Point-to-point response to the reviewers comments
Dear editor,

We are grateful to the constructive comments of both reviewers. We have addressed all their
comments and changed the manuscript accordingly.

The reviewers comments are in italics.
Reviewer 1:
Thank you very much for reviewing our manuscript and your constructive comments.

1) First paragraph, page 691, lines 8-9: Do you think that the results are sensitive to the
reanalysis used? Though this paper covers a more reliable period, some studies found that, even
after 1979, large differences still exist between the reanalyses in the circulation, precipitation
and SAM trends (e.g. Bromwich et al., 2007; Bromwich and Fogt, 2004).

We have an other recent paper where we use the JRA-55 reanalysis for a regime study of the SH
circulation and find similar results. Thus, we feel that our results are robust. We discuss in the
first paragraph of section 2.

2) There need to be more discussion of the Figure 3, especially in terms of time of residence in
the summer season, which presents the most distinct pattern in relation to other seasons and
annual: the regime transition have not occurred around 1980 and the frequency and persistence
of the positive SAM and wave 3 are almost the same from 2000-2007.

We extended the discussion of Fig. 3. See first paragraph of section 4. Thank you very much for
pointing this out.

3) Zonally asymmetric fields are used in the statistical analysis and not just mean zonal indices.
This is important, as Ho et al. (2012) and others demonstrated that there is sensitivity associated
with the index chosen to represent SAM and thus, it is necessary to consider the impact that the
choice of SAM index has on the outcomes of any SAM attribution study. I suggest the inclusion of
this reference in the Introduction section at the end of last but one paragraph.

We added a discussion of the Ho et al. paper. See first paragraph of section 1.

Technical corrections

1) Section 3.2, line 27 introduces the acronym OMD, which is not defined previously. Is it the
acronym for ozone mass deficit? This needs to be specified.

Done

2) Missing units for geopotential height and surface air temperature in Figure 2.



Done

3) Missing the statistical significance in Figures 2 and 4.
Because the statistical significance has already been discussed in many previous papers (e.g.
Steig et al. 2009) we do not think this will add anything to this current paper.

Reviewer 2 (S. Vannitsem):
Thank you very much for reviewing our manuscript and your constructive comments.

General Remark:

The authors investigate the origin of the long term secular trend present in the large

scale atmospheric circulation regimes in the Southern Hemisphere (SH). They use a

new method of detection and attribution based on the Granger causality principle. They
found that one of the main driver mechanism of the secular trend is the CO2 , and they
contrast their results with the previous attributions with the Ozone depletion.

This is an interesting systematic exploration of the driver attribution that deserves publication
but I have a major concern about the choice of drivers. The authors used

CO2 , OMD (I suppose that it is the ozone mass deficit, but never mentioned in the

text or captions), solar constant, stratospheric aerosol optical thickness and sulphate
aerosols. Although this choice is probably a good sample of the different possible

drivers, the authors should make the reader aware that it is a limited choice and other

drivers could be responsible of this secular trend.

To my opinion, if you take any series for which you have a similar secular trend then

you will attribute the trend of the original time series to this specific predictor. I was

therefore wondering why you did not try the time series of sea ice extension displaying

a secular positive trend during the last 40-50 years. I suspect that it could provide

as good result as the CO2 increase, and it is probably a more direct mechanism of

circulation modifications than the COZ2 , whatever the specific origin of the Antarctic sea

ice extension increase is (Note that this increase is not well explained by current climate
models even when CO_2 increases, rather most of the models predict a decrease of the

sea ice extension).

I therefore think that caution should be taken in drawing definite conclusions by considering a
limited number of drivers, and I would be very much interested to know what

will be the impact of other drivers like the sea ice extent, obviously related to the thermodynamic
properties of the underlying ocean (or other drivers directly related to the

dynamics and thermodynamics of the ocean).

The power of our method is that is able to take account of missing covariates. For instance, if
you would include something like sea ice extent into the set of covariates and would get a result
that the sea ice extent is more statistically significant - then it would not contradict our study.
Simply because the variable gamma (describing the switching process and taking into account all
of the unresolved covariates in our study) would be a different one and not the same one that we
have obtained in this study.

From our study we can guarantee that in a given set of explicit covariates we found the one
covariate that is most important (in Granger-causality sense) - and that this covariate is the CO2.



All of the other eventually-important covariates are sitting in the regime-switching process that
we have also identified but where not presenting in our results.

We do not consider sea ice extent regime patterns. We do not consider Antarctic sea ice extent
because of its marginal expansion and because this slight expansion in extent is largely wind-
driven (Holland and Kwok , 2012 ) and likely a response to the changes in the large-scale
circulation.

Furthermore, the changes in sea ice extent and area have been spatially heterogeneous, with
increases in some areas like in the Ross sea and decreases in other areas like in the
Bellingshausen/Amundsen seas (Parkinson and Cavalieri, 2012). This is despite the trend
towards the positive SAM; thus, it is unlikely that sea ice extent would have a significant impact
on the secular circulation trends.

We discuss this point in sections 2 and 3.

Minor points:
Line 13, page 676 : a "a" should be removed.

Done.
Figure 1. Please define the different curves in the caption.

Done.
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Abstract. A critical question in the global warming debate concerns the causes of the observed
trends of the Southern Hemisphere (SH) atmospheric circulation over recent decades. Secular trends
have been identified in the frequency of occurrence of circulation regimes, namely the positive phase
of the Southern Annular Mode (SAM) and the hemispheric wave 3 pattern which is associated with
blocking. Previous studies into the causes of these secular trends have either been purely model
based, have not included observational forcing data or have mixed external forcing with indices
of internal climate variability impeding a systematic and unbiased attribution of the causes of the
secular trends. Most model studies also focused mainly on the austral summer season. However,
the changes to the storm tracks have occurred in all seasons and particularly in the austral win-
ter and early spring when mid-latitude blocking is most active and stratospheric ozone should not
a-play a role. Here we systematically attribute the secular trends over the recent decades using a
non-stationary clustering method applied to both reanalysis and observational forcing data from all
seasons. While most previous studies emphasized the importance of stratospheric ozone depletion in
causing austral summer SH circulation trends, we show observational evidence that anthropogenic
greenhouse gas concentrations have been the major driver of these secular trends in the SAM and
blocking when all seasons are considered. Our results suggest that the recovery of the ozone hole
might delay the signal of global warming less strongly than previously thought and that effects from

all seasons are likely crucial in understanding the causes of the secular trends.
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1 Introduction

