
Point-to-point response to the reviewers comments

Dear editor,

We are grateful to the constructive comments of both reviewers. We have addressed all their 
comments and changed the manuscript accordingly.

The reviewers comments are in italics.

Reviewer 1:

Thank you very much for reviewing our manuscript and your constructive comments.

1) First paragraph, page 691, lines 8-9: Do you think that the results are sensitive to the 
reanalysis used? Though this paper covers a more reliable period, some studies found that, even 
after 1979, large differences still exist between the reanalyses in the circulation, precipitation 
and SAM trends (e.g. Bromwich et al., 2007; Bromwich and Fogt, 2004).
 
We have an other recent paper where we use the JRA-55 reanalysis for a regime study of the SH 
circulation and find similar results. Thus, we feel that our results are robust. We discuss in the 
first paragraph of section 2.

2) There need to be more discussion of the Figure 3, especially in terms of time of residence in 
the summer season, which presents the most distinct pattern in relation to other seasons and 
annual: the regime transition have not occurred around 1980 and the frequency and persistence 
of the positive SAM and wave 3 are almost the same from 2000-2007.

We extended the discussion of Fig. 3. See first paragraph of section  4. Thank you very much for 
pointing this out.

3) Zonally asymmetric fields are used in the statistical analysis and not just mean zonal indices. 
This is important, as Ho et al. (2012) and others demonstrated that there is sensitivity associated
with the index chosen to represent SAM and thus, it is necessary to consider the impact that the 
choice of SAM index has on the outcomes of any SAM attribution study. I suggest the inclusion of
this reference in the Introduction section at the end of last but one paragraph.

We added a discussion of the Ho et al. paper. See first paragraph of section 1.

Technical corrections
1) Section 3.2, line 27 introduces the acronym OMD, which is not defined previously. Is  it the 
acronym for ozone mass deficit? This needs to be specified.

Done

2) Missing units for geopotential height and surface air temperature in Figure 2.



Done

3) Missing the statistical significance in Figures 2 and 4.
Because the statistical significance has already been discussed in many previous papers (e.g. 
Steig et al. 2009) we do not think this will add anything to this current paper.

Reviewer 2 (S. Vannitsem):

Thank you very much for reviewing our manuscript and your constructive comments.

General Remark:
The authors investigate the origin of the long term secular trend present in the large
scale atmospheric circulation regimes in the Southern Hemisphere (SH). They use a
new method of detection and attribution based on the Granger causality principle. They
found that one of the main driver mechanism of the secular trend is the CO2 , and they
contrast their results with the previous attributions with the Ozone depletion.
This is an interesting systematic exploration of the driver attribution that deserves publication 
but I have a major concern about the choice of drivers. The authors used
CO2 , OMD (I suppose that it is the ozone mass deficit, but never mentioned in the
text or captions), solar constant, stratospheric aerosol optical thickness and sulphate
aerosols. Although this choice is probably a good sample of the different possible
drivers, the authors should make the reader aware that it is a limited choice and other
drivers could be responsible of this secular trend.
To my opinion, if you take any series for which you have a similar secular trend then
you will attribute the trend of the original time series to this specific predictor. I was
therefore wondering why you did not try the time series of sea ice extension displaying
a secular positive trend during the last 40-50 years. I suspect that it could provide
as good result as the CO2 increase, and it is probably a more direct mechanism of
circulation modifications than the CO2 , whatever the specific origin of the Antarctic sea
ice extension increase is (Note that this increase is not well explained by current climate
models even when CO2 increases, rather most of the models predict a decrease of the
sea ice extension).
I therefore think that caution should be taken in drawing definite conclusions by considering a 
limited number of drivers, and I would be very much interested to know what
will be the impact of other drivers like the sea ice extent, obviously related to the thermodynamic
properties of the underlying ocean (or other drivers directly related to the
dynamics and thermodynamics of the ocean).

The power of our method is that is able to take account of missing covariates. For instance, if 
you would include something like sea ice extent into the set of covariates and would get a result 
that the sea ice extent is more statistically significant - then it would not contradict our study. 
Simply because the variable gamma (describing the switching process and taking into account all
of the unresolved covariates in our study) would be a different one and not the same one that we 
have obtained in this study.
From our study we can guarantee that in a given set of explicit covariates we found the one 
covariate that is most important (in Granger-causality sense) -  and that this covariate is the CO2.



All of the other eventually-important covariates are sitting in the regime-switching process that 
we have also identified but where not presenting in our results.

We do not consider sea ice extent regime patterns. We do not consider Antarctic sea ice extent 
because of its marginal expansion and because this slight expansion in extent is largely wind-
driven (Holland and Kwok , 2012 ) and likely a response to the changes in the large-scale 
circulation.  
Furthermore, the changes in sea ice extent and area have been spatially heterogeneous, with 
increases in some areas like in the Ross sea and decreases in other areas like in the 
Bellingshausen/Amundsen seas (Parkinson and Cavalieri, 2012). This is despite the trend 
towards the positive SAM; thus, it is unlikely that sea ice extent would have a significant impact 
on the secular circulation trends.

We discuss this point in sections 2 and 3.

Minor points:
Line 13, page 676 : a "a" should be removed.

Done.

Figure 1. Please define the different curves in the caption.

Done.
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Abstract. A critical question in the global warming debate concerns the causes of the observed

trends of the Southern Hemisphere (SH) atmospheric circulation over recent decades. Secular trends

have been identified in the frequency of occurrence of circulation regimes, namely the positive phase

of the Southern Annular Mode (SAM) and the hemispheric wave 3 pattern which is associated with

blocking. Previous studies into the causes of these secular trends have either been purely model5

based, have not included observational forcing data or have mixed external forcing with indices

of internal climate variability impeding a systematic and unbiased attribution of the causes of the

secular trends. Most model studies also focused mainly on the austral summer season. However,

the changes to the storm tracks have occurred in all seasons and particularly in the austral win-

ter and early spring when mid-latitude blocking is most active and stratospheric ozone should not10

a play a role. Here we systematically attribute the secular trends over the recent decades using a

non-stationary clustering method applied to both reanalysis and observational forcing data from all

seasons. While most previous studies emphasized the importance of stratospheric ozone depletion in

causing austral summer SH circulation trends, we show observational evidence that anthropogenic

greenhouse gas concentrations have been the major driver of these secular trends in the SAM and15

blocking when all seasons are considered. Our results suggest that the recovery of the ozone hole

might delay the signal of global warming less strongly than previously thought and that effects from

all seasons are likely crucial in understanding the causes of the secular trends.
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1 Introduction

The SH climate and atmospheric circulation has undergone significant changes over the last few20

decades. It is important to understand its causes and anthropogenic contributions because this will

not only help to constrain future climate projections but is also essential to evaluate the ability of

the current generation of climate models to accurately simulate these changes. Previous attempts

at understanding the causes of SH climate change focused on changes in the mean climate and

its variance (Arblaster and Meehl, 2006; Turner et al., 2009; Thompson et al., 2011) during austral25

summer. Here we instead focus on changes in the frequency of occurrence of circulation regimes

(O’Kane et al., 2013; Lee and Feldstein, 2013) in all seasons. Such circulation regimes have a sig-

nificant impact on surface weather and climate. For instance, the frequency of occurrence of blocking

strongly affects temperature and precipitation (Risbey et al., 2009; Pook et al., 2013). Furthermore,

the secular trend towards the increased occurrence of the positive SAM phase, linked in the aus-30

tral summer to stratospheric ozone (Son et al., 2010; Polvani et al., 2011; Thompson et al., 2011;

Previdi and Polvani, 2014; Barnes et al., 2013), affects Antarctic temperatures and sea ice extent

(Turner et al., 2009).
✿

It
✿✿✿✿

also
✿✿✿

has
✿✿

to
✿✿

be
✿✿✿✿✿

noted
✿✿✿✿

that
✿✿

the
✿✿✿✿

way
✿✿✿✿✿

SAM
✿✿

is
✿✿✿✿✿✿

defined
✿✿✿

can
✿✿✿✿✿✿

impact
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿

outcomes

✿✿

of
✿✿✿

any
✿✿✿✿✿

study
✿✿✿✿✿

using
✿✿

a
✿✿✿✿✿

SAM
✿✿✿✿✿

index
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Ho et al., 2012) .
✿✿✿✿✿✿

Hence,
✿✿✿

we
✿✿✿

use
✿✿✿✿

here
✿✿

a
✿✿✿✿✿✿✿

method
✿✿✿✿✿

which
✿✿✿✿

does
✿✿✿✿

not

✿✿✿✿✿✿✿✿✿

presuppose
✿✿✿✿

any
✿✿✿✿✿✿✿✿

particular
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿

structure
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿

resultant
✿✿✿✿✿✿✿

regimes
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿

particular
✿✿✿✿

form
✿✿✿

of
✿✿✿

the35

✿✿✿✿

SAM
✿✿✿

we
✿✿✿✿

find
✿✿

is
✿✿✿✿✿✿✿✿✿

determined
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿

data.

