
Response to reviewers comments

Response to „Interactive comment on “Efficient Bayesian inference for ARFIMA processes”
by T. Graves et al.“ by Anonymous Referee #1

The reviewers comments are in italics while our responses are in normal font.

B. Recommendation
In my opinion, the method presented in this paper is a novel way of applying Bayesian
reasoning thoroughly to the chosen problem of inferring LRD in time series data. The
authors have done a thorough job of grounding their approach on a rigorous mathematical
foundation and presenting the theory unambiguously and carefully.
That being said, the chosen geo-scientific example in the manuscript, viz. the Nile
river minima time series was given only a short, cursory treatment and no effort was
made to infer the results obtained by the method in this case. Given the focus of NPG
and its target audience of geoscientists, I feel that the authors could move some of the
mathematically intensive sections of their method to an appendix and thereafter devote
more space and attention to the application of the method to the Nile data and how the
method relates to physically understandable features of the Nile river system.
I thus recommend publication in NPG only after a few major shifts in presentation and
focus of the manuscript, which I hope the authors can address with a major revision.
Besides these points, there are certain technical issues with the presentation that I list
out below. I hope that these suggestions help the authors to better their manuscript.

Thank you very much for your positive comments. We have improved the presentation and
moved some mathematical parts into an appendix. We also enhanced the geophysical 
examples by including an analysis of the Central England Temperature time series.

C. General Comments
1. A first major point that could be improved is the focus given to the application of the
method developed by the authors to real data. In the current version, the manuscript
gives much space to the theory and constructed, illustrative examples which, even
though necessary and absolutely crucial, should ideally in the end lead to an equally
detailed example from the real-world with a discussion on how the method performs in
that case. I feel that, given the particular focus of NPG, which is at the juncture of theory
and application, it is important to properly discuss the relevant real-world implications
of the results obtained when applying the method to the Nile river minima for instance.
This is lacking in the current version. One such difficulty for me in understanding the
final application was that I was unable to relate the parameters p, d, and q to the
physical system that gave rise to the Nile data set.

As stated above we have included a new section were we discuss the Central England 
Temperature.
A physical interpretation of the parameters d, p and q has been elusive as the model was 
originally introduced in econometrics as phenomenological rather than physical or 
structural. The simplest explanation, which is generic rather than application specific, is 
that d describes the behavior on very long time scales whereas p and q describe 
fluctuations on shorter time scales. However, very recent progress is being made in 
statistics and physics on bridging continuous time linear dynamical systems and the 
discrete time ARFIMA models. We have noted this new work by citing Ślęzak and Weron 
[2015] as a representative entry point.



2. Another main issue for me was that there were discrepancies between the title,
abstract, and the numerical examples in the text in terms of the main focus. The title
indicated that the manuscript is about "Bayesian inference for ARFIMA processes",
the abstract suggested that the main focus was LRD inference, and finally the text
devoted quite some space to "short memory" as well. The authors should take care to
clearly state what are their objectives (which they seem to do even now) and thereafter,
relate every new topic/application/idea later in the text to the stated objectives (which
is lacking).

We have changed the manuscript title to „Efficient Bayesian inference for natural time 
series exhibiting both Short- and Long-Memory using a parametric ARFIMA process“. We 
also have changed long-range dependence to long-memory throughout the manuscript.

3. A last major issue that I have with the manuscript is that the Tables and Figures do
not have adequate captioning. The table captions do not indicate what are the various
parameters represented and for what kind of numerical experiments. The figures do
not have a clear "visual" legend and neither do the captions indicate what kind of 
numerical analysis gave rise to the figure. I feel that this is an extremely crucial part in
communicating results.

We agree with the reviewer that captions are very important. We have improved the 
captions of all tables and figures. 

D. Specific / Technical comments
1) TITLE: Perhaps the title is a too vague. Maybe the authors can consider giving a more
informative title?

We have changed the title into „Efficient Bayesian inference for natural time series 
exhibiting both Short- and Long-Memory using a parametric ARFIMA process“.

2) P574, L7: "Rather than Mandelbrot’s fractional Gaussian noise ..." There is no clear
comparison of the method from this study to Mandelbrot’s fractional noise. What is the
purpose of mentioning it here?

We have deleted this statement.

3) P574, L15: "We illustrate our new methodology on the Nile water level data..." What
are the main results? How do they enhance our understanding of the Nile river data
and LRD?

Thanks for this comment.  We have augmented the abstract to explain that we treat the 
Nile data and as a new addition the Central England Temperature time series, noting that 
comparisons are favorable and that the CET involves an extension to seasonal long 
memory. Summarizing the results for both analysis seemed inappropriate for the Abstract 
section. However we have added some brief discussion into our Introduction Section.  

4) P574, L26: "A standard definition..." even so, please cite a reference for this definition.

We now have added a few references here.

5) P576, L1: "It would offer the ability to marginalize out aspects of a model apparatus
and data, such as short memory..." Perhaps this idea is key to the extensions of short 



memory later in the text? If so, the authors should address this is more detail here and
later as well.

Yes, this is a key idea.  We have modified some of the text, in the following two paragraphs
actually, to clarify that designing a computationally efficient means of marginalizing out 
nuiscance parameters (seasonal and short memory terms) is a novel and important 
contribution in the paper. However, rather than additing detail into an already long 
introduction section, we reiterate later in the paper (just before Section 4.1) the importance
of this marginalization.

6) P576, L5: ARFIMA has not been defined before this in the main text (only in the 
abstract).

We now also define ARFIMA in the text. See line 52.

7) P576, L15: Why is it necessary to include/Cite statements about something being "too
hard to work with"?

We deleted this statement.

8) P576, L18: "many of the above drawbacks..." It is not clear to me how many drawbacks
were mentioned before this line.

We have changed this into „that the above drawbacks ...“

9) P577, L18: "2 Time series definitions and the ARFIMA model" I personally feel that
barring the definition of ARFIMA processes, the rest can moved to an appendix.

We have moved most of this section into appendix A.

10) P577, L22: You defined covariance function ngamma (k) as "Cov(X_t, X_{t + k})" but
what is "Cov". This definition is ambiguous and unclear.

„Cov“ is the standard covariance function in statistics, which can be found on Wikipedia 
under the heading „Covariance“. 

11) P577, L25: "the “backshift” operator" - Here and later, the use of quotes for terms
and definitions are a bit distracting. Maybe the authors can find some other way of
emphasis?

We have deleted most quotes for terms and definitions.

12) P579, L11: I understand that this is the LRD parameter "d" being referred to here, and
which was defined in the Introduction. But I find it hard to relate the |d| < 1/2 statement
to the preceding equation, i.e., Eq. 5.

Thanks for this comment. This statement, and the surrounding discussion, has been 
moved into the appendix. We have adjusted the text here to clarify that we are referring 
back to Equation (1), which defines the ARFIMA process, keeping in mind the immediately 
previous discussion on ACV/ACFs.

13) P580, L15: "Choosing p = q = 0 recovers FI(d )  ARFIMA(0, d , 0)". Is this the



definition of ARFIMA? If so, maybe it is possible to add a line stating this more clearly?

As noted above, ARFIMA is now defined in Equation (1), and the rest of this discussion 
occurs in the Appendix, i.e., much later.  

14) P582, L1: "3 Likelihood evaluation for Bayesian inference". I feel it might be better if 
the authors added a few words here about the interpretation of the parameters p, d, and
q of the ARFIMA process here (even at the cost of repetition) before starting with the
model inference part. Also, why is the starting point of the inference is a ARFIMA(0, d,0) 
process and not some other value of p and q? What kind of a process is this?

Thanks. We now clarify that the phrase „having no short-ranged components“ is what we 
mean by p=q=0 and that this corresponds to a fractionally integrated process.  For details 
we refer the reader to our new Appendix. This restriction is made for simplicitiy: if p or q 
were non-zero the process would be more complicated. This is, or course, generalized 
later.

15) P582, L9: "causal" in what sense? Maybe briefly mention here.

„Causal“ is a time series term.  We povide a definition in our appendix, although it can be 
found in any standard time series text, e.g., Brockwell & Davis.

16) P582, L24: It might be ambiguous to infer AR(P) dependence from a time series of
length n = P.

If by ambiguous you mean that there are too many degrees of freedom for accurate 
inference (of the variance for example), then this is of course correct under least squares 
or maximum likelhood inference.  However, under a proper prior for the AR coefficients, or 
indeed one that encourages sparsity, there is of course no problem technically with 
Bayesian inference.  It is possible, say if seasonal effects are present in the data but not 
explicitly accounted for in the model, then identifiability might be a concern.  But it is not 
more of a concern than it would be in a P < n setting.

17) P588, L5: "with chains moving between and within models..." It is unclear what this
means for someone unfamiliar with numerical techniques of Bayesian likelihood estimation
and MCMC methods.

Thanks.  We agree that it would help to be more explicit by linking „between“ moves to 
choices of p and q and „within“ moves to inference for phi and theta given p and q. The 
text has been adjusted accordingly.

18) P588, L7: What is "RJ"?

RJ denotes Reversible Jump. This is defined on line 219.

19) P588, L9: What is "FEXP"?

FEXP stands for Fractional Exponential Process. See line 224.

20) P589, L20: Does "MVN" mean Multivariate Normal"?

Yes. This is clarified where it is first used in Section 4.1.



21) P591, L11: What is a transdimensional move?

The only mention of „transdimensional“ that we could find is in Section 1 where the text 
reads „transdimensional MCMC, in which the model order (the p and q parameters in the 
ARFIMA model varies and, thus, the dimension of the problem).  In other words this is the 
same as a between model move, in point 17. To better connect the two passages we have 
added text to the passage referenced above to link „transdimentional“ to „between“ model 
moves.

22) P593, L3: The authors should maybe add one more line on why they choose the
Poisson distribution here, it is not clear from the parsimony argument they mention.

In the previous sentence we clarify that the more „complicated“ models are „larger“ ones 
(i.e., bigger p and/or q). Therefore, a prior that prefers parsimony is one that puts more 
weight on smaller models. We then adjust the text to read that „As a simple representative 
of potential priors that give greater weight to smaller models we prefer a truncated joint 
Poisson ...“  In other words, the particular form of the Poisson isn't important.

23) P595, L22: Is it not possible to show the results in a graphical way, such as a 
histogram instead of a table?

We think that our table provides a very concise presentation of our test results and would 
prefer to keep it. However, if the editor feels otherwise we are happy the exchange the 
table with a histogram.

24) P596, L9: Figure 1 legend is unclear. If I understand correctly, for each value of d_l,
there are 1024 estimates and thus 1024 "x" markers on the vertical axis - is this correct?
I suggest to use better captions to remove such ambiguities.

We have enhanced the caption of this figure to better describe the plot axis labels and the 
x-markers.  Thanks.

25) P600, L8: For the sake of reproducibility, I suggest that the authors state the source of
the data and from where it was obtained. Also, maybe they should devote a few lines
on the nature of the data, and preprocessing of the data such as removal of missing
values, outliers and the like.

The Nile data is part of the R package 'longmemo' and the CET time series can be 
downloaded from http://www.metoffice.gov.uk/hadobs/hadcet/
We now state this in the manuscript.

26) P601, L11: Reference missing to the dissertation cited here.

We have added this reference.

---

http://www.metoffice.gov.uk/hadobs/hadcet/


Response to „Interactive comment on “Efficient Bayesian inference for ARFIMA processes”
by T. Graves et al.“ by M. Crucifix (Referee)

1) p. 578 : Introduce new line before "fXtg is said to be an auto-"

Done.

2) p. 579 : Before the "restriction |d|<1/2" ... : the condition sounds awkward given
that the previous paragraphs concerns the ARMA process and not ARFIMA. Introduce
a sentence clarifying that we return to the discussion of the more general ARFIMA
process.

Done. Much of this has been moved to the appendix, and extra text has been added to 
clarify which part of that expression applies to the ARFIMA model, Eq (1), and which to the 
ACF discussion preceeding.

3) p. 581 : approximate expression after eq. 11 : there is a bit more than the Stirling’s
approximation involved here, since one also needs the asymptotic limit d  k.

Yes, there is more involved but we thought it might be a distraction to lay out the details 
considering we were summaryizing textbook results. In any case, these passages have 
been moved to our Appendix.

4) p. 581, l. 19 : "And noting that" : add "in this case" (to be specific).

Done.

5) p. 582, l. 11 : This "f" introduced here is not the same as the spectral density function
introduced eq. (5). Consider having distinct notations for the two quantities.

We have changed the notation for the spectral density function.

6) p. 582, l. 15 : You probably meant "there is no ":

Yes, we corrected this. Thank you for spotting this.

7) p. 583, l. 21 : Is this common practice to denote the statistical software "R" using the
mathbb font R? I have never seen this before.

Corrected. Thank you for spotting this.

8) p. 584, l. 1 : Make it clear that the likelihood is conditional on "xA".

Done.



9) p. 584, l. 23 : The authors may want to further justify their prior choice for  by
observing that the asymptotic limit is equivalent to a log-uniform prior.

Done, thanks.

10) p. 585, ll. 19-20 : The variables  and  may be mistaken for the process mean
and standard deviation. I would propose to introduce straight away the particular case
N(d; 2d) to avoid unnecessary confusion.

Done.

11) p. 585 eq 16 and following equations : the function -   introduced here seems to stand 
for exponential of the minus squared, and  the erf function. These symbols have thus not 
the same meaning as in equation (4). Please clarify and change notation if needed. The 
use of -   as in eq. (4) is reestablished on page 588, further strengthening the possible 
confusion.

Thanks for spotting this.  We have replaced Phi and phi, the usual standard normal CDF 
and PDF, by versions which have a N superscript in caligraphic font so they are less likeliy 
to be confused with the parameters to the ARMA model.

12) p. 586, l. 14 : "P = n is sensible". Please explain.

Sensible was a poor choice of words.  We have replaced this with a „for example“ clause.  
It is important to choose P large enough to retain low-frequency effects, however having P 
be too big (e.g., bigger than n) complicates inference because then there are more latent 
variable than actual data.  Choosing P = n is a common middle-ground in the literature.

13) p. 589 : words ’trivial’ and ’clearly’ may be felt as slightly annoying when trying to go
into the details of a notation that is not always clear and trivial.

We deleted the words trivial and clearly where appropriate.

14) p. 589, l. 26 : again clarify the meaning of  here.

Done, thanks.

15) p. 589, l. 28 : ’since the normalization terms would cancel’ : is that so obvious ?
Normalisation terms to do not cancel on eq. 17 and I must confess that it is not clear
to me why they cancel here.

The normalization constant is a function of d.  In Eq. 17, which is an acceptance ratio for d,
they don't cancel because the normalization constants in the numerator and denominator 
are for different d.  However the discussion here is for the short memory parameter, and so
d is fixed.  Therefore the constants in the numerator and denominator are the same.

16) p. 589, last sentence (wrapping on p. 590) : clumsy grammar

We have improved the wording here.

17) l. 592 l. 3 : "In other words" : withdraw



Done.

18) l. 594 : More explicit details need be given about how  and -   (bold  and ) are
determined. This is with this kind of detail in mind that one can see that supporting
code will be welcomed by readers wishing to reproduce the algorithms proposed here,
and use it for other applications.

It may not be attractive, but by „pilot tuning scheme“ we literally mean: try a value (e.g., 
sigma=1) and adjust based on observed acceptance rates, autocorrelations, effective 
sample sizes, from the resulting Markov chains. This is obviously more of an art than a 
science, but is standard fare in general purpose MCMC libraries for Bayesian inference, 
like BUGS. We are happy to provide our code, and in fact have provided it on several 
occations in the past when we have gotten requests. We would like to turn it into a R 
package but Tim Graves who developed the code now works outside of academia, so this 
might take some time.

19) l. 597 : "Those of Beran" clarify or add exact reference (papers by Beran are cited a
couple of times, but one needs to be specific and informative here)

We have added the specific references here.

20) l. 599 : Provide the true value of dl (sorry, if it is there I couldn’t see it).

Thanks, we have added the true values to the figure caption.

21) Figure 8 and 9: indicate true values of parameters when known (e.g.: d and 
 on Figure 9)

Done.  Of course, true values for the Nile are not known (Figure 9).
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Abstract. Many geophysical quantities, like atmospheric temperature, water levels in rivers, and

wind speeds, have shown evidence of long-range dependence (LRD). LRD means
:::
long

::::::::
memory

:::::
(LM).

:::
LM

:::::::
implies that these quantities experience non-trivial temporal memory, which potentially

enhances their predictability, but also hampers the detection of externally forced trends. Thus, it is

important to reliably identify whether or not a system exhibits LRD
:::
LM. In this paper we present5

a modern and systematic approach to the inference of LRD. Rather than Mandelbrot’s fractional

Gaussian noise, we use the more
::::
LM.

:::
We

:::
use

:::
the flexible Autoregressive Fractional Integrated Mov-

ing Average (ARFIMA) model which is widely used in time series analysis, and of increasing interest

in climate science. Unlike most previous work on the inference of LRD
:::
LM, which is frequentist in

nature, we provide a systematic treatment of Bayesian inference. In particular, we provide a new10

approximate likelihood for efficient parameter inference, and show how nuisance parameters (e.g.,

short memory effects) can be integrated over in order to focus on long memory parameters, and

hypothesis testing more directly. We illustrate our new methodology on the Nile water level data

:::
and

:::
the

::::::
Central

:::::::
England

:::::::::::
Temperature

::::::
(CET)

::::
time

:::::
series, with favorable comparison to the standard

estimators.
:::
For

::::
CET

:::
we

::::
also

::::::
extend

:::
our

::::::
method

::
to

::::::::
seasonal

::::
long

:::::::
memory.

