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Abstract. A critical question in the global warming debate concerns the causes of the observed

trends of the Southern Hemisphere (SH) atmospheric circulation over recent decades. Secular trends

have been identified in the frequency of occurrence of circulation regimes, namely the positive phase

of the Southern Annular Mode (SAM) and the hemispheric wave 3 pattern which is associated with

blocking. Previous studies into the causes of these secular trends have either been purely model5

based, have not included observational forcing data or have mixed external forcing with indices

of internal climate variability impeding a systematic and unbiased attribution of the causes of the

secular trends. Most model studies also focused mainly on the austral summer season. However, the

changes to the storm tracks have occurred in all seasons and particularly in the austral winter and

early spring when mid-latitude blocking is most active and stratospheric ozone should not play a role.10

Here we systematically attribute the secular trends over the recent decades using a non-stationary

clustering method applied to both reanalysis and observational forcing data from all seasons. While

most previous studies emphasized the importance of stratospheric ozone depletion in causing austral

summer SH circulation trends, we show observational evidence that anthropogenic greenhouse gas

concentrations have been the major driver of these secular trends in the SAM and blocking when15

all seasons are considered. Our results suggest that the recovery of the ozone hole might delay the

signal of global warming less strongly than previously thought and that effects from all seasons are

likely crucial in understanding the causes of the secular trends.

1



1 Introduction

The SH climate and atmospheric circulation has undergone significant changes over the last few20

decades. It is important to understand its causes and anthropogenic contributions because this will

not only help to constrain future climate projections but is also essential to evaluate the ability of

the current generation of climate models to accurately simulate these changes. Previous attempts

at understanding the causes of SH climate change focused on changes in the mean climate and

its variance (Arblaster and Meehl, 2006; Turner et al., 2009; Thompson et al., 2011) during austral25

summer. Here we instead focus on changes in the frequency of occurrence of circulation regimes

(O’Kane et al., 2013; Lee and Feldstein, 2013) in all seasons. Such circulation regimes have a sig-

nificant impact on surface weather and climate. For instance, the frequency of occurrence of blocking

strongly affects temperature and precipitation (Risbey et al., 2009; Pook et al., 2013). Furthermore,

the secular trend towards the increased occurrence of the positive SAM phase, linked in the aus-30

tral summer to stratospheric ozone (Son et al., 2010; Polvani et al., 2011; Thompson et al., 2011;

Previdi and Polvani, 2014; Barnes et al., 2013), affects Antarctic temperatures and sea ice extent

(Turner et al., 2009). It also has to be noted that the way SAM is defined can impact on the outcomes

of any study using a SAM index (Ho et al., 2012). Hence, we use here a method which does not

presuppose any particular spatial structure on the resultant regimes and the particular form of the35

SAM we find is determined from the data.

Over the recent decades (1980-present) large changes in the SH storm track modes have occurred

in all seasons including the austral winter, when blocking is at its most active (Marques and Rao,

2000). The austral winter storm track changes manifest as reduced baroclinicity and a decrease in

the July zonal winds of about ≈ 10m/s in the subtropical jet relative to the earlier period 1950-40

1980 (Frederiksen and Frederiksen, 2007). The changes in the storm track modes provide a dynam-

ical mechanism for the observed systematic linear downward trends in the annual number of SH

blocking events (Weidenmann et al., 2002; O’Kane et al., 2013). Such events predominantly occur

in preferred locations about the Australian (110E-210E), East Pacific (260E-315E) and Indian Ocean

(20E-80E) sectors. These regions are associated with the ridges of the hemispheric wave 3 pattern45

(van Loon and Jenne, 2002; Trenberth and Mo, 1985).

A recent study (O’Kane et al., 2013) using non-stationary clustering has shown that, consistent

with reduced blocking activity post the late 1970s, the wave 3 pattern has weakened while the corre-

sponding zonal state (SAM) has strengthened and moved poleward (positive phase). While an early

study hypothesized that global warming is likely to change the frequency of occurrence of these50

circulation regimes but not its spatial patterns (Corti et al., 1999; O’Kane et al., 2013). Furthermore,

O’Kane et al. (2013) has shown that the spatial character of the SH persistent climate regimes has

changed significantly over the reanalysis period 1948-2009. Here we extend our earlier study of

SH circulation regimes to show observational evidence that when all seasons are considered these

changes are mainly in response to radiative forcing trends of anthropogenic CO2 emissions and55

2



to a much lesser degree to stratospheric ozone depletion. This is likely due to the fact that ozone

depletion plays a minor role outside of the austral summer season.

The main method of investigating the role of different forcings of the SH secular trends has

been coupled climate models (Stocker et al., 2013). Modeling studies (Arblaster and Meehl, 2006;

Turner et al., 2009; Son et al., 2010; Previdi and Polvani, 2014; Barnes et al., 2013) have identified60

stratospheric ozone depletion as an important driver of the observed austral summertime intensifica-

tion of the SAM over the recent decades. However, stratospheric ozone depletion is a highly seasonal

effect and can play no role in the austral winter-spring atmospheric circulation dynamics. The SH

storm tracks are equally active all year around (Trenberth, 1991). However, the austral wintertime is

the season when the observed changes to the storm track activity, namely reduced blocking and baro-65

clinicity of the subtropical jet (Frederiksen and Frederiksen, 2007), have been particularly evident

and cannot be solely attributed to the Ozone Mass Deficit (OMD).