Over the recent decades (1980-present) large changes in the SH storm track modes have occurred

in all seasons including the austral winter, when blocking is at its most active (Marques and Rao,

2000). The austral winter storm track changes manifest as reduced baroclinicity and a decrease in

the July zonal winds of about ≈ 10m/s in the subtropical jet relative to the earlier period 1950-40

1980 (Frederiksen and Frederiksen, 2007). The changes in the storm track modes provide a dynam-

ical mechanism for the observed systematic linear downward trends in the annual number of SH

blocking events (Weidenmann et al., 2002; O’Kane et al., 2013). Such events predominantly occur

in preferred locations about the Australian (110E-210E), East Pacific (260E-315E) and Indian Ocean

(20E-80E) sectors. These regions are associated with the ridges of the hemispheric wave 3 pattern45

(van Loon and Jenne, 2002; Trenberth and Mo, 1985).

A recent study (O’Kane et al., 2013) using non-stationary clustering has shown that, consistent

with reduced blocking activity post the late 1970s, the wave 3 pattern has weakened while the corre-

sponding zonal state (SAM) has strengthened and moved poleward (positive phase). While an early

study hypothesized that global warming is likely to change the frequency of occurrence of these50

circulation regimes but not its spatial patterns (Corti et al., 1999; O’Kane et al., 2013). Furthermore,

O’Kane et al. (2013) has shown that the spatial character of the SH persistent climate regimes has

changed significantly over the reanalysis period 1948-2009. Here we extend our earlier study of

SH circulation regimes to show observational evidence that when all seasons are considered these

changes are mainly in response to radiative forcing trends of anthropogenic CO2 emissions and55
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to a much lesser degree to stratospheric ozone depletion. This is likely due to the fact that ozone

depletion plays a minor role outside of the austral summer season.

The main method of investigating the role of different forcings of the SH secular trends has

been coupled climate models (Stocker et al., 2013). Modeling studies (Arblaster and Meehl, 2006;

Turner et al., 2009; Son et al., 2010; Previdi and Polvani, 2014; Barnes et al., 2013) have identified60

stratospheric ozone depletion as an important driver of the observed austral summertime intensifica-

tion of the SAM over the recent decades. However, stratospheric ozone depletion is a highly seasonal

effect and can play no role in the austral winter-spring atmospheric circulation dynamics. The SH

storm tracks are equally active all year around (Trenberth, 1991). However, the austral wintertime is

the season when the observed changes to the storm track activity, namely reduced blocking and baro-65

clinicity of the subtropical jet (Frederiksen and Frederiksen, 2007), have been particularly evident

and cannot be solely attributed to the ozone mass deficit
✿✿✿✿✿

Ozone
✿✿✿✿✿

Mass
✿✿✿✿✿✿

Deficit
✿✿✿✿✿✿

(OMD).

Modeling studies of the effect of various individual and combined radiative forcings on the SH

circulation have largely compared trends in mean zonal indices, mainly the SAM index, without

consideration of related systematic changes in the spatially coherent zonally asymmetric features70

of the circulation (O’Kane et al., 2013). Such studies often rely on ensemble averaging of repeated

forcing experiments to enhance the forcing signal while simultaneously reducing intrinsic inter-

annual to decadal scale variability. The problem with this approach is the prohibitive computational

cost of coupled models, allowing only for relatively small ensemble sizes whose models often have

rather coarse resolutions and contain many biases.75

CMIP5 models are known to poorly represent mid-latitude blocking and to be limited in their

ability to capture important SH circulation responses such as the response of the SAM to large

volcanic eruptions (Karpechko, 2010; Gleixner, 2012; Charlton-Perez et al., 2013). Furthermore,

recent studies showed that very high horizontal resolutions (gridspacing
✿✿✿✿

grid
✿✿✿✿✿✿

spacing of about 16km)

are necessary for climate models to accurately simulate the geographical structure and probability80

distribution of blocking and regional weather regimes (Dawson et al., 2012; Dawson and Palmer,

2014).

Given that the circulation changes are a key signature of the forcing for attribution, the main

aim of this paper is to complement model-based results with observationally based studies and to

try to separate natural variability from the forced response. For example, the late 1970s climate85

shift occurred coincident with the shift in phase of the Inter-decadal Pacific Oscillation (IPO) and so

separating the low frequency intrinsic ENSO behavior from a response to the constituent components

of the radiative forcing is an important problem.

Here we argue that most studies (see Thompson et al. (2011) for a review) attributing secular

trends in the SH circulation have exclusively focused on changes in the mean zonal circulation and90

the trend toward positive SAM in the summer months. This has been largely attributed to ozone

because model simulations with (without) ozone can (cannot) reproduce the magnitude of the trend
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and because there is only a small trend towards the positive SAM in the winter, thus, the conclusion

is that ozone is the major driver of the secular SAM trend. The mechanism proposed (Son et al.,

2010) is that stratospheric cooling/heating allows the high latitude tropopause to rise in the summer95

enabling a poleward movement of the westerlies and consequently the Hadley Cell. Polvani et al.

(2011) found that the only statistically significant relationship between the position of the Hadley

Cell and the midlatitude jet exists in the summer however, in the winter no such relationship exists

even though the winter time is when one expects such a relationship to be most robust. Here we

show results of a statistical analysis using zonally asymmetric fields which not only represent the100

SAM pattern but also zonal asymmetries, i.e. blocking, which has also undergone secular changes

over the last few decades.

In section 2 we present the data used in this study and in section 3 we describe the statistical

method used for the non-stationary clustering. In section 4 we present the attribution results and

also describe in detail our sensitivity tests regarding the number of parameters to be estimated and105

demonstrate the robustness of our results. We provide our conclusions in section 5.

2 Data

We use daily NCEP/NCAR reanalysis data (Kalnay et al., 1996) covering the period 1980-2007 for

500 hPa geopotential height and surface air temperature. We consider only anomalies with respect

to the climatological mean where the mean seasonal cycle has been removed but not detrended.110

Note, that there is still an annual cycle in higher moments and in the frequency of occurrence

present in the time series.
✿✿✿✿✿

While
✿✿✿✿

there
✿✿✿✿

are
✿✿✿

still
✿✿✿✿✿

large
✿✿✿✿✿

biases
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

Antarctic
✿✿✿✿✿✿

region
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

various

✿✿✿✿✿✿✿✿

reanalysis
✿✿✿✿✿✿✿

products
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Bromwich and Fogt, 2004; Bromwich et al., 2007) we
✿✿✿✿

have
✿✿✿✿✿✿

shown
✿✿

in
✿✿

a
✿✿✿✿✿✿

similar

✿✿✿✿

study
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(O’Kane et al., 2015) that
✿✿✿

by
✿✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿✿✿✿

Japanese
✿✿✿✿✿✿✿

55-years
✿✿✿✿✿✿✿✿✿

Reanalysis
✿✿✿✿✿✿✿✿

(JRA-55)
✿✿✿✿✿✿✿✿✿

conducted
✿✿✿

by

✿✿

the
✿✿✿✿✿✿

Japan
✿✿✿✿✿✿✿✿✿✿✿✿✿

Meteorological
✿✿✿✿✿✿

Agency
✿✿✿✿✿✿

(JMA)
✿✿✿

we
✿✿✿✿✿✿

found
✿✿✿✿

very
✿✿✿✿✿✿

similar
✿✿✿✿✿✿

results.
✿✿✿✿✿✿✿

Hence,
✿✿✿

our
✿✿✿✿✿✿

results
✿✿

do
✿✿✿✿

not115

✿✿✿✿✿✿

depend
✿✿✿✿✿✿✿

strongly
✿✿

on
✿✿✿

the
✿✿✿✿

used
✿✿✿✿✿✿✿✿✿

reanalysis
✿✿✿✿

data
✿✿✿

set.