The SH climate and atmospheric circulation has undergone significant changes over the last few
decades. It is important to understand its causes and anthropogenic contributions because this will
not only help to constrain future climate projections but is also essential to evaluate the ability of
the current generation of climate models to accurately simulate these changes. Previous attempts
at understanding the causes of SH climate change focused on changes in the mean climate and

its variance dALbl&S.LQL&D.d_MQQd |ZDQ<J; |Iumer_el_alJ M; |Ih.Qm.psp_n_e_t_alJ |2Q1J.|) during austral

summer. Here we instead focus on changes in the frequency of occurrence of circulation regimes
(O’Kane et al], 21!1;5]; Lee and Fglds;gigl, 21!1;5]) in all seasons. Such circulation regimes have a sig-

nificant impact on surface weather and climate. For instance, the frequency of occurrence of blocking

strongly affects temperature and precipitation dRigb_e;Le_t_alJ, |2£)Lﬂ; |Rogﬂg_e_t_alj, |2Q]_3]). Furthermore,
the secular trend towards the increased occurrence of the positive SAM phase, linked in the aus-
tral summer to stratospheric ozone (Son et al], |2ij; Polvani et alJ, |ﬂm|; Thompson et al], |ﬂm|;
IEr_e;Li_dj_an_d_P_o_]lani |2Q]AI; IB_am_Qs_e_t_al], |2Q]j), affects Antarctic temperatures and sea ice extent
d:l:um.cr_e_t_alJ,M). It also has to

a SAM index

be noted that the way SAM is defined can impact on the outcomes

. Hence, we use here a method which does not

of any study using

resuppose any particular spatial structure on the resultant regimes and the particular form of the

SAM we find is determined from the data.

Over the recent decades (1980-present) large changes in the SH storm track modes have occurred

in all seasons including the austral winter, when blocking is at its most active
). The austral winter storm track changes manifest as reduced baroclinicity and a decrease in
the July zonal winds of about &~ 10m/s in the subtropical jet relative to the earlier period 1950-

1980 (Frederiksen and Frgdcrikscﬂ, |2JKH|). The changes in the storm track modes provide a dynam-

ical mechanism for the observed systematic linear downward trends in the annual number of SH

blocking events dﬂej_d_e_umann_e_t_alj, m; |Q_’Kan_e_e_t_alJ, |2Qd). Such events predominantly occur

in preferred locations about the Australian (110E-210E), East Pacific (260E-315E) and Indian Ocean

(20E-80E) sectors. These regions are associated with the ridges of the hemispheric wave 3 pattern
(van Loon and ,lg:nnA, m; Trenberth and ng, h%ﬁ).

A recent study (IQKan_e_e_t_alJ, |2Q]_3]) using non-stationary clustering has shown that, consistent

with reduced blocking activity post the late 1970s, the wave 3 pattern has weakened while the corre-
sponding zonal state (SAM) has strengthened and moved poleward (positive phase). While an early
study hypothesized that global warming is likely to change the frequency of occurrence of these
circulation regimes but not its spatial patterns szLtj_e_t_al], hﬂﬁd; |Q_’Kan_e_e_t_al], |2Q]j). Furthermore,
|Q_’Kan_e_e_t_al] JZQ_LSI) has shown that the spatial character of the SH persistent climate regimes has

changed significantly over the reanalysis period 1948-2009. Here we extend our earlier study of

SH circulation regimes to show observational evidence that when all seasons are considered these

changes are mainly in response to radiative forcing trends of anthropogenic C'O2 emissions and
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to a much lesser degree to stratospheric ozone depletion. This is likely due to the fact that ozone
depletion plays a minor role outside of the austral summer season.

The main method of investigating the role of different forcings of the SH secular trends has

been coupled climate models (Stocker et alJ, |2Q]_3]). Modeling studies (IAthaSELan.d_Me_ehi |2£)Dd;
|Iumel;e_t_alj, |29£ﬂ; lS_(m_e_t_alJ |2Qld; |BLesu.dJ_an.d_P_0J_v_an.J |2Ql_AJ; IB_ames_el_al] |2Q].3]) have identified

stratospheric ozone depletion as an important driver of the observed austral summertime intensifica-

tion of the SAM over the recent decades. However, stratospheric ozone depletion is a highly seasonal
effect and can play no role in the austral winter-spring atmospheric circulation dynamics. The SH
storm tracks are equally active all year around m, ). However, the austral wintertime is
the season when the observed changes to the storm track activity, namely reduced blocking and baro-

clinicity of the subtropical jet (Erederiksen and Frgglgrikscﬁ, |Mﬂ|), have been particularly evident

and cannot be solely attributed to the ezene-mass-defieitOzone Mass Deficit (OMD).

Modeling studies of the effect of various individual and combined radiative forcings on the SH
circulation have largely compared trends in mean zonal indices, mainly the SAM index, without
consideration of related systematic changes in the spatially coherent zonally asymmetric features
of the circulation dQKan_e_e_t_al], |2Q]j). Such studies often rely on ensemble averaging of repeated

forcing experiments to enhance the forcing signal while simultaneously reducing intrinsic inter-

annual to decadal scale variability. The problem with this approach is the prohibitive computational
cost of coupled models, allowing only for relatively small ensemble sizes whose models often have
rather coarse resolutions and contain many biases.

CMIPS5 models are known to poorly represent mid-latitude blocking and to be limited in their

ability to capture important SH circulation responses such as the response of the SAM to large

volcanic eruptions X ; i R ; - X |2Q]_3]). Furthermore,

recent studies showed that very high horizontal resolutions (gridspaetirg-grid spacing of about 16km)

are necessary for climate models to accurately simulate the geographical structure and probability

distribution of blocking and regional weather regimes (Igawt_aﬂ, M; bawgdiamej,
).

Given that the circulation changes are a key signature of the forcing for attribution, the main

aim of this paper is to complement model-based results with observationally based studies and to
try to separate natural variability from the forced response. For example, the late 1970s climate
shift occurred coincident with the shift in phase of the Inter-decadal Pacific Oscillation (IPO) and so
separating the low frequency intrinsic ENSO behavior from a response to the constituent components
of the radiative forcing is an important problem.