Modeling studies of the effect of various individual and combined radiative forcings on the SH

circulation have largely compared trends in mean zonal indices, mainly the SAM index, without

consideration of related systematic changes in the spatially coherent zonally asymmetric features70

of the circulation (O’Kane et al., 2013). Such studies often rely on ensemble averaging of repeated

forcing experiments to enhance the forcing signal while simultaneously reducing intrinsic inter-

annual to decadal scale variability. The problem with this approach is the prohibitive computational

cost of coupled models, allowing only for relatively small ensemble sizes whose models often have

rather coarse resolutions and contain many biases.75

CMIP5 models are known to poorly represent mid-latitude blocking and to be limited in their

ability to capture important SH circulation responses such as the response of the SAM to large

volcanic eruptions (Karpechko, 2010; Gleixner, 2012; Charlton-Perez et al., 2013). Furthermore, re-

cent studies showed that very high horizontal resolutions (grid spacing of about 16km) are necessary

for climate models to accurately simulate the geographical structure and probability distribution of80

blocking and regional weather regimes (Dawson et al., 2012; Dawson and Palmer, 2014).

Given that the circulation changes are a key signature of the forcing for attribution, the main

aim of this paper is to complement model-based results with observationally based studies and to

try to separate natural variability from the forced response. For example, the late 1970s climate

shift occurred coincident with the shift in phase of the Inter-decadal Pacific Oscillation (IPO) and so85

separating the low frequency intrinsic ENSO behavior from a response to the constituent components

of the radiative forcing is an important problem.

Here we argue that most studies (see Thompson et al. (2011) for a review) attributing secular

trends in the SH circulation have exclusively focused on changes in the mean zonal circulation and

the trend toward positive SAM in the summer months. This has been largely attributed to ozone90

because model simulations with (without) ozone can (cannot) reproduce the magnitude of the trend

and because there is only a small trend towards the positive SAM in the winter, thus, the conclusion
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is that ozone is the major driver of the secular SAM trend. The mechanism proposed (Son et al.,

2010) is that stratospheric cooling/heating allows the high latitude tropopause to rise in the summer

enabling a poleward movement of the westerlies and consequently the Hadley Cell. Polvani et al.95

(2011) found that the only statistically significant relationship between the position of the Hadley

Cell and the midlatitude jet exists in the summer however, in the winter no such relationship exists

even though the winter time is when one expects such a relationship to be most robust. Here we

show results of a statistical analysis using zonally asymmetric fields which not only represent the

SAM pattern but also zonal asymmetries, i.e. blocking, which has also undergone secular changes100

over the last few decades.

In section 2 we present the data used in this study and in section 3 we describe the statistical

method used for the non-stationary clustering. In section 4 we present the attribution results and

also describe in detail our sensitivity tests regarding the number of parameters to be estimated and

demonstrate the robustness of our results. We provide our conclusions in section 5.105

2 Data

We use daily NCEP/NCAR reanalysis data (Kalnay et al., 1996) covering the period 1980-2007 for

500 hPa geopotential height and surface air temperature. We consider only anomalies with respect to

the climatological mean where the mean seasonal cycle has been removed but not detrended. Note,

that there is still an annual cycle in higher moments and in the frequency of occurrence present in the110

time series. While there are still large biases in the Antarctic region in the various reanalysis products

(Bromwich and Fogt, 2004; Bromwich et al., 2007) we have shown in a similar study (O’Kane et al.,

2015) that by using the Japanese 55-years Reanalysis (JRA-55) conducted by the Japan Meteorolog-

ical Agency (JMA) we found very similar results. Hence, our results do not depend strongly on the

used reanalysis data set.115

As forcing data we use the Cape Grim CO2 measurements (Steele et al., 2007), sulphate aerosols

(Skeie et al., 2011), stratospheric aerosol optical thickness (Bourassa et al., 2010) (available at

http://data.giss.nasa.gov/modelforce/strataer/), stratospheric Ozone mass deficit (Roscoe and Haigh,

2007) and the solar constant (Fröhlich, 2000). Most of the forcing data is in monthly mean resolution.

Since we are using daily reanalysis data for the clustering we expand the monthly forcing data to120

daily resolution by using the monthly mean values for each day of the respective month. Because

stratospheric ozone depletion has a strong annual cycle we carried out sensitivity analysis by lagging

the ozone mass deficit values by 1, 2 or 3 months and we also used a 365-day backward running

mean. The forcing time series are displayed in Fig. 1.

As internal modes of climate variability, we use an ENSO 3.4 index, the Madden-Julian Oscilla-125

tion (MJO) index, the Indian Ocean Dipole (IOD) and the East Indian Ocean Dipole mode indices

and the annual cycle here defined as (sin(2*π/365*t)). These indices describe tropical Sea Surface
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Temperature variability (ENSO, IOD) or an intrinsic mode of tropical variability (MJO). We consider

these to be intrinsic drivers of mid-latitude variability but recognize that they likely also respond to

changes in external radiative forcing such that a clear separation between cause and effect is diffi-130

cult. However it is still important to elucidate which role they play in the frequency changes of the

regime patterns. We do not consider Antarctic sea ice extent because of its marginal expansion and

because this slight expansion in extent is largely wind-driven (Holland and Kwok, 2012) and likely

a response to the changes in the large-scale circulation. Furthermore, the changes in sea ice extent

and area have been spatially heterogeneous, with increases in some areas like in the Ross sea and135

decreases in other areas like in the Bellingshausen/Amundsen seas (Parkinson and Cavalieri, 2012).

This is despite the trend towards the positive SAM; thus, it is unlikely that sea ice extent would have

a significant impact on the secular circulation trends.

3 Non-Stationary Clustering

We first give an intuitive description of the used clustering method before we explain it in much140

more detail in section 3.1. That section can be skipped by readers who are more interested in the

clustering results.