:
15

1 Introduction

Many natural processes are sufficiently complex that a stochastic model is essential, or at the

very least an efficient description (Watkins, 2013). Such a process will be specified by several

1



properties, of which a particularly important one is the degree of memory in a time series, of-

ten expressed through a characteristic autocorrelation time over which fluctuations will decay20

in magnitude. In this paper, however, we are concerned with specific types of stochastic pro-

cesses that are capable of possessing ‘long memory ’, or “long-range dependence" (LRD
::::
long

:::::::
memory

::::
(LM) (Beran, 1994a; Palma, 2007; Beran et al., 2013). Long memory is the notion

of there being correlation between the present and all points in the past. A standard defini-

tion
:::::::::::::::::::::::::::::::::::::::
(Beran, 1994a; Palma, 2007; Beran et al., 2013) is that a (finite variance, stationary) process25

has long memory if its autocorrelation function (ACF) has power-law decay: ρ(·) such that

ρ(k)∼ cρ k2d−1 as k→∞, for some non-zero constant cρ, and where 0< d < 1
2 . The parameter d

is the memory parameter; if d= 0 the process does not exhibit long memory, while if − 1
2 < d < 0

the process is said to be anti-persistent.

The asymptotic power law form of the ACF corresponds to an absence of a characteristic decay30

timescale, in striking contrast to many standard (stationary) stochastic processes where the effect

of each data point decays so fast that it rapidly becomes indistinguishable from noise. An example

of the latter is the exponential ACF where the e-folding
:::
time

:
scale sets a characteristic correlation

time. The study of processes that do possess long memory is important because they exhibit unusual

properties, because many familiar mathematical results fail to hold, and because of the numerous35

examples of data sets where LRD
:::
LM

:
is seen.

The study of long memory originated in the 1950s in the field of hydrology, where studies of

the levels of the river Nile (Hurst, 1951) demonstrated anomalously fast growth of the rescaled

range of the time series. After protracted debates1 about whether this was a transient (finite time)

effect, the mathematical pioneer Benoît B. Mandelbrot showed that if one retained the assumption40

of stationarity, novel mathematics would then be essential to sufficiently explain the Hurst effect.

In doing so he rigorously defined the concept of long memory (Mandelbrot and Van Ness, 1968;

Mandelbrot and Wallis, 1968).

Most research into long memory and its properties has been based on classical statistical meth-

ods, spanning parametric, semi-parametric and non-parametric modeling (see Beran et al., 2013,45

for a review). Very few Bayesian methods have been studied, most probably due to computational

difficulties. The earliest works are parametric and include Koop et al. (1997), Pai and Ravishanker

(1998), and Hsu and Breidt (2003). If computational challenges could be mitigated, the Bayesian

paradigm would offer advantages over classical methods including flexibility in specification of pri-

ors (i.e., physical expertise could be used to elicit an informative prior). It would offer the ability to50

marginalize out aspects of a model apparatus and data, such as short memory or seasonal effects and

missing observations, so that statements about long memory effects can be made unconditionally.

Towards easing the computational burden, we focus on the ARFIMA
::::::::::::
Autoregressive

:::::::::
Fractional

::::::::
Integrated

:::::::
Moving

:::::::
Average

::::::::::
(ARFIMA)

:
class of processes (Granger and Joyeux, 1980; Hosking,

1For a detailed exposition of this period of mathematical history, see Graves et al. (2014).
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1981) as the basis of developing a systematic and unifying Bayesian framework for modeling a55

variety of common time series phenomena, with particular emphasis on detecting potential long

memory effects.
:
,
:::::::::
marginally

::::
(i.e.,

::::::::
averaging

::::
over

:::::
short

:::::::
memory

:::
and

:::::::
seasonal

:::::::
effects).

:
ARFIMA has

become very popular in statistics and econometrics because it is generalizable and its connection to

the ARMA family (and to fractional Gaussian noise ) is relatively transparent. A key property of

ARFIMA is its ability to simultaneously yet separately model long and short memory.60

Both Liseo et al. (2001) and Holan et al. (2009) argued, echoing a sentiment in the classical

statistics literature, that full parametric long memory models (like ARFIMA) are ‘too hard’ to work

with. Furthermore, often d is the only object of real interest, and consideration of a single class

of models, such as ARFIMA, is too restrictive. They therefore developed methods which have

similarities to classical periodograms.65

We think ARFIMA deserves another look—that many of the above drawbacks, to ARFIMA in

particular and Bayesian computation more generally, can be addressed with a careful treatment
::::
Here

::
we

:::::::
present

::
a
::::::::
Bayesian

::::::::::
framework

:::
for

:::
the

::::::::
efficient

:::
and

::::::::::
systematic

:::::::::
estimation

:::
of

:::
the

:::::::::
ARFIMA

:::::::::
parameters. We provide a new approximate likelihood for ARFIMA processes that can be computed

quickly for repeated evaluation on large time series, and which underpins an efficient MCMC70

scheme for Bayesian inference. Our sampling scheme can be best described as a modernization of a

blocked MCMC scheme proposed by Pai and Ravishanker (1998)—adapting it to the approximate

likelihood and extending it to handle a richer form of (known) short memory effects. We then

further extend the analysis to the case where the short memory form is unknown, which requires

transdimensional MCMC
:
,
::
in

:::::
which

:::
the

::::::
model

::::
order

::::
(the

:
p
::::
and

:
q
:::::::::
parameters

::
in
:::
the

:::::::::
ARFIMA

::::::
model)75

:::::
varies

::::
and,

::::
thus,

::
so

:::::
does

:::
the

::::::::
dimension

:::
of

:::
the

:::::::
problem. This aspect is similar to the work of Ehlers

and Brooks (2008) who considered the simpler ARIMA model class, and to Holan et al. (2009) who

worked with a nonparametric long memory process. Our contribution has aspects in common with

Eğrioğlu and Günay (2010) who presented a more limited method focused on model selection rather

than averaging. The advantage of averaging is that the unknown form of short memory effects can80

be integrated out, focusing on long-memory without conditioning on nuisance parameters.

The aim of this paper is to introduce an efficient Bayesian algorithm for the inference of the pa-

rameters of the ARFIMA(p,d,q) model, with particular emphasis on the LRD
:::
LM parameter d. Our

Bayesian inference algorithm has been designed in a flexible fashion so that, for instance, the inno-

vations can come from a wide class of different distributions; e.g., α-stable or t-distribution (to be85

published in a companion paper). The remainder of the paper is organized as follows. Section 2.1

summarizes the ARFIMA model required for our purposes. Section 2 discusses the important numer-

ical calculation of likelihoods, representing a hybrid between earlier classical statistical methods, and

our new contributions towards a full Bayesian approach. Section 3 describes our proposed Bayesian

framework and methodology in detail, focusing on long-memory only. Then, in Section 4, we con-90

sider extensions for additional short memory
:::
and

:::
the

::::::::::::
computational

:::::::::
techniques

:::::::
required

::
to

::::::::
integrate

3



::::
them

:::
out. Empirical illustration and comparison of all methods is provided in Section 5 . The

:::
via

:::::::
synthetic

::::
and

::::
real

::::
data

::::::::
including

:::
the

::::
Nile

:::::
water

:::::
level

::::
data

::::
and

:::
the

::::::
Central

::::::::
England

:::::::::::
Temperature

:::::
(CET)

::::
time

::::::
series,

::::
with

::::::::
favorable

:::::::::
comparison

::
to
:::
the

::::::::
standard

:::::::::
estimators.

::
In

:::
the

::::
case

::
of

:::
the

::::
Nile

::::
data

::
we

::::
find

::::::
strong

:::::::
evidence

:::
for

:::::
long

:::::::
memory.

::::
The

::::
CET

::::::::
analysis

:::::::
requires

:
a
:::::
slight

::::::::
extension

:::
to

::::::
handle95

:::::::
seasonal

:::
long

::::::::
memory,

:::
and

:::
we

::::
find

:::
that

:::
the

:::::::
situation

::::
here

::
is
:::::
more

:::::::
nuanced

::
in

:::::
terms

::
of

::::::::
evidence

:::
for

::::
long

:::::::
memory.

::::
The paper concludes with a discussion in Section 7 focused on the potential for further

extension.

2 Time series definitions and the ARFIMA model
:::::::::
Likelihood

::::::::::
evaluation

::::
for

:::::::::
Bayesian

::::::::
inference100

2.1
::::::::
ARFIMA

:::::
model

Because ARFIMA models have not yet been very widely used in the geosciences we
::
We

:
provide here

a brief review of them. Readers familiar with ARFIMA models can skip this section.
::
the

:::::::::
ARFIMA

::::::
model.

:::::
More

::::::
details

:::
are

:::::
given

::
in

::::::::
appendix

::
A.

:

We define an autocovariance ACVγ(·) of a weakly stationary process as γ(k) = Cov(Xt,Xt+k),105

where k is referred to as the (time) ‘lag’. The (normalized) autocorrelation function ACFρ(·) is

defined as: ρ(k) = γ(k)
γ(0) . Another useful time domain tool is the ‘backshift ’

:::
An

::::::::
ARFIMA

::::::
model

::
is

::::
given

:::
by:

:

Φ(B)(1−B)dXt = Θ(B)εt.
::::::::::::::::::::::

(1)

:::
We

:::::
define

:::
the

::::::::
backshift

:
operator B, where BXt =Xt−1, and powers of B are defined iteratively:110

BkXt = Bk−1(BXt) = Bk−1Xt−1 = · · ·=Xt−k. A stationary process {Xt} is said to be causal if

there exists a sequence of coefficients {ψk}, with finite total mean square
∑∞
k=0ψ

2
k <∞ such that

for all t, a given member of the process can be expanded as a power series in the backshift operator

acting on the ‘innovations’, {εt}:

Xt = Ψ(B)εt, where Ψ(z) =

∞∑
k=0

ψkz
k.115

The innovations are a white (i.e. stationary, zero mean, iid) noise process with variance σ2. Causality

specifies that for every t, Xt can only depend on the past and present values of the innovations

{εt} ::::::::::::::::::::::::::::
BkXt = Bk−1Xt−1 = · · ·=Xt−k.

::
Φ

::
is

:::
the

:::::::::::::
autoregressive

:::::::::
component

::::
and

::
Θ

:::
is

:::
the

:::::::
moving

::::::
average

::::::::::
component

:::
and

::::::::
constitute

:::
the

::::::::::::
short-memory

::::::::::
components

::
of

:::
the

:::::::::
ARFIMA

:::::
model.
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A process {Xt} is said to be an auto-regressive process of order p, , if for all t:120

Φ(B)Xt = εt, where Φ(z) = 1 +

p∑
k=1

φkz
k, and (φ1, . . . ,φp) ∈ Rp.

processes are invertible, stationary and causal if and only if Φ(z) 6= 0 for all z ∈ C such that |z| ≤ 1.

{Xt} is said to be a moving average process of order q, , if

Xt = Θ(B)εt, where Θ(z) = 1 +

q∑
k=1

θkz
k, and (θ1, . . . ,θp) ∈ Rq,

for all t.2 processes are stationary and causal, and are invertible if and only if Θ(z) 6= 0 for all z ∈ C125

such that |z| ≤ 1.

A natural extension of the AR and MA classes arises by combining them (Box and Jenkins, 1970) .

The process {Xt} is said to be an auto-regressive moving average (ARMA) processprocess of orders

p and q, , if for all t:

Φ(B)Xt = Θ(B)εt.130

Although there is no simple closed form for the ACV of an ARMA process with arbitrary p and q, so

long as the process is causal and invertible, then |ρ(k)| ≤ Crk, for k > 0, i.e., it decays exponentially

fast. In other words, although correlation between nearby points may be high, dependence between

distant points is negligible.

Before turning to ‘long memory’, we require one further result. Under some extra conditions,135

stationary processes with ACV γ(·) possess a spectral density function (SDF) f(·) defined such

that: γ(k) =
∫ π
−π e

ikλf(λ)dλ, ∀k ∈ Z. This can be inverted to obtain an explicit expression for the

SDF (e.g. Brockwell and Davis, 1991, §4.3) : f(λ) = 1
2π

∑∞
k=−∞ γ(k)e−ikλ, where −π ≤ λ≤ π.2

Finally, the SDF of an ARMA process is

f(λ) =
σ2

2π

|Θ(e−iλ)|2

|Φ(e−iλ)|2
, 0≤ λ≤ π.140

The restriction |d|< 1
2 is necessary to ensure stationarity; clearly if |d| ≥ 1

2 the ACF would not

decay. The continuity between stationary and non-stationary processes around |d|= 1
2 is similar to

that which occurs for process with |φ1| → 1 (such processes are stationary for |φ1|< 1, but the case

|φ1|= 1 is the non-stationary random-walk).

2Many authors define Φ(z) = 1−
∑
φkz

k . Our version emphasises connections between Φ and (A2–A3).
2Since ACV of a stationary process is an even function of lag, the above equation implies that the associated SDF is an

even function. One therefore only needs to be interested positive arguments: 0 ≤ λ≤ π.
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There are a number of alternative definitions of LRD, one of which is particularly useful, as145

it considers the frequency domain: A stationary process has long memory when its SDF follows

f(λ)∼ cfλ−2d, as λ→ 0+ for some positive constant cf , and where 0< d < 1
2 .

The simplest way of creatinga process which exhibits long memory is through the SDF. Consider

f(λ) = |1− eiλ|−2d, where 0< |d|< 1
2 . By simple algebraic manipulation, this is equivalently

f(λ) =
(
2sin λ

2

)−2d
, from which we deduce that f(λ)∼ λ−2d as λ→ 0+. Therefore, assuming150

stationarity, the process which has this SDF (or any scalar multiple of it) is a long memory process.

More generally, a process having spectral density

f(λ) =
σ2

2π

∣∣1− eiλ∣∣−2d
, 0< λ≤ π.

is called fractionally integratedwith memory parameter d, (Barnes and Allan, 1966; Adenstedt, 1974) .

The full trichotomy of negative, short, and long memory is determined solely by d.155

In practice this modelis of limited appeal to time series analysts because the entire memory

structure is determined by just one parameter, d. One often therefore generalizes it by taking any

short memory SDF f∗(·), and defining a new SDF: f(λ) = f∗(λ)
∣∣1− eiλ∣∣−2d

, 0≤ λ≤ π. An

obvious class of short memory processes to use this way is ARMA. Taking f∗ from yields so-called

auto-regressive fractionally integrated moving average process with parameter d, and orders p and q160

(), having SDF:

f(λ) =
σ2

2π

|Θ(e−iλ)|2

|Φ(e−iλ)|2
|1− eiλ|−2d, 0≤ λ≤ π.

Choosing p= q = 0 recovers ≡ .

Practical utility from the perspective of (Bayesian) inference demands finding a representation

in the temporal domain. To obtain this, consider the operator (1−B)d for real d >−1, which is165

formally defined using the generalized form of the binomial expansion (Brockwell and Davis, 1991, Eq. 13.2.2) :

(1−B)d=:

∞∑
k=0

π
(d)
k B

k, where π
(d)
k = (−1)k

1

Γ(k+ 1)

Γ(d+ 1)

Γ(d− k+ 1)
.

From this observation, one can show that Xt = (1−B)−dZt, where {Zt} is an ARMA process, has

SDF . The operator (1−B)d is called the ‘fractional differencing’ operator since it allows a degree of170

differencing between zeroth and first order. The process {Xt} is fractionally ‘inverse-differenced’,

i.e.it is an ‘integrated’ process. The operator is used to redefine both the and more general processes

in the time domain. A process {Xt} is an process if for all t: (1−B)dXt = εt. Likewise, a process
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{Xt} is an process if for all t: Φ(B)(1−B)dXt = Θ(B)εt, where Φ and Θ are given in and

respectively.175

Finally, to connect back to our first definition of long memory, consider the ACV of the process.

By using the definition of spectral density to directly integrate , and an alternative expression for

π
(d)
k :::::

These
:::
are

::::::
defined

::
in

:::::
more

:::::
detail

::
in

:::::::
appendix

::
A
::::
and in

π
(d)
k =

1

Γ(k+ 1)

Γ(k− d)

Γ(−d)
,

one can obtain the following representation of the ACV of the process:180

γd(k;σ) = σ2 Γ(1− 2d)

Γ(1− d)Γ(d)

Γ(k+ d)

Γ(1 + k− d)
.

Because the parameter σ2 is just a scalar multiplier, we may simplify notation by defining

γd(k) = γd(k;σ)/σ2, whereby γd(·)≡ γd(·;1). Then the ACF is:

ρd(k) =
Γ(1− d)

Γ(d)

Γ(k+ d)

Γ(1 + k− d)
,

from which Stirling’s approximation gives ρd(k)∼ Γ(1−d)
Γ(d) k2d−1, confirming a power-law185

relationship for the ACF. Finally, note that can be used to represent as an process, asXt +
∑∞
k=1π

(d)
k Xt−k = εt.

And noting that ψ(d)
k = π

(−d)
k , leads to the following analog: Xt =

∑∞
k=0

1
Γ(k+1)

Γ(k+d)
Γ(d) εt−k.

::::::::::::
Graves (2013) .

