
Response to the Editorial Comment

All line and equation numbers refer to the newly revised manuscript.

1. “Presentation of the material. I share Rev. 1’s recommendation in her/his 3rd general comment. I
understand you consider the data assimilation part of your paper as your main contribution. The
sequence in which you present the material, however, should be driven by the natural flow or chain of
thoughts, not what you wish to emphasize most. As Rev. 1 noted, the current layout unnecessarily
hinders readers efforts to understand your arguments and experiments. There can be other ways you
can put emphasis on the DA part”

(a) “Clearly separate the presentation of your model and DA methods. In the revised manuscript, you
have to discuss model related questions in the DA section, just because you placed it prior to the
modeling section.”

(b) “Switch sections 2 & 3. By introducing your model first you will give the context for your DA
discussion. Without understanding the model, one cannot understand or appreciate your DA
innovation.”

At the editor’s insistence we have restructured our paper, swapping the order of sections 2 & 3.
Naturally, further revisions were necessary to improve the flow. These are detailed below:

• Lines 100–111 at the end of the introduction are revised to reflect the new structure of the paper.

• The last sentence of the old section 3 has been deleted.

• Lines 308–314: The first paragraph of the old section 2 has been re-worked.

• Lines 317–381, 346–349, and equation (11) have been added showing how the new framework is
exemplified in the context of the new model.

• The last sentence of the old section 2 has been deleted.

2. “Choice of benchmark. In her/his first comment, Rev. 2 asks about a benchmark more appropriate
than climatology. While I am not sure I understand her/his specific suggestion, I fully agree that a
more proper benchmark for your new DA approach is needed to convince the readers of the value of
your methodology. . . ”

We have implemented the test suggested by the second referee, by conducting ensemble Kalman filter
experiments with the true, non-SP dynamics for comparison. These experiments and their results are
reported in section 4.1, which is entirely new. The SP 3D-Var system is more accurate and cheaper
than the ensemble Kalman filter (100 ensemble members, with hand-tuned covariance inflation and
localization).

“. . . In the manuscript you point out how you go beyond past methods (e.g., l. 602). Lacking your
methodology, how can people initialize an SP model? Can you demonstrate what benefits switching
to your new method would bring? A comparison to climatology or observations will not provide that
information.”

The way that SP models are initialized is now described on lines 41–47. The large-scale part of the
model is initialized from reanalysis, and the small scale part is initialized with noise. As a result, there
is an initial transient while the small scale dynamics equilibrate. Once an SP model is running there
was (before this paper) no way to combine the SP forecast with observational data to generate a new
initial condition.

3. “Abstract and Conclusions. After addressing the comments above, you may be in a better position
to clarify, at a general / conceptual level, what innovations your method provides to the field, and
within that, to SP initialization. It may be helpful if you could be more specific in the Conclusions as
to how the technique could be applied in real forecast situations. That would nicely complement your
summary.”

We don’t offer much to the field of data assimilation in general, i.e. things that are applicable outside
the context of SP. That said, our paper (modulo our previous, impractically expensive and partially
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erroneous paper on ensemble-based methods GLM14) essentially creates the field of SP data assimi-
lation. We now emphasize this on lines 7–9 of the abstract, and 658–660 of the conclusions. We also
add the sentence “The computational costs of the new framework are such that it could be used with
computationally demanding global atmosphere and climate SP models, allowing such models to be
used for, for example, seasonal forecasting” (lines 667–671). In order to further clarify what would be
necessary to implement the framework in a global atmosphere model we made minor revisions to the
wording of the last paragraph of the conclusions: all that is necessary is to specify the large-scale back-
ground covariance matrix, which could presumably be based entirely on previous work using 3D-Var
with global atmosphere models.

Further revisions

Since major revisions were required, we have taken the opportunity to make additional changes to those
listed above to improve sections 2 and 3.

• Lines=138–155: We now emphasize that the original two-scale Lorenz-‘96 model is a two-time-scale
model not a two-space-scale model as appropriate for SP. We discuss Wilks’s (2012) SP approximation
of that model in light of this distinction, underscoring the need to develop a new toy model.