Many studies have provided evidence that the atmospheric circulation can be efficiently described

by a few persistent cluster states (Cheng and Wallace, 1993; Kimoto and Ghil, 1993; Corti et al.,

1999; Horenko et al., 2008; Majda et al., 2006; Franzke et al., 2008, 2009, 2011; O’Kane et al., 2013;145

Risbey et al., 2015). Conventional clustering methods such as k-means partition phase space using

heuristic algorithms, for example using Empirical Orthogonal Functions (EOFs), into an a priori ar-

bitrarily determined k sets of cluster centroids whose points within each cluster are close but where

each centroid is in some sense far apart from each other (Dawson and Palmer, 2014). Similarly, Self

Organizing Maps (SOMs; Johnson et al. (2008)) are typically based on minimizing the geometric150

(Euclidean) distance between the observational data and some specified set of recurrent patterns but

without consideration of the persistency of those states and mostly without considering the dynam-

ics and differences in dynamics within these states (Michelangeli et al., 1995). Furthermore, classical

clustering methods do not consider differences in the dynamics of the cluster states (Christiansen,

2007). Recently, Lee and Feldstein (2013) applied SOMs to reanalyzed daily zonal-mean zonal wind155

data for the austral summer period employing 4 SOM patterns with the DJF global mean temperature

taken as an indicator of the response to GHG forcing. They attribute the main response to ozone by

correlating the third SOM DJF zonal-mean zonal wind pattern with the November Antarctic ozone

index. One of the central problems in applying these methods to historical geophysical data is related

to the robustness issue, meaning that increasing the k away from k = 1 increases the total number160

of parameters - thereby increasing the risk of over-fitting. Concepts from information theory like
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Akaike Information Criterion (AIC) (Burnham and Anderson, 2002) are usually deployed to find

the optimal number of clusters k that allows avoiding over-fitting.

Our approach considers the hemispheric response of not only the zonal annular mode but also

systematic changes in wave 3 and blocking. We also use reanalyzed data but consider all possible165

combinations of the observed radiative forcings and relevant indices of internal variability. Moreover,

we make no a priori assumptions on the number of states and employ an approach that considers

persistency, changes in the dynamics and that is able to ascertain causation between the time series

and the external forcings.

Specifically, we use the non-stationary clustering method FEM-BV-VARX (Finite Element Method170

of time series analysis with Bounded Variation of model parameters; Horenko 2010; O’Kane et al.

2013; Risbey et al. 2015; Gerber and Horenko 2014) to systematically attribute circulation trends to

observed external forcings. In this study we assume that the large-scale circulation can be effectively

decomposed into a small set of distinct patterns or regime states. At each day the atmosphere is in

only one of these patterns where it might stay for some time before it switches to one of the other175

regime states. If we order the regime states from 1 to n we get an daily index (taking a value of 1

to n) denoting in which state the atmosphere is in at that particular day; this index is referred to in

the literature as the Viterbi path (Viterbi, 1967; Franzke et al., 2008). Now we construct a statistical

model which simultaneously estimates the geographical structure of these patterns and the evolution

of the switching between the patterns. We do this by minimizing the distance between the observed180

atmospheric circulation and the regime states (see next subsection for a more detailed description

of this procedure). Furthermore, we also allow external factors, like CO2, Ozone, or ENSO, to in-

fluence the evolution of the regime states. This is again done by minimizing the distance. This also

enables us to evaluate different forcing combinations. By using different forcing combinations and

looking for the statistical model with the minimum distance we can systematically find the forcings185

which are most likely responsible for the observed evolution of the regime states.

3.1 Overview of the FEM-BV-methodology.

The FEM-BV-VARX approach is a general variational framework that reduces to the well-known

methods of linear regression, Autoregressive models, k-means and Hidden Markov approaches when

more restrictive assumptions are made on the nature of the underlying data generating process190

(Lean and Rind, 2008; Bromwich et al., 2013; Roscoe and Haigh, 2007; Metzner et al., 2012). Fur-

thermore, as VARX is a tool for inferring the Granger-causality (Granger, 1988) (causation be-

tween time series variables in terms of predictability and not correlation), FEM-BV-VARX is a

more general approach which allows to go beyond the standard stationarity assumption of the usual

methods currently used for inferring cause-response relationships, e.g., in ecology (Sugihara et al.,195

2012), economics (Granger, 1988) and climate science (Mosedale et al., 2006; Wang et al., 2004).

The non-stationary FEM-BV-VARX framework contains the standard stationary VARX and the con-
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cept of standard Granger-causality as a particular special case and allows a systematic comparison

of causality relations inferred with and without the stationarity assumption for a given set of obser-

vational data. See Gerber and Horenko (2014) for more details explaining the relation of the FEM-200

BV-framework to standard stationary approaches of data-driven causality inference.

The approach we are following here is that we perform FEM-BV-VARX fits to all possible combi-

nations of the external forcings. Then we apply a standard information theoretic criterion: the Akaike

Information Criterion (AIC) (Akaike, 1998; Horenko, 2010; O’Kane et al., 2013; Risbey et al., 2015)

which is a measure of the relative goodness of fit of a model to data. That means, that AIC can205

be used to assess the goodness of fit relative to the number of fitted parameters or external fac-

tors used, allowing to find the model that is least over-fitting and best fitting the analyzed data

(Burnham and Anderson, 2002). This standard procedure can tell us which forcing combination is

best able to explain the secular circulation trends given the FEM-BV-VARX model.