:

3 Likelihood evaluation for Bayesian inference

For nowwe190

2.1
:::::::::
Likelihood

:::::::
function

:::
For

::::
now,

:
restrict our attention to (a Bayesian )

:
a

::::::::
Bayesian analysis of an ARFIMA(0,d,0) process,

having no short-ranged ARMA components
:::::::::
(p= q = 0), placing emphasis squarely on the mem-

ory parameter d.
::
As

:::
we

:::::::
explain

::
in

:::
our

::::::::
Appendix

::::
the

:::::::
resulting

:::::::
process

::
is

:::::::
identical

::
to

::
a
::::::::::
fractionally

::::::::
integrated

:::::::
processes

::::
with

:::::::
memory

:::::::::
parameter

::
d.

:
195

Here we develop an efficient and new scheme for evaluating the (log) likelihood, via approxi-

mation. This scheme is very flexible in the sense that it seamlessly allows to use different noise

distributions (like a t-distribution instead of a Gaussian; this will be reported elsewhere). Through-

out, suppose that we have observed the vector x = (x1, . . . ,xn)> as a realization of a stationary,

causal and invertible ARFIMA(0,d,0) process {Xt} with mean µ ∈ R. The innovations will be as-200

sumed to be independent, and taken from a zero-mean location-scale probability density f(·;0,σ,λ),
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which means the density can be written as f(x;δ,σ,λ)≡ 1
σf
(
x−δ
σ ;0,1,λ

)
. The parameters δ and σ

are called the ‘location ’ and ‘scale ’
:::::::
location

:::
and

::::
scale

:
parameters respectively. Them–dimensional

λ is a ‘shape ’
:::::
shape

:
parameter (if it exists, i.e. m> 0). An common example is the Gaussian

N (µ,σ2), where δ ≡ µ and there is
::
no λ. We classify the four parameters µ, σ, λ, and d, into three205

distinct classes: (1) the mean of process, µ; (2) innovation distribution parameters, υ = (σ,λ); and

(3) memory structure, d. Together, ψ = (µ,υ,ω), where ω will later encompass the short-range

parameters p and q.

Our proposed likelihood approximation uses a truncated AR(∞) approximation (cf. Haslett and

Raftery (1989)). We first re-write the AR(∞) approximation of ARFIMA(0,d,0) to incorporate the210

unknown parameter µ, and drop the (d) superscript for convenience:Xt−µ= εt−
∑∞
k=1πk(Xt−k−

µ). Then we truncate this AR(∞) representation to obtain an AR(P ) one, with P large enough to

retain low frequency effects, e.g., P = n. We denote: ΠP =
∑P
k=0πk and, with π0 = 1, rearrange

terms to obtain the following modified model:

Xt = εt + ΠPµ−
P∑
k=1

πkXt−k. (2)215

It is now possible to write down a conditional likelihood. For convenience the notation xk =

(x1, . . . ,xk)> for k = 1, . . . ,n will be used (and x0 is interpreted as appropriate where necessary).

Denote the unobserved P–vector of random variables (x1−P , . . . ,x−1,x0)> by xA (in the Bayesian

context these will be ‘auxiliary’
::::::::
auxiliary, hence ‘A’). Consider the likelihood L(x|ψ) as a joint

density which can be factorized as a product of conditionals. Writing gt(xt|xt−1,ψ) for the density220

of Xt conditional on xt−1, we obtain L(x|ψ) =
∏n
t=1 gt(xt|xt−1,ψ).

This is still of little use because the gt may have a complicated form. However by further condi-

tioning on xA, and writing ht(xt|xA,xt−1,ψ) for the density ofXt conditional on xt−1 and xA, we

obtain: L(x|ψ,xA) =
∏n
t=1ht(xt|xA,xt−1,ψ). Returning to (2) observe that, conditional on both

the observed and unobserved past values,Xt is simply distributed according to the innovations’ den-225

sity f with a suitable change in location: Xt|xt−1,xA ∼ f
(
·;
[
ΠPµ−

∑P
k=1πkxt−k

]
,σ,λ

)
. Then

using location-scale representation:

ht(xt|xA,xt−1,ψ)≈ f

(
xt;

[
ΠPµ−

P∑
k=1

πkxt−k

]
,σ,λ

)
(3)

≡ 1

σ
f

(
ct−ΠPµ

σ
;0,1,λ

)
, where ct =

P∑
k=0

πkxt−k, t= 1, . . . ,n.

Therefore, L(x|ψ,xA)≈ σ−n
∏n
t=1 f

(
ct−ΠPµ

σ ;λ
)

, or equivalently:230

`(x|ψ,xA)≈−n logσ+

n∑
t=1

log

{
f

(
ct−ΠPµ

σ
;λ

)}
. (4)
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Evaluating this expression efficiently depends upon efficient calculation of c= (c1, . . . , cn)t and

logf(·). From (3), c is a convolution of the augmented data, (x,xA), and coefficients depending on

d, which can be evaluated quickly in R
::
the

::
R

::::::::
language

:::
for

::::::::
statistical

:::::::::
computing via convolve via

FFT. Consequently, evaluation of the conditional
::
on

:::
xA:

likelihood in the Gaussian case costs only235

O(n logn)—a clear improvement over the ‘exact ’
::::
exact

:
method. Obtaining the unconditional like-

lihood requires marginalization over xA, which is analytically infeasible. However this conditional

form will suffice in the context of our Bayesian inferential scheme, presented below.

3 A Bayesian approach to long memory inference

We are now ready to consider Bayesian inference for ARFIMA(0,d,0) processes. Our method can240

be succinctly described as a modernization of the blocked MCMC method of Pai and Ravishanker

(1998). Isolating parameters by blocking provides significant scope for modularization which helps

::
to accommodate our extensions for short memory. Pairing with efficient likelihood evaluations al-

lows much longer time series to be entertained than ever before. Our description begins with ap-

propriate specification of priors which are more general than previous choices, yet still encourages245

tractable inference. We then provide the relevant updating calculations for all parameters, including

those for auxiliary parameters xA.

We follow earlier work (Koop et al., 1997; Pai and Ravishanker, 1998) and assume a priori in-

dependence for components of ψ. Each component will leverage familiar prior forms with diffuse

versions as limiting cases. Specifically, we use a diffuse Gaussian prior on µ: µ∼N (µ0,σ
2
0), with250

σ0 large. The improper flat prior is obtained as the limiting distribution when σ0→∞: pµ(µ)∝ 1.

We place a gamma prior on the precision τ = σ−2 implying a Root-Inverse Gamma distribution

R(α0,β0) for σ, with density f(σ) = 2
Γ(α)β0

α0σ−(2α0+1) exp
(
−β0

y2

)
, σ > 0. A diffuse/improper

prior is obtained as the limiting distribution when α0,β0→ 0: pσ(σ)∝ σ−1
::::::
which,

::
in

::
the

::::::::::
asymptotic

::::
limit,

::
is

:::::::::
equivalent

::
to

:
a
:::
log

:::::::
uniform

:::::
prior. Finally, we specify d∼ U

(
− 1

2 ,
1
2

)
.255

Updating µ: Following Pai and Ravishanker (1998), we use a symmetric random walk (RW) MH

update with proposals ξµ ∼N (µ,σ2
µ), for some σ2

µ. The acceptance ratio is

Aµ(µ,ξµ) =

n∑
t=1

log

{
f

(
ct−ΠP ξµ

σ
;λ

)}
−

n∑
t=1

log

{
f

(
ct−ΠPµ

σ
;λ

)}
+ log

[
pµ(ξµ)

pµ(µ)

]
(5)

under the approximate likelihood.

Updating σ: We diverge from Pai and Ravishanker (1998) here, who suggest independent MH260

with moment-matched inverse gamma proposals, finding poor performance under poor moment

estimates. We instead prefer a Random Walk (RW) Metropolis-Hastings (MH) approach, which

we conduct in log space since the domain is R+. Specifically,
:::
we set: logξσ = logσ+ υ, where

υ ∼N (0,σ2
σ) for some σ2

σ . ξσ|σ is log-normal and we obtain: q(σ;ξσ)
q(ξσ;σ) = ξσ

σ . Recalling (5) the MH
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acceptance ratio under the approximate likelihood is265

Aσ(σ,ξσ) =

n∑
t=1

log

{
f

(
ct−ΠPµ

ξσ
;λ

)}
−

n∑
t=1

log

{
f

(
ct−ΠPµ

σ
;λ

)}
+ log

[
pσ(ξσ)

pσ(σ)

]
+ (n− 1) log

[
σ

ξσ

]
.

The MH algorithm, applied alternately in a Metropolis-within-Gibbs fashion to the parameters µ

and σ, works well. However actual Gibbs sampling is an efficient alternative in this two-parameter

case (i.e., for known d, see Graves (2013)).270

Update of d: Updating the memory parameter d is far less straightforward than either µ or σ. Re-

gardless of the innovations’ distribution, the conditional posterior πd|ψ−d(d|ψ−d,x) is not amenable

to Gibbs sampling. We use RW proposals from truncated Gaussian ξd ∼N (a,b)(µ,σ2)
:::::::::::::::
ξd ∼N (a,b)(d,σ2

d),

with density

f(x;µ,σ,a,b) =
1

σ

φ[(x−µ)/σ]

Φ[(b−µ)/σ]−Φ[(a−µ)/σ]

φ(N )[(x−µ)/σ]

Φ(N )[(b−µ)/σ]−Φ(N )[(a−µ)/σ]
:::::::::::::::::::::::::::::

, a < x < b.,

(6)275

:::::
where

:::::
Φ(N )

::::
and

::::
φ(N )

::::
are

:::
the

:::::::
standard

:::::::
normal

::::
CDF

::::
and

::::
PDF

:::::::::::
respectively.

:
In particular, we use

ξd|d∼N (−1/2,1/2)(d,σ2
d) via rejection sampling from N (d,σ2

d) until ξd ∈ (− 1
2 ,

1
2 ). Although this

may seem inefficient, it is perfectly acceptable: as an example, if σd = 0.5 the expected number

of required variates is still less than 2, regardless of d. More refined methods of directly sampling

from truncated normal distributions exist—see for example Robert (1995)—but we find little added280

benefit in our context.

A useful cancellation in q(d;ξd)/q(ξd;d) obtained from (6) yields

Ad = `(x|ξd,ψ−d)−`(x|d,ψ−d)+log

[
pd(ξd)

pd(d)

]
+log

 Φ[( 1
2 − d)/σd]−Φ[(− 1

2 − d)/σd]

Φ[( 1
2 − ξd)/σd]−Φ[(− 1

2 − ξd)/σd]
Φ(N )[( 1

2 − d)/σd]−Φ(N )[(− 1
2 − d)/σd]

Φ(N )[( 1
2 − ξd)/σd]−Φ(N )[(− 1

2 − ξd)/σd]
::::::::::::::::::::::::::::::::::

 .
Denote ξct =

∑P
k=0 ξπkxt−k for t= 1, . . . ,n, where {ξπk} are the proposed coefficients {π(ξd)

k };π(d)
k =

1
Γ(k+1)

Γ(k−d)
Γ(−d) . Denote ξΠP =

∑P
k=0 ξπk . Then in the approximate case:285

Ad =

n∑
t=1

log

{
f

(
ξct − ξΠP µ

σ
;λ

)}
−

n∑
t=1

log

{
f

(
ct−ΠPµ

σ
;λ

)}

+ log

[
pd(ξd)

pd(d)

]
+ log

 Φ[( 1
2 − d)/σd]−Φ[(− 1

2 − d)/σd]

Φ[( 1
2 − ξd)/σd]−Φ[(− 1

2 − ξd)/σd]
Φ(N )[( 1

2 − d)/σd]−Φ(N )[(− 1
2 − d)/σd]

Φ(N )[( 1
2 − ξd)/σd]−Φ(N )[(− 1

2 − ξd)/σd]
::::::::::::::::::::::::::::::::::

 .
(7)
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Optional update of xA: When using the approximate likelihood method, one must account for the

auxiliary variables xA, a P–vector (where
::::
e.g., P = nis sensible). We find that, in practice, it is not

necessary to update all the auxiliary parameters at each iteration. In fact the method can be shown to290

work perfectly well, empirically, if we never update them, provided they are given a sensible initial

value (such as the sample mean of the observed data x̄). This is not an uncommon tactic in the long

memory (big-n) context (e.g., Beran, 1994b); for further discussion refer to Graves (2013, Appendix

C).

For a full MH approach, we recommend an independence sampler to ‘backward project ’295

::::::::
backward

::::::
project the observed time series. Specifically, first relabel the observed data: y−i = xi+1,

i= 0, . . .n− 1. Then use the vector (y−(n−1), . . . ,y−1,y0)t to generate a new vector of length n,

(Y1, . . . ,Yn)t where Yt via (2): Yt = εt + ΠPµ−
∑n
k=1πkYt−k, where the coefficients {π} are

determined by the current value of the memory parameter(s). Then take the proposed xA, denoted

ξxA , as the reverse sequence: ξx−i = yi+1, i= 0, . . . ,n− 1. Since this is an independence sampler,300

calculation of the acceptance probability is straightforward. It is only necessary to evaluate the

proposal density q(ξxA |x,ψ). But this is easy using the results from section 2. For simplicity, we

prefer uniform prior for xA.

Besides simplicity, justification for this approach lies primarily in is preservation of the auto-

correlation structure—this is clear since the ACF is symmetric in time. The proposed vector has305

a low acceptance rate, and the potential remedies (e.g., multiple-try methods) seem unnecessarily

complicated given the success of the simpler method.

4 Extensions to accommodate short memory

Simple ARFIMA(0,d,0)
::::::
models are mathematically convenient but have limited practical applica-

bility because the entire memory structure is determined by just one parameter, d. Although d is310

often of primary interest, it may be unrealistic to assume no short memory effects. This issue is often

implicitly acknowledged since semi-parametric estimation methods, such as those used as compara-

tors in Section 5.1, are motivated by a desire to circumvent the problem of specifying precisely (and

inferring) the form of short memory (i.e., the values of p and q in an ARIMA model). Full parametric

Bayesian modeling of ARFIMA(p,d,q) processes represents an essentially untried alternative, pri-315

marily due to computational challenges. Related, more discrete, alternatives show potential. Pai and

Ravishanker (1998) considered all four models with p,q ≤ 1, whereas Koop et al. (1997) considered

sixteen with p,q ≤ 3.

Such approaches, especially ones allowing larger p,q, can be computationally burdensome as

much effort is spent modeling unsuitable processes towards a goal (inferring p,q) which is not of320

primary interest (d is). To develop an efficient, fully-parametric, Bayesian method of inference that

properly accounts for varying models, and to marginalize out these nuisance quantities, we use
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reversible-jump (RJ) MCMC (Green, 1995). We extend the parameter space to include the set of

models (p and q), with chains moving between
:::
(i.e.,

::::::::
changing

::
p
::::::
and/or

::
q)

:::
and

::::::
within

:::::::::
(sampling

::
φ

and within
:
θ
:::::
given

::::::::
particular

:::::
fixed

:
p
:::
and

:::
q) models, and focus on the marginal posterior distribution325

of d obtained by (Monte Carlo) integration over all models and parameters therein. RJ methods
:
,

:::::
which

:::::
mixes

::::::::
so-called

::::::::::::::
transdimensional

:
,
::::::::::::
between-model

::::::
moves

::::
with

:::
the

::::::::::
conventional

::::::::::::
within-model

::::
ones,

:
have previously been applied to both auto-regressive models (Vermaak et al., 2004), and full

ARMA models (Ehlers and Brooks, 2006, 2008). In the long memory context, Holan et al. (2009)

applied RJ to FEXP processes
::::::::
Fractional

::::::::::
Exponential

:::::::::
processes

::::::
(FEXP). However for ARFIMA, the330

only related work we are aware of is by Eğrioğlu and Günay (2010) who demonstrated a promising

if limited alternative.

Below we show how the likelihood may be calculated with extra short-memory components when

p and q are known, and subsequently how Bayesian inference can be applied in this case. Then, the

more general case of unknown p and q via RJ is described.
::::
The

:::::
result

::
is

:
a
::::::
Monte

:::::
Carlo

:::::::::
inferential335

::::::
scheme

::::
that

:::::
alows

:::::
short

:::::::
memory

::::::
effects

::
to

:::
be

:::::::::::
marginalized

:::
out

:::::
when

:::::::::::
summarizing

:::::::::
inferences

:::
for

::
the

:::::
main

::::::::
parameter

:::
of

:::::::
interest:

::
d,

::
for

::::
long

::::::::
memory.

:

4.1 Likelihood derivation and inference for known short memory

Recall that short memory components of an ARFIMA process are defined by the AR and MA poly-

nomials, Φ and Θ respectively, (see Section 2.1). Here, we distinguish between the polynomial, Φ,340

and the vector of its coefficients, φ= (φ1, . . . ,φp). When the polynomial degree is required explic-

itly, bracketed superscripts will be used; Φ(p), φ(p), Θ(p), θ(p), respectively.

We combine the short memory parameters φ and θ with d to create a single ‘memory ’
:::::::
memory

parameter, ω = (φ,θ,d). For a given unit-variance ARFIMA(p,d,q) process, we denote its ACV by

γω(·), with γd(·) and γφ,θ(·) those of the relevant unit-variance ARFIMA(0,d,0) and ARMA(p,q)345

processes respectively. The SDF of the unit-variance ARFIMA(p,d,q) process is written as fω(·),

and its covariance matrix is Σω .

An ‘exact ’
::::
exact

:
likelihood evaluation requires an explicit calculation of the ACV γω(·), however

there is no simple closed form for arbitrary ARFIMA processes. Fortunately, our proposed approx-

imate likelihood method of section 2 can be ported over directly. Given the coefficients {π(d)
k } and350

polynomials Φ and Θ, it is trivial
::::::::::::
straightforward

:
to calculate the {π(ω)

k } coefficients required by

again applying the numerical methods of Brockwell and Davis (1991, §3.3).