Here we argue that most studies (see MWLI 2011)) for a review) attributing secular

trends in the SH circulation have exclusively focused on changes in the mean zonal circulation and

the trend toward positive SAM in the summer months. This has been largely attributed to ozone

because model simulations with (without) ozone can (cannot) reproduce the magnitude of the trend



and because there is only a small trend towards the positive SAM in the winter, thus, the conclusion
is that ozone is the major driver of the secular SAM trend. The mechanism proposed ,
95 ) is that stratospheric cooling/heating allows the high latitude tropopause to rise in the summer
enabling a poleward movement of the westerlies and consequently the Hadley Cell.
) found that the only statistically significant relationship between the position of the Hadley
Cell and the midlatitude jet exists in the summer however, in the winter no such relationship exists
even though the winter time is when one expects such a relationship to be most robust. Here we
100 show results of a statistical analysis using zonally asymmetric fields which not only represent the
SAM pattern but also zonal asymmetries, i.e. blocking, which has also undergone secular changes
over the last few decades.
In section 2 we present the data used in this study and in section 3 we describe the statistical
method used for the non-stationary clustering. In section 4 we present the attribution results and
105 also describe in detail our sensitivity tests regarding the number of parameters to be estimated and

demonstrate the robustness of our results. We provide our conclusions in section 5.

2 Data

We use daily NCEP/NCAR reanalysis data (Kalnay et alJ, h&ﬁ) covering the period 1980-2007 for
500 hPa geopotential height and surface air temperature. We consider only anomalies with respect
110 to the climatological mean where the mean seasonal cycle has been removed but not detrended.
Note, that there is still an annual cycle in higher moments and in the frequency of occurrence

present in the time series. While there are still large biases in the Antarctic region in the various

reanalysis products (Bromwich and FOQII |2£)DAI; i , |2£)Dl|) we have shown in a similar
study (O’ ,12015) that by using the Japanese 55-years Reanalysis (JRA-55) conducted b

115 the Japan Meteorological Agency (JMA) we found very similar results, Hence, our results do not

depend strongly on the used reanalysis data set.
As forcing data we use the Cape Grim CO2 measurements (lS_Le_ele_e_t_al] |2£)£)l|), sulphate aerosols

, ,Ell), stratospheric aerosol optical thickness dB&ums&a_e_t_al],ZQld) (available athttp:Hdata-giss-nasa-gov/modelforee

http://data.giss.nasa.gov/modelforce/strataer/), stratospheric Ozone mass deficit (R nd Haigh,
120 ) and the solar constant , ). Most of the forcing data is in monthly mean reso-

lution. Since we are using daily reanalysis data for the clustering we expand the monthly forcing
data to daily resolution by using the monthly mean values for each day of the respective month.
Because stratospheric ozone depletion has a strong annual cycle we carried out sensitivity analysis
by lagging the ozone mass deficit values by 1, 2 or 3 months and we also used a 365-day backward

125 running mean. The forcing time series are displayed in Fig.[Il
As internal modes of climate variability, we use an ENSO 3.4 index, the Madden-Julian Oscilla-

tion (MJO) index, the Indian Ocean Dipole (IOD) and the East Indian Ocean Dipole mode indices
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and the annual cycle here defined as (sin(2*7/365%t)). These indices describe tropical Sea Surface
Temperature variability (ENSO, IOD) or an intrinsic mode of tropical variability (MJO). We consider
these to be intrinsic drivers of mid-latitude variability but recognize that they likely also respond to
changes in external radiative forcing such that a clear separation between cause and effect is diffi-
cult. However it is still important to elucidate which role they play in the frequency changes of the
regime patterns. We do not consider Antarctic sea ice extent because of its marginal expansion and

because this slight expansion in extent is largely wind-driven (Holland and K ,2!213) and likel

a response to the changes in the large-scale circulation. Furthermore, the changes in sea ice extent

and area have been spatially heterogeneous, with increases in some areas like in the Ross sea and

decreases in other areas like in the Bellingshausen/Amundsen seas (Parkinson and ( layalig:ri 2{!1j .

This is despite the trend towards the positive SAM; thus, it is unlikely that sea ice extent would have

a significant impact on the secular circulation trends.

3 Non-Stationary Clustering

We first give an intuitive description of the used clustering method before we explain it in much
more detail in section 3.1. That section can be skipped by readers who are more interested in the
clustering results.

Many studies have provided evidence that the atmospheric circulation can be efficiently described

by a few persistent cluster states dCheng and Wallace] |_L993] |K_|_mm_o_an_d_G_hd M |QQm_e_t_a]_]
LQQd Horenko et alJ M |_ Majda et alJ M Franzke et alJ M M |JL| 1;10’Kane et alJ 2013;

Ri 1,201 é) Conventional clustering methods such as k-means partition phase space using

heuristic algorithms, for example using Empirical Orthogonal Functions (EOFs), into an a priori
arbitrarily determined inte-k sets of cluster centroids whose points within each cluster are close but
where each centroid is in some sense far apart from each other (IQamagd_Pam_rl, |MI). Sim-
ilarly, Self Organizing Maps (SOMs; Johnson et alJ (IMB) are typically based on minimizing the

geometric (Euclidean) distance between the observational data and some specified set of recurrent

patterns but without consideration of the persistency of those states and mostly without consider-

ing the dynamics and differences in dynamics within these states (Michelangeli et al], h&ﬁ). Fur-

thermore, classical clustering methods do not consider differences in the dynamics of the cluster
states thﬂs_tj_ans_e_tJ, |ZDQZI). Recently, |I_&_e_an_d_Ee_Lds_Le_uJ (IZQ]j) applied SOMs to reanalyzed daily

zonal-mean zonal wind data for the austral summer period employing 4 SOM patterns with the DJF

global mean temperature taken as an indicator of the response to GHG forcing. They attribute the
main response to ozone by correlating the third SOM DIJF zonal-mean zonal wind pattern with the
November Antarctic ozone index. One of the central problems in applying these methods to histor-
ical geophysical data is related to the robustness issue, meaning that increasing the k& away from

k = 1 increases the total number of parameters - thereby increasing the risk of over-fitting. Concepts



from information theory like Akaike Information Criterion (AIC

(Burnham and Anggrggi M) are usually deployed to find the optimal number of clusters k that

165 allows avoiding over-fitting.