As forcing data we use the Cape Grim CO2 measurements (Steele et al., 2007), sulphate aerosols

(Skeie et al., 2011), stratospheric aerosol optical thickness (Bourassa et al., 2010) (available athttp://data.giss.nasa.gov/modelforce/strataer

http://data.giss.nasa.gov/modelforce/strataer/), stratospheric Ozone mass deficit (Roscoe and Haigh,

2007) and the solar constant (Fröhlich, 2000). Most of the forcing data is in monthly mean reso-120

lution. Since we are using daily reanalysis data for the clustering we expand the monthly forcing

data to daily resolution by using the monthly mean values for each day of the respective month.

Because stratospheric ozone depletion has a strong annual cycle we carried out sensitivity analysis

by lagging the ozone mass deficit values by 1, 2 or 3 months and we also used a 365-day backward

running mean. The forcing time series are displayed in Fig. 1.125

As internal modes of climate variability, we use an ENSO 3.4 index, the Madden-Julian Oscilla-

tion (MJO) index, the Indian Ocean Dipole (IOD) and the East Indian Ocean Dipole mode indices

4

http://data.giss.nasa.gov/modelforce/strataer/


and the annual cycle here defined as (sin(2*π/365*t)). These indices describe tropical Sea Surface

Temperature variability (ENSO, IOD) or an intrinsic mode of tropical variability (MJO). We consider

these to be intrinsic drivers of mid-latitude variability but recognize that they likely also respond to130

changes in external radiative forcing such that a clear separation between cause and effect is diffi-

cult. However it is still important to elucidate which role they play in the frequency changes of the

regime patterns.
✿✿✿

We
✿✿✿

do
✿✿✿

not
✿✿✿✿✿✿✿

consider
✿✿✿✿✿✿✿✿

Antarctic
✿✿✿

sea
✿✿✿

ice
✿✿✿✿✿

extent
✿✿✿✿✿✿✿

because
✿✿✿

of
✿✿

its
✿✿✿✿✿✿✿✿

marginal
✿✿✿✿✿✿✿✿

expansion
✿✿✿✿

and

✿✿✿✿✿✿

because
✿✿✿✿

this
✿✿✿✿✿

slight
✿✿✿✿✿✿✿✿

expansion
✿✿✿

in
✿✿✿✿✿

extent
✿✿

is
✿✿✿✿✿✿

largely
✿✿✿✿✿✿✿✿✿✿

wind-driven
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Holland and Kwok, 2012) and
✿✿✿✿✿

likely

✿

a
✿✿✿✿✿✿✿

response
✿✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

changes
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿

large-scale
✿✿✿✿✿✿✿✿✿✿

circulation.
✿✿✿✿✿✿✿✿✿✿✿

Furthermore,
✿✿✿

the
✿✿✿✿✿✿✿

changes
✿✿

in
✿✿✿

sea
✿✿✿

ice
✿✿✿✿✿✿

extent135

✿✿✿

and
✿✿✿✿

area
✿✿✿✿

have
✿✿✿✿✿

been
✿✿✿✿✿✿✿

spatially
✿✿✿✿✿✿✿✿✿✿✿✿✿

heterogeneous,
✿✿✿✿

with
✿✿✿✿✿✿✿✿

increases
✿✿

in
✿✿✿✿✿

some
✿✿✿✿✿

areas
✿✿✿

like
✿✿

in
✿✿✿

the
✿✿✿✿✿

Ross
✿✿✿

sea
✿✿✿✿

and

✿✿✿✿✿✿✿✿

decreases
✿✿

in
✿✿✿✿

other
✿✿✿✿✿

areas
✿✿✿

like
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Bellingshausen/Amundsen
✿✿✿✿

seas
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Parkinson and Cavalieri, 2012) .

✿✿✿✿

This
✿

is
✿✿✿✿✿✿

despite
✿✿✿

the
✿✿✿✿✿

trend
✿✿✿✿✿✿✿

towards
✿✿✿

the
✿✿✿✿✿✿

positive
✿✿✿✿✿✿

SAM;
✿✿✿✿

thus,
✿✿

it
✿

is
✿✿✿✿✿✿✿

unlikely
✿✿✿✿

that
✿✿✿

sea
✿✿✿

ice
✿✿✿✿✿

extent
✿✿✿✿✿

would
✿✿✿✿✿

have

✿

a
✿✿✿✿✿✿✿✿✿

significant
✿✿✿✿✿✿

impact
✿✿

on
✿✿✿

the
✿✿✿✿✿✿

secular
✿✿✿✿✿✿✿✿✿

circulation
✿✿✿✿✿✿

trends.
✿

3 Non-Stationary Clustering140

We first give an intuitive description of the used clustering method before we explain it in much

more detail in section 3.1. That section can be skipped by readers who are more interested in the

clustering results.

Many studies have provided evidence that the atmospheric circulation can be efficiently described

by a few persistent cluster states (Cheng and Wallace, 1993; Kimoto and Ghil, 1993; Corti et al.,145

1999; Horenko et al., 2008; Majda et al., 2006; Franzke et al., 2008, 2009, 2011; O’Kane et al., 2013;

Risbey et al., 2015). Conventional clustering methods such as k-means partition phase space using

heuristic algorithms, for example using Empirical Orthogonal Functions (EOFs), into an a priori

arbitrarily determined into k sets of cluster centroids whose points within each cluster are close but

where each centroid is in some sense far apart from each other (Dawson and Palmer, 2014). Sim-150

ilarly, Self Organizing Maps (SOMs; Johnson et al. (2008)) are typically based on minimizing the

geometric (Euclidean) distance between the observational data and some specified set of recurrent

patterns but without consideration of the persistency of those states and mostly without consider-

ing the dynamics and differences in dynamics within these states (Michelangeli et al., 1995). Fur-

thermore, classical clustering methods do not consider differences in the dynamics of the cluster155

states (Christiansen, 2007). Recently, Lee and Feldstein (2013) applied SOMs to reanalyzed daily

zonal-mean zonal wind data for the austral summer period employing 4 SOM patterns with the DJF

global mean temperature taken as an indicator of the response to GHG forcing. They attribute the

main response to ozone by correlating the third SOM DJF zonal-mean zonal wind pattern with the

November Antarctic ozone index. One of the central problems in applying these methods to histor-160

ical geophysical data is related to the robustness issue, meaning that increasing the k away from

k = 1 increases the total number of parameters - thereby increasing the risk of over-fitting. Concepts
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from information theory like Akaike Information Criterion (AIC) ((Burnham and Anderson, 2002) )

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Burnham and Anderson, 2002) are usually deployed to find the optimal number of clusters k that

allows avoiding over-fitting.165

Our approach considers the hemispheric response of not only the zonal annular mode but also

systematic changes in wave 3 and blocking. We also use reanalyzed data but consider all possible

combinations of the observed radiative forcings and relevant indices of internal variability. Moreover,

we make no a priori assumptions on the number of states and employ an approach that considers

persistency, changes in the dynamics and that is able to ascertain causation between the time series170

and the external forcings.

