In the following, we compare differ-
ent edge bundling algorithms with regard to their potential665

application to climate networks.
Hierarchical edge bundling methods (HEB) (Holten,

2006) use inherent hierarchy information in the data to con-
struct the routing of edges between the levels of the hierar-
chy. This method needs hierarchical data and is therefore not670

applicable to general networks, such as in the case of climate
networks.

Geometry-based edge bundling (GBEB) (Cui et al., 2008)
works on general networks, but needs a so-called “control
mesh” that guides the bundling process. This control mesh675

can either be created manually or it can be derived automat-
ically from the network data by analysing edge patterns. A
drawback of this method is that the chosen control mesh,
such as a regular grid, has a strong visual influence on the re-
sulting bundling geometry, which can lead to a bundling that680

may not represent the underlying edge patterns very well and
creates visually unpleasing results such as a lot of “zig-zag”
edges due to the underlying control mesh.

As an example of edge bundling methods that do not need
an additional control geometry, force-directed edge bundling685

(FDEB) (Holten and van Wijk, 2009) is an algorithm that
works on general undirected networks. It uses a physics-
based model (Fig. 8a) in which edges attract each other, caus-
ing control points to move towards the other edge, while
spring forces for each edge act in the opposite direction690

(keeping the edges intact). By simulating these forces, edges
are bundled in a natural looking way and the bundling pro-
cess can be modified by adjusting the force factors. How-
ever, due to the quadratic complexity of the algorithm (the
forces have to be simulated for each pair of edges), it is695

not well suited for large networks, e.g., the authors report



10 Nocke, Buschmann, Donges, Marwan, Schulz, Tominski: Review: Visual analytics of climate networks

that bundling for an example data set of migrations with ap-
prox. 10,000 edges took about 80 seconds. This is not suit-
able for large climate networks, which range between a few
hundred to hundreds of thousands of edges.700

Using a fast agglomerative bundling approach, the MIN-
GLE algorithm (Gansner et al., 2011) is able to bundle the
same migration data set in approx. one second. This algo-
rithm is based on a recursive approach to bundle edges, using
an optimisation function based on the principle of “saving705

ink” (Fig. 8b). It employs spatial data structures and approx-
imative nearest neighbour tests to quickly calculate neigh-
bour graphs for edges and find compatible edges, which are
then merged into bundles recursively. In addition, the curva-
ture of bundles can be influenced by setting a maximal turn-710

ing angle allowed for edges. This approach is scalable for
large networks, but offers fewer parameters for controlling
the bundling process and produces lesser bundled results as
compared to FDEB.

In the search for efficient bundling methods of general715

networks, image based techniques for edge bundling have
been developed, which allow efficient implementations on
modern GPU graphics hardware and are, therefore, sufficient
for large networks. As a first approach, skeleton-based edge
bundling (SBEB) (Ersoy et al., 2011) achieves the bundling720

effect by calculating the skeleton of edge clusters and attract-
ing the edges towards their centre lines. However, the calcu-
lation of 2D skeletons is computationally expensive. Hence,
the method was generalised and simplified by using kernel
density estimation edge bundling (KDEEB) (Hurter et al.,725

2012), which computes a density map of the edge drawings
using a filter kernel and then moves the graph edges accord-
ing to the resulting gradients in the density map (Fig. 8c).

While edge bundling helps to reduce edge clutter in large
networks, it can also reveal high-level patterns in a data set,730

in particular, it represents groups of nodes which are con-
nected with other groups of nodes. Detection and analysis
of those high-level structures can provide additional insight
into a data set. Therefore, challenges lie not only in the cal-
culation of edge bundles on a network, but also in the visual735

representation of such bundles. For example, visualising the
bundling strength of edges can help to visually detect and
analyse strong connections between groups of nodes in a net-
work.

Initially, edge bundles are often rendered as curves, e.g.,740

using Bézier curves or B-splines, to emphasise the bundling
structure and to generate visually pleasing results by smooth-
ing the direction of edges along their bundles. Yet, this fur-
ther distorts the actual connections between individual nodes.

Additionally, a visualisation of the bundling structure itself745

is desired, e.g., to visually communicate the strength of bun-
dles. This can be achieved by a simple mapping approach,
such as depicting bundling strength by colour. Another ap-
proach is to improve the visual representation of bundles by
means of shading. Lambert et al. (2010) applied a bump map-750

ping approach to enhance the 3D impression of edge bundled

networks. This approach influences the colour and brightness
of pixels by modifying their surface normals, to create the
impression of a “bumpy” 3D surface without modifying the
actual geometry. Using this approach, strong bundles appear755

higher than other ones and therefore stick out visually. Telea
and Ersoy (2010) developed an approach for visualising edge
bundling layouts by constructing individual shapes for each
cluster and rendering these shapes with an image-based tech-
nique. In this step, shading is applied to map attributes of the760

bundles to visual properties, such as colour, luminance, or
saturation.