The presence of unresolved external covariates (that are not statistically-independent or identically-210

distributed) may result in the non-stationarity and non-homogeneity of the resulting data-driven

statistical models and may manifest in the presence of secular trends and/or in regime-transition be-

havior. By covariate we not only mean external forcings but also unresolved physical processes and

scales (e.g. due to EOF truncation). This may then introduce problems when applying the standard

stationary approaches common to machine learning and statistics (de Wiljes et al., 2014). In the con-215

text of this paper, this issue plays a very important role when analyzing atmospheric data since many

of the potentially-relevant covariates might not be available explicitly in the set of covariates that

we have chosen for testing. Therefore, when deploying statistical time series analysis methods, they

should be capable of dealing with non-stationarity and non-homogeneity issues that emerge in the

models as a result of these systematically-missing (and potentially-important) external influences.220

Combining the concepts and ideas from pure and applied mathematics (such as Finite Element

Method (FEM) from numerics of partial differential equations, regularization in infinite-dimensional

spaces from the theory of ill-posed problems, stochastic calculus and theory of stochastic processes,

information criteria from information theory, embedding theorems from the theory of dynamical

systems), Horenko and colleagues developed a family of non-stationary, non-homogeneous and non-225

parametric time series analysis methods. This family of time series analysis techniques, which is

reviewed concisely by Metzner et al. (2012), allows for systematic time-dependent model identifica-

tion when assumptions of temporal stationarity or spatial homogeneity of some underlying statistics

are not justifiable. The main idea is based on regularized variational minimization of a scalar-valued

functional describing the error g (x(t),u(t),θ (t)) of some model for a given observation x(t) subject230

to available external impacts/covariates u(t) and characterized by the time-dependent set of model

parameters θ(t):

L(Θ,Γ) =
K∑

k=1

NT∑

t=1

γk(t)g (x(t),u(t),Θk)→min
Γ,Θ

, (1)
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subject to the constraints on Γ(t) = (γ1(t), · · · ,γK(t)):

K∑

k=1

γk(t) = 1 ∀t= 1, . . . ,NT235

γk(t) ≥ 0 ∀t= 1, . . . ,NT ,∀k = 1, . . . ,K,

|γk(·)|BV =

NT∑

t=2

|γk(t+ τ)− γk(t)| ≤NC , ∀k = 1, . . . ,K, (2)

where θ(t) =
∑K

k=1 γk(t)Θk, thereby allowing, the problem of statistical data analysis beyond the

usual stationarity assumption to be reformulated and algorithmically solved as a clustering problem

with K clusters, distance kernel g (x(t),u(t),θ (t)) and a regularization parameter NC , controlling240

the number of transition between different clusters in time (special case NC ≡ 0 and K ≡ 1 corre-

sponds to the homogeneous and stationary statistical problem). Imposed regularization confines the

bounded variation (BV) of the regime-switching process γk(t) in time, thereby making the temporal

change of inferred model parameters θ(t) more or less persistent. Changing the constraining variable

NC , one can test the whole range of possible statistical models, going from NC ≡ 0 (stationary/well-245

posed) to NC ≡NT (completely non-stationary/very ill-posed problems). The above variational

problem is non-convex since the parameters Θk are not known a priori and have to be inferred

simultaneously with the γk(t).

Many classical methods of data analysis and machine learning (e.g., multilinear statistical regres-

sion, K-means clustering, Gaussian Mixture Models (GMMs) and Hidden Markov Models (HMMs)250

Majda et al. (2006); Franzke et al. (2008)) can be derived as special cases of this FEM-BV-methodology.

E.g., HMMs are obtained additionally assuming that Γ is an output of a homogeneous Markov chain

and setting NC ≡NT . For more detailed information please see Section 2.h "Relation to classical

methods of unsupervised learning" in (Metzner et al., 2012). It is an important feature of the de-

ployed methodology, since it allows us to test different standard or more advanced methods in the255

context of the same theoretical and algorithmic FEM-BV-framework.

In the FEM-BV methodology, Finite Element Methods are employed in the numerical representa-

tion of indicator functions γk(t) for the time domain of applicability of different models from a com-

mon model class. Model class is defined by the choice of the particular analytical form of the error

function g (x(t),u(t),θ (t,j)), with the explicit VARX-form deployed in this paper will be given be-260

low. As shown above, these indicators are regularized using a Bounded Variation criterion, hence the

acronym “FEM-BV”. The choice of the model class depends on the type of data and a specific form

of error function g considered. Here we have implemented Vector Auto-Regressive models with eX-

ternal influences (VARX) which are defined as xt = µ(t)+
∑MEM

i=1 Ai(t)xt−iτ +B(t)φ(u(t))+ǫt,

parameters being θ(t) = (µ(t),A1(t), . . . ,AMEM (t),B(t)) and model error functional defined as265

g (x(t),u(t),Θk) = ‖|xt −µ(k) +
∑MEM

i=1 A
(k)
i xt−iτ +B(k)φ(u(t))‖|22 (please see Metzner et al.

(2012); Horenko (2010) for more details).
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The algebraic structure of the above problem allows us to deploy efficient numerical algorithms,

based on the iterative application of linear and/or quadratic programming problems (optimizing for

fixed Θ) followed by stationary/convex inference of Θ for a fixed Γ. This procedure is repeated270

iteratively, until the change inL(Θ,Γ) is less then some small a priori determined threshold, resulting

in monotonic minimization of L. Here we have used the Adaptive Finite Element Method from

the numerics of Partial Differential Equations (PDEs) (Horenko, 2010; de Wiljes et al., 2014) for

numerical minimization of the FEM-BV-problems (Eqns. 1-2).