Specifically, we use the non-stationary clustering method FEM-BV-VARX (Finite Element Method

of time series analysis with Bounded Variation of model parameters; Horenko (2010); O’Kane et al. (2013); Risbey et al. (2015); Gerber

to systematically attribute circulation trends to observed external forcings. In this study we assume

that the large-scale circulation can be effectively decomposed into a small set of distinct patterns or175

regime states. At each day the atmosphere is in only one of these patterns where it might stay for

some time before it switches to one of the other regime states. If we order the regime states from

1 to n we get an daily index (taking a value of 1 to n) denoting in which state the atmosphere is

in at that particular day; this index is referred to in the literature as the Viterbi path (Viterbi, 1967;

Franzke et al., 2008). Now we construct a statistical model which simultaneously estimates the ge-180

ographical structure of these patterns and the evolution of the switching between the patterns. We

do this by minimizing the distance between the observed atmospheric circulation and the regime

states (see next subsection for a more detailed description of this procedure). Furthermore, we also

allow external factors, like CO2, Ozone, or ENSO, to influence the evolution of the regime states.

This is again done by minimizing the distance. This also enables us to evaluate different forcing185

combinations. By using different forcing combinations and looking for the statistical model with the

minimum distance we can systematically find the forcings which are most likely responsible for the

observed evolution of the regime states.

3.1 Overview of the FEM-BV-methodology.

The FEM-BV-VARX approach is a general variational framework that reduces to the well-known190

methods of linear regression, Autoregressive models, k-means and Hidden Markov approaches when

more restrictive assumptions are made on the nature of the underlying data generating process

(Lean and Rind, 2008; Bromwich et al., 2013; Roscoe and Haigh, 2007; Metzner et al., 2012). Fur-

thermore, as VARX is a tool for inferring the Granger-causality (Granger, 1988) (causation be-

tween time series variables in terms of predictability and not correlation), FEM-BV-VARX is a195

more general approach which allows to go beyond the standard stationarity assumption of the usual

methods currently used for inferring cause-response relationships, e.g., in ecology (Sugihara et al.,

2012), economics (Granger, 1988) and climate science (Mosedale et al., 2006; Wang et al., 2004).
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The non-stationary FEM-BV-VARX framework contains the standard stationary VARX and the con-

cept of standard Granger-causality as a particular special case and allows a systematic comparison200

of causality relations inferred with and without the stationarity assumption for a given set of obser-

vational data. See Gerber and Horenko (2014) for more details explaining the relation of the FEM-

BV-framework to standard stationary approaches of data-driven causality inference.

The approach we are following here is that we perform FEM-BV-VARX fits to all possible combi-

nations of the external forcings. Then we apply a standard information theoretic criterion: the Akaike205

Information Criterion (AIC) (Akaike, 1998; Horenko, 2010; O’Kane et al., 2013; Risbey et al., 2015)

which is a measure of the relative goodness of fit of a model to data. That means, that AIC can

be used to assess the goodness of fit relative to the number of fitted parameters or external fac-

tors used, allowing to find the model that is least over-fitting and best fitting the analyzed data

(Burnham and Anderson, 2002). This standard procedure can tell us which forcing combination is210

best able to explain the secular circulation trends given the FEM-BV-VARX model.

The presence of unresolved external covariates (that are not statistically-independent or identically-

distributed) may result in the non-stationarity and non-homogeneity of the resulting data-driven

statistical models and may manifest in the presence of secular trends and/or in regime-transition be-

havior. By covariate we not only mean external forcings but also unresolved physical processes and215

scales (e.g. due to EOF truncation). This may then introduce problems when applying the standard

stationary approaches common to machine learning and statistics (de Wiljes et al., 2014). In the con-

text of this paper, this issue plays a very important role when analyzing atmospheric data since many

of the potentially-relevant covariates might not be available explicitly in the set of covariates that

we have chosen for testing. Therefore, when deploying statistical time series analysis methods, they220

should be capable of dealing with non-stationarity and non-homogeneity issues that emerge in the

models as a result of these systematically-missing (and potentially-important) external influences.

Combining the concepts and ideas from pure and applied mathematics (such as Finite Element

Method (FEM) from numerics of partial differential equations, regularization in infinite-dimensional

spaces from the theory of ill-posed problems, stochastic calculus and theory of stochastic processes,225

information criteria from information theory, embedding theorems from the theory of dynamical

systems), Horenko and colleagues developed a family of non-stationary, non-homogeneous and non-

parametric time series analysis methods. This family of time series analysis techniques, which is

reviewed concisely by Metzner et al. (2012), allows for systematic time-dependent model identifica-

tion when assumptions of temporal stationarity or spatial homogeneity of some underlying statistics230

are not justifiable. The main idea is based on regularized variational minimization of a scalar-valued

functional describing the error g (x(t),u(t),θ (t)) of some model for a given observation x(t) subject

to available external impacts/covariates u(t) and characterized by the time-dependent set of model
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parameters θ(t):

L(Θ,Γ) =

K∑

k=1

NT∑

t=1

γk(t)g (x(t),u(t),Θk)→min
Γ,Θ

, (1)235

subject to the constraints on Γ(t) = (γ1(t), · · · ,γK(t)):

K∑

k=1

γk(t) = 1 ∀t= 1, . . . ,NT

γk(t) ≥ 0 ∀t= 1, . . . ,NT ,∀k = 1, . . . ,K,

|γk(·)|BV =

NT∑

t=2

|γk(t+ τ)− γk(t)| ≤NC , ∀k = 1, . . . ,K, (2)

where θ(t) =
∑K

k=1 γk(t)Θk, thereby allowing, the problem of statistical data analysis beyond the240

usual stationarity assumption to be reformulated and algorithmically solved as a clustering problem

with K clusters, distance kernel g (x(t),u(t),θ (t)) and a regularization parameter NC , controlling

the number of transition between different clusters in time (special case NC ≡ 0 and K ≡ 1 corre-

sponds to the homogeneous and stationary statistical problem). Imposed regularization confines the

bounded variation (BV) of the regime-switching process γk(t) in time, thereby making the temporal245

change of inferred model parameters θ(t) more or less persistent. Changing the constraining variable

NC , one can test the whole range of possible statistical models, going from NC ≡ 0 (stationary/well-

posed) to NC ≡NT (completely non-stationary/very ill-posed problems). The above variational

problem is non-convex since the parameters Θk are not known a priori and have to be inferred

simultaneously with the γk(t).250

Many classical methods of data analysis and machine learning (e.g., multilinear statistical regres-

sion, K-means clustering, Gaussian Mixture Models (GMMs) and Hidden Markov Models (HMMs)

Majda et al. (2006); Franzke et al. (2008)) can be derived as special cases of this FEM-BV-methodology.

E.g., HMMs are obtained additionally assuming that Γ is an output of a homogeneous Markov chain

and setting NC ≡NT . For more detailed information please see Section 2.h "Relation to classical255

methods of unsupervised learning" in (Metzner et al., 2012). It is an important feature of the de-

ployed methodology, since it allows us to test different standard or more advanced methods in the

context of the same theoretical and algorithmic FEM-BV-framework.

In the FEM-BV methodology, Finite Element Methods are employed in the numerical representa-

tion of indicator functions γk(t) for the time domain of applicability of different models from a com-260

mon model class. Model class is defined by the choice of the particular analytical form of the error

function g (x(t),u(t),θ (t,j)), with the explicit VARX-form deployed in this paper will be given be-

low. As shown above, these indicators are regularized using a Bounded Variation criterion, hence the

acronym “FEM-BV”. The choice of the model class depends on the type of data and a specific form

of error function g considered. Here we have implemented Vector Auto-Regressive models with eX-265

ternal influences (VARX) which are defined as xt = µ(t)+
∑MEM

i=1 Ai(t)xt−iτ +B(t)φ(u(t))+ǫt,

parameters being θ(t) = (µ(t),A1(t), . . . ,AMEM (t),B(t)) and model error functional defined as
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g (x(t),u(t),Θk) = ‖|xt −µ(k) +
∑MEM

i=1 A
(k)
i xt−iτ +B(k)φ(u(t))‖|22 (please see Metzner et al.

(2012); Horenko (2010) for more details).