• The new section that we added in the first revision, explaining why it is reasonable to assume that the
large and small scales are uncorrelated, has been moved from directly following equation (13) (which
breaks the flow) to directly following (16), where it is more natural. [Lines 438–448 and equation (17).]
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Abstract. Superparameterization (SP) is a multiscale com-
putational approach wherein a large scale atmosphere or
ocean model is coupled to an array of simulations of small
scale dynamics on periodic domains embedded into the com-
putational grid of the large scale model. SP has been success-5

fully developed in global atmosphere and climate models,
and is a promising approach for new applications

:
,
:::
but

::::
there

:
is
::::::::
currently

::
no

::::::::
practical

:::
data

:::::::::::
assimilation

:::::::::
framework

:::
that

:::
can

::
be

::::
used

:::::
with

:::::
these

::::::
models. The authors develop a 3D-Var

variational data assimilation framework for use with SP; the10

relatively low cost and simplicity of 3D-Var in comparison
with ensemble approaches makes it a natural fit for relatively
expensive multiscale SP models. To demonstrate the assim-
ilation framework in a simple model, the authors develop a
new system of ordinary differential equations similar to the15

two-scale Lorenz-‘96 model. The system has one set of vari-
ables denoted {Yi}, with large and small scale parts, and the
SP approximation to the system is straightforward. With the
new assimilation framework the SP model approximates the
large scale dynamics of the true system accurately.20

1 Introduction

Superparameterization (SP) is a multiscale computational
method for parameterizing small scale effects in large scale
atmosphere and ocean models. It was originally developed
and has been particularly effective as a cloud parameteriza-25

tion in atmosphere models (Grabowski and Smolarkiewicz,
1999; Randall et al., 2003), and has been implemented in
global atmosphere and climate models (Khairoutdinov and
Randall, 2001; Tao et al., 2009; Randall et al., 2013). SP
couples a large scale, low resolution model to an array30

of local small scale, high resolution simulations embed-
ded within the computational grid of the large scale model.

The computational cost is kept down through a variety of
methods, most prominently by reducing the dimensional-
ity of the small scale simulations, e.g. using one vertical35

and one horizontal coordinate in the aforementioned atmo-
spheric applications. Although atmosphere and climate mod-
els with SP are particularly successful at producing a re-
alistic Madden-Julian oscillation and diurnal cycle of con-
vection over land (Khairoutdinov et al., 2005), there are as40

yet no data assimilation systems designed for use with these
models.

::::::
Instead,

:::
the

::::
large

:::::
scale

::::::::
variables

:::
are

::::::::
initialized

::::
from

::::
state

::::::::
estimates

::::::::
generated

::::
with

:::::::
non-SP

::::::
models

:::
and

:::
the

:::::
small

::::
scale

::::::::
variables

::::
are

:::::::::
initialized

::::
with

::::::::::::::
small-amplitude

:::::
noise

:::::::::::::::::::::::
(Khairoutdinov et al., 2005) .

:::::
Once

::::
the

:::
SP

:::::
model

::::
has

::::
been45

::::::::
initialized,

:::::
there

:::
is

::
no

::::::::
practical

::::::::::
framework

:::
for

:::::::::
combining

:::::::::::
observational

::::
data

:::::
with

:::
the

:::::::::
multiscale

::::::
model

::::::::
forecast

::
to

::::::
produce

::
a
::::
new

:::::
initial

::::::::
condition.

:

The authors recently developed an ensemble Kalman fil-
ter framework for data assimilation with SP (Grooms et al.,50

2014, hereafter GLM14). This framework was developed in
the context of stochastic SP, a variant of SP that reduces
computational cost by replacing the small scale simulations
of SP with quasilinear stochastic models (Grooms and Ma-
jda, 2013; Majda and Grooms, 2014). Stochastic SP has only55

been developed for idealized turbulence models (Grooms and
Majda, 2013, 2014a, b; Grooms et al., 2015), and is not yet
implemented in global atmosphere, ocean, or climate mod-
els. Because of the relatively high cost and computational
complexity of global atmosphere and climate models with60

SP, the extra cost associated with an ensemble-based data as-
similation system makes it unlikely that it will be possible to
use these models with the framework of GLM14 in the near
future.