The number of different spatio-temporal regimes/clusters K , the model parameters to be cho-275

sen within these regimes, such as memory depth and number of EOFs, and the indicator functions

γk(·) signaling activation of the respective models are all determined simultaneously in a global

optimization procedure. This yields a judicious compromise between low residuals in reproducing

the data of a training set on the one hand, and the demand for the smallest-possible overall number

of free parameters of the complete model on the other. The optimization is based on a new non-280

parametric modified Akaike Information Criterion (AIC) and may thus be interpreted as a construc-

tive implementation of “Occam’s Razor” for data analysis problems. Thereby, the resulting FEM-

BV-framework is essentially free of parameters that should be defined and tuned by the user. The

only parameter that is needed to be set externally is the overall number of optimization repetitions

with different randomly-chosen initial values Γ or Θ for parameter optimization (in the following re-285

ferred to as the number of annealing steps). Increasing this number reduces the probability of getting

trapped in one of the local minima of L (for NC > 0), simultaneously linearly increasing the amount

of computations. Therefore, the number of annealing steps should be chosen carefully, dependent on

the available computational resources and the size of the data to be analyzed.

3.2 Application of FEM-BV-VARX to atmospheric reanalysis and observed forcing data.290

We have chosen to examine a time series of 500 hPa geopotential height anomalies (seasonal cy-

cle subtracted) projected on the 20 leading Empirical Orthogonal Functions (EOFs) and u(t) where

taken as 32 different combinations of forcings (to be described in more detail below). Deploying the

FEM-BV-VARX method, comprehensive sensitivity tests were carried out for the cluster parameters

involving memory depth MEM and the number of annealing steps. Although the resulting optimal295

choice of forcing combinations has converged after 16 annealing steps, the model affiliation se-

quence already remained unchanged after 4 annealing steps. The results presented in the manuscript

are for 64 annealing steps. The optimal memory depth τ was 2 days, however the degree of memory

tested ranged from 0 to 5 days. Daily forcing agents were spline interpolated with no lag apart from

OMD. Every possible combination of forcing agents were considered including the observed OMD300

lagged by 0, 30, 60 and 90 days as well as a variant lagged averaged by a 365 day span (here we

artificially introduce persistency into the OMD time series). The optimal external radiative forcing

agent was found ultimately to correspond to the Cape Grim CO2 time-series.
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In order to choose the optimal model M we first used the Akaike Information Criteria (AIC)

AIC(M) =−2log(L(M))+ 2M. (3)305

Application of the AIC is equivalent to assuming that the scalar-valued squared model errors are

χ2-distributed and that the vector-valued FEM-BV-VARX model errors are Gaussian i.e. dependent

on the residuals having a log-normal distribution. This assumption was tested using a non-parametric

information-theoretic algorithm from Metzner et al. (2012) and found that for all of the model errors

ǫt the most optimal parametric family was indeed the log-normal distribution.310

Additionally the log-normal distribution was fitted to the model errors, the respective log-likelihoods

computed and used to calculate the AIC for the non-stationary models. The most informative non-

stationary model that emerged using the AIC criteria (with posterior probability almost equal to one

in each case) was the model with Cape Grim CO2 and memory of 3 days. Comparable results were

found using Akaike Information Criteria Corrected (AICc) and the Bayesian Information Criteria315

(BIC). The two latter criteria take also the size of the statistics into account and are derived under

very different mathematical assumptions than the AIC. This further confirmed our results, demon-

strating that they are not induced by the implicit assumptions necessary for the information criteria

applicability.

In our study we have included only a selected number of several external forcings. One might320

argue now that we have neglected some additional forcing (e.g. sea ice extent or the strength of the

Antarctic Circumpolar Current) which might be responsible for the observed secular trend. However,

if we would include something like sea ice extent into the set of forcings and would get a result

showing that sea ice extent is more statistically significant, then this would not contradict this study.

Simply because the variable γ (describing the switching process and describing the bias coming325

from all the unresolved covariates in our study) would be different from the one that we obtained in

this study. From our study we can guarantee that in a given set of explicit covariates we found the

one covariate that is most important (in the Granger-causality sense) - and, taking into account the

presence of the unresolved covariates - this covariate is CO2 (Metzner et al., 2012; de Wiljes et al.,

2014). All of the other eventually important covariates are sitting in the regime-switching process330

that we have also identified but were not explicitly represented in our results.

4 Attribution Results

A previous study with the FEM-BV-VARX method (O’Kane et al., 2013) revealed the existence of

statistically significant persistent circulation regimes corresponding to the positive phase of the SAM

and a hemispheric wave 3 blocking pattern (Fig. 2). That study also found evidence for significant335

secular trends in all seasons and, when the full reanalysis period 1948-2010 was considered, that a

distinct regime transition occurred around 1980 towards a preference for the positive SAM phase;

here shown in Fig. 3 in terms of time of residence in either a wave 3 blocked or a zonal (positive
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SAM) state. The increasingly frequent and persistent positive SAM pattern is accompanied by a

corresponding decrease in the frequency and persistence of the wave 3 hemispheric pattern, which340

features blocking in the Australian sector in particular. The increasing frequency of occurrence of

the zonal state and the corresponding decreasing frequency of occurrence of the wave 3 blocking

state are consistent with the study of O’Kane et al. (2013) and are, thus, statistically significant.

Furthermore, this behavior occurs throughout all 4 seasons and, thus, is very robust. However, the

changes are occurring slowest in the summer season. While in all other seasons the wave 3 blocking345

state was occurring the more often than the zonal state up to about 1980, this transition has been

much slower in the summer season and starting in 2000 both states occur about equally frequent

in the summer season. There has been a much more distinct regime transition during the other 3

seasons (Fig. 3).