Finally, while edge bundling can reveal high-level struc-
tures of a network, it can also be misleading, since it ob-
fuscates the actual connections between individual nodes.765

Therefore, in addition to analysing high-level patterns of a
bundled network, researchers must also be able to access
the initial edges of a network without bundling. This can
be enabled by interaction techniques that allow a local un-
bundling of edges, such as brushing and interactive lenses,770

which reveal the connections of nodes inside the radius of
a lens, while the edges outside the lens are bundled. Using
this method, the connections of selected nodes can be inter-
actively inspected, while the rest of the view remains unclut-
tered by the applied edge bundling (Hurter et al., 2011).775

Since exploration and analysis of a data set take place in-
teractively, the applied algorithms need to be fast enough to
support user interaction, e.g., for adjusting bundling options
or to perform fast re-bundling of edges after filtering options
have been modified. Therefore, edge bundling does not nec-780

essarily need to be performed in real-time, but with a short
enough response time for users to support an interactive anal-
ysis. Also, the generally high number of edges in climate net-
works demand for a high bundling performance in order to
bundle a few hundred thousand edges in a few seconds. From785

the described bundling algorithms, MINGLE and KDEEB
fulfil these requirements, as they both offer high bundling
performance on large data sets. KDEEB, due to its image-
based approach, can be easily integrated into a GPU-based
rendering pipeline for network visualisation and can be used790

as a flexible bundling approach, e.g., to enable filter-aware
re-bundling of edges. MINGLE, on the other hand, offers the
potential to be applied to 3D-edges, e.g., to independently
bundle several network layers as well as cross-layer edges in
the case of coupled 3D networks (Donges et al., 2011; Feng795

et al., 2012).

4.2.3 Further mapping aspects

Temporal / evolving networks. Typically, time-dependent
geo-referenced networks are visualised using animation or
space-time cubes (see, e.g., Bach et al., 2013). In the visu-800

alisation community widely known techniques such as geo-
graphical flow diagrams (e.g., Phan et al. (2005) or Zhu and
Guo (2014)) and movement data visualisation approaches
(Andrienko et al., 2013) are less relevant for climate net-
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(a) Force simulation applied in the FDEB
algorithm

(b) Recursive bundling of the MINGLE al-
gorithm

(c) KDEEB application: input graph, density map, and bundled result

Fig. 8: Edge bundling algorithms for geo-referenced networks from the literature. (a) © The Eurographics Association,
reprinted from Holten and van Wijk (2009) (b) © 2011 IEEE, reprinted from Gansner et al. (2011) (c) © The Eurograph-
ics Association, reprinted from Hurter et al. (2012) .

works representing teleconnections, where no flow is directly805

associated with the edges. However, if it comes to vulnerabil-
ity analyses of time-dependent energy networks (e.g., Menck
et al. (2014)) or supply chain networks (e.g., Bierkandt et al.
(2014)) with physical flows associated, such techniques can
be useful. In any case, algorithms preserving frame-to-frame810

coherence of the network geometry representation such as
temporal edge bundling (Hurter et al., 2014) can be benefi-
cial for analysing temporal climate networks, such as those
studied by Yamasaki et al. (2008) or Radebach et al. (2013).

Node labelling. If climate networks are defined based on815

measurements, labelling of stations can be relevant to under-
stand local network properties. Then, labels have to be inte-
grated in the occlusion reduction mechanisms.

3D spatially embedded networks. If the phenomena rep-
resented by the climate network are 3D in longitude, lati-820

tude, altitude – such as networks based on 3D atmospheric
or oceanic data sets – the occlusion problems are further ag-
gravated. As a typical solution, the visualisation is restricted
to two selected layers and their internal and inter-layer edges
(see Figs. 9 and 21 for examples). Interactive spatial selec-825

tion and edge bundling techniques for such real 3D data
sets have been developed for neuronal network visualisation
(Blaas et al., 2005; Böttger et al., 2014), however, have not
yet been applied to 3D climate networks.

Fig. 9: Two-layered network visualisation; © Springer,
reprinted from Feng et al. (2012); original caption: “The
graph of bilayer air–sea interaction networks: the dots with
olive colour and cyan colour represent the nodes with
weighted node degree greater than 0.18 for the lower layer
subnetwork and 0.14 for the upper layer subnetwork, respec-
tively. The red dots represent the cross nodes with weighted
node degree greater than 0.06. The black dashes or solid lines
represent edges”.

4.3 Rendering830

In the rendering phase, several methods can be used to reduce
visual clutter and to highlight structures. Alpha blending
is a common tool for handling overlapping edges, turning re-
gions of high edge density more opaque. More advanced are
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specific shading techniques, improving the structure percep-835

tion, e.g., use lightness adaptation for trees (Schulz et al.,
2011) and 3D illustrative shading techniques for bundled
edges (e.g., in Hurter et al., 2012). Finally, interactive lenses
have been developed to reduce the local clutter around a user
specified focus region (Hurter et al., 2011; Krüger et al.,840

2013; Tominski et al., 2014). Either, such lenses distort the
optics around a network representation region (changing the
local rendering properties, so called geometric lenses, thus
providing more display space) or change the local primitive
mapping (semantic lenses), which can, for instance, region-845

ally show more nodes, change the node layout, hide region
crossing edges or highlight edges starting/ ending in the lens
region (see Fig. 10).

Fig. 10: Circular lens within a network visualisation (CGV):
increased saturation and removal of overlapping edges (see
as well Tominski et al., 2014).

In particular for climate visualisation on 3D visual globes,
rendering performance becomes a bottleneck for most850

network visualisation environments, because geometrically
complex representations of nodes (3D spheres) and edges
(multiple line segments) result in several million geometric
primitives even for medium sized climate networks. How-
ever, 3D scene interactions such as zooming, rotating, and855

panning as well as scene changes by filtering nodes and edges
or a modification of data mapping and rendering options
must provide interactive feedback, otherwise a visual explo-
ration of such networks is strongly hampered. As a result,
the rendering implementation must be highly optimised to860

support visualisation and analysis of medium-sized to large
networks at interactive frame rates.