Our approach considers the hemispheric response of not only the zonal annular mode but also
systematic changes in wave 3 and blocking. We also use reanalyzed data but consider all possible
combinations of the observed radiative forcings and relevant indices of internal variability. Moreover,
we make no a priori assumptions on the number of states and employ an approach that considers

170 persistency, changes in the dynamics and that is able to ascertain causation between the time series
and the external forcings.

Specifically, we use the non-stationary clustering method FEM-BV-VARX (Finite Element Method

of time series analysis with Bounded Variation of model parameters; Horenke 2040} 10 Kane-etali(2013)Risbey-etal
to systematically attribute circulation trends to observed external forcings. In this study we assume
175 that the large-scale circulation can be effectively decomposed into a small set of distinct patterns or
regime states. At each day the atmosphere is in only one of these patterns where it might stay for
some time before it switches to one of the other regime states. If we order the regime states from
1 to n we get an daily index (taking a value of 1 to n) denoting in which state the atmosphere is
in at that particular day; this index is referred to in the literature as the Viterbi path ,;
180 |Franzke et alJ, M). Now we construct a statistical model which simultaneously estimates the ge-

ographical structure of these patterns and the evolution of the switching between the patterns. We

do this by minimizing the distance between the observed atmospheric circulation and the regime
states (see next subsection for a more detailed description of this procedure). Furthermore, we also
allow external factors, like C'O2, Ozone, or ENSO, to influence the evolution of the regime states.
185 This is again done by minimizing the distance. This also enables us to evaluate different forcing
combinations. By using different forcing combinations and looking for the statistical model with the
minimum distance we can systematically find the forcings which are most likely responsible for the

observed evolution of the regime states.
3.1 Overview of the FEM-BV-methodology.

190 The FEM-BV-VARX approach is a general variational framework that reduces to the well-known
methods of linear regression, Autoregressive models, k-means and Hidden Markov approaches when
more restrictive assumptions are made on the nature of the underlying data generating process

d].&an.and.&ind, |2£)£lé; IB_LQmwszh_e_t_al] |2Qd; |Rngge_and_Ha1gd |29£ﬂ; IMeIznszLQLal] ). Fur-

thermore, as VARX is a tool for inferring the Granger-causality (@, @) (causation be-

195 tween time series variables in terms of predictability and not correlation), FEM-BV-VARX is a
more general approach which allows to go beyond the standard stationarity assumption of the usual

methods currently used for inferring cause-response relationships, e.g., in ecology (Sugihara et al],

IE), economics (@, @) and climate science JMQs_e_d_a]_e_e_t_al], |2£)Dd; |ﬂang_e_t_a]_], |ZDLMI).
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The non-stationary FEM-BV-VARX framework contains the standard stationary VARX and the con-
cept of standard Granger-causality as a particular special case and allows a systematic comparison
of causality relations inferred with and without the stationarity assumption for a given set of obser-

vational data. See |G_e_|;her_an_d_H_Qr_Quk(J (IZLUAI) for more details explaining the relation of the FEM-

BV-framework to standard stationary approaches of data-driven causality inference.

The approach we are following here is that we perform FEM-BV-VARX fits to all possible combi-
nations of the external forcings. Then we apply a standard information theoretic criterion: the Akaike

Information Criterion (AIC) dAkaikcl, hﬂ%.; H.QLQ[]]&(J, M;W,M;M,M)

which is a measure of the relative goodness of fit of a model to data. That means, that AIC can

be used to assess the goodness of fit relative to the number of fitted parameters or external fac-

tors used, allowing to find the model that is least over-fitting and best fitting the analyzed data

dB_umham_an.d_An.dﬂst, |2£X2j). This standard procedure can tell us which forcing combination is

best able to explain the secular circulation trends given the FEM-BV-VARX model.

The presence of unresolved external covariates (that are not statistically-independent or identically-
distributed) may result in the non-stationarity and non-homogeneity of the resulting data-driven
statistical models and may manifest in the presence of secular trends and/or in regime-transition be-
havior. By covariate we not only mean external forcings but also unresolved physical processes and

scales (e.g. due to EOF truncation). This may then introduce problems when ai plying the standard

stationary approaches common to machine learning and statistics

, ). In the con-
text of this paper, this issue plays a very important role when analyzing atmospheric data since many
of the potentially-relevant covariates might not be available explicitly in the set of covariates that
we have chosen for testing. Therefore, when deploying statistical time series analysis methods, they
should be capable of dealing with non-stationarity and non-homogeneity issues that emerge in the
models as a result of these systematically-missing (and potentially-important) external influences.
Combining the concepts and ideas from pure and applied mathematics (such as Finite Element
Method (FEM) from numerics of partial differential equations, regularization in infinite-dimensional
spaces from the theory of ill-posed problems, stochastic calculus and theory of stochastic processes,
information criteria from information theory, embedding theorems from the theory of dynamical
systems), Horenko and colleagues developed a family of non-stationary, non-homogeneous and non-

parametric time series analysis methods. This family of time series analysis techniques, which is

reviewed concisely by JZQLZI), allows for systematic time-dependent model identifica-
tion when assumptions of temporal stationarity or spatial homogeneity of some underlying statistics
are not justifiable. The main idea is based on regularized variational minimization of a scalar-valued
functional describing the error g (z(t),u(t),0 (t)) of some model for a given observation x(t) subject

to available external impacts/covariates u(t) and characterized by the time-dependent set of model



parameters 6(t):

K Nr

235 L(O.T) = 3 % m()g(e(t)u(t),Or) = min, (1)

k=1t=1 ’

subject to the constraints on I'(¢) = (71 (t), -+ , vk (¢)):

K
ST wt) = 1 vi=1,...Ng
k=1

() > 0 Vt=1,... NpVk=1,... K,

Nt
Olsy = Y |lwmt+71)—w®)| <No, Vk=1,...K, 2)
t=2

240 where 6(t) = Zle i (t)Ok, thereby allowing, the problem of statistical data analysis beyond the
usual stationarity assumption to be reformulated and algorithmically solved as a clustering problem
with K clusters, distance kernel g (x(t),u(t),0(¢)) and a regularization parameter N¢, controlling
the number of transition between different clusters in time (special case No =0 and K =1 corre-
sponds to the homogeneous and stationary statistical problem). Imposed regularization confines the

245 bounded variation (BV) of the regime-switching process 7 (¢) in time, thereby making the temporal
change of inferred model parameters 6(¢) more or less persistent. Changing the constraining variable
N¢, one can test the whole range of possible statistical models, going from N = 0 (stationary/well-
posed) to No = Np (completely non-stationary/very ill-posed problems). The above variational
problem is non-convex since the parameters O are not known a priori and have to be inferred

250 simultaneously with the vy (¢).