The algebraic structure of the above problem allows us to deploy efficient numerical algorithms,270

based on the iterative application of linear and/or quadratic programming problems (optimizing for

fixed Θ) followed by stationary/convex inference of Θ for a fixed Γ. This procedure is repeated

iteratively, until the change inL(Θ,Γ) is less then some small a priori determined threshold, resulting

in monotonic minimization of L. Here we have used the Adaptive Finite Element Method from

the numerics of Partial Differential Equations (PDEs) (Horenko, 2010; de Wiljes et al., 2014) for275

numerical minimization of the FEM-BV-problems (Eqns. 1-2).

The number of different spatio-temporal regimes/clusters K , the model parameters to be cho-

sen within these regimes, such as memory depth and number of EOFs, and the indicator functions

γk(·) signaling activation of the respective models are all determined simultaneously in a global

optimization procedure. This yields a judicious compromise between low residuals in reproducing280

the data of a training set on the one hand, and the demand for the smallest-possible overall number

of free parameters of the complete model on the other. The optimization is based on a new non-

parametric modified Akaike Information Criterion (AIC) and may thus be interpreted as a construc-

tive implementation of “Occam’s Razor” for data analysis problems. Thereby, the resulting FEM-

BV-framework is essentially free of parameters that should be defined and tuned by the user. The285

only parameter that is needed to be set externally is the overall number of optimization repetitions

with different randomly-chosen initial values Γ or Θ for parameter optimization (in the following re-

ferred to as the number of annealing steps). Increasing this number reduces the probability of getting

trapped in one of the local minima of L (for NC > 0), simultaneously linearly increasing the amount

of computations. Therefore, the number of annealing steps should be chosen carefully, dependent on290

the available computational resources and the size of the data to be analyzed.

3.2 Application of FEM-BV-VARX to atmospheric reanalysis and observed forcing data.

We have chosen to examine a time series of 500 hPa geopotential height anomalies (seasonal cy-

cle subtracted) projected on the 20 leading Empirical Orthogonal Functions (EOFs) and u(t) where

taken as 32 different combinations of forcings (to be described in more detail below). Deploying the295

FEM-BV-VARX method, comprehensive sensitivity tests were carried out for the cluster parameters

involving memory depth MEM and the number of annealing steps. Although the resulting optimal

choice of forcing combinations has converged after 16 annealing steps, the model affiliation se-

quence already remained unchanged after 4 annealing steps. The results presented in the manuscript

are for 64 annealing steps. The optimal memory depth τ was 2 days, however the degree of memory300

tested ranged from 0 to 5 days. Daily forcing agents were spline interpolated with no lag apart from

OMD. Every possible combination of forcing agents were considered including the observed OMD

lagged by 0, 30, 60 and 90 days as well as a variant lagged averaged by a 365 day span (here we
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artificially introduce persistency into the OMD time series). The optimal external radiative forcing

agent was found ultimately to correspond to the Cape Grim CO2 time-series.305

In order to choose the optimal model M we first used the Akaike Information Criteria (AIC)

AIC(M) =−2log(L(M))+ 2M. (3)

Application of the AIC is equivalent to assuming that the scalar-valued squared model errors are

χ2-distributed and that the vector-valued FEM-BV-VARX model errors are Gaussian i.e. dependent

on the residuals having a log-normal distribution. This assumption was tested using a non-parametric310

information-theoretic algorithm from Metzner et al. (2012) and found that for all of the model errors

ǫt the most optimal parametric family was indeed the log-normal distribution.

Additionally the log-normal distribution was fitted to the model errors, the respective log-likelihoods

computed and used to calculate the AIC for the non-stationary models. The most informative non-

stationary model that emerged using the AIC criteria (with posterior probability almost equal to one315

in each case) was the model with Cape Grim CO2 and memory of 3 days. Comparable results were

found using Akaike Information Criteria Corrected (AICc) and the Bayesian Information Criteria

(BIC). The two latter criteria take also the size of the statistics into account and are derived under

very different mathematical assumptions than the AIC. This further confirmed our results, demon-

strating that they are not induced by the implicit assumptions necessary for the information criteria320

applicability.

✿✿

In
✿✿✿

our
✿✿✿✿✿

study
✿✿✿

we
✿✿✿✿

have
✿✿✿✿✿✿✿✿

included
✿✿✿✿

only
✿✿

a
✿✿✿✿✿✿✿

selected
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿

several
✿✿✿✿✿✿✿✿

external
✿✿✿✿✿✿✿

forcings.
✿✿✿✿

One
✿✿✿✿✿✿

might

✿✿✿✿

argue
✿✿✿✿

now
✿✿✿✿

that
✿✿✿

we
✿✿✿✿

have
✿✿✿✿✿✿✿✿

neglected
✿✿✿✿✿

some
✿✿✿✿✿✿✿✿

additional
✿✿✿✿✿✿✿

forcing
✿✿✿✿

(e.g.
✿✿✿

sea
✿✿✿

ice
✿✿✿✿✿

extent
✿✿

or
✿✿✿

the
✿✿✿✿✿✿✿

strength
✿✿✿

of
✿✿✿

the

✿✿✿✿✿✿✿

Antarctic
✿✿✿✿✿✿✿✿✿✿✿

Circumpolar
✿✿✿✿✿✿✿

Current)
✿✿✿✿✿

which
✿✿✿✿✿✿

might
✿✿

be
✿✿✿✿✿✿✿✿✿

responsible
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿

observed
✿✿✿✿✿✿

secular
✿✿✿✿✿

trend.
✿✿✿✿✿✿✿✿

However,

✿

if
✿✿✿

we
✿✿✿✿✿✿

would
✿✿✿✿✿✿✿

include
✿✿✿✿✿✿✿✿✿

something
✿✿✿

like
✿✿✿

sea
✿✿✿✿

ice
✿✿✿✿✿

extent
✿✿✿✿

into
✿✿✿

the
✿✿✿

set
✿✿

of
✿✿✿✿✿✿✿✿

forcings
✿✿✿

and
✿✿✿✿✿✿

would
✿✿✿

get
✿✿

a
✿✿✿✿✿

result325

✿✿✿✿✿✿✿

showing
✿✿✿

that
✿✿✿

sea
✿✿✿

ice
✿✿✿✿✿

extent
✿✿

is
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿✿

statistically
✿✿✿✿✿✿✿✿✿✿

significant,
✿✿✿✿

then
✿✿✿

this
✿✿✿✿✿✿

would
✿✿✿

not
✿✿✿✿✿✿✿✿

contradict
✿✿✿

this
✿✿✿✿✿✿

study.

✿✿✿✿✿✿

Simply
✿✿✿✿✿✿✿

because
✿✿✿

the
✿✿✿✿✿✿✿

variable
✿✿

γ
✿✿✿✿✿✿✿✿✿✿

(describing
✿✿✿

the
✿✿✿✿✿✿✿✿

switching
✿✿✿✿✿✿✿

process
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

describing
✿✿✿

the
✿✿✿✿

bias
✿✿✿✿✿✿✿

coming

✿✿✿✿

from
✿✿✿

all
✿✿✿

the
✿✿✿✿✿✿✿✿✿

unresolved
✿✿✿✿✿✿✿✿✿

covariates
✿✿

in
✿✿✿

our
✿✿✿✿✿✿

study)
✿✿✿✿✿

would
✿✿✿

be
✿✿✿✿✿✿✿

different
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿

one
✿✿✿

that
✿✿✿

we
✿✿✿✿✿✿✿✿

obtained

✿✿

in
✿✿✿

this
✿✿✿✿✿

study.
✿✿✿✿✿

From
✿✿✿✿

our
✿✿✿✿✿

study
✿✿✿

we
✿✿✿

can
✿✿✿✿✿✿✿✿✿

guarantee
✿✿✿

that
✿✿

in
✿✿

a
✿✿✿✿✿

given
✿✿✿

set
✿✿

of
✿✿✿✿✿✿✿

explicit
✿✿✿✿✿✿✿✿

covariates
✿✿✿

we
✿✿✿✿✿✿

found

✿✿

the
✿✿✿✿

one
✿✿✿✿✿✿✿

covariate
✿✿✿✿

that
✿

is
✿✿✿✿✿

most
✿✿✿✿✿✿✿✿

important
✿✿✿

(in
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Granger-causality
✿✿✿✿✿

sense)
✿✿

-
✿✿✿

and,
✿✿✿✿✿✿

taking
✿✿✿

into
✿✿✿✿✿✿✿

account
✿✿✿

the330

✿✿✿✿✿✿✿

presence
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

unresolved
✿✿✿✿✿✿✿✿

covariates
✿

-
✿✿✿✿

this
✿✿✿✿✿✿✿

covariate
✿✿

is
✿✿✿✿

CO2
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Metzner et al., 2012; de Wiljes et al., 2014) .