Techniques for improving the rendering performance for
climate networks include both the minimisation of geomet-
ric primitives and the optimisation of rendering methods. For865

example, tessellation and rendering of complex 3D spheres
representing the nodes of a network can be supplanted by
billboard techniques that render only a simple quad geome-
try and use GPU fragment shaders to create the visual appear-
ance of a perfect sphere with regard to the current screen res-870

olution. This drastically reduces both geometry size and ren-

dering time (see as well our own solutions in Sec. 5.2). The
rendering of polylines, that represent the edges of a network,
can be optimised by dynamic (re-)tessellation and level-of-
detail techniques: depending on the size of an edge and its875

distance to the virtual camera, edges which occupy only a
small space on the screen can be rendered at lower detail,
thus reducing geometric complexity and improving render-
ing performance.

5 Visualisation Systems880

To support the analysis of climate networks, tools enabling
scientists to visually analyse and present large climate net-
works are crucial. Relevant features of such tools are sophis-
ticated methods for visualisation and interaction in conjunc-
tion with detailed cartographic information.885

5.1 Tool review

There are a number of relevant graph visualisation tools and
systems, including Pajek (de Nooy et al., 2005), GUESS
(Adar, 2006), and Gephi (Bastian et al., 2009), summarised
in Tab. 1. In the following, we review important properties890

of these systems with respect to the requirements of climate
networks.

Computational scalability. The size of a network, in par-
ticular the number of edges, is often a major criterion for the
general applicability for climate network visualisation. This895

is influenced by internal data structures, for instance effec-
tive handling of sparse matrices, as well as by the effective-
ness and efficiency of provided (layout) algorithms (e.g., hi-
erarchic network handling and GPU implementations). Tools
usable for large networks (more than 100,000 edges) include900

Gephi, CGV, GTX, and Tulip.
Interactive network filtering. Interactive filtering allows

the user to specify network parts of interest, e.g., to reduce
the displayed network size or to highlight parts of the net-
work, thus avoiding perceptive overload and visual clutter.905

Whether a certain tool can handle large networks interac-
tively depends strongly on its computational scalability. The
filtering can be done either interactively, by directly select-
ing/deselecting nodes or edges of interest in the network
structure, or by selections based on additional facets of the910

network such as node/edge attributes, clusters/hierarchies,
time stamps, or spatial regions. CGV, Gephi, GTX, Network
Work Bench, GUESS, MATLAB, and Tulip provide interac-
tive network filtering mechanisms.

Visual scalability. Even if a large network can be com-915

puted and visualised interactively, the resulting visualisation
technique itself or its implementation might not be scalable
with respect to the display and the human perception system.
Typical visualisation techniques support hundreds to several
thousand nodes. In particular, if node layout algorithms are920

not suitable (e.g., because of the geo-reference of the nodes),
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Table 1: Overview of existing tools applicable for climate network visualisation.

Tool name Availability Additional properties Url
3Djs open source multiple additional information vi-

sualization techniques
github.com/mbostock/d3

CGV prototype executable / web
service

multiple linked InfoVis techniques;
3D spherical networks

www.informatik.uni-
rostock.de/ ct/software/CGV/CGV.html

Gephi open source network measure calculation gephi.github.io
Google Earth closed source; web service multiple GIS functionalities earth.google.com
Graph stream open source evolving networks; network mea-

sure calculation
graphstream-project.org

GraphTool open source (python) network measure calculation graph-tool.skewed.de
GraphVis open source www.graphviz.org
GTX prototype executable alternative geographic projections;

3D spherical networks
www.gtx-vis.org

GUESS open source development stopped (since 2007) graphexploration.cond.org
igraph open source (python) network measure calculation igraph.org
KiNG open source development stopped (since 2012) kinemage.biochem.duke.edu
Matlab Graph Visual-
ization

commercial network measure calculation www.mathworks.de/products/matlab

Network Work Bench free for non-commercial /
closed source

development stopped (since 2009) nwb.cns.iu.edu

NetworkX open source (python) network measure calculation networkx.github.io
Node Trix open source www.aviz.fr/Research/Nodetrix
Pajek free for non-commercial /

closed source
pajek.imfm.si

Tulip open source network measure calculation; mul-
tiple linked InfoVis techniques

tulip.labri.fr

specialised interaction techniques and edge bundling become
relevant. Interactive lenses are supported by CGV and Tulip.
Edge bundling is supported by CGV (FDEB), GTX (MIN-
GLE), GraphViz (MINGLE), and Tulip (based on Lambert925

et al., 2010). Edge bundling for hierarchical data in circular
layouts is supported by the Python package GraphTool and
by GraphVis (based on Holten, 2006).

Layouts. Node layout algorithms are of minor relevance
for visualising climate networks, however for certain ques-930

tions they can be a supportive feature (see Fig.7). Gephi, the
GraphTool package, GraphVis, GUESS, MATLAB, the Net-
work Work Bench, the NetworkX package, Pajek, and Tulip
all support a multitude of layout algorithms.