Many classical methods of data analysis and machine learning (e.g., multilinear statistical regres-
sion, K-means clustering, Gaussian Mixture Models (GMMs) and Hidden Markov Models (HMMs)

Majda et alJ 2006); Franzke et al] 2008)) can be derived as special cases of this FEM-BV-methodology.

E.g., HMMs are obtained additionally assuming that I is an output of a homogeneous Markov chain

255 and setting N¢o = Np. For more detailed information please see Section 2.h "Relation to classical

methods of unsupervised learning" in (Metzner et alJ, M). It is an important feature of the de-

ployed methodology, since it allows us to test different standard or more advanced methods in the
context of the same theoretical and algorithmic FEM-BV-framework.

In the FEM-BV methodology, Finite Element Methods are employed in the numerical representa-

260 tion of indicator functions 7 (¢) for the time domain of applicability of different models from a com-

mon model class. Model class is defined by the choice of the particular analytical form of the error

function g (z(t),u(t),0 (t, 7)), with the explicit VARX-form deployed in this paper will be given be-

low. As shown above, these indicators are regularized using a Bounded Variation criterion, hence the

acronym “FEM-BV”. The choice of the model class depends on the type of data and a specific form

265 of error function g considered. Here we have implemented Vector Auto-Regressive models with eX-

ternal influences (VARX) which are defined as ; = p(t) + ZﬁfM Ai(O)zi—ir + B() o (u(t)) + €,

parameters being 0(t) = (u(t), A1(t),..., Apmenm(t), B(t)) and model error functional defined as
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(2(t), u(t),04) = [z — 1 + S MEM 4B B0YG (1)) |2 (please see Metzner et all
MM);M 2010) for more details).

The algebraic structure of the above problem allows us to deploy efficient numerical algorithms,

based on the iterative application of linear and/or quadratic programming problems (optimizing for
fixed ©) followed by stationary/convex inference of © for a fixed I'. This procedure is repeated
iteratively, until the change in L(©,T) is less then some small a priori determined threshold, resulting
in monotonic minimization of L. Here we have used the Adaptive Finite Element Method from

the numerics of Partial Differential Equations (PDEs) (IH.QLQH]&(J, |2£Ll_d; |d§M]J.QS_QLal] j ) |2Qlé|) for

numerical minimization of the FEM-BV-problems (Eqns. [[H2)).

The number of different spatio-temporal regimes/clusters K, the model parameters to be cho-
sen within these regimes, such as memory depth and number of EOFs, and the indicator functions
i (+) signaling activation of the respective models are all determined simultaneously in a global
optimization procedure. This yields a judicious compromise between low residuals in reproducing
the data of a training set on the one hand, and the demand for the smallest-possible overall number
of free parameters of the complete model on the other. The optimization is based on a new non-
parametric modified Akaike Information Criterion (AIC) and may thus be interpreted as a construc-
tive implementation of “Occam’s Razor” for data analysis problems. Thereby, the resulting FEM-
BV-framework is essentially free of parameters that should be defined and tuned by the user. The
only parameter that is needed to be set externally is the overall number of optimization repetitions
with different randomly-chosen initial values I' or © for parameter optimization (in the following re-
ferred to as the number of annealing steps). Increasing this number reduces the probability of getting
trapped in one of the local minima of L (for N > 0), simultaneously linearly increasing the amount
of computations. Therefore, the number of annealing steps should be chosen carefully, dependent on

the available computational resources and the size of the data to be analyzed.
3.2 Application of FEM-BV-VARX to atmospheric reanalysis and observed forcing data.

We have chosen to examine a time series of 500 hPa geopotential height anomalies (seasonal cy-
cle subtracted) projected on the 20 leading Empirical Orthogonal Functions (EOFs) and u(t) where
taken as 32 different combinations of forcings (to be described in more detail below). Deploying the
FEM-BV-VARX method, comprehensive sensitivity tests were carried out for the cluster parameters
involving memory depth M E M and the number of annealing steps. Although the resulting optimal
choice of forcing combinations has converged after 16 annealing steps, the model affiliation se-
quence already remained unchanged after 4 annealing steps. The results presented in the manuscript
are for 64 annealing steps. The optimal memory depth 7 was 2 days, however the degree of memory
tested ranged from O to 5 days. Daily forcing agents were spline interpolated with no lag apart from
OMD. Every possible combination of forcing agents were considered including the observed OMD

lagged by 0, 30, 60 and 90 days as well as a variant lagged averaged by a 365 day span (here we



artificially introduce persistency into the OMD time series). The optimal external radiative forcing
305 agent was found ultimately to correspond to the Cape Grim C'O5 time-series.

In order to choose the optimal model M we first used the Akaike Information Criteria (AIC)
AIC(M) = —2log(L(M))+2M. 3)

Application of the AIC' is equivalent to assuming that the scalar-valued squared model errors are
x2-distributed and that the vector-valued FEM-BV-VARX model errors are Gaussian i.e. dependent
310 on the residuals having a log-normal distribution. This assumption was tested using a non-parametric
information-theoretic algorithm fromlMe_LGm[_al] JZQLZI) and found that for all of the model errors

¢; the most optimal parametric family was indeed the log-normal distribution.

Additionally the log-normal distribution was fitted to the model errors, the respective log-likelihoods
computed and used to calculate the AIC for the non-stationary models. The most informative non-
315 stationary model that emerged using the AIC criteria (with posterior probability almost equal to one
in each case) was the model with Cape Grim CO2 and memory of 3 days. Comparable results were
found using Akaike Information Criteria Corrected (AICc) and the Bayesian Information Criteria
(BIC). The two latter criteria take also the size of the statistics into account and are derived under
very different mathematical assumptions than the AIC. This further confirmed our results, demon-
320 strating that they are not induced by the implicit assumptions necessary for the information criteria
applicability.
In our study we have included only a selected number of several external forcings. One might
argue now that we have neglected some additional forcing (e.g. sea ice extent or the strength of the

Antarctic Circumpolar Current) which might be responsible for the observed secular trend. However

325 if we would include something like sea ice extent into the set of forcings and would get a result

showing that sea ice extent is more statistically significant, then this would not contradict this study.