✿✿✿

All
✿✿

of
✿✿✿

the
✿✿✿✿✿

other
✿✿✿✿✿✿✿✿

eventually
✿✿✿✿✿✿✿✿✿

important
✿✿✿✿✿✿✿✿

covariates
✿✿✿

are
✿✿✿✿✿✿

sitting
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

regime-switching
✿✿✿✿✿✿

process
✿✿✿✿

that
✿✿✿

we

✿✿✿✿

have
✿✿✿

also
✿✿✿✿✿✿✿✿

identified
✿✿✿

but
✿✿✿✿✿

were
✿✿✿

not
✿✿✿✿✿✿✿✿

explicitly
✿✿✿✿✿✿✿✿✿✿

represented
✿✿

in
✿✿✿

our
✿✿✿✿✿✿

results.
✿

4 Attribution Results

A previous study with the FEM-BV-VARX method (O’Kane et al., 2013) revealed the existence of335

statistically significant persistent circulation regimes corresponding to the positive phase of the SAM

and a hemispheric wave 3 blocking pattern (Fig. 2). That study also found evidence for significant

secular trends in all seasons and, when the full reanalysis period 1948-2010 was considered, that a

10



distinct regime transition occurred around 1980 towards a preference for the positive SAM phase;

here shown in Fig. 3 in terms of time of residence in either a wave 3 blocked or a zonal (positive340

SAM) state. The increasingly frequent and persistent positive SAM pattern is accompanied by a

corresponding decrease in the frequency and persistence of the wave 3 hemispheric pattern, which

features blocking in the Australian sector in particular.
✿✿✿

The
✿✿✿✿✿✿✿✿✿

increasing
✿✿✿✿✿✿✿✿✿

frequency
✿✿

of
✿✿✿✿✿✿✿✿✿

occurrence
✿✿✿

of

✿✿

the
✿✿✿✿✿

zonal
✿✿✿✿✿

state
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

corresponding
✿✿✿✿✿✿✿✿✿

decreasing
✿✿✿✿✿✿✿✿

frequency
✿✿✿

of
✿✿✿✿✿✿✿✿✿

occurrence
✿✿

of
✿✿✿✿

the
✿✿✿✿

wave
✿✿

3
✿✿✿✿✿✿✿✿

blocking

✿✿✿✿

state
✿✿✿

are
✿✿✿✿✿✿✿✿✿

consistent
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿

study
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

O’Kane et al. (2013) and
✿✿✿

are,
✿✿✿✿✿

thus,
✿✿✿✿✿✿✿✿✿✿

statistically
✿✿✿✿✿✿✿✿✿✿

significant.345

✿✿✿✿✿✿✿✿✿✿

Furthermore,
✿✿✿✿

this
✿✿✿✿✿✿✿✿

behavior
✿✿✿✿✿

occurs
✿✿✿✿✿✿✿✿✿✿

throughout
✿✿

all
✿✿

4
✿✿✿✿✿✿✿

seasons
✿✿✿✿

and,
✿✿✿✿

thus,
✿✿

is
✿✿✿✿

very
✿✿✿✿✿✿

robust.
✿✿✿✿✿✿✿✿✿

However,
✿✿✿

the

✿✿✿✿✿✿

changes
✿✿✿

are
✿✿✿✿✿✿✿✿✿

occurring
✿✿✿✿✿✿

slowest
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

summer
✿✿✿✿✿✿

season.
✿✿✿✿✿

While
✿✿✿

in
✿✿

all
✿✿✿✿✿

other
✿✿✿✿✿✿

seasons
✿✿✿

the
✿✿✿✿✿

wave
✿

3
✿✿✿✿✿✿✿✿

blocking

✿✿✿✿

state
✿✿✿

was
✿✿✿✿✿✿✿✿✿

occurring
✿✿✿

the
✿✿✿✿✿

more
✿✿✿✿

often
✿✿✿✿✿

than
✿✿✿

the
✿✿✿✿✿

zonal
✿✿✿✿

state
✿✿✿

up
✿✿

to
✿✿✿✿✿

about
✿✿✿✿✿

1980,
✿✿✿✿

this
✿✿✿✿✿✿✿✿

transition
✿✿✿

has
✿✿✿✿✿

been

✿✿✿✿

much
✿✿✿✿✿✿

slower
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

summer
✿✿✿✿✿✿

season
✿✿✿✿

and
✿✿✿✿✿✿

starting
✿✿

in
✿✿✿✿✿

2000
✿✿✿✿

both
✿✿✿✿✿

states
✿✿✿✿✿✿

occur
✿✿✿✿✿

about
✿✿✿✿✿✿

equally
✿✿✿✿✿✿✿✿

frequent

✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

summer
✿✿✿✿✿✿

season.
✿✿✿✿✿✿

There
✿✿✿

has
✿✿✿✿✿

been
✿

a
✿✿✿✿✿

much
✿✿✿✿✿

more
✿✿✿✿✿✿✿

distinct
✿✿✿✿✿✿

regime
✿✿✿✿✿✿✿✿

transition
✿✿✿✿✿✿

during
✿✿✿

the
✿✿✿✿✿

other
✿✿

3350

✿✿✿✿✿✿

seasons
✿✿✿✿

(Fig.
✿✿✿

3).
✿

Our FEM-BV-VARX analysis finds strong evidence that anthropogenic greenhouse gas concen-

trations has caused the secular trends in the SAM and hemispheric wave 3 pattern. The clustering

analysis with CO2 forcing has the smallest AIC value AICmin =−63053 (which corresponds to

a Akaike weight of about 1). This denotes the most parsimonious explanation of the observational355

data among all of the other fitted explanatory statistical models with all possible combinations of

considered forcings. Hence, providing the best compromise between the quality of fit to the data

and a low number of parameters. The absolute value of the AIC is less meaningful, only its relative

size compared with the other tested models is useful. The next best forcing combinations relative to

the optimal choice are the solar constant (Akaike weight of 2.3550e−05) and stratospheric aerosol360

(Akaike weight of 1.8217e−05).

The Akaike weight value wi = exp((AICmin −AIC(i))/2) provides a measure for how much

better the best FEM-BV-VARX fit explains the data relative to the other FEM-BV-VARX models;

this quantity can also be interpreted as the posterior model probability wi; thus how less likely FEM-

BV-VARX model i is in explaining the data relative to the best fit model. The Akaike weight value365

(or posterior model probability) wi = exp((AICmin−AIC(OMD))/2) = 3.1083e−18 reveals sta-

tistically overwhelming support of CO2 compared to stratospheric OMD in explaining the secular

trend in the cluster frequency of occurrence. The corresponding Akaike weights reveal that the CO2

forcing is significantly better than all other possible used combinations in explaining the observed

trends.370

We tested the sensitivity of our results using different information criteria like the Bayesian Infor-

mation Criterion (BIC) (Burnham and Anderson, 2002) and the AIC corrected for finite sample size

(AICc) (Burnham and Anderson, 2002) and obtained very similar results in that CO2 was always

the forcing which best explained the secular trends. The next best fit varies according to the FEM-

BV-VARX setup but they typically include stratospheric ozone depletion and stratospheric sulphate375
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aerosols. While our results are unclear as to the relative importance of stratospheric ozone depletion

over the other leading forcings, we find strong evidence for the role of CO2 in contributing to the

secular trends.