Geo-embedding. Functionalities mapping the network935

within its geographic reference are very important for the in-
terpretation of climate networks. Either planar (CGV, Gephi,
GTX, Tulip, Graph Stream) or spherical projections (CGV,
GoogleEarth, GTX, Tulip) can be applied to explicitly given
node positions in longitude and latitude coordinates. Three940

different levels of geo-integration can be distinguished:

1. equidistant cylindrical projection without any geo-
graphic layers (by scripting GUESS, Network Work
Bench, or MATLAB, Graph Stream, and as plugin in
Gephi),945

2. equidistant cylindrical or spherical projection with sev-
eral predefined layers, such as topography, land cover,
and land use (CGV, Tulip), and in addition

3. multiple flexible projections (GTX) or inclusion of self-
defined GIS layers (GoogleEarth).950

Support of 3D spatial networks. Climate networks can
contain nodes at different heights, e.g., to represent sev-
eral atmospheric layers. To visualise such coupled networks,
tools need to support the visualisation of 3D spatial networks.
For the interactive visualisation of spatial 3D biological net-955

works such as neuronal networks, several tools and tech-
niques have been developed (Blaas et al., 2005; Böttger et al.,
2014). Unfortunately, they are not directly usable for climate
networks with an additional level coordinate because of the
missing geo-embedding, and to the best of our knowledge,960

none of the standard tools provide both functionalities. To fill
this gap, we integrated a mapping of a third dimension into
our own solutions CGV and GTX (see Sec. 6.3). Beyond the
node mapping itself, representing 3D spatial networks further
increases edge clutter, therefore 3D edge bundling solutions965

are requested (such as the solution from Böttger et al., 2014).
However, we did not find a freely available network visuali-
sation system providing this feature.
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Support of temporal / evolving networks. Networks that
change over time are supported only weakly in most visu-970

alisation tools (such as Gephi and Pajek). Events altering
the network include node/edge creation, deletion, and at-
tribute change. Graph Stream provides the strongest support
for evolving networks, providing a flexible event handling
and smooth change of the network layout / representation.975

Application domain. The majority of tools have been de-
veloped domain independently, however, some tools were
originally tailored for specific application domains (King
for bio-networks, NodeTrix for social networks). In addi-
tion, our own solutions CGV und GTX provide functional-980

ities designed for the characteristics of geo-referenced cli-
mate networks such as readers supporting the climate net-
work data characteristics, mappings for 3D climate networks
(see above), and other GIS related features.

Scripting. Most of the presented tools provide a scripting985

interface, which allows the user to precisely adjust and re-
produce network visualisation properties (such as node/edge
filters, camera positions) and to hand it to her scientific col-
leagues. In particular, scripting in the sense of an interaction
history storage is essential for building scientists’ trust when990

applying interactively steerable visual analytics tools (GTX,
Tulip and Gephi). In addition to that, scripting can also allow
scientists to extend the visualisation tool by creating and ap-
plying new analysis functions for the data and feeding the re-
sults back into the interactive visualisation. This requires the995

possibility to access and modify network data from within
the scripting interface.

Additional features. Beyond the discussed characteris-
tics, there are several other features of network visualisation
tools potentially relevant for climate networks. In particular,1000

this includes the ability to integrate other facets such as
networks that come with an additional hierarchy on top of
the network (CGV) and the provision of additional linked
visualisation views to display network measures and addi-
tional data provided with the nodes and edges (GCV, Tulip,1005

3Djs). Interactive lenses, which provide local highlighting
and reduction of clutter, are provided by Tulip, CGV, and
3Djs. Finally, a very important feature that our survey with
climate network analysts revealed was the option to derive
network measures on the fly (Gephi, Tulip, Graph Stream,1010

and using the Python packages NetworkX, GraphTool, and
igraph).

In summary, there is a large bandwidth of tools avail-
able for climate network visualisation, ranging from static,1015

2D plotting tools with strengths in computational analytics,
to highly interactive tools supporting multiple facets. In the
class of interactive tools, Tulip and Gephi are most advanced
and freely available. Tulip (Fig. 12) is the most sophis-
ticated, providing geo-embedding and combining network1020

views with standard information visualisation techniques.
In addition, there is a new category of programmable APIs
emerging, which provide easy-to-program graphical user in-

terfaces in combination with full-fledged network and other
information visualisation views (Graph Stream, 3Djs, Node-1025

Trix), however, which are typically not scalable for more than
1,000 nodes and for intermediate or dense networks.

5.2 Research prototypes

Unfortunately, the existing solutions do not integrate all fea-
tures required by the interactive visual analytics of climate1030

networks. Either, the spatial reference of the data (e.g., real
3D networks on the globe) and relevant additional carto-
graphic information is not sufficiently supported, or the size
of the networks with up to 1,000,000 edges requires efficient
data handling in combination with fast GPU-aware render-1035

ing and visual clutter reduction mechanisms such as edge
bundling. Because of that, we developed two research pro-
totypes to illustrate directions of future visualisation devel-
opments for geo-referenced networks.

CGV. The CGV system (Tominski et al., 2009) can vi-1040

sualise climate networks in a variety of ways. CGV of-
fers parallel coordinates, geographic 2D map with edge
bundling (based on Holten and van Wijk, 2009), 3D globe,
and density-based representations. All views are coordinated,
meaning highlighting graph entities in one view also high-1045

lights the same entities in all other views. This facilitates un-
derstanding the different aspects communicated in the differ-
ent views.

The focus of CGV is on interactive exploration. To this
end, CGV integrates several interaction techniques. These1050

include an extended dynamic filtering, elaborate navigation
techniques, and graph lenses.

CGV’s dynamic filtering mechanism supports the flexible
logical combination of threshold filters and interval filters on
the attributes of nodes and edges of the climate network. The1055

visual representation reflects the filtering results in two dif-
ferent ways. Either the filtered nodes and edges are omitted
or they are dimmed.