Simply because the variable describing the switching process and describing the bias comin
from all the unresolved covariates in our study) would be different from the one that we obtained

in this study. From our study we can guarantee that in a given set of explicit covariates we found

330 the one covariate that is most important (in the Granger-causality sense) - and, taking into account the

resence of the unresolved covariates - this covariate is CO2 (Metzner et al), 2012 ilj 1),12014) . 4]
All of the other eventually important covariates are sitting in the regime-switching process that we

have also identified but were not explicitly represented in our results.

4 Attribution Results

335 A previous study with the FEM-BV-VARX method (O’Kane et alJ, 2013) revealed the existence of
statistically significant persistent circulation regimes corresponding to the positive phase of the SAM
and a hemispheric wave 3 blocking pattern (Fig. 2). That study also found evidence for significant

secular trends in all seasons and, when the full reanalysis period 1948-2010 was considered, that a
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distinct regime transition occurred around 1980 towards a preference for the positive SAM phase;
here shown in Fig. [3]in terms of time of residence in either a wave 3 blocked or a zonal (positive
SAM) state. The increasingly frequent and persistent positive SAM pattern is accompanied by a
corresponding decrease in the frequency and persistence of the wave 3 hemispheric pattern, which
features blocking in the Australian sector in particular. The increasing frequency of occurrence of
the zonal state and the corresponding decreasing frequency of occurrence of the wave 3 blocking
state are consistent with the study of |O’Kan 1) (2013) and are, thus, statistically significant.
Furthermore, this behavior occurs throughout all 4 seasons and, thus, is very robust. However, the
changes are occurring slowest in the summer season. While in all other seasons the wave 3 blocking
state was occurring the more often than the zonal state up to about 1980, this transition has been
much slower in the summer season and starting in 2000 both states occur about equally frequent
in_the summer season. There has been a much more distinct regime transition during the other 3

Our FEM-BV-VARX analysis finds strong evidence that anthropogenic greenhouse gas concen-

trations has caused the secular trends in the SAM and hemispheric wave 3 pattern. The clustering
analysis with C'O5 forcing has the smallest AIC value AIC,,;,, = —63053 (which corresponds to
a Akaike weight of about 1). This denotes the most parsimonious explanation of the observational
data among all of the other fitted explanatory statistical models with all possible combinations of
considered forcings. Hence, providing the best compromise between the quality of fit to the data
and a low number of parameters. The absolute value of the AIC is less meaningful, only its relative
size compared with the other tested models is useful. The next best forcing combinations relative to
the optimal choice are the solar constant (Akaike weight of 2.3550e~%%) and stratospheric aerosol
(Akaike weight of 1.8217¢799).

The Akaike weight value w; = exp((AIC,in — AIC(7))/2) provides a measure for how much
better the best FEM-BV-VARX fit explains the data relative to the other FEM-BV-VARX models;
this quantity can also be interpreted as the posterior model probability w;; thus how less likely FEM-
BV-VARX model i is in explaining the data relative to the best fit model. The Akaike weight value
(or posterior model probability) w; = exp((AICin — AIC(OMD))/2) = 3.1083¢~ '8 reveals sta-
tistically overwhelming support of CO2 compared to stratospheric OMD in explaining the secular
trend in the cluster frequency of occurrence. The corresponding Akaike weights reveal that the CO4
forcing is significantly better than all other possible used combinations in explaining the observed
trends.

We tested the sensitivity of our results using different information criteria like the Bayesian Infor-

mation Criterion (BIC) (Burnham and Andgrsgﬁ, M) and the AIC corrected for finite sample size

(AICc) , ) and obtained very similar results in that CO2 was always

the forcing which best explained the secular trends. The next best fit varies according to the FEM-

BV-VARX setup but they typically include stratospheric ozone depletion and stratospheric sulphate
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aerosols. While our results are unclear as to the relative importance of stratospheric ozone depletion
over the other leading forcings, we find strong evidence for the role of C'O- in contributing to the
secular trends.

Fig.[2lalso shows the geographical structure of the two cluster states in terms of 500 hPa geopoten-
tial height and surface air temperature (SAT) (note that the upper atmospheric regime states are very
similar to the ones in|O’Kane et alJ 2013) which did not include external forcings in their analysis.).

The wave 3-blocked state (state 1) is associated at the surface with a cold anomaly over the Antarctic

Peninsula and a warm anomaly over the Ross Ice Shelf and the coast of Antarctica’s Victoria land
and also over South America in SAT. The zonal positive SAM state (state 2) is associated at the
surface with a warm anomaly over East Antarctica and Australia and a cold anomaly along the coast
of Antarctica’s Wilkes Land. The cluster states have very different surface temperature signatures.
With the strong trend towards the SAM state in recent decades, it is interesting to ask whether the
pattern of surface temperature trends over the Antarctic region reflect the SAM state surface signa-

ture. Fig. @] shows the trend in surface air temperature over the same period (1979-2010) calculated

from yearly averaged Had4Krig version 2.0.0 (Cowtan and Wa;J, |ZJ)M|) data. Because large trends
are evident in both blocking (wave 3) and SAM in all seasons (Fig.[3) we have used annual mean data
to calculate the SAT trends. The remarkable agreement between the SAM state surface temperature
anomaly pattern (Fig.2H) and the Had4Krig SAT trend pattern over Antarctica is further evidence of
the weakening of the wave 3 state and the shift towards the positive SAM state.

Our results are in contrast to earlier studies which found that ozone depletion is up to 9 times
more important than anthropogenic C'O5 concentrations (R nd Hai ,|M7|; |Smt_aﬂ, |2ij;
Lee and Fglds;gid, M). One possible explanation for this difference is that the earlier studies

mainly examined the austral summer season focusing on the response of the linear trend in the

zonal mean circulation towards the positive SAM phase and the poleward shift of the Hadley Cell
(Son et al], ZQMJ; Polvani et al], 2011; [Previdi and Pleani 2914]). Our study focuses on attributing

systematic changes in the circulation over the latter half of the NCEP reanalysis period employ-

ing a data-driven methodology that can infer causation (as explained above, FEM-BV-VARX is a
non-stationary extension of the Granger causality inference and can describe the standard Granger
causality as particular stationary case). Moreover we are not simply considering changes to the zonal
SAM index in the austral summer in isolation but are explicitly attributing changes to the entire SH
circulation including coherent features to all possible combinations of the relevant radiative forcings.
Previous studies mainly analyzed changes in the mean state and not in the frequencies of occurrence
or changes in structure. This might also partly explain why our findings differ from previous studies.