Our FEM-BV-VARX analysis finds strong evidence that anthropogenic greenhouse gas concen-350

trations has caused the secular trends in the SAM and hemispheric wave 3 pattern. The clustering

analysis with CO2 forcing has the smallest AIC value AICmin =−63053 (which corresponds to

a Akaike weight of about 1). This denotes the most parsimonious explanation of the observational

data among all of the other fitted explanatory statistical models with all possible combinations of

considered forcings. Hence, providing the best compromise between the quality of fit to the data355

and a low number of parameters. The absolute value of the AIC is less meaningful, only its relative

size compared with the other tested models is useful. The next best forcing combinations relative to

the optimal choice are the solar constant (Akaike weight of 2.3550e−05) and stratospheric aerosol

(Akaike weight of 1.8217e−05).

The Akaike weight value wi = exp((AICmin −AIC(i))/2) provides a measure for how much360

better the best FEM-BV-VARX fit explains the data relative to the other FEM-BV-VARX models;

this quantity can also be interpreted as the posterior model probability wi; thus how less likely FEM-

BV-VARX model i is in explaining the data relative to the best fit model. The Akaike weight value

(or posterior model probability) wi = exp((AICmin−AIC(OMD))/2) = 3.1083e−18 reveals sta-

tistically overwhelming support of CO2 compared to stratospheric OMD in explaining the secular365

trend in the cluster frequency of occurrence. The corresponding Akaike weights reveal that the CO2

forcing is significantly better than all other possible used combinations in explaining the observed

trends.

We tested the sensitivity of our results using different information criteria like the Bayesian Infor-

mation Criterion (BIC) (Burnham and Anderson, 2002) and the AIC corrected for finite sample size370

(AICc) (Burnham and Anderson, 2002) and obtained very similar results in that CO2 was always

the forcing which best explained the secular trends. The next best fit varies according to the FEM-

BV-VARX setup but they typically include stratospheric ozone depletion and stratospheric sulphate

aerosols. While our results are unclear as to the relative importance of stratospheric ozone depletion
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over the other leading forcings, we find strong evidence for the role of CO2 in contributing to the375

secular trends.

Fig. 2 also shows the geographical structure of the two cluster states in terms of 500 hPa geopoten-

tial height and surface air temperature (SAT) (note that the upper atmospheric regime states are very

similar to the ones in O’Kane et al. (2013) which did not include external forcings in their analysis.).

The wave 3-blocked state (state 1) is associated at the surface with a cold anomaly over the Antarctic380

Peninsula and a warm anomaly over the Ross Ice Shelf and the coast of Antarctica’s Victoria land

and also over South America in SAT. The zonal positive SAM state (state 2) is associated at the

surface with a warm anomaly over East Antarctica and Australia and a cold anomaly along the coast

of Antarctica’s Wilkes Land. The cluster states have very different surface temperature signatures.

With the strong trend towards the SAM state in recent decades, it is interesting to ask whether the385

pattern of surface temperature trends over the Antarctic region reflect the SAM state surface signa-

ture. Fig. 4 shows the trend in surface air temperature over the same period (1979-2010) calculated

from yearly averaged Had4Krig version 2.0.0 (Cowtan and Way, 2014) data. Because large trends

are evident in both blocking (wave 3) and SAM in all seasons (Fig. 3) we have used annual mean data

to calculate the SAT trends. The remarkable agreement between the SAM state surface temperature390

anomaly pattern (Fig. 2d) and the Had4Krig SAT trend pattern over Antarctica is further evidence of

the weakening of the wave 3 state and the shift towards the positive SAM state.

Our results are in contrast to earlier studies which found that ozone depletion is up to 9 times

more important than anthropogenicCO2 concentrations (Roscoe and Haigh, 2007; Son et al., 2010;

Lee and Feldstein, 2013). One possible explanation for this difference is that the earlier studies395

mainly examined the austral summer season focusing on the response of the linear trend in the

zonal mean circulation towards the positive SAM phase and the poleward shift of the Hadley Cell

(Son et al., 2010; Polvani et al., 2011; Previdi and Polvani, 2014). Our study focuses on attributing

systematic changes in the circulation over the latter half of the NCEP reanalysis period employ-

ing a data-driven methodology that can infer causation (as explained above, FEM-BV-VARX is a400

non-stationary extension of the Granger causality inference and can describe the standard Granger

causality as particular stationary case). Moreover we are not simply considering changes to the zonal

SAM index in the austral summer in isolation but are explicitly attributing changes to the entire SH

circulation including coherent features to all possible combinations of the relevant radiative forcings.

Previous studies mainly analyzed changes in the mean state and not in the frequencies of occurrence405

or changes in structure. This might also partly explain why our findings differ from previous studies.

To increase the confidence in our results, we systematically examined the sensitivity of our results

to the treatment of the ozone data. By considering 365 day averaged as well as time lagged season-

ally varying OMD leads to more robust results because we account for the strong annual cycle of

stratospheric ozone and its delayed impact on the tropospheric circulation. Ozone has a strong sea-410

sonal component with OMD known to impact the tropospheric circulation (from the observational
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record) in December-January. Thus, we repeated our analysis using lagged (0, 1, 2 and 3 months)

seasonally varying and 365 running mean OMD data. While we did find some sensitivity to lag

interval, our results were qualitatively unchanged.