To facilitate the navigation of large climate networks,
CGV provides a technique called edge-based traveling. In-1060

stead of using manual zoom and pan operations, the user can
navigate the network by clicking on its edges. A smooth an-
imation will take the user along the clicked edge from one
node to the other. Such a navigation aid is particularly use-
ful when working on problems related to paths in the climate1065

network.
CGV integrates interactive lenses to support exploratory

analysis tasks. Particularly useful are the edge lens, which
reduces edge clutter (see Fig. 10), and the layout lens, which
generates local overviews of the connectivity of selected1070

nodes of interest.
Figure 13 illustrates a CGV session with a climate data set.

The figure shows a 2D map representation (centre left) and
a 3D globe with an embedded network visualisation (centre
right). Additionally, a search box enables label-based node1075

search (top left), a splat view shows the node density of the
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Fig. 11: Gephi screenshot: geo-layout of the African January precipitation network (see Sec. 6.2), filtered by node betweenness
(≥ 5.5).

Fig. 12: Tulip screenshot visualising the African January precipitation network (see Sec. 6.2), filtered by node betweenness
(≥ 5.0) with edge bundling (edge routing) and node betweenness encoded in colour.
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network (top middle), and a parallel coordinates view ab-
stractly depicts the node attributes (top right). A dynamic
interval filter (bottom) has been applied to filter out nodes
with low betweenness values.1080

GTX. While CGV provides a multi-view environment,
this comes at additional rendering costs, because each view
has to render the climate network. Although CGV can han-
dle larger and/or time-dependent networks, it reaches its lim-
its when huge networks are visualised in multiple views.1085

As an alternative, we are currently developing a single-view
tool, named GTX, to provide flexible cartographic informa-
tion at different levels focused on interactive 3D visualisation
of large time-dependent data sets. GTX has been developed
both for visual analytics of spatio-temporal trajectory data1090

such as air-traffic movements (Buschmann et al., 2014a) and
for interactive visualisation of large geo-referenced (climate-
)networks.

GTX is able to process up to 1,000,000 edges at interac-
tive frame rates by combining sophisticated computer graph-1095

ics and GIS technologies. In particular, data representation
and processing is optimised by storing attributed network
data in graphics card memory and creating complex geome-
try on the GPU during rendering, instead of precomputing it
on the CPU (Buschmann et al., 2014b). This reduces memory1100

consumption and facilitates interaction by avoiding slow re-
computation and updates of geometry data from CPU to GPU
memory. As a result, it allows for filtering, mapping, and ren-
dering options to be configured interactively and updated on
the fly, thus enabling interactive exploration and analysis by1105

giving direct visual feedback to user interaction. In addition,
rendering is optimised by minimising the geometric com-
plexity, using techniques such as billboards to render spheres
without tessellation and level-of-detail (LOD) to reduce the
visual complexity for edges based on the distance from the1110

virtual camera.
GTX supports both 3D globe representations and 2D

geographic projections such as Mercator, transverse Mer-
cator, and circular projection. These representations can
be changed on the fly by user interaction, enabling quick1115

comparisons of different projections. Due to the hardware-
accelerated implementation, both filtering and mapping op-
tions can be configured interactively.

Finally, all of these visualisation options in GTX (i.e.,
filtering, mapping, geographic projections, and camera op-1120

tions) can be accessed by a scripting interface, using
JavaScript as its programming language. This enables sci-
entists to reproduce and share their visualisation configura-
tions, to enhance or implement their own analysis functions
on climate network data and visualise their results, and to1125

script reproducible screenshots or even videos for presenta-
tion purposes.

Fig. 14 shows an exemplary screenshot of the GTX user
interface, visualising a two-layered network (see Sec. 6.3)
with height-level depicted by colour and cross-betweenness1130

depicted by node size. A node filter for the attribute “cross-

betweenness” has been applied interactively. The tool can be
provided to interested researchers on demand.

Further research prototypes potentially relevant for the
field of climate network visualisation have been developed1135

for the interactive exploration of spatially-embedded net-
works (MoleView, Hurter et al. (2011)) and for trajectory vi-
sualisation (e.g., Krüger et al. (2013)).

6 Examples for visual analytics of climate networks

When analysing climate networks, the geographic nature of1140

those networks plays an important role. Features found in
the network structure may correlate with geographic charac-
teristics, indicating a relation between, e.g., topography and
the investigated climate phenomena. To detect such interre-
lationships is an important task of climate network analysis,1145

which should therefore be supported by applied visualisation
methods. With our network visualisation solutions GTX and
CGV, climate networks are displayed as node-link diagrams,
which are embedded in a geographical map, either planar,
using a 2D geographical projection (Fig. 15), or as a spheri-1150

cal view on top of a 3D interactive globe (Figs. 16 and 18).
The configurable map layer can be used to quickly cross-
reference network data with topological or thematic features.
Therefore, it provides exchangeable maps for different anal-
ysis tasks, e.g., topological or thematic maps.1155

The node-link diagram is then displayed on top of the
map layer. Within this visualisation, nodes are represented as
spheres, while 3D polylines depict the edges of the network.
It is important to note that, while the positions of nodes cor-
respond to the actual geographical locations of the input data,1160

edges do not necessarily have a geographical meaning. As an
edge merely represents a statistical relationship between cli-
mate time series at two nodes, the geographical extent of an
edge should not be misinterpreted as representing an actual
geographical phenomenon. In addition to the network struc-1165

ture, network measures, such as degree and shortest-path be-
tweenness, which can be interpreted as attributes belonging
to either nodes or edges, are important when analysing cli-
mate networks. To visualise such measures, node and edge
attributes can be mapped to visual properties. Node proper-1170

ties include the size and colour of spheres. Edge properties
include colour, width, and arc height.