To focus the exposition, consider the simple, yet useful, ARFIMA(1,d,0) model where the full

memory parameter is ω = (d,φ1). Because the parameter spaces of d and φ1 are independent, it

is simplest to update each of these parameters separately; d with the methods of section 3 and φ1355

similarly: ξφ1 |φ1 ∼N (−1,1)(φ1,σ
2
φ1

), for some σ2
φ1

. In practice however, the posteriors of d and φ1

typically exhibit significant correlation so independent proposals are inefficient. One solution would

be to parametrize to some d∗ and orthogonal φ∗2, but the interpretation of d∗ would not be clear. An
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alternative to explicit reparametrisation is to update the parameters jointly, but in such a way that

proposals are aligned with the correlation structure. This will ensure a reasonable acceptance rate360

and mixing.

To propose parameters in the manner described above, a two-dimensional, suitably truncated

Gaussian random walk, with covariance matrix aligned with the posterior covariance, is required. To

make proposals of this sort, and indeed for arbitraryω in larger p and q cases, requires sampling from

a hypercuboid-truncated MVN
::::::::::
Multivariate

::::::
Normal

:::::::
(MVN)

:
N (a,b)
r (ω,Σω), where (a,b) describe365

the coordinates of the hypercube. We find that rejection sampling based unconstrained similarly pa-

rameterized MVNs samples [e.g., using mvtnorm (Genz et al., 2012)] works well, because in the

RW setup the mode of the distribution always lies inside the hypercuboid. Returning to the spe-

cific ARFIMA(1,d,0) case, clearly r = 2, b = (0.5,1) and a =−b, is appropriate
::
are

::::::::::
appropriate

::::::
choices. Calculation of the MH acceptance ratio Aω(ω,ξω) is trivial; it simply requires numer-370

ical evaluation of Φr(·; ·,Σω)
:::::::::::
Φ

(N )
r (·; ·,Σω), e.g., via mvtnorm, since the ratios of hypercuboid

normalization terms would cancel. We find that initial
:::::
values φ[0] chosen uniformly in C1, i.e. the

interval (−1,1), and d[0] are systematically from {−0.4,−0.2,0,0.2,0.4} work well. Any choice of

prior for ω can be made, although we prefer flat (proper) priors.

The only technical difficulty is the choice of proposal covariance matrix Σω . Ideally, it would375

be aligned with the posterior covariance—however this is not a priori known. We find that running

a ‘pilot ’
::::
pilot chain with independent proposals via N (a,b)

r (ω,σ2
ωIr) can help choose a Σω . A

rescaled version of the sample covariance matrix from the pilot posterior chain, following Roberts

and Rosenthal (2001), works well [see Section 5.2].

4.2 Unknown short memory form380

We now expand the parameter space to include models M ∈M, the set of ARFIMA models

with p and q short memory parameters, indexing the size of the parameter space Ψ(M). For our

‘transdimensional moves’
:::::::::::::
transdimensional

::::::
moves, we only consider adjacent models, on which we

will be more specific later. For now, note that the choice of bijective function mapping between

models
:::::
model

:
spaces (whose Jacobian term appears in the acceptance ratio), is crucial to the success385

of the sampler. To illustrate, consider transforming from Φ(p+1) ∈ Cp+1 down to Φ(p) ∈ Cp. This

turns out to be a non-trivial problem
:
, however because, for p > 1, Cp has a very complicated shape.

The most natural map would be: (φ1, . . . ,φp,φp+1) 7−→ (φ1, . . . ,φp). However there is no guarantee

that the image will lie in Cp. Even if the model dimension is fixed, difficulties are still encountered;

a natural proposal method would be to update each component of φ separately but, because of390

the awkward shape of Cp, the ‘allowable ’
:::::::
allowable

:
values for each component are a complicated

function of the others. Nontrivial proposals are required.

A potential approach is to parametrize in terms of the inverse roots (poles) of Φ, as advocated by

Ehlers and Brooks (2006, 2008): By writing Φ(z) =
∏p
i=1(1−αiz), we have that φ(p) ∈ Cp⇐⇒
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|αi|< 1 for all i. This looks attractive because it transforms Cp into Dp =D× ·· ·×D (p times)395

where D is the open unit disc, which is easy to sample from. But this method has serious drawbacks

when we consider the RJ step. To decrease dimension, the natural map would be to remove one of

the roots from the polynomial. But because it is assumed that Φ has real coefficients (otherwise the

model has no realistic interpretation), any complex αi must appear as conjugate pairs. There is then

no obvious way to remove a root; a contrived method might be to remove the conjugate pair and400

replace it with a real root with the same modulus, however it is unclear how this new polynomial is

related to the original, and to other aspects of the process, like ACV.

Reparametrisation of Φ and Θ

We therefore propose reparametrisation Φ (and Θ) using the bijection between Cp and (−1,1)p ad-

vocated by various authors, e.g., Marriott et al. (1995) and Vermaak et al. (2004). To our knowledge,405

these methods have not previously been deployed towards integrating out short memory components

in Bayesian analysis of ARFIMA processes.

Monahan (1984) defined a mapping φ(p)←→ϕ(p) recursively as follows:

φ
(k−1)
i =

φ
(k)
i −φ

(k)
k φ

(k)
k−i

1−
(
φ

(k)
k

)2 , k = p, . . . ,2, i= 1, . . . ,k− 1. (8)

Then set ϕ(p)
k = φ

(k)
k for k = 1, . . . ,p. The reverse recursion is given by:410

φ
(k)
i =

 ϕ
(p)
k for i= k k = 1, . . . ,p

φ
(k−1)
i +ϕ

(p)
k φ

(k−1)
k−i for i= 1, . . . ,k− 1 k = 2, . . . ,p

.

Note that φ(p)
p = ϕ

(p)
p . Moreover, if p= 1, the two parameterizations are the same, i.e. φ1 = ϕ1 (con-

sequently the brief study of ARFIMA(1,d,0) in section 4.1 fits in this framework). The equivalent

parametrized form for θ is ϑ. The full memory parameter ω is parametrized as Ω̄ = (−1/2,1/2)×
(the image of Cp,q). However recall that in practice, Cp,q will be assumed equivalent to Cp×Cq , so415

the parameter space is effectively: Ω̄ = (−1/2,1/2)× (−1,1)p+q .

Besides mathematical convenience, this bijection has a very useful property (Kay and Marple,

1981, cf.) which helps motivate its use in defining RJ maps. In other words, if
::
If d= q = 0, using

this parametrization for ϕ when moving between different values of p allows one to automatically

choose processes that have very closely matching ACFs at low lags. In the MCMC context this is420

useful because it allows the chain to propose models that have a similar correlation structure to the

current one. Although this property is nice, it may be of limited value for full ARFIMA models,

since the proof of the main result does not easily lend itself to the inclusion of either a MA or long

memory component. Nevertheless, our empirical results similarly indicate a ‘near-match ’ for a full

ARFIMA(p,d,q) model.425
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Application of RJ MCMC to ARFIMA(p,d,q) processes

We now use this reparametrisation to efficiently propose new parameter values. Firstly, it is neces-

sary to propose a new memory parameter $ whilst keeping the model fixed. Attempts at updating

each component individually suffer from the same problems of excessive posterior correlation that

were encountered in section 4.1. Therefore the simultaneous update of the entire r = (p+ q+ 1)-430

dimensional parameter$ is performed using the hypercuboid-truncated Gaussian distribution from

definition ξ$|$ ∼NHrr ($,Σ$), where Hr defines the r-dimensional rectangle. The covariance

matrix Σ$ is discussed in some detail below. The choice of prior p$(·) is arbitrary. Pai and Ravis-

hanker (1998) used a uniform prior for ω which has an explicit expression in the$ parametrization

(Monahan, 1984). However, their expression is unnecessarily complicated since a uniform prior over435

Ω holds no special interpretation. We therefore prefer uniform prior over Ω̄: p$($)∝ 1,$ ∈ Ω̄.

Now consider the ‘between-models ’ transition. We must first choose a model prior pM(·). A

variety of priors are possible; the simplest option would be to have a uniform prior over M, but

this would of course be improper. We may in practice want to restrict the possible values of p,q

to 0≤ p≤ P and 0≤ q ≤Q for some P ,Q (say 5), which would render the uniform prior proper.440

However even in this formulation, a lot of prior weight is being put onto
::::::
(larger)

::::
more

:
complicated

models which, in the interests of parsimony, might be undesired. We
::
As

::
a
::::::
simple

::::::::::::
representative

::
of

:::::::
potential

::::::
priors

:::
that

::::
give

:::::::
greater

::::::
weight

::
to

:::::::
smaller

::::::
models

:::
we

:
prefer a truncated joint Poisson

distribution with parameter λ:pM(p,q)∝ λp+q

p!q! I(p≤ P,q ≤Q).

Now, denote the probability of jumping from model Mp,q to model Mp′,q′ by U(p,q),(p′,q′). U445

could allocate non-zero probability for every model pair, but for convenience we severely restrict

the possible jumps (whilst retaining irreducibility) using a two-dimensional bounded birth and death

process. Consider the subgraph of Z2: G= {(p,q) : 0≤ p≤ P, 0≤ q ≤Q}, and allocate uniform

non-zero probability only to neighboring values, i.e., if and only if |p−p′|+ |q−q′|= 1. Each point

in the ‘body ’
::::
body

:
of G has four neighbors; each point on the ‘line boundaries ’

:::
line

::::::::::
boundaries450

has three; and each of the four ‘corner points ’
:::::
corner

::::::
points has only two neighbors. Therefore the

model transition probabilities U(p,q),(p′,q′) are either 1/4, 1/3, 1/2, or 0.

Now suppose the current (p+ q+ 3)-dimensional parameter is ψ(p,q), given by ψ(p,q) =

(µ,σ,d,ϕ(p),ϑ(q)), using a slight abuse of notation. Because the mathematical detail of the AR

and MA components are almost identical, we consider only the case of de
:::::::::
decreasing/increasing455

p by 1 here; all of the following remains valid if p is replaced by q, and ϕ replaced by ϑ. We

therefore seek to propose a parameter ξ(p+1,q) = (ξµ, ξσ, ξd,ξ
(p+1)
ϕ ,ξ

(q)

ϑ
), that is somehow based

on ψ(p,q). We further simplify by regarding the other three parameters (µ, σ, and d) as having the

same interpretation in every model, choosing ξµ = µ, ξσ = σ and ξd = d. For simplicity we also set

ξ
(q)

ϑ
= ϑ(q). Now consider the map ϕ(p)→ ξ

(p+1)
ϕ . To specify a bijection we ‘dimension-match ’ by460

adding in a random scalar u. The most obvious map is to specify u so that its support is the interval

(−1,1) and then set: ξ(p+1)
ϕ =

(
ϕ(p),u

)
. The corresponding map for decreasing the dimension is

15



ϕ(p+1)→ ξ
(p)
ϕ is ξ(p)

ϕ =
(
ϕ

(p+1)
1 , . . . ,ϕ

(p+1)
p

)
. In other words, we

:::
We

:
either add, or remove the

final parameter, whilst keeping all others fixed with the identity map, so the Jacobian is unity.

The proposal q(u|ψ(p,q)) can be made in many ways—we prefer the simple U(−1,1). With these465

choices the RJ acceptance ratio is

A= `(p′,q′)(x|ξ(p′,q′))− `(p,q)(x|ψ(p,q)) + log

{
pM(p′, q′)

pM(p,q)

U(p′,q′),(p,q)

U(p,q),(p′,q′)

}
,

which applies to both increasing and decreasing dimensional moves.

Construction of Σ$: Much of the efficiency of the above scheme, including within- and between-

model moves, depends on the choice of Σ$ ≡ Σ(p,q), the within-model move RW proposal covari-470

ance matrix. We first seek an appropriate Σ(1,1), as in section 4.1, with a pilot tuning scheme. That

matrix is shown on the left below, where we’ve ‘blocked it out ’

Σ(1,1) =


σ2
d σd,ϕ1

σd,ϑ1

σ2
ϕ1

σϕ1,ϑ1

σ2
ϑ1

 , Σ(p,q) =


σ2
d Σd,ϕ(p) Σ

d,ϑ(q)

Σϕ(p),ϕ(p) Σϕ(p),ϑ(q)

Σϑ(q)
,ϑ(q)

 ,
(9)

(where each block is a scalar) so that we can extend this idea to the (p,q) case in the obvious

way—on the right above—where Σϕ(p),ϕ(p) is a p× p matrix, Σϑ(q)
,ϑ(q) is a q× q matrix, etc.475

If either (or both) p,q = 0 then the relevant blocks are simply omitted. To specify the various sub-

matrices, we propose ϕ2, . . . ,ϕp with equal variances, and independently of d,ϕ1,ϑ1, (and similarly

for ϑ2, . . . ,ϑq). In the context of (9), the following hold:

Σd,ϕ(p) =

(
σd,ϕ1 0

)
, Σ

d,ϑ(q) =

(
σd,ϑ1 0

)
,

Σϕ(p),ϕ(p) =

 σ2
ϕ1

0

0 σ2
ϕIp−1

 , Σϑ(q)
,ϑ(q) =

 σ2
ϑ1

0

0 σ2
ϑIq−1

 ,480

Σϕ(p),ϑ(q) =

 σϕ1,ϑ1 0

0 O

 ,
where the dotted lines indicate further blocking, 0 is a row-vector of zeros, and O is a zero ma-

trix. This choice of Σ$ is conceptually simple, computationally easy and preserves the positive-

definiteness as required (see Graves (2013).
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5 Empirical illustration and comparison485

Here we provide empirical illustrations for the methods above: for classical and Bayesian analysis

of long memory models, and extensions for short memory. To ensure consistency throughout, the

location and scale parameters will always be chosen as µI = 0 and σI = 1. Furthermore, unless

stated otherwise, the simulated series will be of length n= 210 = 1024. This is a reasonable size for

many applications; it is equivalent to 85 years’ monthly observations. When using the approximate490

likelihood method we set P = n.

5.1 Long memory

Standard MCMC diagnostics were used throughout to ensure, and tune for, good mixing. Because d

is the parameter of primary interest, the initial values d[0] will be chosen to systematically cover its

parameter space, usually starting five chains at the regularly-spaced points {−0.4,−0.2,0,0.2,0.4}.495

Initial values for other parameters are not varied: µ will start at the sample mean x̄; σ at the sample

standard deviation of the observed series x.

Efficacy of approximate likelihood method

Start with the ‘null case’
:::
null

::::
case, i.e., how does the algorithm perform when the data are not from

a long memory process? One hundred independent ARFIMA(0,0,0), or Gaussian white noise, pro-500

cesses are simulated, from which marginal posterior means, standard deviations, and credibility in-

terval endpoints are extracted. Table 1 shows averages over the runs.

The average estimate for each of the three parameters is less than a quarter of a standard deviation

away from the truth. Credibility intervals are nearly symmetric about the estimate and the marginal

posteriors are, to a good approximation, locally Gaussian (not shown). Upon, applying a proxy505

‘credible-interval-based hypothesis test ’ one would conclude in ninety-eight of the cases that d= 0

could not be ruled out. A similar analysis for µ and σ shows that hypotheses µ= 0 and σ = 1 would

each have been accepted ninety-six times. These results indicate that the 95% credibility intervals

are approximately correctly sized.

Next, consider the more interesting case of dI 6= 0. We repeat the above experiment except that510

ten processes are generated with dI set to each of {−0.45,−0.35, . . . ,0.45}, giving 100 series total.

Figure 1 shows a graphical analog of results from this experiment. The plot axes involve a Bayesian

residual estimate of d, d̂R
(B)

, defined as d̂R
(B)

= d̂(B)−dI , where d̂(B) is the Bayesian estimate of

d.

From the figure is clear that the estimator for d is performing well. Plot (a) shows how ‘tight ’515

::::
tight the estimates of d are around the input value—recall that the parameter space for d is the whole

interval (− 1
2 ,

1
2 ). Moreover, plot (b) indicates that there is no significant change of posterior bias or

variance as dI is varied.
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Next, the corresponding plots for the parameters σ and µ are shown in figure 2. We see from plot

(a) that the estimate of σ also appears to be unaffected by the input value dI . The situation is different520

however in plot (b) for the location parameter µ. Although the bias appears to be roughly zero for all

dI , the posterior variance clearly is affected by dI . To ascertain the precise functional dependence,

consider plot (c) which shows, on a semi-log scale, the marginal posterior standard deviation of µ,

σ̂µ
(B), against dI .

It appears that the marginal posterior standard deviation σ̂µ
(B) is a function of dI ; specifically:525

σ̂µ
(B) ∝AdI , for some A. The constant A could be estimated via least-squares regression. Instead

however, inspired by asymptotic results in literature concerning classical estimation of long memory

processes (Beran, 1994a) we set A= n and plotted the best fitting such line (shown in plot (c)).

Observe that, although not fitting exactly, the relation σ̂µ
(B) ∝ ndI holds reasonably well for dI ∈

(− 1
2 ,

1
2 ). Indeed, Beran motivated long memory in this way, and derived asymptotic consistency530

results for optimum (likelihood-based) estimators and found indeed that the standard error for µ is

proportional to nd−1/2 (theorem 8.2) but the standard errors of all other parameters are proportional

to n−1/2(theorem 5.1).