Here we develop a 3D-Var variational data assimilation65

framework for SP that builds on and modifies the framework
of GLM14.
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Observations of physical variables have large scale and
small scale parts, the former of which is equated with the
large scale model variables, and the latter with the variables70

of the small scale embedded simulations. A key feature of SP
is that the small scale simulations are periodic, so a location
on the small scale computational grid does not correspond
precisely to any location in the real physical domain; as a
result, the small scale simulations provide only statistical in-75

formation about the small scales, and this information can be
used as a prior in the data assimilation context. In GLM14
an ensemble of SP simulations provides prior information
on the large scale variables, but in the present approach the
prior information on the large scales comes from a single80

SP simulation and a time-independent ‘background’ covari-
ance matrix for the large scale variables. When the observa-
tion operator is linear the analysis estimates of the large and
small scale variables can be computed independently of each
other, and the small scale covariance information effectively85

provides a time- and state-dependent estimate of represen-
tation error. When the observation operator is nonlinear the
large and small scale analysis must be computed simultane-
ously by minimizing an objective function. Although anal-
ysis estimates of the small scale variables can be computed90

with linear observations, and must be computed with nonlin-
ear observations, our framework does not at this time use the
small scale analysis estimate to update any of the small scale
SP variables because the latter cannot be unambiguously as-
sociated with any real physical location. A key update of the95

GLM14 framework is that we here compute a small scale
analysis estimate at locations where observations are avail-
able, rather than at every coarse grid point. This can result in
significant computational savings in the case of a nonlinear
observation operator. We also update the GLM14 framework100

to better handle observations at locations off the coarse grid.
The 3D-Var frameworkwith SP is presented in

Sect. 3
::::::
complex

:::::::::::::::::
superparameterized

:::::::::
atmosphere

::::
and

::::::
climate

::::::
models

:::::::::
mentioned

::::::
above

::::
are

:::
not

:::::::::::
particularly

:::::::::
convenient

::
for

:::
the

:::::::::::
development

:::
of

:
a
::::
new

::::
data

:::::::::::
assimilation

:::::::::
framework,105

:::
and

:::::::
existing

:::
toy

::::::
models

:::
of

:::
SP

:::
are

::
of

::::::
limited

::::::
utility

:::
for

:::
this

::::::
purpose. In Sect. 2 we develop a new system of ODEs based
on the two-scale Lorenz-‘96 (L96) model (Lorenz, 1996,
2006), and an SP approximation to that system. Assimilation

::::
This

:::
new

::::::
model

:::::
serves

:::
as

:
a
::::::
testbed

::
in
::::::

which
::
to

::::::::::
demonstrate110

:::
our

:::
new

:::
SP

:::::::
3D-Var

:::::::::
framework.

::::
The

::::::
3D-Var

:::::::::
framework

::::
with

::
SP

:::
is

::::::::
presented

:::
in

:::::
Sect.

::
3,

::::
and

:::::::::::
assimilation

:
experiments

using the new 3D-Var framework and the new system are
described in Sect. 4, followed by conclusions.

2 A multiscale Lorenz-‘96 Model
:::::
model with superpa-115

rameterization

In this section we develop a new simple model for SP in
which to demonstrate our data assimilation framework. Ma-
jda and Grote (2009) developed an idealized model of SP,

but the system suffers from one major drawback: it does not120

consist of an SP approximation to an idealized system, but
rather consists only of an idealized SP model. Harlim and
Majda (2013) used the model of Majda and Grote (2009) to
develop a data assimilation strategy for SP, but with the as-
sumption that direct observations of the large scale variables125

were available, rather than having both large and small scale
contributions to the observations. Lee and Majda (2015) have
recently investigated a range of multiscale assimilation meth-
ods in a highly condensed model where the ‘large scale’ con-
sists of a single scalar with no spatial extent.130

Wilks (2012) developed an SP approximation for the
two-scale Lorenz-‘96 system, which has the following form
(Lorenz, 1996, 2006)

Ẋk =−Xk−1(Xk−2−Xk+1)−Xk −
hc

b

J∑
j=1

Yj,k +F

(1)