In the following, we provide several examples to illustrate
the process of data preprocessing and the subsequent visual
analytics for global (Sec. 6.1), regional (Sec. 6.2), and cou-1175

pled climate networks (Sec. 6.3). In discussing these exam-
ples, a case will be made for the added scientific value of ad-
vanced computer graphics visualisations of climate networks
when compared to commonly used visualisation techniques
such as contour plots or coloured maps of scalar fields.1180
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Fig. 13: CGV visualises climate networks in multiple coordinated views and provides advanced interaction.

Fig. 14: GTX screenshot showing 3D network visualisation, mapping configuration, interactive filtering, and scripting console.
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(a) Mercator projection, network filtered by
node-betweenness (≥ 80000).

(b) Transverse Mercator projection, network fil-
tered by node-betweenness (≥ 195000).

(c) 360 degree spherical projection,
network filtered by node-betweenness
(≥ 170000).

Fig. 15: Visualisation of a global surface air temperature climate network using different 2D map projections (GTX). Filtering
has been applied to highlight nodes with large shortest-path betweenness.

(a) Global network, filtered by edge-betweenness (≥ 10000). (b) Global network, filtered by node-betweenness (≥ 80000).

Fig. 16: Visualisation of a global surface air temperature climate network embedded on the surface of a 3D virtual planet using
two different filtering criteria (GTX).

Fig. 17: Surface air temperature network (GTX) zoomed to the equatorial Atlantic ocean based on a node betweenness filtering
(≥ 100.000) and an edge angular distance filtering (≥ 0.26), illustrating the effect of edge bundling : straight edges (left),
bundled edges (right).
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6.1 Global climate networks

To illustrate the visual analytics of global climate networks,
we investigate the correlation structure of the monthly aver-
aged global surface air temperature (SAT) field taken from a
20th century reference run (20c3m, as defined in the IPCC1185

AR4 (Solomon et al., 2007)) by the HadCM3 model (Meehl
et al., 2007) covering the time span from January 1860
through December 1999. Following the protocol of Donges
et al. (2009a,b), a global threshold T is chosen such that 0.5%
of all possible edges associated to the largest values of Pear-1190

son correlation (without lag) between SAT time series are
included in the climate network. The resulting network con-
tains approximately 6,000 nodes and 115,000 edges.

This SAT climate network is visualised as a node-link di-
agram, where the positions of nodes are fixed at the geo-1195

graphical locations of the corresponding model grid points
(Fig. 16). Using dynamic filtering facilities as described in
Section 5.1, we can interactively filter for nodes and edges
with large shortest-path betweenness, therefore highlighting
structures of particular importance for matter and energy1200

flow in the climate system that tend to preferentially follow
shortest paths in the network (Molkenthin et al., 2014; Tupik-
ina et al., 2014).

Two-dimensional latitude-longitude projections of the fil-
tered network (Fig. 15) reveal patterns that are in accordance1205

with the backbone structure of significantly increased node
betweenness discussed in Donges et al. (2009a) (compare
Fig. 1a). The transverse Mercator (Fig. 15b) and spherical
projections (Fig. 15c) avoid most of the mainly tropical edge
clutter induced by the commonly used standard Mercator1210

projection (Fig. 15a). Specifically, the transverse Mercator
appears particularly useful for climate network analysis of
global climatological fields, because it allows viewing the
whole network and at the same time avoids strong geomet-
ric distortions near the poles. For example, in the SAT net-1215

work, this projection provides a clearly arranged overview of
the chains of high betweenness nodes emerging around the
coasts of Antarctica and the Arctic as well as their global
connectivity (Fig. 15b).

Compared to commonly used visual representations of cli-1220

mate network properties, such as the shortest-path node be-
tweenness maps shown in Figs. 1a and 19, a particular ad-
vantage of the visualisations presented here is that informa-
tion on node and edge attributes can be viewed simultane-
ously and intuitively, while in classical tools, edge-based net-1225

work properties are usually displayed in colour-coded ma-
trix views, see, e.g., Donner et al. (2010, Fig. 13)). In the
global SAT climate network, this shows that edges with large
shortest-path betweenness tend to fall into one of two cat-
egories: very short or very long edges. This observation is1230

most clearly pronounced in spherical representations of the
filtered climate network (Figs. 16, 18) which show less vi-
sual clutter than the two-dimensional projections (Fig. 1), but
restrict the view to one visible hemisphere only.

Based on both views, hypotheses on some of these short1235

and long range edges with large shortest-path betweenness
can be formulated. For example, high betweenness short
range edges as part of the substrate lattice (Radebach et al.,
2013) of the SAT field may represent advection of heat by
strong surface ocean currents such as the Canary current1240

along the West coasts of Europe and North Africa (Fig. 16)
or the Peru (Fig. 18) and California currents along the West
coasts of the Americas (Fig. 16). Our visualisations further-
more reveal that short high betweenness edges often con-
nect high betweenness nodes with comparably low degree1245

(see, e.g., the structure resembling parts of the California
current along the West coast of North America in Fig. 18).
Hence, these nodes can indeed be considered as parts of
critical bottleneck or backbone structures in the global sur-
face air temperature network that channel shortest-path con-1250

nections between a large fraction of pairs of regions on the
Earth’s surface while bearing few direct connections them-
selves (Donges et al., 2009a; Molkenthin et al., 2014; Tupik-
ina et al., 2014). Long range edges with large shortest-path
betweenness correspond to teleconnection patterns such as1255

the El Niño-Southern Oscillation (ENSO) region in the trop-
ical Pacific (Radebach et al., 2013) or the tropical Walker cir-
culation with edges connecting regions over the Pacific, At-
lantic, and Indian Oceans along the equator (Figs. 15, 16, and
18). Visual analytics also reveals further unexpected struc-1260

tures such as the chain of high betweenness nodes and edges
crossing South America roughly from East to West (Figs. 15
and 16) that call for further research to understand the under-
lying processes and their potential significance for climate
dynamics.1265

In the case of longer distant edges the visual clutter can
be reduced using edge bundling. Figure 17 illustrates how a
bundling can be used for the SAT network. Zooming into a
certain region, bundling allows for a compact representation
of major network structures by simplifying dense crossing1270

edge regions. Thus agglomerate directions of teleconnections
within the network can be better perceived.