To increase the confidence in our results, we systematically examined the sensitivity of our results
to the treatment of the ozone data. By considering 365 day averaged as well as time lagged season-
ally varying OMD leads to more robust results because we account for the strong annual cycle of

stratospheric ozone and its delayed impact on the tropospheric circulation. Ozone has a strong sea-
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sonal component with OMD known to impact the tropospheric circulation (from the observational
record) in December-January. Thus, we repeated our analysis using lagged (0, 1, 2 and 3 months)
seasonally varying and 365 running mean OMD data. While we did find some sensitivity to lag

interval, our results were qualitatively unchanged.

4.1 Sensitivity to the Number of Model Parameters

O’Kane et alJ M) showed that, in order to accurately capture the dynamics and amplitude of
Southern Hemisphere mid-latitude atmospheric blocking regime transitions, any dimension reduc-
tion of the 500hPa atmospheric reanalysis data required including a minimum of 9 but more generally
the leading 20 PCs. Retaining these dominant modes makes the VARX model 20 dimensional with
the resulting FEM-BV-VARX, where each dimension communicates with every other dimension,
leading to quadratic growth in the number of VARX parameters in the matrix A and of dimension n.
This also applies to the stationary VARX model of the form:

MEM
ve=p+ Y Airiir+ Bui e @

i=1
twhere z; has a-the dimension n, u; has a-the dimension m and ¢; is i.i.d. Here the total number of
model parameters will be Ny,q-qpm = n+MEM s«n24+nxm. Withn =20and MEM > 2 resulting in
the order of many thousands of free model parameters. Since the length of the available observational
data is limited, a classical ill-posed problem manifests in the over-fitting of the data. This is the case
even for the standard stationary data sets. BIC and AIC implicitly see this problem, attributing these
models to much higher values of the information criteria than they would for more informative and
well-posed models. A more complete discussion can be found in|Me_tm¢r_e_t_aL] 2012).

In order to try and address this problem, and given that we have ascertained that a minimum

of 20 PCs should be retained, we have considered additional sensitivity experiments in which we
diagonalize the matrix A;. Since the only coupling between the different dimensions of z; is induced
by the off-diagonal elements of A;, diagonalizing is equivalent to a separate identification of the n
following problems with respect to (5), 4;(4,5), B(J,:): i.e.

MEM
Vi=ln: @(j)=p()+ Y Ai(Gi)ze—ir () + B(:) xus+ e ©)
i=1

It is straightforward to see that the total number of parameters in such a case will be growing linearly
with n as Npgram = n* (1 + M EM +m) (multiplied by K if considering non-stationary models
where K > 1). In sensitivity experiments with A; (7, 7) and for memory depths > 2 Cape Grim CO2
was again found to be optimal and results were insensitive to annealing steps > 4. In descending
order and for the diagonalized experiments the leading 5 combinations were found to be 1st Cape
Grim CO2, 2nd Cape Grim CO2 and Ozone, 3rd Optical thickness, 4th Sulphate aerosols and 5th

Stratospheric Ozone and where a memory depth of 2 days was found to be optimal.
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We further note that even such a diagonally-restricted VARX-model is much more general than

when applying multilinear regression
Tt =+ Bus + € 6)

which is a special case of VARX for K =1 and A; =0 Vj. Thus, even with the diagonality re-
450 striction, this analysis is more general than the stationary multilinear regression approaches, e.g.,
employed by i JZLKHI).

One might further seek to reduce the number of parameters such that the problem is not ill-posed.

While reducing the number of EOFs is a possible approach even a reduction from 20 to 9 EOFs (the
absolute minimum number of modes required to capture the Southern Hemisphere 3-wave blocking
455 state) will not sufficiently reduce the number of parameters such that the FEM-BV-VARX with full
A; matrix is well posed. Also in the Southern Hemisphere blocking is quite transient and, as shown
in figure 11 of Zidikheri et al] 2007), the difference between equilibrium zonal and blocked states

in terms of hemispheric zonal wind speeds averaged over a mid-latitude zonal band is only 3m.s~!

at 500mb as compared to the Northern Hemisphere which is 30ms~! an order of magnitude larger.
460 One strategy that was comprehensively tested was testing sensitivity to persistency over a large
range of values as N¢ from (1)-(2) is changed from 0 to N7. However, due to the transient nature
of the Southern Hemisphere atmospheric circulation the residuals (model errors) for the multiple-
state model are not significantly smaller than for the one state model. By including the number of
transitions in the definition of N4q., it is immediately obvious that the one-state model is always
465 preferred in such cases and taking No — N we simply converge on the one-state solution.
Clearly time-series analysis where persistency of the respective metastable states is weak repre-
sents a serious challenge. One approach we explored assumes that for fixed time-series x;, number of
metastable states K, and persistency N and for fixed local VARX parameters 6; = (u’, A%, ..., A% p1sy BY),
we can straightforwardly compute the respective Viterbi-path solving the linear programming ste
470 of the FEM-BV-procedure (see Step 2 of the FEM-B V-algorithm description on page 23 of
)). Since it is a linear minimization problem with convex constraints, it has a unique solution.
That is, one can uniquely recover the distinct Viterbi path T'(¢) = (y1(¢),...,vx(t)) knowing only the
full data series x; and preserving only Npqrqm = (K*(n+MEM *n24-n+m)+1) parameters while
preserving the value of persistency C'. Having computed the Viterbi path, one can also compute the
MEM 4

475 distinct values of the model errors & as & = (i, t) * (¢ — ' — Y207

;txt_jT — Biuy).

The sensitivity experiments we describe effectively bound the problem of over-fitting inherent in
analyzing atmospheric observational data. Importantly, we achieve the same results for diagonal-
ization (well-posed, with no cross terms) and for the full FEM-BV-VARX (ill conditioned, with all

cross terms).
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4.2 Internal Climate Variability

Next we examined whether intrinsic climate variability statistically significantly affected the regime
behavior. We find that the combination of ENSO and the first component of the multivariate MJO
index (MJO1) provide the major intrinsic driver of the observed atmospheric regime behavior. The
next best combinations are MJO1, MJOI1 together with eastern Indian Ocean dipole index and the
annual cycle together with MJOL1.