Ẏj,k = c

[
−bYj+1,k(Yj+2,k −Yj−1,k)−Yj,k +

h

b
Xk

]
. (2)135

TheXk variables have periodicityXk =Xk+K , and the Yj,k
variables have periodicity Yj+J,k = Yj,k+1 and Yj,k+K =
Yj,k, where j = 1, . . . ,J and k = 1, . . . ,K. The combined in-
dex j+ J(k− 1) is naturally associated with spatial loca-
tion along a latitude circle, and the local average J−1

∑J
j=1140

serves to separate large and small spatial scales. There are

::::
This

::::::
system

::
is

::::::::
primarily

::::::
useful

::
as

::
a

::::::::::::
two-time-scale

::::::
model,

::::
since

:::
for

:::::
large

::
c
:::
the

::::
Yj,k::::::::

variables
:::
are

:::::
faster

:::::
than

:::
the

:::
Xk

::::::::
variables.

::::::
Wilks’s

:::
SP

:::::::::::::
approximation

::
to

::::
this

::::::
system

::::::
reflects

:::
this

:::
fact

:::
by

:::::::
treating

:::
the

::::
Yj,k :::::::

variables
:::
as

:::::
purely

::::::::::
small-scale;145

::::
also,

::
in

:::
his

::::
SP

::::::::::::
approximation

::::
the

:::::::::
periodicity

:::
of

:::
the

::::
Yj,k

:::::::
variables

::
is
::::::::

replaced
:::

by
::::::::

defining
::::::::::::::::::::
Y0,k = YJ+1,k = YJ+2,k

:::::
which

:::
are

::::
set

::
to

::
a
::::::::

constant
::::::

value.
:::::::::::
Considering

::::
that

:::
the

::::::::
multiscale

::::::
nature

::
of

:::
SP

::
is
:::::::::

primarily
:::::
based

:::
on

::::::
spatial

::::
scale

::::::::
separation

::::::
rather

::::
than

::::
time

::::
scale

::::::::::
separation,

:
a
:::::

more
::::::
natural150

::
SP

::::::::::::
approximation

::
to
:::
the

:::::::::
two-scale

:::::::::
Lorenz-‘96

::::::
system

:::::
might

::::
make

::::
the

::::
Yj,k:::::::::

variables
::::::
locally

:::::::::
periodic:

::::::::::::
Yj+J,k = Yj,k.

:::::::::::
Nevertheless,

::::
there

::::::
would

:::
still

::
be

:
two sets of large scale vari-

ables (Xk, and the j-average of Yj,k) but only one set of small
scale variables (Yj,k minus its j-average). Observations of155

the Yj,k variables include contributions from the large and
small spatial scales, but observations of the Xk variables are
purely large-scale. It is not difficult to incorporate this into
the filtering framework (simply set the small scale part of the
Xk variables to zero), but we prefer an idealized model with160

only one set of variables. We therefore develop an alternative
model with a similar form but with only one set of variables
and with spatially homogeneous statistics

::::::
Rather

::::
than

::::
bend

::
the

:::::::::::::
two-time-scale

:::::::::
Lorenz-‘96

::::::
model

::
to

:::
our

:::::::::::::
two-space-scale

:::::::
purpose,

:::
we

:::::::
develop

::
a

::::
new

:::::::::::::
two-space-scale

:::::::
version

::
of

:::
the165

:::::::::
Lorenz-‘96

::::::
model

::::
that

::
is

:::::
more

::::::::
naturally

::::::
suited

::
to
:::

an
:::

SP

::::::::::::
approximation.
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Figure 1. Climatological statistics in regime I. (a) Time series of the Xk variables. (b) Time series of the Xk variables from the SP ap-
proximation. (c) A snapshot showing Yi (blue), the large scale part of Yi defined by projection onto the first 41 discrete Fourier modes
(red), and the Xk variables (yellow circles). (d) Time-averaged energy spectrum |Ŷκ|2 where Ŷκ is the discrete Fourier coefficient of Yi with
wavenumber κ. (e) Time-lagged autocorrelation functions for Xk (blue) and the small scale part of Yi (red), defined by projecting out the
first 41 Fourier modes. (f) Space-lagged autocorrelation functions for Xk from the true dynamics (blue) and the SP approximation (red).
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The
:::
new model is defined by the following equation