Finally it should be noted that interactively varying the fil-
ter criteria is useful to evaluate the robustness of such pat-
terns when testing hypotheses on underlying climatic pro-1275

cesses and selecting regions or network substructures for fur-
ther, more detailed analysis. In this spirit, Figs. 15, 16, and
18 have been generated applying differing thresholds for the
node and edge shortest-path betweenness filters, respectively.

6.2 Regional climate networks1280

Regional climate networks are a special case of spatially em-
bedded networks, because they are confined by an artificial
boundary. The boundary cuts potential network edges and
can, therefore, influence the network statistics and requires
specific correction schemes (Rheinwalt et al., 2012). Never-1285

theless, the visualisation of the edges of the regional network
is useful and allows for investigations of climate interactions.
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Fig. 18: Spherical three-dimensional globe representation
of a surface air temperature network (CGV). Node colour
(green for small values, red for large values) and size encode
the node attributes degree and shortest-path betweenness, re-
spectively.

As an example, we consider the climate network of inter-
relations between local rainfall variation over Africa. Here,
the boundaries are mainly defined by the African coast. In-1290

stead of using continuous data, such as air temperature, we
are interested in the rainfall variation. On a daily scale, rain-
fall occurs as events, therefore, Pearson correlation cannot
be applied and other methods for studying interrelations are
more appropriate, e.g., event synchronisation (Malik et al.,1295

2010; Boers et al., 2013; Stolbova et al., 2014). In our ex-
ample, we focus on a monthly scale and, therefore, will be
able to use Pearson correlation. The data covers the period
between 1901 and 2003 and is equally spaced on a regular
grid of size 0.5◦× 0.5◦ (source CRU; New et al., 2002). We1300

reconstruct climate networks for the months July and January
separately using a fixed threshold for the correlation coeffi-
cient of 0.75 (Fig. 19).

For a planar visualisation of node attributes, we show an
exemplary representation of the node betweenness prepared1305

with MATLAB (Fig. 19). High values of betweenness char-
acterise regions with high convection activity. These regions
correspond to the Intertropical Convergence Zone (ITCZ).
The seasonally separated view highlights the seasonal move-
ment of the ITZC from its northern position in summer to1310

a more southern position in winter. Moreover, it indicates
further convergence zones, such as the Congo air boundary,

crossing Africa from the Red Sea/ Gulf of Aden towards and
along the Congo river (Nicholson, 2000).

A CGV based network visualisation (Fig. 20) allows for1315

a combined view of the network edges together with node
degree (node size) and betweenness (node colour). Applying
a filtering procedure hiding all nodes of low betweenness can
unveil such regions that correspond to known convergence
zones.1320

6.3 Coupled climate networks

Coupled climate networks (CCNs) have been developed as
an extension of climate network analysis that aims at sys-
tematically studying the complex structure of statistical inter-
relationships between different climatological fields such as1325

surface air temperature and pressure (Donges et al., 2011). In
this way, CCNs complement classical methods such as cou-
pled pattern or maximum covariance analysis that are fre-
quently used for the statistical analysis of multiple clima-
tological fields (Petrova, 2012; Donges et al., 2015). CCN1330

analysis has been applied to study vertical wind field in-
teractions between different isobaric surfaces in the atmo-
sphere (Donges et al., 2011), ocean-atmosphere coupling
in the tropics (Feng et al., 2012) and the northern hemi-
sphere (Wiedermann et al., 2015), interrelationships between1335

precipitation and evaporation fields (Donges et al., 2015),
as well as for predicting El Niño events (Ludescher et al.,
2013, 2014). Coupled climate networks typically call for
three-dimensional geographically embedded network visual-
isations using either available latitude, longitude, and height1340

information for each node (e.g., for the three-dimensional
geopotential height field studied in Donges et al. (2011)) or
displaying overlapping surface fields as two or more stacked
layers of nodes (e.g., for the evaporation and precipitation
fields analysed in Petrova (2012); Donges et al. (2015)).1345

Here, we reconsider vertical interactions in global atmo-
spheric geostrophic wind dynamics as studied in Donges
et al. (2011). The coupled climate network is constructed
from the monthly averaged and vertically resolved geopo-
tential height field from Reanalysis 1 data provided by the1350

National Center for Environmental Prediction/National Cen-
ter for Atmospheric Research (NCEP/NCAR) (Kistler et al.,
2001), covering the time span from January 1948 through
February 2009. To study the vertical interaction structure
between near surface and upper tropospheric geostrophic1355

wind, we select data on isobaric surfaces at 1,000 mbar
and 600 mbar, respectively, and interpolate to an icosahe-
dral grid for each layer separately, resulting in a total of
2×2,562 = 5,124 nodes in the CCN. All nodes in each layer
are assigned to one of two subnetworks needed for statis-1360

tically analysing the interaction structure between the two
isobaric surfaces (Donges et al., 2011). Finally, an edge is
added for each pair of nodes within and between isobaric
surfaces where the Pearson correlation (without lag) of the
corresponding geopotential height time series is ≥ 0.5.1365



Nocke, Buschmann, Donges, Marwan, Schulz, Tominski: Review: Visual analytics of climate networks 21

2 3 4 5 6
betweenness (log10)

 

    

 

 

    

 

July January

Fig. 19: Shortest-path betweenness of regional African rainfall networks for July and January (Matlab).