4.1 Sensitivity to the Number of Model Parameters415

O’Kane et al. (2013) showed that, in order to accurately capture the dynamics and amplitude of

Southern Hemisphere mid-latitude atmospheric blocking regime transitions, any dimension reduc-

tion of the 500hPa atmospheric reanalysis data required including a minimum of 9 but more generally

the leading 20 PCs. Retaining these dominant modes makes the VARX model 20 dimensional with

the resulting FEM-BV-VARX, where each dimension communicates with every other dimension,420

leading to quadratic growth in the number of VARX parameters in the matrix A and of dimension n.

This also applies to the stationary VARX model of the form:

xt = µ+

MEM∑

i=1

Aixt−iτ +But+ ǫt (4)

where xt has the dimension n, ut has the dimension m and ǫt is i.i.d. Here the total number of model

parameters will be Nparam = n+MEM ∗n2+n∗m. With n= 20 and MEM ≥ 2 resulting in the425

order of many thousands of free model parameters. Since the length of the available observational

data is limited, a classical ill-posed problem manifests in the over-fitting of the data. This is the case

even for the standard stationary data sets. BIC and AIC implicitly see this problem, attributing these

models to much higher values of the information criteria than they would for more informative and

well-posed models. A more complete discussion can be found in Metzner et al. (2012).430

In order to try and address this problem, and given that we have ascertained that a minimum

of 20 PCs should be retained, we have considered additional sensitivity experiments in which we

diagonalize the matrix Ai. Since the only coupling between the different dimensions of xt is induced

by the off-diagonal elements of Ai, diagonalizing is equivalent to a separate identification of the n

following problems with respect to µ(j),Ai(j,j),B(j, :): i.e.435

∀j = 1,n : xt(j) = µ(j)+

MEM∑

i=1

Ai(j,j)xt−iτ (j)+B(j, :) ∗ ut + ǫt (5)

It is straightforward to see that the total number of parameters in such a case will be growing linearly

with n as Nparam = n ∗ (1+MEM +m) (multiplied by K if considering non-stationary models

where K > 1). In sensitivity experiments with Ai(j,j) and for memory depths ≥ 2 Cape Grim CO2

was again found to be optimal and results were insensitive to annealing steps ≥ 4. In descending440

order and for the diagonalized experiments the leading 5 combinations were found to be 1st Cape

Grim CO2, 2nd Cape Grim CO2 and Ozone, 3rd Optical thickness, 4th Sulphate aerosols and 5th

Stratospheric Ozone and where a memory depth of 2 days was found to be optimal.
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We further note that even such a diagonally-restricted VARX-model is much more general than

when applying multilinear regression445

xt = µ+But+ ǫt (6)

which is a special case of VARX for K = 1 and Aj = 0 ∀j. Thus, even with the diagonality re-

striction, this analysis is more general than the stationary multilinear regression approaches, e.g.,

employed by Roscoe and Haigh (2007).

One might further seek to reduce the number of parameters such that the problem is not ill-posed.450

While reducing the number of EOFs is a possible approach even a reduction from 20 to 9 EOFs (the

absolute minimum number of modes required to capture the Southern Hemisphere 3-wave blocking

state) will not sufficiently reduce the number of parameters such that the FEM-BV-VARX with full

Ai matrix is well posed. Also in the Southern Hemisphere blocking is quite transient and, as shown

in figure 11 of Zidikheri et al. (2007), the difference between equilibrium zonal and blocked states455

in terms of hemispheric zonal wind speeds averaged over a mid-latitude zonal band is only 3ms−1

at 500mb as compared to the Northern Hemisphere which is 30ms−1 an order of magnitude larger.

One strategy that was comprehensively tested was testing sensitivity to persistency over a large

range of values as NC from (1)-(2) is changed from 0 to NT . However, due to the transient nature

of the Southern Hemisphere atmospheric circulation the residuals (model errors) for the multiple-460

state model are not significantly smaller than for the one state model. By including the number of

transitions in the definition of Nparam it is immediately obvious that the one-state model is always

preferred in such cases and taking NC →NT we simply converge on the one-state solution.

Clearly time-series analysis where persistency of the respective metastable states is weak repre-

sents a serious challenge. One approach we explored assumes that for fixed time-series xt, number of465

metastable states K , and persistencyNC and for fixed local VARX parameters θi = (µi,Ai
1, ...,A

i
MEM ,Bi),

we can straightforwardly compute the respective Viterbi-path solving the linear programming step

of the FEM-BV-procedure (see Step 2 of the FEM-BV-algorithm description on page 23 of Horenko

(2010)). Since it is a linear minimization problem with convex constraints, it has a unique solution.

That is, one can uniquely recover the distinct Viterbi path Γ(t) = (γ1(t), . . . ,γk(t)) knowing only the470

full data series xt and preserving onlyNparam = (K∗(n+MEM ∗n2+n∗m)+1) parameters while

preserving the value of persistency C. Having computed the Viterbi path, one can also compute the

distinct values of the model errors ǫ̃it as ǫ̃it = γ(i, t) ∗ (xt −µi−
∑MEM

j=1 Ai
jxt−jτ −Biut).

The sensitivity experiments we describe effectively bound the problem of over-fitting inherent in

analyzing atmospheric observational data. Importantly, we achieve the same results for diagonal-475

ization (well-posed, with no cross terms) and for the full FEM-BV-VARX (ill conditioned, with all

cross terms).
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4.2 Internal Climate Variability

Next we examined whether intrinsic climate variability statistically significantly affected the regime

behavior. We find that the combination of ENSO and the first component of the multivariate MJO480

index (MJO1) provide the major intrinsic driver of the observed atmospheric regime behavior. The

next best combinations are MJO1, MJO1 together with eastern Indian Ocean dipole index and the

annual cycle together with MJO1.