Effect of varying time series length

We now analyze the effect of changing the time series length. For this we conduct a similar ex-535

periment but fix dI = 0 and vary n. The posterior statistics of interest are the posterior standard

deviations σ̂d
(B), σ̂µ

(B) and σ̂σ
(B). For each n ∈ {128 = 27,28, . . . ,214 = 16,384}, 10 independent

ARFIMA(0,0,0) time series are generated. The resulting posterior standard deviations are plotted

against n (on log-log scale) in figure 3.

Observe that all three marginal posterior standard deviations are proportional to 1√
n

, although the540

posterior of µ is less ‘reliable’
::::::
reliable. Combining these observations with our earlier deduction that

σ
(B)
µ ∝ ndI , we conclude that for an ARFIMA(0,dI ,0) process of length n, the marginal posterior

standard deviations follow those of Beran given previously.
::::::::::::
Beran (1994a) .

:

Comparison with common estimators

In many practical applications, the long memory parameter is estimated using non/semi-parametric545

methods. These may be appropriate in many situations, where the exact form of the underlying pro-

cess is unknown. However when a specific model form is known (or at least assumed) they tend to

perform poorly compared with fully parametric alternatives (Franzke et al., 2012). Our aim here is

to demonstrate, via a short Monte Carlo study involving ARFIMA(0,d,0) data, that our Bayesian

likelihood-based method significantly outperforms other common methods in that case. We con-550

sider the following comparators: (i) rescaled adjusted range, or R/S Hurst (1951); Graves (2013)—

we use the R implementation in the FGN (McLeod et al., 2007) package; (ii) Semi-parametric

Geweke–Porter-Hudak (GPH) method (Geweke and Porter-Hudak, 1983)—implemented in R pack-
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age fracdiff (Fraley et al., 2012); (iii) detrended fluctuation analysis (DFA), originally devised

by Peng et al. (1994)—in the R package PowerSpectrum (Vyushin et al., 2009). (iv) wavelet-555

based semi-parametric estimators Abry et al. (2003) available in R package fARMA (Wuertz, 2012).

Each of these four methods will be applied to the same 100 time series with varying dI as were

used earlier experiments above. We extend the idea of a residual, d̂R
(R)

, d̂R
(G)

, d̂R
(D)

, and d̂R
(W )

,

to accommodate the new comparators, respectively, and plot them against d̂R
(B)

in figure 5.

Observe that all four methods have a much larger variance than our Bayesian method, and more-560

over the R/S is positively biased. Actually, the bias in some cases would seem to depend on dI :

R/S is significantly (i.e. > 0.25) biased for dI <−0.3 but slightly negatively biased for d > 0.3

(not shown); DFA is only unbiased for dI > 0; both the GPH and wavelet methods are unbiased for

all d ∈ (− 1
2 ,

1
2 ).

5.2 Extensions for short memory565

Known form: We first consider the MCMC algorithm from section 4.1 for sampling under an

ARFIMA(1,d,0) model where the full memory parameter is ω = (d,φ1). Recall that that method

involved proposals from a hypercuboid MVN using a pilot-tuned covariance matrix. Also recall that

it is a special case of the re-parametrized method from section 4.2.

In general, this method works very well; two example outputs are presented in figure 6, under two570

similar data generating mechanisms.

Plot (a) shows relatively mild correlation (ρ= 0.21) compared with (b) which shows strong corre-

lation (ρ= 0.91). This differential behavior can be explained heuristically by considering the differ-

ing data-generating values. For the process in plot (a) the short memory and long memory compo-

nents exhibit their effects at opposite ends of the spectrum; see figure 7(a). The resulting ARFIMA575

spectrum, with peaks at either end, makes it easy to distinguish between short and long memory ef-

fects, and consequently the posteriors of d and φ are largely uncorrelated. In contrast, the parameters

of the process in plot (b) express their behavior at the same end of the spectrum. With negative d

these effects partially cancel each other out, except very near the origin where the negative mem-

ory effect dominates; see figure 7(b). Distinguishing between the effects of φ and d is much more580

difficult in this case, consequently the posteriors are much more dependent.

In cases where there is significant correlation between d and φ, it arguably makes little sense to

consider only the marginal posterior distribution of d. For example the 95% credibility interval for

d from plots (b) is (−0.473,−0.247), and the corresponding interval for φ is (−0.910,−0.753), yet

these clearly give a rather pessimistic view of our joint knowledge about d and φ—see figure 7(c). In585

theory an ellipsoidal credibility set could be constructed, although this is clearly less practical when

dimω > 2.

Unknown form: The RJ scheme outlined in section 4.2 works well for data simulated with p and

q up to 3. The marginal posteriors for d are generally roughly centered around dI (the data generating
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value) and the modal posterior model probability is usually the ‘correct ’
::::::
correct

:
one. To illustrate,590

consider again the two example data generating contexts used above.

For both series, kernel density for the marginal posterior for d are plotted in figure 8(a)–(b),

together with the equivalent density estimated assuming unknown model orders.

Notice how the densities obtained via the RJ method are very close to those obtained assuming

p= 1 and q = 0. The former are slightly more heavy-tailed, reflecting a greater level of uncertainty595

about d. Interestingly, the corresponding plots for the posteriors of µ and σ do not appear to exhibit

this effect—see figure 8(c)–(d). The posterior model probabilities are presented in table 2, showing

that the ‘correct ’
::::::
correct modes are being picked up consistently.

As a test of the robustness of the method, consider a complicated short memory input combined

with a heavy tailed α-stable innovations distribution. Specifically, the time series that will be used is600

the following ARFIMA(2,d,1) process(
1− 9

16
B2

)
(1−B)

0.25
Xt =

(
1 +

1

3
B
)
εt, where εt ∼ Sα=1.75,0. (10)

For more details, see (Graves, 2013, §7.1). The marginal posterior densities of d and α are presented

in figure 9.

Performance looks good despite the complicated structure. The posterior estimate for d is d̂(B) =605

0.22, with 95% CI (0.04,0.41). Although this interval is admittedly rather wide, it is reasonably

clear that long memory is present in the signal. The corresponding interval for α is (1.71,1.88) with

estimate α̂(B) = 1.79. Finally, we see from table 3 that the algorithm is very rarely in the ‘wrong ’

:::::
wrong

:
model.

The Nile Data:610

6
::::::::::::
Observational

:::::
Data

:::::::
Analysis

We conclude with an
:::
the application of our methods to the famous annual Nile minima data.

::::::
method

::
to

:::
two

::::
long

::::
data

::::
sets:

:::
The

::::
Nile

:::::
water

::::
level

:::::::
minima

::::
data

:::
and

:::
the

::::::
Central

:::::::
England

:::::::::::
Temperature

::::::
(CET).

:::
The

::::
Nile

::::
data

::
is

:::
part

::
of

:::
the

::
R

:::::::
package

::::::::::
’longmemo’

::::
and

::
the

:::::
CET

::::
time

:::::
series

:::
can

::
be

::::::::::
downloaded

:::::
from

:::::::::::::::::::::::::::::::::::
http://www.metoffice.gov.uk/hadobs/hadcet/

:
615

6.1
:::
The

::::
Nile

:::::
Data:

Because of the fundamental importance of the
:::
Nile

:
river to the civilizations it has supported, local

rulers kept measurements of the annual maximal and minimal heights obtained by the river at certain

points (called gauges). The longest uninterrupted sequence of recordings is from the Roda gauge

(near Cairo), between 622 and 1284 AD (n= 663).2 The
:::::
These

::::
data

:::
are

::::::
plotted

::
in

:::::
figure

:::
10.620

2There is evidence (e.g. Ko and Vannucci, 2006b) that the sequence is not actually homogeneous.
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:::
We

::::::::::
immediately

:::::::
observe

:::
the

:::::::
apparent

:::
low

:::::::::
frequency

:::::::::
component

::
of

:::
the

::::
data.

::::
The

::::
data

:::::
appear

::
to

:::
be

::
on

:::
the

::::::
‘verge’

::
of

:::::
being

:::::::::
stationary,

:::::::
however

:::
the

::::::
general

:::::::::
consensus

:::::::
amongst

:::
the

::::::::
statistical

::::::::::
community

:
is
::::
that

:::
the

:::::
series

::
is

:::::::::
stationary.

:::
The

:
posterior summary statistics and

:::
are

::::::::
presented

::
in

::::
table

::
5,
:::::::
density

:::::::
estimates

:::
of

:::
the

:::::::
marginal

:::::::::
posteriors

::
of

::
d

:::
and

::
µ
:::
are

::::::::
presented

:::
in

:::::
figure

:::
11,

:::
and

:::
the

::::::::
posterior

::::::
model

::::::::::
probabilities

:::
are

::::::::
presented

::
in

:::::
table

::
6.625

:::
The

::::::::
posterior

::::::::
summary

:::::::
statistics

:::
and

:
marginal densities of d and µ for the Nile data are presented

in figure 12. Posterior model probabilities are presented in table 4. We see that the model with the

highest posterior probability is the ARFIMA(0,d,0) model with d≈ 0.4. This suggests a strong,

‘pure’
:::
pure, long memory feature. Our results compare favorably with other studies (Liseo et al.,

2001; Hsu and Breidt, 2003; Ko and Vannucci, 2006a).630

:::
We

:::
see

:::
that

:::
the

::::::
model

::::
with

:::
the

::::::
highest

::::::::
posterior

::::::::::
probability

:
is
:::
the

:
ARFIMA(0,d,0)

:::::
model

::::
with

:::::::
d≈ 0.4.

:::::
These

:::::
facts

::::::
suggest

::::
that

:::
the

::::::::
memory

::
in

:::
the

::::::
signal

::
is

::::::
strong,

::::::
‘pure’,

:::::
long

::::::::
memory.

::
It

::
is

::::::::
interesting

::
to
::::::::
compare

::::
these

:::::::
findings

::::
with

:::::
other

::::::::
literature.

:::::::::::::::::::
Liseo et al. (2001) used

:
a
::::::::::::::
semi-parametric

:::::::
Bayesian

:::::::
method

:::
on

:::
the

::::
first

:::
512

:::::::::::
observations

::
of

::::
the

::::::::
sequence

:::
and

::::::::
obtained

::
an

::::::::
estimate

:::
for

:
d
:::

of

:::::
0.278.

:::::::::::::::::::::::
Hsu and Breidt (2003) used

::
a

::::::
similar

:::::::
method

::
to

:::::::::::::::::::::::::
Pai and Ravishanker (1998) to

::::::::
estimate

::
d635

::::::
(within

::
an

:
ARFIMA(0,d,0)

::::::
model)

::
at

::::
0.416

::::
with

:::::::::::
approximate

:::::::::
credibility

::::::
interval

::
of

:::::::::::::
(0.315,0.463).

::::::::::::::::::::::::::::
Ko and Vannucci (2006a) similarly

::::::
found

:::::
using

:::::::::
wavelets

::::::::::
d̂B = 0.379

:::::
with

:::::::::
credibility

::::::::
interval

::::::::::::
(0.327,0.427).

:::::::::::::::::::
Palma (2007) obtained

:::::::::::
d̂B = 0.420.

:::::::::::::::::::::::
Holan et al. (2009) obtained

::::::::::
d̂B = 0.387

:::::
with

::::::::
credibility

:::::::
interval

::::::::::::
(0.316,0.475)

:::::
using

::::
their

::::::::
Bayesian

:::::
FEXP

:::::::
method.

:::
We

::::
note

:::
that

:::
the

::::::::::::
interpretation

::
as

:::::::::
persistence

:::
of

:::
the

::::::
d≈ 0.4

:::::::::
(H ≈ 0.9)

:::::
value

::::
that

:::
we

:::
and

::::::
others640

::::
have

:::::::
obtained

:::
has

:::::
been

:::::::::
challenged

::
by

::::::::::::::
(Kärner, 2001) .

::
In

:::
his

::::
view

:::
the

:::::::
analysis

::::::
should

::
be

:::::::
applied

::
to

::
the

::::::::::
increments

::
of

:::
the

::::
level

:::::::
heights

:::::
rather

::::
than

:::
the

::::
level

:::::::
heights

:::::::::
themselves,

::::::
giving

::
an

::::::::::::
antipersistent

::::
time

:::::
series

::::
with

:
a
:::::::
negative

::
d
:::::
value.

::::
The

::::
need

:::
for

:
a
:::::
short

:::::
range

:::::::::
dependent

:::::::::
component

::::
that

::
he

::::::
argues

::
for

:::
is,

::::::::
however,

:::::::::::
automatically

::::::::
included

::
in

:::
the

:::
use

::
of

:::
an

::::::::
ARFIMA

::::::
model.

:::::::::
Although

::::::::
ARFIMA

::::
was

::::::::
originally

:::::::::
introduced

::
in

::::::::::::
econometrics

::
as

::
a

:::::::::::::::
phenomenological

::::::
model

::
of

::::
LM,

:::::
very

:::::
recent

::::::::
progress645

:
is
:::::
being

:::::
made

:::
in

:::::::
statistics

::::
and

::::::
physics

:::
on

:::::::
building

::
a

:::::
bridge

::::::::
between

:
it
::::

and
:::::::::
continuous

::::
time

::::::
linear

::::::::
dynamical

:::::::
systems

::::
(see

:::
e.g.

:::::::::::::::::::::::
Slezak and Weron (2015) ).

::
In

::::::::::
conclusion,

:::
our

::::::::
findings

:::::
agree

:::::
with

:::
all

::::::::
published

:::::::::
Bayesian

::::
long

::::::::
memory

::::::
results

:::::::
(except

:::::::::::
Liseo et al. ’s

:::::::::
anomalous

:::::::
finding).

:::::::::
Moreover,

:::::
these

:::::::
findings

:::::
agree

::::
with

::::::::
numerous

:::::::
classical

::::::::
methods

::
of

:::::::
analysis

:::::::::::::::::::
(e.g. Beran, 1994a) that

::::
have

:::::
found

:::
the

::::
best

:::::
model

:::
fit

:
is
:::
an

::::::::::::::
ARFIMA(0,d,0)

::::::
model

::::
with650

:::::::
d≈ 0.4.

:::
We

::::
note

:::
that

::
it

::
is

:
a
:::::
result

::
of

::::
our

:::
data

:::::::
analysis

:::::::
method

:::
that

::::::::::::
short-memory

::::
can

::
be

:::::::::
neglected,

:::::
rather

::::
than

:::::
being

::
an

:
a
:::::
priori

::::::::::
assumption.

:

6.2
::::::
Central

::::::::
England

:::::::::::
temperature

:::::
There

:
is
:::::::::
increasing

:::::::
evidence

::::
that

::::::
surface

::
air

:::::::::::
temperatures

:::::::
posseses

::::::::::::
long-memory

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Gil-Alana, 2003, 2008; Bunde et al., 2014; Franzke, 2010, 2012) but

::::
long

::::
time

:::::
series

:::
are

::::::
needed

:::
to

:::
get

:::::
robust

:::::::
results.

:::
The

::::::
central

::::::::
England

::::::::::
temperature

::::::
(CET)

:::::
index

::
is655

:
a
::::::
famous

::::::::
measure

::
of

:::
the

:::::::
monthly

::::
mean

::::::::::
temperature

::
in
:::

an
::::
area

::
of

::::::::::::::
southern-central

:::::::
England

::::::
dating
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::::
back

::
to

:::::
1659

::::::::::::::
(Manley, 1974) .

:::::
Given

:::
to

:
a
::::::::

precision
:::

of
:::::
0.5◦C

:::::
prior

::
to

:::::
1699

:::
and

::::::
0.1◦C

:::::::::
thereafter,

::
the

::::::
index

::
is

:::::::::
considered

::
to

:::
be

:::
the

::::::
longest

:::::::
reliable

::::::
known

::::::::::
temperature

::::::
record

::::
from

::::::
station

:::::
data.

:::
As

::::::::
expected,

:::
the

::::
CET

:::::::
exhibits

:
a
:::::::::
significant

:::::::
seasonal

::::::
signal,

::
at

::::
least

:::::
some

::
of

::::::
which

::::
must

::
be

::::::::::
considered

::
as

:::::::::::
deterministic.

:::::::::
Following

::
the

::::::::
approach

::
of

::::::::::::::::::::
Montanari et al. (2000) ,

:::
the

:::::
index

::
is

:::
first

:::::::::::::
deseasonalised660

::::
using

:::
the

:::::::
additive

:::::
‘STL’

:::::::
method

::::::::::::::::::::
(Cleveland et al., 1990) .

::::
This

:::::::::::::
deseasonalised

::::
CET

:::::
index

::
is

::::::
shown

::
in

:::::
figure

:::
13.

:::
The

::::::::
estimated

::::::::
seasonal

:::::::
function

::::
S(t)

:::
that

::::
was

:::::::
removed

::
is

::::::
shown

::
in

:::::
figure

:::::
14(a).

::::
The

::::::::
spectrum

::
of

::
the

:::::::::::::
deseasonalised

::::::
process

::
is

::::::
shown

::
in

:::::
figure

:::::
14(b).

::
D

:::::::
denotes

:::
the

:::::::
seasonal

::::
long

:::::::
memory

:::::::::
parameter.

:::::
Notice

:::::
that,

::
in

:::::::
addition

::
to

:::
the

:::::::
obvious

:::::::
spectral

:::::
peak

::
at

:::
the

::::::
origin,

:::::
there

:::
still

:::::::
remains

::
a
:::::::::
noticeable665

::::
peak

::
at

:::
the

:::::::
monthly

:::::::::
frequency

::::::
ω = π

6 .
::::::::
However

:::::
there

:::
are

:::
no

::::::
further

:::::
peaks

::
in

:::
the

::::::::
spectrum

::::::
which

:::::
would

::::::
appear

::
to

::::
rule

:::
out

::
a
:::::::::
SARFIMA

:::::::
model.