Fig. 2 also shows the geographical structure of the two cluster states in terms of 500 hPa geopoten-

tial height and surface air temperature (SAT) (note that the upper atmospheric regime states are very380

similar to the ones in O’Kane et al. (2013) which did not include external forcings in their analysis.).

The wave 3-blocked state (state 1) is associated at the surface with a cold anomaly over the Antarctic

Peninsula and a warm anomaly over the Ross Ice Shelf and the coast of Antarctica’s Victoria land

and also over South America in SAT. The zonal positive SAM state (state 2) is associated at the

surface with a warm anomaly over East Antarctica and Australia and a cold anomaly along the coast385

of Antarctica’s Wilkes Land. The cluster states have very different surface temperature signatures.

With the strong trend towards the SAM state in recent decades, it is interesting to ask whether the

pattern of surface temperature trends over the Antarctic region reflect the SAM state surface signa-

ture. Fig. 4 shows the trend in surface air temperature over the same period (1979-2010) calculated

from yearly averaged Had4Krig version 2.0.0 (Cowtan and Way, 2014) data. Because large trends390

are evident in both blocking (wave 3) and SAM in all seasons (Fig. 3) we have used annual mean data

to calculate the SAT trends. The remarkable agreement between the SAM state surface temperature

anomaly pattern (Fig. 2d) and the Had4Krig SAT trend pattern over Antarctica is further evidence of

the weakening of the wave 3 state and the shift towards the positive SAM state.

Our results are in contrast to earlier studies which found that ozone depletion is up to 9 times395

more important than anthropogenicCO2 concentrations (Roscoe and Haigh, 2007; Son et al., 2010;

Lee and Feldstein, 2013). One possible explanation for this difference is that the earlier studies

mainly examined the austral summer season focusing on the response of the linear trend in the

zonal mean circulation towards the positive SAM phase and the poleward shift of the Hadley Cell

(Son et al., 2010; Polvani et al., 2011; Previdi and Polvani, 2014). Our study focuses on attributing400

systematic changes in the circulation over the latter half of the NCEP reanalysis period employ-

ing a data-driven methodology that can infer causation (as explained above, FEM-BV-VARX is a

non-stationary extension of the Granger causality inference and can describe the standard Granger

causality as particular stationary case). Moreover we are not simply considering changes to the zonal

SAM index in the austral summer in isolation but are explicitly attributing changes to the entire SH405

circulation including coherent features to all possible combinations of the relevant radiative forcings.

Previous studies mainly analyzed changes in the mean state and not in the frequencies of occurrence

or changes in structure. This might also partly explain why our findings differ from previous studies.

To increase the confidence in our results, we systematically examined the sensitivity of our results

to the treatment of the ozone data. By considering 365 day averaged as well as time lagged season-410

ally varying OMD leads to more robust results because we account for the strong annual cycle of

stratospheric ozone and its delayed impact on the tropospheric circulation. Ozone has a strong sea-
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sonal component with OMD known to impact the tropospheric circulation (from the observational

record) in December-January. Thus, we repeated our analysis using lagged (0, 1, 2 and 3 months)

seasonally varying and 365 running mean OMD data. While we did find some sensitivity to lag415

interval, our results were qualitatively unchanged.

4.1 Sensitivity to the Number of Model Parameters

O’Kane et al. (2013) showed that, in order to accurately capture the dynamics and amplitude of

Southern Hemisphere mid-latitude atmospheric blocking regime transitions, any dimension reduc-

tion of the 500hPa atmospheric reanalysis data required including a minimum of 9 but more generally420

the leading 20 PCs. Retaining these dominant modes makes the VARX model 20 dimensional with

the resulting FEM-BV-VARX, where each dimension communicates with every other dimension,

leading to quadratic growth in the number of VARX parameters in the matrix A and of dimension n.

This also applies to the stationary VARX model of the form:

xt = µ+

MEM∑

i=1

Aixt−iτ +But+ ǫt (4)425

(where xt has a
✿✿✿

the dimension n, ut has a
✿✿✿

the dimension m and ǫt is i.i.d. Here the total number of

model parameters will beNparam = n+MEM∗n2+n∗m. With n= 20 andMEM ≥ 2 resulting in

the order of many thousands of free model parameters. Since the length of the available observational

data is limited, a classical ill-posed problem manifests in the over-fitting of the data. This is the case

even for the standard stationary data sets. BIC and AIC implicitly see this problem, attributing these430

models to much higher values of the information criteria than they would for more informative and

well-posed models. A more complete discussion can be found in Metzner et al. (2012).

In order to try and address this problem, and given that we have ascertained that a minimum

of 20 PCs should be retained, we have considered additional sensitivity experiments in which we

diagonalize the matrix Ai. Since the only coupling between the different dimensions of xt is induced435

by the off-diagonal elements of Ai, diagonalizing is equivalent to a separate identification of the n

following problems with respect to µ(j),Ai(j,j),B(j, :): i.e.

∀j = 1,n : xt(j) = µ(j)+
MEM∑

i=1

Ai(j,j)xt−iτ (j)+B(j, :) ∗ ut + ǫt (5)

It is straightforward to see that the total number of parameters in such a case will be growing linearly

with n as Nparam = n ∗ (1+MEM +m) (multiplied by K if considering non-stationary models440

where K > 1). In sensitivity experiments with Ai(j,j) and for memory depths ≥ 2 Cape Grim CO2

was again found to be optimal and results were insensitive to annealing steps ≥ 4. In descending

order and for the diagonalized experiments the leading 5 combinations were found to be 1st Cape

Grim CO2, 2nd Cape Grim CO2 and Ozone, 3rd Optical thickness, 4th Sulphate aerosols and 5th

Stratospheric Ozone and where a memory depth of 2 days was found to be optimal.445
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We further note that even such a diagonally-restricted VARX-model is much more general than

when applying multilinear regression

xt = µ+But+ ǫt (6)

which is a special case of VARX for K = 1 and Aj = 0 ∀j. Thus, even with the diagonality re-

striction, this analysis is more general than the stationary multilinear regression approaches, e.g.,450

employed by Roscoe and Haigh (2007).

One might further seek to reduce the number of parameters such that the problem is not ill-posed.

While reducing the number of EOFs is a possible approach even a reduction from 20 to 9 EOFs (the

absolute minimum number of modes required to capture the Southern Hemisphere 3-wave blocking

state) will not sufficiently reduce the number of parameters such that the FEM-BV-VARX with full455

Ai matrix is well posed. Also in the Southern Hemisphere blocking is quite transient and, as shown

in figure 11 of Zidikheri et al. (2007), the difference between equilibrium zonal and blocked states

in terms of hemispheric zonal wind speeds averaged over a mid-latitude zonal band is only 3ms−1

at 500mb as compared to the Northern Hemisphere which is 30ms−1 an order of magnitude larger.

One strategy that was comprehensively tested was testing sensitivity to persistency over a large460

range of values as NC from (1)-(2) is changed from 0 to NT . However, due to the transient nature

of the Southern Hemisphere atmospheric circulation the residuals (model errors) for the multiple-

state model are not significantly smaller than for the one state model. By including the number of

transitions in the definition of Nparam it is immediately obvious that the one-state model is always

preferred in such cases and taking NC →NT we simply converge on the one-state solution.465

Clearly time-series analysis where persistency of the respective metastable states is weak repre-

sents a serious challenge. One approach we explored assumes that for fixed time-series xt, number of

metastable states K , and persistencyNC and for fixed local VARX parameters θi = (µi,Ai
1, ...,A

i
MEM ,Bi),

we can straightforwardly compute the respective Viterbi-path solving the linear programming step

of the FEM-BV-procedure (see Step 2 of the FEM-BV-algorithm description on page 23 of Horenko470

(2010)). Since it is a linear minimization problem with convex constraints, it has a unique solution.