The low frequency variability of ENSO is highly correlated to the IPO and, as pointed out ear-
lier, the IPO shifted phase in the late 1970s coincident with the transition to reduced blocking.
Thus it is natural to expect ENSO to be a major component of internal variability driving changes
in the wave 3. The first component of the MJO index corresponds to enhanced convection over

the maritime continent (Indonesia, Philippines and Papua New Guinea) close to the tropical warm

pool (Wheeler and Hendon, [2004). This provides evidence for a tropical origin of SH mid- and
high-latitude climate variability on inter-annual to decadal time scales. Since SST changes occur on
longer time scales, this might open the opportunity for making skilful-skillful long-range predictions
on seasonal to decadal time scales. However, the external C'O forcing still explains the observed
secular trends best; thus, the intrinsic climate indices taken alone are not able to statistically explain
the secular trends.

We also find evidence that the Mt. Pinatubo volcanic eruption in 1991, as measured by strato-
spheric aerosol optical thickness, could have triggered a dramatic sudden increase in the regime
frequency of occurrence in its immediate aftermath. Fig. [3] shows that the eruption of Mt. Pinatubo
is followed by a sudden drop in the frequency of occurrence (1-year running mean) of the positive
phase of the SAM and a corresponding increase in blocking. In the long term this only delayed the
secular increase in the SAM. From Fig. [3J] we infer also that the response time scale to the erup-
tion is about 3-4 years. In contrast, the 1982 eruption of El Chichon did not cause a drop of the
frequency of occurrence of the positive SAM phase. This result is consistent with EOF analysis of
ERA-40 reanalysis data where a significant shift to negative stratospheric and surface SAM was

observed only after the Fuego and Mount Pinatubo eruptions (Kangghkgi 2!2111; gilcixnclL 21213).

Importantly, CMIP5 models have been shown to be unable to reproduce a realistic dynamical re-

sponse by the annular mode to even large intermittent volcanic signals like Mount Pinatubo, sug-

gesting that the extra-tropical circulations of current CMIP5 models are not able to simulate the

response to short lived abrupt perturbations in stratospheric forcing (Kangghkgi ZQMJ; gilcixnclL
201 j; Charlton-Perez et al], ).

5 Conclusions

Our examination of reanalysis data together with observed forcing data reveals that greenhouse gas

emissions are an important driver of SH circulation changes over the last few decades. Recent studies
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have suggested that stratospheric ozone depletion is many times more dominant than C'Os in driving
systematic changes in the SH mid-latitude circulation. However, our results highlight that for under-
standing the anthropogenic impact on SH circulation changes the delayed influence of stratospheric
ozone depletion is relevant, but not the dominant mechanism. Previous studies mainly focused on
the austral summer and the zonal response (SAM). Our results analyzing data from the whole year
suggest that other seasons and the changes in coherent features (wave 3 blocking), including im-
plications for anomalous surface warming of the high latitudes, need to be incorporated in order
to more completely understand and attribute SH circulation changes. Such studies are particularly
needed for evaluating and improving climate models. Temperature trends in the Antarctic region are
spatially heterogeneous. The pattern of these trends reflects the surface signature of the shift toward
a more zonal SAM circulation regime at the expense of the blocking regime.

Our observationally based results are also confirmed by numerical modeling studies ,
|2£)Dd; |ELej.La.s_e_t_al], |2Q]_3], |2Q]_§). Atmospheric general circulation model simulations forced by ob-
served SST fields (IRayLer_e_(_aL], |2JK13]) and C'O, concentrations but with climatological O3 have
been able to reproduce the observed SH circulation changes although the magnitude is underesti-

mated by about 40-50 percent (IELej_Las_e_t_al], |2Q]_i |2Q]_§). This provides support from a numerical

climate model for the observational data analysis presented in this manuscript.

Our finding that anthropogenic C'O5 is the dominant driver whereas stratospheric ozone depletion
makes a somewhat lesser contribution to the SH circulation changes over recent decades has impor-

tant implications for future SH climate change. In particular, it may be that the recovery of the-ezone

slobal-warminelessstronehy-than-many-climate-mode Peeties i

less relevance to changes in Southern Hemisphere extra-tropical circulation than projected in many
mgclg:\ligg%dﬂams_ﬂ_al], ; IShi , |2£)DAI). Our findings regarding the sudden but
short lived increase in blocking and negative SAM after the Mount Pinatubo eruption highlights the
potential of the climate system to abruptly change in response to large transient perturbations in
stratospheric forcing while emphasizing the dominant role of systematic changes in anthropogenic

C O3 on the climate.
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Centered and standardized forcing agents
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Figure 1. Forcing time series: Cape Grim CO2 (Dark blue), Sulphate aerosols (Green), stratospheric aeroso
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optical thickness (Red), lagged OMD (Blue), OMD (Magenta) and Solar constant (Khaki). Time series are

normalized by subtracting the respective mean and dividing by the respective standard deviation.
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Figure 2. Composites of 500 hPa geopotential height anomalies (units of m) over +979-26+61979-2010: a)
State 1 (Blocking) and b) State 2 (Positive SAM), and composites of surface air temperature (units of °C) c¢)
State 1 (Blocking), d) State 2 (Positive SAM). Only persistent states have been used which last at least 5 days.

22



time resident ncep

Autumn Winter
100 100

50 50 5
0 0
1940 1960 1980 2000 2020 1940 1960 1980 2000 2020
Spring Summer
100 100
“g’ -
© 50 50
[}
o -
0 0
1940 1960 1980 2000 2020 1940 1960 1980 2000 2020
Annual
100

50

0
1940 1960 1980 2000 2020

Figure 3. Percentage of time resident in either the hemispheric wave 3 state (black dashed) or the zonal state
(blue dashed) for the NCEP Reanalysis 500-hPa geopotential height field for all seasons and annual. The dashed

lines are a LOESS fit to the time averaged data where the solid lines indicate the values and averaging periods
of the data.
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Figure 4. Surface air temperature trend (° K /decade) over the period 1979-2010 calculated from the yearly
averaged Had4Krig version 2.0.0 data set.
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Figure 5. Smoothed (365-day backward running mean) Viterbi path of blocking (Black line) and SAM (Red

line) state and stratospheric aerosol optical thickness (Blue line).
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