:::::
These

:::::::::::
observations

::::::::
therefore

::::::
suggest

::::
that

::
a

::::::
simple

::::::::::
2-frequency

::::::::::::::::::
Gegenbauer(d,D; π6 )2::::::

process
:::::
might

:::
be

::
an

::::::::::
appropriate

::::::
model.

:::
See

::::::::
appendix

:
B
:::
for

:::::
more

:::::
details

:::::
about

:::::::
seasonal

::::
long

::::::::
memory.

:

::::::::
Applying

:::
this

:::::::
model,

:::
the

::::::::
marginal

::::::::
posterior

::::::::
statistics

:::
are

:::::::::
presented

::
in

:::::
table

::
7
::::
and

:::
the

:::::
joint670

:::::::
posterior

:::::::
samples

::
of

::::::
(d,D)

::::
from

::::
this

:::::
model

:::
are

::::::
plotted

::
in

:::::
figure

:::
15.

:::::
These

::::::
clearly

:::::::
indicate

::::
that

::::
both

:
d
::::
and

::
D

:::
are

::::::::
non-zero

::::::
(albeit

:::::
small

::
in

:::
the

::::
case

::
of
::::
D)

:::::::::
suggesting

:::
the

::::::::
presence

::
of

::::
long

:::::::
memory

:::
in

::::
both

:::
the

:::::::::::
conventional

::::
and

:::::::
seasonal

:::::
sense.

:

::
In

::::
order

:::
to

:::::::
compare

:::::
these

::::::
results

::::
with

:::::
other

:::::::::::
publications’,

::
it

::
is

::::::::
important

::
to

::::
note

::::
that

::
to

:::::::
remove

:::::
annual

::::::::::
seasonality

::::
from

:::
the

:::::
CET,

:::
the

::::::
series

::
of

::::::
annual

::::::
means

::
is

::::
often

:::::
used

::::::
instead

::
of

:::
the

::::::::
monthly675

:::::
series.

:::::
This

::
of

::::::
course

:::::::
reduces

::::
the

::::::
fidelity

:::
of

:::
the

::::::::
analysis.

:::::::::::::::::::
Hosking (1984) found

::::::
(using

::::::
rather

::::
crude

:::::::::
estimation

:::::::::::
procedures)

:::
that

:::
the

::::
best

::::::
fitting

:::::
model

:::
for

:::
the

::::::
annual

::::::
means

::
of

:::
the

:::::
CET

::::
was

:::
the

ARFIMA(1,0.33,0)
:::::
model

::::
with

::::::::
φ= 0.16.

:::::::::::::::::::::::::::
Pai and Ravishanker (1998) used

:::
the

:::::
same

:::::
series

::
as

::::
test

:::
data

:::
for

:::::
their

::::::::
Bayesian

:::::::
method;

::::
they

:::::
fitted

::::
each

:::
of

:::
the

::::::::
ARFIMA

:::::::
models

::::
with

:::::::
p,q ≤ 1

:::
and

::::::
found

:::
that

::
all

:::::::
models

::::
were

:::::::
suitable.

:::::
Their

::::::::
estimates

::
of

::
d

::::::
ranged

::::
from

::::
0.24

:::
for

::::::::
p= q = 0

::
to
::::
0.34

:::
for

::::::
p= 0,680

:::::
q = 1.

::
Of

::::::
course

::
all

:::::
these

::::::
studies

:::::::
assume

:::
the

::::
time

:::::
series

::
is

::::::::
stationary,

::
in
:::::::::
particular

:::
that

::
it

:::
has

:
a
::::::::

constant

:::::
mean.

::::
The

:::::::
validity

:::
of

::::
this

::::::::::
assumption

::::
was

::::::::::
considered

:::
by

:::::::::::::::::::
Gil-Alana (2003) who

::::
used

:::::::
formal

:::::::::
hypothesis

:::::
testing

::
to
::::::::
consider

:::::::
models:

Yt = β0 +β1t+Xt,
::::::::::::::::

(11)685

:::::
where

:::::
{Xt}::

is
::
an

:
ARFIMA(0,d,0)

:::::::
process.

:::
For

::::::
values

::
of

:::::
d= 0,

:::::
0.05,

:::::
0.10,

::::
0.15,

:::
β1 :::

was
::::::
found

::
to

::
be

::::::::::
significantly

::::::::
non-zero

:::
(at

::::
about

:::::::
0.23◦C

:::
per

:::::::
century)

:::
but

:::
for

::::::::
d≥ 0.20,

::::::::
statistical

::::::::::
significance

::::
was

:::
not

:::::
found.

:::::::::::::::::::
Gil-Alana (2008) later

::::::::
extended

:::
this

:::::
work

::
by

::::::::
replacing

:::
the

:
ARFIMA(0,d,0)

::::::
process

::
in

(11)
:::
with

::
a
:::::::::::::::
Gegenbauer(d;ω)

::::::
process

::
to
::::::
obtain

::::::
similar

::::::
results.

::::::::
However,

::::::
choice

::
of

::
ω
::::
was

:::::
rather

:::
ad

:::
hoc

:::::
likely

:::::::::
influencing

:::
the

:::::::
results.690
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::
In

::::
order

:::
to

:::::::
consider

:::
the

::::::::::
stationarity

::
of

:::
the

::::
time

::::::
series,

:::
we

::::::
divided

:::
the

::::::
series

::
up

::::
into

::::
four

::::::
blocks

::
of

:::::
length

:::::
1024

::::::
months

:::::::
(chosen

::
to
:::::::::

maximise
::::::::
efficiency

::
of
::::

the
:::
fast

::::::
Fourier

::::::::::
transform)

:::
and

::::::::
analysed

::::
each

:::::
block

::::::::::::
independently.

::::
The

:::::::
posterior

::::::::
statistics

::
for

:::::
each

:::::
block

:::
are

::::::::
presented

::
in

::::
table

::
8
::::
with

:::::
some

:::::
results

::::::::
presented

::::::::::
graphically

::
in

:::::
figure

:::
16.

:

:
It
::
is

:::::::::
interesting

::
to

::::
note

:::
that

:::
the

::::::
degree

::
of

::::::::::::
(conventional)

::::
long

:::::::
memory

::
is

:::::::
roughly

:::::::
constant

::::
over

:::
the695

:::
last

::::
three

::::::
blocks

:::
but

:::::::
appears

::
to

:::
be

:::::
larger

::
in

:::
the

::::
first

:::::
block.

:::
Of

::::::::
particular

:::::::
concern

::
is

::::
that

::::
there

::
is

:::
no

::::
value

:::
of

:
d
::::
that

::
is

:::::::
included

::
in

:::
all

::::
four

::
95%

:::::::::
credibility

::::::::
intervals;

:::
this

::::::
would

::::::
suggest

::::::::::::::
non-stationarity.

::::::::
Although

:::
this

:::::::::::
phenomenon

::::
may

::::::
indeed

::::
have

:
a
::::::::
physical

::::::::::
explanation,

::
it

:
is
:::::
more

:::::
likely

::::::
caused

:::
by

:::
the

::::::::::::
inhomogeneity

::
of

:::
the

:::::
time

:::::
series.

::::::
Recall

::::
that

:::
the

:::
first

::::
fifty

:::::
years

:::
of

:::
the

:::::
index

:::
are

::::
only

:::::
given

::
to

:::
an

:::::::
accuracy

::
of

::::::
0.5◦C

::::::::
compared

::
to

:::::
0.1◦C

::::::::::
afterwards;

:::
this

::::
lack

::
of

:::::::::
resolution

::::::
clearly

:::
has

:::
the

::::::::
potential

::
to700

:::
bias

::
in

::::::
favour

::
of

::::::
strong

:::::::::::::
auto-correlation

:::::
when

::::::::
compared

::::
with

::::
later

:::::::
periods.

:

::::::::::
Interestingly,

::::
the

:::::::
seasonal

::::
long

::::::::
memory

::::::::
parameter

:::
D

:::
has

::
95%

::::::::
credibility

:::::::
intervals

::::
that

:::::::
include

:::
zero

:::
for

:::
the

::::
both

:::
the

::::::
second

:::
and

:::::
third

::::::
blocks.

::::::
Finally,

::::
note

::::
that

:::
the

::
95%

::::::::
credibility

::::::::
intervals

:::
for

:
µ
:::
all

::::::
include

:::
the

:::::
range

::::::::::::
(9.314,9.517),

:::
in

::::
other

::::::
words

:
it
::
is
:::::::
entirely

:::::::
credible

::::
that

:::
the

::::
mean

::
is
:::::::::::
non-varying

:::
over

:::
the

::::
time

:::::::
period.705

7 Conclusions

We have provided a systematic treatment of efficient Bayesian inference for ARFIMA models, the

most popular parametric model combining long and short memory effects. Through a mixture of

theoretical and empirical work we have demonstrated that the methods
:::
our

::::::
method

:
can handle the

sorts of time series data that
::::
with

:::::::
possible

::::
long

:::::::
memory

:::
that

:::
we are typically confronted withpossible710

long memory in mind.

Many of the choices made throughout, but in particular those leading to our likelihood approxi-

mation stem from a need to accommodate further extension. For example, in future work we intend

to extend them to cope with a heavy-tailed innovations distribution. For more evidence of potential

in this context, see Graves (2013, §7). Along similar lines, there is scope for further generalization715

to incorporate seasonal (long memory) effects.

Finally, an advantage of the Bayesian approach is that it provides a natural mechanism for deal-

ing with missing data, via data augmentation. This is particularly relevant for long historical time

series which may, for a myriad of reasons, have recording gaps. For example, some of the data

recorded at other gauges along the river Nile have missing observations although otherwise span a720

similarly long time frame. For a demonstration of how this might fit within our framework, see §5.6

of Graves dissertation
::::::::::::
Graves (2013) .

23



Acknowledgements.
:::
We

::::
thank

:::
one

:::::::::
anonymous

:::::::
reviewer

:::
and

::::
M.

::::::
Crucifix

:::
for

:::
their

::::::::
comments

:::::
which

::::::
helped

::
to

::::::
improve

:::
this

:::::::::
manuscript.

:
CF is supported by the German Research Foundation (DFG) through the cluster of

excellence CliSAP
:::::::
(EXC177).725

Appendix A:
::::::::
ARFIMA

::::::
model

:::
We

:::::
define

:::
an

::::::::::::
autocovariance

:::::
ACV

::::
γ(·)

::
of

::
a

::::::
weakly

:::::::::
stationary

::::::
process

:::
as

::::::::::::::::::::
γ(k) = Cov(Xt,Xt+k),

:::::
where

::
k
:::

is
:::::::
referred

:::
to

:::
as

::::
the

::::::
(time)

:::
lag

:::::
and

::::::::::::::::::::::::::::::::
Cov = E[(X − (E)[X])(X − (E)[X])]

:::
is

::::
the

::::::::::::
lag-covariance

:::::::
matrix.

::::
The

::::::::::::
(normalized)

:::::::::::::
autocorrelation

::::::::
function

::::::
ACF

:::
ρ(·)

:::
is

:::::::
defined

::::
as:

::::::::::
ρ(k) = γ(k)

γ(0) .
::
A

::::::::
stationary

:::::::
process

:::::
{Xt}::

is
:::
said

::
to
:::
be

:::::
causal

:
if
:::::
there

:::::
exists

:
a
::::::::
sequence

::
of

::::::::::
coefficients730

:::::
{ψk},::::

with
::::
finite

::::
total

:::::
mean

::::::
square

::::::::::::

∑∞
k=0ψ

2
k <∞:::::

such
:::
that

:::
for

::
all

::
t,

:
a
:::::
given

:::::::
member

::
of

:::
the

:::::::
process

:::
can

::
be

::::::::
expanded

::
as

::
a
:::::
power

:::::
series

::
in
:::
the

::::::::
backshift

:::::::
operator

::::::
acting

::
on

:::
the

::::::::::
innovations,

:::::
{εt}::

Xt = Ψ(B)εt, where Ψ(z) =

∞∑
k=0

ψkz
k.

:::::::::::::::::::::::::::::::::

(A1)

:::
The

::::::::::
innovations

:::
are

:
a
:::::
white

:::
(i.e.

:::::::::
stationary,

::::
zero

:::::
mean,

:::
iid)

:::::
noise

:::::::
process

:::
with

::::::::
variance

:::
σ2.

::::::::
Causality

:::::::
specifies

:::
that

:::
for

:::::
every

::
t,

:::
Xt :::

can
::::
only

::::::
depend

:::
on

::
the

::::
past

:::
and

:::::::
present

:::::
values

::
of

:::
the

::::::::::
innovations

:::::
{εt}.735

:
A
:::::::
process

:::::
{Xt}::

is
:::
said

::
to
:::
be

::
an

:::::::::::::
auto-regressive

::::::
process

::
of
:::::
order

::
p,
:
AR(p)

:
,
:
if
:::
for

:::
all

::
t:

Φ(B)Xt = εt, where Φ(z) = 1 +

p∑
k=1

φkz
k, and (φ1, . . . ,φp) ∈ Rp.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(A2)

AR(p)
::::::::
processes

::
are

:::::::::
invertible,

::::::::
stationary

::::
and

:::::
causal

::
if
::::
and

::::
only

:
if
::::::::
Φ(z) 6= 0

:::
for

:::
all

:::::
z ∈ C

::::
such

::::
that

::::::
|z| ≤ 1.

:::::
{Xt}::

is
:::
said

:::
to

::
be

:
a
:::::::
moving

:::::::
average

::::::
process

::
of

:::::
order

:
q
:
, MA(q)

:
,
:
if
:

740

Xt = Θ(B)εt, where Θ(z) = 1 +

q∑
k=1

θkz
k, and (θ1, . . . ,θp) ∈ Rq,

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(A3)

::
for

:::
all

::
t.3 MA(q)

::::::::
processes

:::
are

::::::::
stationary

::::
and

::::::
causal,

:::
and

:::
are

:::::::::
invertible

:
if
::::
and

::::
only

::
if

::::::::
Θ(z) 6= 0

:::
for

::
all

:::::
z ∈ C

::::
such

::::
that

::::::
|z| ≤ 1.

::
A

::::::
natural

::::::::
extension

::
of

:::
the

::::
AR

:::
and

::::
MA

::::::
classes

:::::
arises

::
by

:::::::::
combining

:::::
them

:::::::::::::::::::::
(Box and Jenkins, 1970) .

:::
The

:::::::
process

:::::
{Xt}::

is
::::
said

::
to

:::
be

::
an

:::::::::::::
auto-regressive

:::::::
moving

:::::::
average

:::::::
(ARMA)

:::::::
process

::::::
process

:::
of745

:::::
orders

::
p

:::
and

::
q, ARMA(p,q),

::
if

:::
for

::
all

::
t:

Φ(B)Xt = Θ(B)εt.
:::::::::::::::

(A4)

3
::::
Many

:::::
authors

::::
define

:::::::::::::::
Φ(z) = 1−

∑
φkz

k .
:::
Our

:::::
version

:::::::
emphasises

::::::::
connections

::::::
between

::
Φ

::
and

:::::::
(A2–A3).
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::::::::
Although

::::
there

::
is

::
no

::::::
simple

::::::
closed

::::
form

:::
for

:::
the

::::
ACV

::
of

:::
an

::::::
ARMA

::::::
process

::::
with

::::::::
arbitrary

:
p
::::
and

:
q,
:::
so

::::
long

::
as

:::
the

::::::
process

::
is

:::::
causal

:::
and

:::::::::
invertible,

::::
then

:::::::::::
|ρ(k)| ≤ Crk,

:::
for

::::::
k > 0,

:::
i.e.,

::
it

:::::
decays

::::::::::::
exponentially

:::
fast.

:::
In

::::
other

::::::
words,

::::::::
although

:::::::::
correlation

:::::::
between

::::::
nearby

:::::
points

::::
may

:::
be

::::
high,

::::::::::
dependence

::::::::
between750

:::::
distant

::::::
points

::
is

:::::::::
negligible.

:::::
Before

:::::::
turning

::
to
:::::

long
::::::::
memory,

:::
we

::::::
require

::::
one

::::::
further

::::::
result.

::::::
Under

:::::
some

:::::
extra

::::::::::
conditions,

::::::::
stationary

::::::::
processes

::::
with

:::::
ACV

::::
γ(·)

:::::::
possess

:
a
:::::::
spectral

:::::::
density

:::::::
function

:::::
(SDF)

::::::
fsd(·)

::::::
defined

:::::
such

::::
that:

::::::::::::::::::::::
γ(k) =

∫ π
−π e

ikλfsd(λ)dλ,
:::::::
∀k ∈ Z.

:::::
This

::::
can

::
be

::::::::
inverted

::
to
::::::

obtain
:::

an
:::::::

explicit
::::::::::

expression

::
for

::::
the

:::::
SDF

::::::::::::::::::::::::::::::::::
(e.g. Brockwell and Davis, 1991, §4.3) :

::::::::::::::::::::::::::::
fsd(λ) = 1

2π

∑∞
k=−∞ γ(k)e−ikλ,

:::::::
where755

:::::::::::
−π ≤ λ≤ π.4

::::::
Finally,

:::
the

::::
SDF

::
of

:::
an

::::::
ARMA

:::::::
process

:
is
:

fsd(λ) =
σ2

2π

|Θ(e−iλ)|2

|Φ(e−iλ)|2
, 0≤ λ≤ π.