The low frequency variability of ENSO is highly correlated to the IPO and, as pointed out earlier,

the IPO shifted phase in the late 1970s coincident with the transition to reduced blocking. Thus485

it is natural to expect ENSO to be a major component of internal variability driving changes in

the wave 3. The first component of the MJO index corresponds to enhanced convection over the

maritime continent (Indonesia, Philippines and Papua New Guinea) close to the tropical warm pool

(Wheeler and Hendon, 2004). This provides evidence for a tropical origin of SH mid- and high-

latitude climate variability on inter-annual to decadal time scales. Since SST changes occur on longer490

time scales, this might open the opportunity for making skillful long-range predictions on seasonal

to decadal time scales. However, the external CO2 forcing still explains the observed secular trends

best; thus, the intrinsic climate indices taken alone are not able to statistically explain the secular

trends.

We also find evidence that the Mt. Pinatubo volcanic eruption in 1991, as measured by strato-495

spheric aerosol optical thickness, could have triggered a dramatic sudden increase in the regime

frequency of occurrence in its immediate aftermath. Fig. 5 shows that the eruption of Mt. Pinatubo

is followed by a sudden drop in the frequency of occurrence (1-year running mean) of the positive

phase of the SAM and a corresponding increase in blocking. In the long term this only delayed the

secular increase in the SAM. From Fig. 5 we infer also that the response time scale to the erup-500

tion is about 3-4 years. In contrast, the 1982 eruption of El Chichon did not cause a drop of the

frequency of occurrence of the positive SAM phase. This result is consistent with EOF analysis of

ERA-40 reanalysis data where a significant shift to negative stratospheric and surface SAM was

observed only after the Fuego and Mount Pinatubo eruptions (Karpechko, 2010; Gleixner, 2012).

Importantly, CMIP5 models have been shown to be unable to reproduce a realistic dynamical re-505

sponse by the annular mode to even large intermittent volcanic signals like Mount Pinatubo, sug-

gesting that the extra-tropical circulations of current CMIP5 models are not able to simulate the

response to short lived abrupt perturbations in stratospheric forcing (Karpechko, 2010; Gleixner,

2012; Charlton-Perez et al., 2013).

5 Conclusions510

Our examination of reanalysis data together with observed forcing data reveals that greenhouse gas

emissions are an important driver of SH circulation changes over the last few decades. Recent studies
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have suggested that stratospheric ozone depletion is many times more dominant than CO2 in driving

systematic changes in the SH mid-latitude circulation. However, our results highlight that for under-

standing the anthropogenic impact on SH circulation changes the delayed influence of stratospheric515

ozone depletion is relevant, but not the dominant mechanism. Previous studies mainly focused on

the austral summer and the zonal response (SAM). Our results analyzing data from the whole year

suggest that other seasons and the changes in coherent features (wave 3 blocking), including im-

plications for anomalous surface warming of the high latitudes, need to be incorporated in order

to more completely understand and attribute SH circulation changes. Such studies are particularly520

needed for evaluating and improving climate models. Temperature trends in the Antarctic region are

spatially heterogeneous. The pattern of these trends reflects the surface signature of the shift toward

a more zonal SAM circulation regime at the expense of the blocking regime.

Our observationally based results are also confirmed by numerical modeling studies (Miller et al.,

2006; Freitas et al., 2013, 2015). Atmospheric general circulation model simulations forced by ob-525

served SST fields (Rayner et al., 2003) and CO2 concentrations but with climatological O3 have

been able to reproduce the observed SH circulation changes although the magnitude is underesti-

mated by about 40-50 percent (Freitas et al., 2013, 2015). This provides support from a numerical

climate model for the observational data analysis presented in this manuscript.

Our finding that anthropogenicCO2 is the dominant driver whereas stratospheric ozone depletion530

makes a somewhat lesser contribution to the SH circulation changes over recent decades has impor-

tant implications for future SH climate change. In particular, it may be that the recovery of ozone has

less relevance to changes in Southern Hemisphere extra-tropical circulation than projected in many

modeling studies (Barnes et al., 2013; Shindell et al., 2004). Our findings regarding the sudden but

short lived increase in blocking and negative SAM after the Mount Pinatubo eruption highlights the535

potential of the climate system to abruptly change in response to large transient perturbations in

stratospheric forcing while emphasizing the dominant role of systematic changes in anthropogenic

CO2 on the climate.
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Figure 1. Forcing time series: Cape Grim CO2 (Dark blue), Sulphate aerosols (Green), stratospheric aerosol

optical thickness (Red), lagged OMD (Blue), OMD (Magenta) and Solar constant (Khaki). Time series are

normalized by subtracting the respective mean and dividing by the respective standard deviation.
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a) b)

c) d)

Figure 2. Composites of 500 hPa geopotential height anomalies (units of m) over 1979-2010: a) State 1

(Blocking) and b) State 2 (Positive SAM), and composites of surface air temperature (units of ◦C) c) State 1

(Blocking), d) State 2 (Positive SAM). Only persistent states have been used which last at least 5 days.
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Figure 3. Percentage of time resident in either the hemispheric wave 3 state (black dashed) or the zonal state

(blue dashed) for the NCEP Reanalysis 500-hPa geopotential height field for all seasons and annual. The dashed

lines are a LOESS fit to the time averaged data where the solid lines indicate the values and averaging periods

of the data.
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Figure 4. Surface air temperature trend (◦K/decade) over the period 1979-2010 calculated from the yearly

averaged Had4Krig version 2.0.0 data set.
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Figure 5. Smoothed (365-day backward running mean) Viterbi path of blocking (Black line) and SAM (Red

line) state and stratospheric aerosol optical thickness (Blue line).
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