That is, one can uniquely recover the distinct Viterbi path Γ(t) = (γ1(t), . . . ,γk(t)) knowing only the

full data series xt and preserving onlyNparam = (K∗(n+MEM ∗n2+n∗m)+1) parameters while

preserving the value of persistency C. Having computed the Viterbi path, one can also compute the

distinct values of the model errors ǫ̃it as ǫ̃it = γ(i, t) ∗ (xt −µi−
∑MEM

j=1 Ai
jxt−jτ −Biut).475

The sensitivity experiments we describe effectively bound the problem of over-fitting inherent in

analyzing atmospheric observational data. Importantly, we achieve the same results for diagonal-

ization (well-posed, with no cross terms) and for the full FEM-BV-VARX (ill conditioned, with all

cross terms).
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4.2 Internal Climate Variability480

Next we examined whether intrinsic climate variability statistically significantly affected the regime

behavior. We find that the combination of ENSO and the first component of the multivariate MJO

index (MJO1) provide the major intrinsic driver of the observed atmospheric regime behavior. The

next best combinations are MJO1, MJO1 together with eastern Indian Ocean dipole index and the

annual cycle together with MJO1.485

The low frequency variability of ENSO is highly correlated to the IPO and, as pointed out ear-

lier, the IPO shifted phase in the late 1970s coincident with the transition to reduced blocking.

Thus it is natural to expect ENSO to be a major component of internal variability driving changes

in the wave 3. The first component of the MJO index corresponds to enhanced convection over

the maritime continent (Indonesia, Philippines and Papua New Guinea) close to the tropical warm490

pool (Wheeler and Hendon, 2004). This provides evidence for a tropical origin of SH mid- and

high-latitude climate variability on inter-annual to decadal time scales. Since SST changes occur on

longer time scales, this might open the opportunity for making skilful
✿✿✿✿✿

skillful
✿

long-range predictions

on seasonal to decadal time scales. However, the external CO2 forcing still explains the observed

secular trends best; thus, the intrinsic climate indices taken alone are not able to statistically explain495

the secular trends.

We also find evidence that the Mt. Pinatubo volcanic eruption in 1991, as measured by strato-

spheric aerosol optical thickness, could have triggered a dramatic sudden increase in the regime

frequency of occurrence in its immediate aftermath. Fig. 5 shows that the eruption of Mt. Pinatubo

is followed by a sudden drop in the frequency of occurrence (1-year running mean) of the positive500

phase of the SAM and a corresponding increase in blocking. In the long term this only delayed the

secular increase in the SAM. From Fig. 5 we infer also that the response time scale to the erup-

tion is about 3-4 years. In contrast, the 1982 eruption of El Chichon did not cause a drop of the

frequency of occurrence of the positive SAM phase. This result is consistent with EOF analysis of

ERA-40 reanalysis data where a significant shift to negative stratospheric and surface SAM was505

observed only after the Fuego and Mount Pinatubo eruptions (Karpechko, 2010; Gleixner, 2012).

Importantly, CMIP5 models have been shown to be unable to reproduce a realistic dynamical re-

sponse by the annular mode to even large intermittent volcanic signals like Mount Pinatubo, sug-

gesting that the extra-tropical circulations of current CMIP5 models are not able to simulate the

response to short lived abrupt perturbations in stratospheric forcing (Karpechko, 2010; Gleixner,510

2012; Charlton-Perez et al., 2013).

5 Conclusions

Our examination of reanalysis data together with observed forcing data reveals that greenhouse gas

emissions are an important driver of SH circulation changes over the last few decades. Recent studies
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have suggested that stratospheric ozone depletion is many times more dominant than CO2 in driving515

systematic changes in the SH mid-latitude circulation. However, our results highlight that for under-

standing the anthropogenic impact on SH circulation changes the delayed influence of stratospheric

ozone depletion is relevant, but not the dominant mechanism. Previous studies mainly focused on

the austral summer and the zonal response (SAM). Our results analyzing data from the whole year

suggest that other seasons and the changes in coherent features (wave 3 blocking), including im-520

plications for anomalous surface warming of the high latitudes, need to be incorporated in order

to more completely understand and attribute SH circulation changes. Such studies are particularly

needed for evaluating and improving climate models. Temperature trends in the Antarctic region are

spatially heterogeneous. The pattern of these trends reflects the surface signature of the shift toward

a more zonal SAM circulation regime at the expense of the blocking regime.525

Our observationally based results are also confirmed by numerical modeling studies (Miller et al.,

2006; Freitas et al., 2013, 2015). Atmospheric general circulation model simulations forced by ob-

served SST fields (Rayner et al., 2003) and CO2 concentrations but with climatological O3 have

been able to reproduce the observed SH circulation changes although the magnitude is underesti-

mated by about 40-50 percent (Freitas et al., 2013, 2015). This provides support from a numerical530

climate model for the observational data analysis presented in this manuscript.

Our finding that anthropogenicCO2 is the dominant driver whereas stratospheric ozone depletion

makes a somewhat lesser contribution to the SH circulation changes over recent decades has impor-

tant implications for future SH climate change. In particular
✿

, it may be that the recovery of the ozone

might delay global warming less strongly than many climate model projections predict
✿✿✿✿

ozone
✿✿✿✿

has535

✿✿✿

less
✿✿✿✿✿✿✿✿

relevance
✿✿

to
✿✿✿✿✿✿✿

changes
✿✿

in
✿✿✿✿✿✿✿✿

Southern
✿✿✿✿✿✿✿✿✿✿

Hemisphere
✿✿✿✿✿✿✿✿✿✿✿✿

extra-tropical
✿✿✿✿✿✿✿✿✿

circulation
✿✿✿✿

than
✿✿✿✿✿✿✿✿

projected
✿✿

in
✿✿✿✿✿

many

✿✿✿✿✿✿✿✿

modeling
✿✿✿✿✿✿

studies (Barnes et al., 2013; Shindell et al., 2004). Our findings regarding the sudden but

short lived increase in blocking and negative SAM after the Mount Pinatubo eruption highlights the

potential of the climate system to abruptly change in response to large transient perturbations in

stratospheric forcing while emphasizing the dominant role of systematic changes in anthropogenic540

CO2 on the climate.
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Figure 1. Forcing time series:
✿✿✿✿

Cape
✿✿✿✿✿

Grim
✿✿✿✿

CO2
✿✿✿✿

(Dark
✿✿✿✿✿

blue),
✿✿✿✿✿✿✿

Sulphate
✿✿✿✿✿✿✿

aerosols
✿✿✿✿✿✿

(Green),
✿✿✿✿✿✿✿✿✿✿

stratospheric
✿✿✿✿✿✿

aerosol

✿✿✿✿✿

optical
✿✿✿✿✿✿✿

thickness
✿✿✿✿✿

(Red),
✿✿✿✿✿✿

lagged
✿✿✿✿✿

OMD
✿✿✿✿✿✿

(Blue),
✿✿✿✿

OMD
✿✿✿✿✿✿✿✿✿

(Magenta)
✿✿✿

and
✿✿✿✿

Solar
✿✿✿✿✿✿✿

constant
✿✿✿✿✿✿

(Khaki). Time series are

normalized by subtracting the respective mean and dividing by the respective standard deviation.
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a) b)

c) d)

Figure 2. Composites of 500 hPa geopotential height anomalies
✿✿✿✿

(units
✿✿

of
✿✿✿

m)
✿

over 1979–2010
✿✿✿✿✿✿✿✿

1979-2010: a)

State 1 (Blocking) and b) State 2 (Positive SAM), and composites of surface air temperature
✿✿✿✿

(units
✿✿

of
✿✿✿✿

◦C) c)

State 1 (Blocking), d) State 2 (Positive SAM). Only persistent states have been used which last at least 5 days.
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Figure 3. Percentage of time resident in either the hemispheric wave 3 state (black dashed) or the zonal state

(blue dashed) for the NCEP Reanalysis 500-hPa geopotential height field for all seasons and annual. The dashed

lines are a LOESS fit to the time averaged data where the solid lines indicate the values and averaging periods

of the data.
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Figure 4. Surface air temperature trend (◦K/decade) over the period 1979-2010 calculated from the yearly

averaged Had4Krig version 2.0.0 data set.
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Figure 5. Smoothed (365-day backward running mean) Viterbi path of blocking (Black line) and SAM (Red

line) state and stratospheric aerosol optical thickness (Blue line).
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