:::::::::::::::::::::::::::::::::

(A5)

:::
For

::
an

:::::::::
ARFIMA

::::::
process

:::
(1)

:::
the

:::::::::
restriction

::::::
|d|< 1

2::
is
:::::::::
necessary

::
to

::::::
ensure

::::::::::
stationarity;

::::::
clearly

::
if

::::::
|d| ≥ 1

2 :::
the

::::
ACF

::::::
would

:::
not

::::::
decay.

:::
The

:::::::::
continuity

:::::::
between

:::::::::
stationary

:::
and

::::::::::::
non-stationary

:::::::::
processes

::::::
around

::::::
|d|= 1

2 ::
is

::::::
similar

::
to

::::
that

:::::
which

::::::
occurs

:::
for AR(1)

::::::
process

::::
with

::::::::
|φ1| → 1

:::::
(such

::::::::
processes

:::
are760

::::::::
stationary

:::
for

:::::::
|φ1|< 1,

:::
but

:::
the

::::
case

:::::::
|φ1|= 1

::
is
:::
the

::::::::::::
non-stationary

:::::::::::::
random-walk).

:::::
There

:::
are

:
a
:::::::

number
:::

of
:::::::::
alternative

:::::::::
definitions

::
of

:::::
LM,

:::
one

:::
of

:::::
which

::
is
::::::::::

particularly
::::::

useful,
:::

as
::
it

::::::::
considers

:::
the

:::::::::
frequency

:::::::
domain:

::
A
:::::::::

stationary
:::::::
process

:::
has

:::::
long

:::::::
memory

::::::
when

::
its

:::::
SDF

:::::::
follows

::::::::::::::
fsd(λ)∼ cfλ−2d,

::
as
:::::::
λ→ 0+

:::
for

:::::
some

:::::::
positive

:::::::
constant

:::
cf ,

:::
and

::::::
where

:::::::::
0< d < 1

2 .

:::
The

:::::::
simplest

::::
way

::
of

:::::::
creating a

:::::::
process

:::::
which

:::::::
exhibits

::::
long

:::::::
memory

::
is

:::::::
through

:::
the

::::
SDF.

::::::::
Consider765

::::::::::::::::::
fsd(λ) = |1− eiλ|−2d,

::::::
where

::::::::::
0< |d|< 1

2 .
:::

By
:::::::

simple
::::::::
algebraic

:::::::::::
manipulation,

::::
this

::
is

:::::::::::
equivalently

::::::::::::::::::
fsd(λ) =

(
2sin λ

2

)−2d
,
:::::

from
:::::
which

:::
we

:::::::
deduce

:::
that

::::::::::::
f(λ)∼ λ−2d

::
as

:::::::
λ→ 0+.

:::::::::
Therefore,

:::::::::
assuming

:::::::::
stationarity,

:::
the

:::::::
process

:::::
which

:::
has

::::
this

::::
SDF

:::
(or

:::
any

:::::
scalar

::::::::
multiple

::
of

::
it)

::
is

:
a
::::
long

::::::::
memory

:::::::
process.

::::
More

:::::::::
generally,

:
a
:::::::
process

:::::
having

:::::::
spectral

::::::
density

:

fsd(λ) =
σ2

2π

∣∣1− eiλ∣∣−2d
, 0< λ≤ π.

::::::::::::::::::::::::::::::::::

(A6)770

:
is
:::::
called

::::::::::
fractionally

:::::::::
integrated

::::
with

:::::::
memory

::::::::
parameter

::
d, FI(d)

:::::::::::::::::::::::::::::::::::
(Barnes and Allan, 1966; Adenstedt, 1974) .

:::
The

:::
full

::::::::::
trichotomy

::
of

:::::::
negative,

:::::
short,

::::
and

::::
long

:::::::
memory

::
is

:::::::::
determined

::::::
solely

::
by

::
d.

:

::
In

:::::::
practice

:::
this

::::::
model

::
is
:::

of
::::::
limited

::::::
appeal

:::
to

::::
time

:::::
series

::::::::
analysts

:::::::
because

:::
the

:::::
entire

::::::::
memory

:::::::
structure

::
is

::::::::::
determined

::
by

::::
just

:::
one

::::::::::
parameter,

::
d.

::::
One

::::
often

::::::::
therefore

::::::::::
generalizes

::
it

::
by

::::::
taking

::::
any

::::
short

:::::::
memory

:::::
SDF

::::::
f∗sd(·),

:::
and

:::::::
defining

::
a
::::
new

:::::
SDF:

::::::::::::::::::::::::
fsd(λ) = f∗sd(λ)

∣∣1− eiλ∣∣−2d
,
::::::::::
0≤ λ≤ π.

:::
An775

::::::
obvious

:::::
class

::
of

:::::
short

:::::::
memory

:::::::::
processes

::
to

:::
use

::::
this

::::
way

::
is

:::::::
ARMA.

::::::
Taking

:::
f∗

:::::
from (A5)

:::::
yields

:::::::
so-called

:::::::::::::
auto-regressive

::::::::::
fractionally

:::::::::
integrated

:::::::
moving

:::::::
average

:::::::
process

:::::
with

::::::::
parameter

:::
d,

::::
and

4
:::
Since

::::
ACV

::
of

:
a
:::::::
stationary

:::::
process

::
is

::
an

:::
even

::::::
function

::
of

:::
lag,

::
the

::::
above

::::::
equation

:::::
implies

:::
that

:::
the

:::::::
associated

:::
SDF

::
is

::
an

:::
even

::::::
function.

:::
One

::::::
therefore

::::
only

::::
needs

:
to
::
be

:::::::
interested

:::::
positive

::::::::
arguments:

::::::::
0 ≤ λ≤ π.

25



:::::
orders

::
p

:::
and

:
q
::
(ARFIMA(p,d,q)

::
),

:::::
having

:::::
SDF:

:

f(λ) =
σ2

2π

|Θ(e−iλ)|2

|Φ(e−iλ)|2
|1− eiλ|−2d, 0≤ λ≤ π.

:::::::::::::::::::::::::::::::::::::::::

(A7)

::::::::
Choosing

::::::::
p= q = 0

:::::::
recovers

:
FI(d)

:
≡

:
ARFIMA(0,d,0).

:
780

:::::::
Practical

:::::
utility

:::::
from

:::
the

::::::::::
perspective

::
of

::::::::::
(Bayesian)

::::::::
inference

::::::::
demands

::::::
finding

::
a

::::::::::::
representation

::
in

:::
the

::::::::
temporal

:::::::
domain.

::
To

::::::
obtain

::::
this,

::::::::
consider

:::
the

:::::::
operator

::::::::
(1−B)d

:::
for

::::
real

:::::::
d >−1,

::::::
which

::
is

:::::::
formally

::::::
defined

:::::
using

:::
the

:::::::::
generalized

:::::
form

::
of

::
the

::::::::
binomial

::::::::
expansion

::::::::::::::::::::::::::::::::::
(Brockwell and Davis, 1991, Eq. 13.2.2) :

(1−B)d
:::::::

=:

∞∑
k=0

π
(d)
k B

k,

:::::::::::

where
:::::

π
(d)
k

:::
= (−1)k

1

Γ(k+ 1)

Γ(d+ 1)

Γ(d− k+ 1)
.

::::::::::::::::::::::::::

(A8)785

::::
From

::::
this

::::::::::
observation,

::::
one

::::
can

::::
show

::::
that

:::::::::::::::::
Xt = (1−B)−dZt, :::::

where
:::::
{Zt}::

is
:::
an

::::::
ARMA

::::::::
process,

:::
has

::::
SDF

::
(A7)

:
.
::::
The

::::::::
operator

::::::::
(1−B)d

::
is
::::::

called
::::

the
:::::::::
fractional

::::::::::
differencing

::::::::
operator

:::::
since

:::
it

:::::
allows

::
a
::::::
degree

::
of

:::::::::::
differencing

:::::::
between

::::::
zeroth

::::
and

:::
first

::::::
order.

::::
The

::::::
process

::::::
{Xt} ::

is
::::::::::
fractionally

::::::::::::::::
inverse-differenced,

:::
i.e.

:
it
:::

is
:::
an

:::::::::
integrated

:::::::
process.

::::
The

::::::::
operator

::
is

:::::
used

::
to

::::::::
redefine

::::
both

::::
the

ARFIMA(0,d,0)
:::
and

:::::
more

::::::
general

:
ARFIMA(p,d,q)

::::::::
processes

::
in

::::
the

::::
time

:::::::
domain.

:::
A

:::::::
process790

::::
{Xt}::

is
:::
an ARFIMA(0,d,0)

::::::
process

::
if

:::
for

::
all

::
t:
:::::::::::::::
(1−B)dXt = εt.::::::::

Likewise,
::
a

::::::
process

:::::
{Xt}::

is
:::
an

ARFIMA(p,d,q)
::::::
process

::
if
:::
for

::
all

::
t:
::::::::::::::::::::::::
Φ(B)(1−B)dXt = Θ(B)εt, :::::

where
::
Φ

:::
and

::
Θ
:::

are
:::::
given

::
in
:
(A2)

:::
and (A3)

::::::::::
respectively.

::::::
Finally,

:::
to

:::::::
connect

:::::
back

::
to

::::
our

::::
first

:::::::::
definition

::
of

:::::
long

::::::::
memory,

::::::::
consider

:::
the

::::::
ACV

::
of

::::
the

ARFIMA(0,d,0)
:::::::
process.

:::
By

:::::
using

:::
the

::::::::
definition

::
of

:::::::
spectral

::::::
density

::
to

:::::::
directly

:::::::
integrate

:
(A6),

::::
and795

::
an

:::::::::
alternative

:::::::::
expression

:::
for

::::
π

(d)
k ::

in (A8)

π
(d)
k =

1

Γ(k+ 1)

Γ(k− d)

Γ(−d)
,

:::::::::::::::::::::

(A9)

:::
one

:::
can

::::::
obtain

:::
the

::::::::
following

::::::::::::
representation

::
of

:::
the

::::
ACV

:::
of

:::
the ARFIMA(0,d,0)

:::::::
process:

:

γd(k;σ) = σ2 Γ(1− 2d)

Γ(1− d)Γ(d)

Γ(k+ d)

Γ(1 + k− d)
.

::::::::::::::::::::::::::::::::::

(A10)

:::::::
Because

:::
the

:::::::::
parameter

:::
σ2

:::
is

::::
just

::
a

:::::
scalar

::::::::::
multiplier,

:::
we

:::::
may

:::::::
simplify

::::::::
notation

:::
by

::::::::
defining800

:::::::::::::::::
γd(k) = γd(k;σ)/σ2,

::::::::
whereby

:::::::::::::
γd(·)≡ γd(·;1).

:::::
Then

:::
the

::::
ACF

::
is:

:

ρd(k) =
Γ(1− d)

Γ(d)

Γ(k+ d)

Γ(1 + k− d)
,

::::::::::::::::::::::::::

(A11)
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::::
from

::::::
which

:::::::::
Stirling’s

:::::::::::::
approximation

::::::
gives

:::::::::::::::::::
ρd(k)∼ Γ(1−d)

Γ(d) k2d−1,
::::::::::

confirming
:::

a
::::::::::

power-law

:::::::::
relationship

::::
for

:::
the

:::::
ACF.

:::::::
Finally,

::::
note

::::
that

:
(A9)

::
can

:::
be

:::::
used

::
to

::::::::
represent

:
ARFIMA(0,d,0)

::
as

::
an AR(∞)

:::::::
process,

::
as

:::::::::::::::::::::::
Xt +

∑∞
k=1π

(d)
k Xt−k = εt.::::

And
:::::
noting

::::
that

::
in

:::
this

::::
case

::::::::::::
ψ

(d)
k = π

(−d)
k ,

:::::
leads805

::
to

:::
the

:::::::::
following MA(∞)

:::::
analog:

:::::::::::::::::::::::::::
Xt =

∑∞
k=0

1
Γ(k+1)

Γ(k+d)
Γ(d) εt−k.

Appendix B:
:::::::
Seasonal

::::
long

::::::::
memory

:::::::
models

:::
We

:::::
define

:
a
::::::::

seasonal
::::::::::
differencing

:::::::
operator

::::::::
(1−Bs),

::
as
::

a
::::::
natural

::::::::
extension

::
to

::
a
:::::::
Seasonal

:::::::::
ARFIMA

::::::::::
(SARFIMA)

:::::::::
processes

::
by

::::::::::
combining

:::::::
seasonal

::::
and

:::::::::::
non-seasonal

::::::::
fractional

:::::::::::
differencing

::::::::
operators

::::::::::::::::::
(Porter-Hudak, 1990) :

:
810

(1−B)d(1−Bs)DXt = εt.
::::::::::::::::::::::

:::
The

::::::::::::
generalisation

:::
to

:::::::
include

::::
both

::::::::
seasonal

::::
and

:::::::::::
non-seasonal

:::::
short

::::::::
memory

::::::::::
components

:::
is

::::::
obvious

:::::::::::::::::::
(Porter-Hudak, 1990) :

:

Φ(p)(B)Φ(P )
s (Bs)(1−B)d(1−Bs)DXt = Θ(q)(B)Θ(Q)

s (Bs)εt,
:::::::::::::::::::::::::::::::::::::::::::::::::::

:::::::
Focusing

:::
on

:::
the

:::
first

::
of

:::::
these

:::::
issues,

::::::::::::::::::::::
Hosking (1981) considered

:::::::::::
generalising

::
the

:
ARFIMA(0,d,0)815

::::::
process

::
in

::
a
:::::::
different

:::::::
manner

:::
by

:::::::
retaining

::::
only

::::
one

::::
pole

:::
but

::
at
::::
any

:::::
given

::::::::
frequency

:::
in

:::::
[0,π].

::::
The

:::::
model

::
he

:::::::::
suggested

:::
was

::::
later

::::::
studied

:::
and

::::::::::
popularised

:::
by

::::::::::::::
Anděl (1986) and

:::::::::::::::::::::
Gray et al. (1989, 1994) ,

:::
and

::::::
became

::::::
known

:::
as

:::
the

:::::::::::
‘Gegenbauer

::::::::
process’.

:
A
:::::::
process

:::::
{Xt}::

is
:
a
:::::::::::::::
Gegenbauer(d;ω)

::::::
process

::
if
:::
for

::
all

::
t:
:

(1− 2uB+B2)dXt = εt,
::::::::::::::::::::

(B1)820

:::::
where

:::::::::::
ω = cos−1u

::
is

:::::
called

::::
the

::::::::::
Gegenbauer

:::::::::
frequency.

::::
The

:::::::
obvious

:::::::::
extension

::
to

:::::::
include

:::::
short

:::::::
memory

::::::::::
components

::::
Φ(p)

:::
and

:::::
Θ(p)

:
is
:::::::
denoted

:::::::::::::::::
GARMA(p,d,q;ω).

:::
The

::::
term

::::::::::::
‘Gegenbauer’

::::::
derives

:::::
from

:::
the

::::
close

::::::::::
relationship

::
to

:::
the

:::::::::::
Gegenbauer

::::::::::
polynomials,

::
a
:::
set

::
of

:::::::::
orthogonal

:::::::::::
polynomials

:::::
useful

::
in
:::::::

applied
:::::::::::
mathematics.

::::
The

::::::::::
Gegenbauer

:::::::::::
polynomials

:::
are

:::::
most

::::::
usefully

:::::::
defined

::
in

:::::
terms

::
of

:::::
their

:::::::::
generating

:::::::
function.

::::
The

::::::::::
Gegenbauer

::::::::::
polynomial

::
of

:::::
order

::
k

::::
with825

::::::::
parameter

::
d,

::::::
G

(d)
k (·)

::::::::
satisfies:

(1− 2uz+ z2)−d ≡
∞∑
k=0

G
(d)
k (u)zk.

::::::::::::::::::::::::::::

(B2)
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:::
The

::::::::::::::::::::
spectral density function

::
of

:::
the

:::::::::::::::
Gegenbauer(d;ω)

:::::::
process

::
is

::::::::::::::::
(Gray et al., 1989) :

f(λ) =
σ2

2π
|2(cosλ− cosω)|−2d

, 0≤ λ≤ π.
::::::::::::::::::::::::::::::::::::::::

::::
Note

:::
that

:::::::::::::::
Gegenbauer(d;ω)

::::::::
processes

:::::::
possess

:
a
::::
pole

::
at

:::
the

::::::::::
Gegenbauer

::::::::
frequency

:::
ω.

::::::::::
Gegenbauer830

::::::::
processes

::::
may

::
be

:::::::::
considered

::
to
:::
be

::::::::
somewhat

::::::::::
ambiguous

::
in

:::::
terms

::
of

::::
long

::::::::
memory.

:::::::::
Non-trivial

::::
(i.e.

:::::
ω 6= 0)

::::::::::
Gegenbauer

:::::::::
processes

::::
have

:::::::
bounded

:::::::::::::::::::::
spectral density functions

::
at

:::
the

:::::
origin,

::::
and

:::::::
therefore

:::
do

:::
not

::::
have

::::
long

:::::::
memory

:::::::::
according

::
to

:::
our

:::::
strict

::::::::
definition.

::::::::::::
Consequently

:
a
:::::
more

::::::
general

:::::::::::
Gegenbauer

::::::
process

::::
was

:::::::::
developed:

:::
Let

::::::::::::::
d = (d1, . . . ,dk)

:::
and

:::::::::::::::
ω = (ω1, . . . ,ωk),

::::
and

:::
for

:::
all

::
j,

::::::::::
uj = cosωj::::::::

(assumed
::::::::

distinct).
:::::
Then

::
a835

::::::
process

:::::
{Xt}::

is
:
a
:::::::
k-factor

:::::::::::::::
Gegenbauer(d;ω)

:::::::
process

:
if
:::
for

:::
all

:
t
::::::::::::::::::::
Woodward et al., 1998 :

k∏
j=1

(1− 2ujB+B2)djXt = εt.