July

(a) Network visualisation July.

January

(b) Network visualisation January.

Fig. 20: Rainfall network of Africa for July and January unveiling regions that correspond to known convergence zones (CGV).
The network visualisation (bottom row) has been filtered to hide nodes with low shortest-path betweenness to highlight regions
corresponding to important moisture convergence zones. Additionally, the node attributes degree (node size) and shortest-path
betweenness (node colour: blue shades→ small values, red shades→ large values) are displayed.

The resulting coupled climate network is visualised on the
sphere in a three-dimensional view in GTX (Fig. 21). Here,
the vertical dimension is strongly exaggerated, because the
average vertical distance between the two isobaric surfaces
(O(101) km) is much smaller than the typical horizontal sep-1370

aration of nodes (O(103) km). The network was filtered for
nodes with large cross-shortest path betweenness (Donges
et al., 2011) to highlight regions that are potentially particu-
larly important for channelling vertical interactions between
geostrophic wind field dynamics on both isobaric surfaces.1375

Specifically, on the surface layer, we observe a circumpolar
band of nodes with high cross-betweenness over the Arctic
that is particularly pronounced over the Pacific side of the
Arctic Ocean (white nodes in Fig. 21). Nodes in this circum-

polar band are connected to high cross-betweenness nodes1380

in the upper troposphere (red nodes in Fig. 21) over Eu-
rope, the Pacific Ocean, and above the East coast of North
America. These observations indicate that the Arctic vortex
is particularly important for mediating vertical interactions
between near-surface and upper tropospheric atmospheric1385

dynamics. While the Arctic circumpolar band of high be-
tweenness nodes was already evident in the classical two-
dimensional contour plots analysed in Donges et al. (2011),
being able to intuitively display the connectivity of this re-
gion with nodes in the upper troposphere presents a large1390

added value of the visual analytics approach in this particu-
lar use case.
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Fig. 21: Coupled climate network constructed from the
geopotential height field on two isobaric surfaces (GTX):
near-surface (1000 mbar, white nodes) and upper troposphere
(600 mbar, red nodes). The network visualisation has been
filtered to highlight nodes with large cross-betweenness in-
dicating regions that are potentially important for medi-
ating vertical interactions in the atmosphere’s geostrophic
wind dynamics, e.g., the circumpolar band of high cross-
betweenness nodes above the Arctic.

From a visualisation point-of-view, it is desirable to be
able to interactively visualise and study the full three-
dimensional CNN including all 17 layers of nodes of the1395

geopotential height field provided by the NCEP/NCAR re-
analysis data set, to use three-dimensional edge bundling and
related techniques to reduce clutter, and to also overlay this
network visualisation with additional data sources such as
vector-valued wind direction and speed or atmospheric mois-1400

ture content.

7 Conclusion

In summary, the visualisation of climate data is an impor-
tant means to gain insights in climate and climate related
science and to communicate those insights. However, most1405

frequently, climate data is processed using conventional sta-
tistical methods such as empirical orthogonal function analy-
sis, and visualisation is often used for producing a final static
image. This is appropriate for presentation purposes (such as
in the IPCC reports), however, it does not exploit the power1410

of the human visual system in combination with the strengths
of computer-based automatic data analysis. Such an in-depth

climate data analysis – tightly coupling statistics and visual-
isation – is subject of ongoing research.

In general, interactive visual analytics of large, time-1415

dependent, geo-referenced climate networks is still a chal-
lenging problem. The combined application of interactive
methods provided by visualisation and geographic informa-
tion systems and of non-linear analysis methods is still ham-
pered for climate science users. Hence, we strive to integrate1420

existing approaches and to develop novel concepts for prac-
tical solutions for climate scientists.

In particular, there is the pressing issue of time-
dependency of climate networks (Yamasaki et al., 2008;
Radebach et al., 2013). Time-dependency implies additional1425

conceptual and technical challenges, because the dimension
of time can be structured in a number of different ways and
because the data size is multiplied by the number of time
steps (Aigner et al., 2011). Up to now, in most visualisation
systems, individual time steps have to be loaded separately,1430

which hinders the exploration of temporal trends and patterns
in the data. New visualisation views have to be integrated to
address this problem.

Additionally, uncertainty of model structure and hence of
the generated data will play an increasingly important role.1435

As a result, we have to consider the 3D visualisation of uncer-
tain network structures with uncertain attributes, which we
think is a formidable challenge.

A further not yet solved problem with the interactive visu-
alisation approach is that filter settings are not derived from1440

quantitative criteria, thereby rendering the results can be arbi-
trary to some degree. Thus, a direction for future research in
visual climate networks analytics will be to identify objective
filter thresholds (e.g., based on the network stability) and to
provide these thresholds as reference filter values to network1445

analysts within a visualisation session. It should be noted that
visualisations such as the one presented in Fig. 18 have al-
ready proven highly valuable and successful in visually ex-
ploring large climate networks, as well as intuitively convey-
ing the basic ideas and results of climate network analysis1450

to scientific audiences at international conferences (see, e.g.,
Zou et al., 2011).
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