:::::::::::::::::::::::::

(B3)

:::
The

::::::::::::::::::::
spectral density function

::
of

:::
the

:::::::
k-factor

:::::::::::::::
Gegenbauer(d;ω)

::::::
process

::
is

::::::::::::::::::::
Woodward et al., 1998 :

f(λ) =
σ2

2π

k∏
j=1

|2(cosλ− cosωj)|−2dj , 0≤ λ≤ π.

::::::::::::::::::::::::::::::::::::::::::::

840

:::::::
K-factor

::::::::::
Gegenbauer

:::::::
models

:::
are

::::
very

:::::::
flexible,

::::
and

::::::
include

::::::
nearly

::
all

:::::
other

:::::::
seasonal

:::::::
variants

:::
of

::::::::
ARFIMA

::::::::
processes

::::
such

::
as

:::
the

::::::::::::::
flexible-seasonal

::::::::
ARFIMA

:::::::::::::::::
(Hassler, 1994) and

::::::::
fractional

::::::::
ARUMA

::::::::::::::::::::::::::::::::::::::::::::
(Robinson, 1994; Giraitis and Leipus, 1995) processes.

:::::::::::
Importantly,

::::
they

::::
also

:::::::
includes

::::::::::
SARFIMA

::::::::
processes

::::::::::::::::
Reisen et al., 2006 :

:

:
A
:

SARFIMA(0,d,0)× (0,D,0)s ::::::
process

:::
is

:::::::::
equivalent

:::
to

:
a
::::::::::::

⌊
s+2

2

⌋
-factor

::::::::::::::::
Gegenbauer(d;ω)845

::::::
process

::::::
where:

ωj =
2π(j− 1)

s
, j = 1, . . . ,k,

:::::::::::::::::::::::::::

:::
and

:::::::::
d1 = d+D

2 ,
:::::::
dj =D

:::
for

::::::::::
j = 2, . . . ,k,

:::::
unless

::
s
::
is

::::
even

::
in

:::::
which

::::
case

::::::::
dk = D

2 .

::::::::
Although

:::::::
k-factor

::::::::::
Gegenbauer

::::::
models

:::
are

:::::
very

:::::::
general,

:::
one

::::::::
particular

:::::::::
sub-model

::
is
::::::::::

potentially

::::
very

:::::::::
appealing.

::::
This

::
is
::::

the
:::::::
2-factor

::::::
model,

:::::
with

:::
one

:::::
pole

::
at

:::
the

::::::
origin

::::
and

::::
one

::
at

::
a

::::::::
non-zero850

::::::::
frequency.

:::
In

:::::
order

:::
to

:::::::
conform

:::::
with

:::::::
notation

:::
for

:
ARFIMA(0,d,0)

::::::::
processes,

::::
we

::::
will

:::::::
slightly

:::::::
re-define

::::
this

::::::
model:

::
A

::::::
process

:::::
{Xt}::

is
::
a

:::::
simple

::::::::::
2-frequency

::::::::::
Gegenbauer

::::::
process

::::
with

::::::::::
parameters

::
d,

::
D,

::::
and

::
ω,

:::::::
denoted

::::::::::::::::::
Gegenbauer(d,D;ω)2::

if
:::
for

::
all

::
t:

(1− (2cosω)B+B2)D(1−B)dXt = εt.
:::::::::::::::::::::::::::::::::
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:::
The

::::::::
Bayesian

:::::::
MCMC

:::::::::::
methodology

::::::::
developed

::::
here

::
is
:::::
easily

::::::::
extended

::
to

::::::::::
incorporate

::::
these

::::::::
seasonal855

::::::::
fractional

::::::
models.

::
It
::
is

:::::::
assumed

::::
that

:::
the

::::::::
frequency

:::
ω,

::
or

:::::::
seasonal

::::::
period

::
s,

:
is
::
a
:::::
priori

:::::
known.

:
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Table 1. Posterior summary statistics for ARFIMA(0,0,0) process. Average of
::::::
Results

::
are

:::::
based

::
on

::::::::
averaging

:::
over

:
100 runs

:::::::::
independent ARFIMA(0,0,0)

::::::::
simulations

::
for

:::
the

::::::::::
long-memory

::::::::
parameter

::
d,

:::::
mean

:
µ
:::
and

:::::
noise

::::::
variance

::
σ.

mean std 95% CI
d 0.006 0.025 −0.042 0.055
µ −0.004 0.035 −0.073 0.063
σ 1.002 0.022 0.956 1.041

Table 2. Posterior model probabilities for time series from figures 6(a)–(b) and 8(a)–(b)
::
for

:::
the

:::::::::::
autoregressive

:::::::
parameter

::
p

:::
and

::::::
moving

::::::
average

:::::::
parameter

::
q.

(a)

p\q 0 1 2 3 4 5 marginal
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.805 0.101 0.003 0.000 0.000 0.000 0.908
2 0.038 0.043 0.001 0.000 0.000 0.000 0.082
3 0.005 0.004 0.000 0.000 0.000 0.000 0.009
4 0.000 0.001 0.000 0.000 0.000 0.000 0.001
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000

marginal 0.848 0.148 0.004 0.000 0.000 0.000

(b)

p\q 0 1 2 3 4 5 marginal
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.829 0.125 0.002 0.000 0.000 0.000 0.956
2 0.031 0.013 0.000 0.000 0.000 0.000 0.044
3 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000

marginal 0.860 0.138 0.002 0.000 0.000 0.000

Table 3. Posterior model probabilities
::::
based

::
on

:::::::::
simulations

::
of

:::::
model

::
Eq.

:::
(10)

:::
for

::
the

:::::::::::
autoregressive

::::::::
parameter

:
p
:::
and

::::::
moving

::::::
average

::::::::
parameter

:
q.

p\q 0 1 2 3 4 5 marginal
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.822 0.098 0.001 0.000 0.000 0.921
3 0.014 0.056 0.004 0.000 0.000 0.000 0.075
4 0.003 0.001 0.000 0.000 0.000 0.000 0.004
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000

marginal 0.017 0.880 0.102 0.002 0.000 0.000
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Table 4. Posterior model probabilities for Nile minima
:::
time

:::::
series

:::
for

:::
the

:::::::::::
autoregressive

::::::::
parameter

:
p
::::

and

:::::
moving

::::::
average

::::::::
parameter

:
q..

p\q 0 1 2 3 4 5 marginal
0 0.638 0.101 0.010 0.000 0.000 0.000 0.750
1 0.097 0.124 0.011 0.000 0.000 0.000 0.232
2 0.007 0.010 0.000 0.000 0.000 0.000 0.018
3 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000

marginal 0.742 0.236 0.022 0.000 0.000 0.000
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Table 5.
:::::::
Summary

:::::::
posterior

::::::
statistics

:::
for

::::
Nile

::::::
minima

:::
time

:::::
series

:::
for

:::
the

::::::::::
long-memory

::::::::
parameter

::
d,

::::
mean

::
µ

:::
and

::::
noise

::::::
variance

::
σ.

:::::
mean

:::
std 95% CI endpoints

:
d
: :::::

0.402
:::::
0.039

:::::
0.336

:::::
0.482

:
µ
: ::::

1158
::
62

: ::::
1037

::::
1284

:
σ
: :::::

70.15
:::
1.91

: :::::
66.46

:::::
73.97
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Table 6.
:::::::
Posterior

:::::
model

:::::::::
probabilities

:::
for

::::
Nile

::::::
minima

::::
time

:::::
series

:::
for

:::
the

:::::::::::
autoregressive

::::::::
parameter

:
p
::::

and

:::::
moving

::::::
average

::::::::
parameter

::
q.

:::
p\q

: :
0

:
1

:
2

:
3

:
4

:
5

:::::::
marginal

:

:
0
: :::::

0.638
:::::
0.101

:::::
0.010

:::::
0.000

:::::
0.000

:::::
0.000

:::::
0.750

:
1
: :::::

0.097
:::::
0.124

:::::
0.011

:::::
0.000

:::::
0.000

:::::
0.000

:::::
0.232

:
2
: :::::

0.007
:::::
0.010

:::::
0.000

:::::
0.000

:::::
0.000

:::::
0.000

:::::
0.018

:
3
: :::::

0.000
:::::
0.000

:::::
0.000

:::::
0.000

:::::
0.000

:::::
0.000

:::::
0.000

:
4
: :::::

0.000
:::::
0.000

:::::
0.000

:::::
0.000

:::::
0.000

:::::
0.000

:::::
0.000

:
5
: :::::

0.000
:::::
0.000

:::::
0.000

:::::
0.000

:::::
0.000

:::::
0.000

:::::
0.000

:::::::
marginal

: :::::
0.742

:::::
0.236

:::::
0.022

:::::
0.000

:::::
0.000

:::::
0.000

Table 7.
::::::

Posterior
:::::::
summary

:::::::
statistics

::
for

::::
CET

:::::
index

::
for

:::
the

::::::::::
long-memory

::::::::
parameter

::
d,

::::::
seasonal

:::::::::::
long-memory

:::::::
parameter

:::
D,

::::
mean

::
µ

:::
and

::::
noise

::::::
variance

::
σ.

:::::
mean

:::
std 95% CI endpoints

:
d

:::::
0.209

:::::
0.013

:::::
0.186

:::::
0.235

::
D

:::::
0.040

:::::
0.011

:::::
0.018

:::::
0.062

:
µ

:::::
9.266

:::::
0.144

:::::
9.010

:::::
9.576

:
σ

:::::
1.322

:::::
0.015

:::::
1.294

:::::
1.353

Table 8.
:::::::
Posterior

:::::::
summary

:::::::
statistics

::
for

::::
four

:::::
blocks

::
of

::::
CET

::::
index

:::
for

::
the

:::::::::::
long-memory

:::::::
parameter

::
d,

:::::::
seasonal

::::::::::
long-memory

:::::::
parameter

:::
D,

::::
mean

::
µ

:::
and

::::
noise

:::::::
variance

::
σ.

::
00

:

:::::
mean

:::
std 95% CI endpoints

:::::::::
1659–1744

: :
d

:::::
0.277

:::::
0.026

::::
0.231

: ::::
0.332

:

::
D

:::::
0.054

:::::
0.022

::::
0.013

: ::::
0.097

:

:
µ

:::::
9.036

:::::
0.347

::::
8.332

: ::::
9.702

:

:
σ

:::::
1.217

:::::
0.027

::::
1.167

: ::::
1.271

:

:::::::::
1744–1829

: :
d

:::::
0.204

:::::
0.028

::::
0.151

: ::::
0.259

:

::
D

:::::
0.017

:::::
0.023

::::::
−0.028

: ::::
0.063

:

:
µ

:::::
9.107

:::::
0.216

::::
8.671

: ::::
9.533

:

:
σ

:::::
1.348

:::::
0.031

::::
1.290

: ::::
1.409

:

:::::::::
1829–1914

: :
d

:::::
0.172

:::::
0.027

::::
0.118

: ::::
0.223

:

::
D

:::::
0.036

:::::
0.022

::::::
−0.010

: ::::
0.076

:

:
µ

:::::
9.172

:::::
0.168

::::
8.859

: ::::
9.517

:

:
σ

:::::
1.364

:::::
0.030

::::
1.312

: ::::
1.429

:

:::::::::
1914–2000

: :
d

:::::
0.163

:::::
0.027

::::
0.108

: ::::
0.213

:

::
D

:::::
0.063

:::::
0.022

::::
0.023

: ::::
0.109

:

:
µ

:::::
9.591

:::::
0.152

::::
9.314

: ::::
9.906

:

:
σ

:::::
1.348

:::::
0.030

::::
1.291

: ::::
1.406

:
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Figure 1. Posterior outputs; (a)
:::::::
Bayesian

::::::
estimate

:
d̂(B)

::::
values

:::
on

::
the

:::::
y-axis

:
against

:::
the

:::
true dI :

on
:::

the
:::::
x-axis,

(b)
::::::
residuals

:̂
dR

(B)

:::
from

:::
the

:::::::
Bayesian

::::::
estimate

::::
from

:::
the

::::
truth

:
against

:::
that

::::
truth,

:
dI .

::::
Each

:::
“x”

::::::
plotted

::::::
represts

:::
one

::::::
estimate

::
or

:::::::
residual.
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Figure 2. Posterior outputs; (a)
::::::
Bayesian

::::::::
estimated

::::::
standard

:::::::
deviation σ̂(B) against

:::
true dI :::::

values, (b)
:::::::
Bayesian

:::::::
estimated

::::
mean

:̂
µ(B) against dI , and (c)

:::::::::
Uncertainty

:
in
:::
the

:::::::
posterior

::
for

::
µ,

:::
the

::::::
standard

:::::::
deviation

:̂
σµ

(B) against
dI (semi-log scale).

:::
Each

:::
“x”

::::::
plotted

:::::::::
corresponds

::
to

::
an

:::::::
estimate.
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Figure 3. Posterior outputs from ARFIMA(0,0,0) series; (a)
::
the

:::::::
posterior

:::::::
standard

:::::::
deviation

::
in
:::
d, σ̂d(B)

against
::
the

::::::
sample

:::
size

:
n, (b)

::::::
posterior

:::::::
standard

:::::::
deviation

::
in

::
µ,

:
σ̂µ

(B) against n, (c) σ̂σ(B) against n (log-
log scale).
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Figure 4. Table: Mean difference of estimates d̂(B) under alternative prior assumption. Plots: Comparison of
posteriors (solid lines) obtained under different priors (dotted lines). Time series used: ARFIMA(0,0.25,0); (a)
n= 27 = 128, (b) n= 210 = 1024.
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Figure 5. Comparison of Bayesian estimator with common classical estimators; (a) R/S, (b) GPH, (c) DFA,
(d) Wavelet.
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Figure 6. Posterior samples of (d,φ); input time series (a) (1+0.92B)(1−B)0.25Xt = εt, (b) (1−0.83B)(1−
B)−0.35Xt = εt.
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Figure 7. Spectra for processes in figure 6. Green line is relevant ARMA(1,0) process, red line is relevant
ARFIMA(0,d,0) process, black line is ARFIMA(1,d,0) process; (a) (1+0.92B)(1−B)0.25Xt = εt; (b) (1−
0.83B)(1−B)−0.35Xt = εt. Pane (c) shows posterior samples of (d,φ) from series considered in pane (b)
with credibility sets: red is 95% credibility set for (d,φ), green is 95% credibility interval for d, blue is 95%
credibility interval for φ.
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Figure 8. Marginal posterior density of d from series in figure 6, (a)–(b) respectively. Solid line is density
obtained using reversible-jump algorithm. Dotted line is density obtained using fixed p= 1 and q = 0.

:::
The

:::
true

:::::
values

:::
are

::::::::
dl = 0.25

:::
and

:::::
-0.35,

:::::::::
respectively.

:
Panels (c)–(d) shows the posterior densities for µ and σ,

respectively, corresponding to the series in 6(a); those for 6(b) look similar.
:::
The

:::
true

::::::
values

::
are

:::::
µ= 0

::::
and

:::::
σ = 1.

::::
True

:::::
values

::
are

::::::
marked

::
by

::
an

:::
X.
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Figure 9. Marginal posterior densities (a) d, (b) α
::::
from

:::
the

:::::
model

::
Eq.

:::
(10).
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Figure 10.
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Annual

:::
Nile

::::::
minima

::::
time

:::::
series.

41



0.25 0.30 0.35 0.40 0.45 0.50

0
2

4
6

8
10

d

800 900 1000 1100 1200 1300 1400

0.
00

0
0.

00
2

0.
00

4
0.

00
6

µ

:::::::::
(a)

:::::::::
(b)

Figure 11.
:::::::
Marginal

:::::::
posterior

::::::
densities

:::
for

:::
Nile

:::::::
minima;

::
(a)

::
d,
:::
(b)

::
µ.

mean 95% CI
d 0.039

::::
0.402

:
0.336 0.482

µ 62
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1158
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1037 1284

σ 1.91
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70.15
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66.46 73.97
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Figure 12. Table: Summary posterior statistics for Nile minima. Plots: Marginal posterior densities for Nile
minima; (a) d, (b) µ.
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Figure 13.
::::
CET

:::
time

:::::
series

:::::::::::::
(deseasonalised).
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Figure 14.
:::
CET

::::
time

::::::
series;

:::
(a)

::::::::
assumed

::::::::::
deterministic

::::::::
seasonal

:::::::::
component

:::::
S(t),

:::
(b)

::::::::
spectrum

:::
of

:::::::::::
deseasonalised

:::::
index.
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Figure 15.
::::
Joint

:::::::
posterior

::::::
samples

::
of

:::::
(d,D)

::::
with

::
95%

:::::::
credibility

:::
set

:
in
:::

red
:::
for

::::
CET

:::
time

:::::
series.
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Figure 16.
::::
CET

::::
time

:::::
series;

:::::::
posterior

::::::
estimate

:::::
(solid

::::
line)

:::
and

::
95%

::::::::
credibility

::::::
interval

::::::
(dotted

:::
line)

:::
for

::::
four

:::::
blocks

:::::
(black)

:::
and

:::::
whole

:::::
index

::::
(red)

::
for

:::
(a)

:
d,
:::
(b)

::
µ.
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