Ẏ = hNY (Y ) +JTTNX(TY )−Y +F1JK (3)

where Y = {Yi}JKi=1, where 1JK is a vector of length JK170

with all elements equal to 1, T is a matrix in RK×JK , and
the index i, which is periodic Yi+JK = Yi, is analogous to
spatial location on a latitude circle, similar to the original
L96 model (Lorenz, 1996, 2006). The nonlinear functions
NY andNX are defined as175

{NY (Y )}i =−Yi+1(Yi+2−Yi−1) (4)
{NX(X)}k =−Xk−1(Xk−2−Xk+1) (5)

where Eqs. (4) and (5) are evaluated assuming periodic-
ity for the vectors X = {Xk}Kk=1 and Y : Xk+K =Xk and
Yi+JK = Yi. The matrix T extracts the large-scale part of180

Y ; we choose to let T be defined as the projection onto the
first K discrete Fourier modes, followed by evaluation on an
equispaced grid of K points. The large scale dynamics are
obtained by applying T to Eq. (3) from the left

Ẋ = hTNY (Y ) +NX(X)−X +F1K (6)185

where we define the large scale component X = TY , and
use that JTTT is the identity matrix and that T1JK =
1K (these are true for our choice of a Fourier projec-
tion, but other choices of T are possible). Note that when
h= 0 the dynamics are those of the single-scale Lorenz-190

‘96 model with K modes, and when h 6= 0 the nonlinearity
NY (Y ) couples large and small scales. Energy conserva-
tion for the nonlinear terms in Eq. (3) is obtained by noting
that Eq. (4) implies Y TNY (Y ) = 0, and that (5) implies
Y TTTNX(TY ) =XTNX(X) = 0. The matrix JTT in-195

terpolates from RK to RJK , and it is convenient to define
notation for the small scale part of Y :

y = {yi}JKi=1 = Y − JTTTY . (7)

The superparameterization approximation is governed by
200

Ẏj,k =−hYj+1,k(Yj+2,k −Yj−1,k)

−Xk−1(Xk−2−Xk+1)−Yj,k +F (8)

where Xk = J−1
∑J
j=1Yj,k, and there is local as well

as global periodicity: Yj+J,k = Yj,k and Xk+K =Xk. The
large scale dynamics in the SP approximation are obtained205

by j-averaging Eq. (8), which gives

Ẋk =−h
J

J∑
j=1

Yj+1,k(Yj+2,k −Yj−1,k)

−Xk−1(Xk−2−Xk+1)−Xk +F. (9)

When h= 0 the large scale dynamics of the SP approxima-210

tion and the true system are equivalent. As in more complex

SP applications, the small scale variables (here Yj,k −Xk)
are locally periodic, and are coupled to the large scale
using a local average over a periodic domain in a manner
analogous to the coupling in more complex SP models (e.g.,215

Grabowski, 2004). TheXk variables in the SP model attempt
to accurately model the dynamics of X in the true system,
but the small scale variables of the SP approximation are
only statistically related to the small scale variables of the
true system, i.e. one does not expect an SP variable Yj,k to220

be a direct approximation of any of the true system variables
Yi.

The purpose of this research is not to study the SP ap-
proximation in this system, but rather to use the system as225

a testbed for our data assimilation framework. We therefore
choose to focus on parameter regimes where the SP approxi-
mation is reasonably accurate, setting J = 128 so that there is
a good scale separation (the SP approximation should break
down for small J). The number of large scale modes is set to230

K = 41; we choose 41 rather than the usual 40 so that the dis-
crete Fourier modes associated with the large scale variables
are 0,±1, . . . ,±20, and the twentieth mode is not split be-
tween large and small scales. It remains to choose F and h. In
general, for fixed nonzero h the small scale variables become235

more chaotic and larger amplitude as F increases, and simi-
larly for fixed F as h increases. As the small scales become
more chaotic and larger amplitude the large scale variables
become less chaotic. This behavior is perhaps counterintu-
itive, but similar behavior has been observed in the two-scale240

Lorenz-‘96 system by Abramov (2012). Balancing the desire
for complex large scale dynamics and turbulent small scale
dynamics, we choose to focus on two parameter regimes.

I: F = 30, h= 0.4

II: F = 21, h= 0.35245

Some characteristics of the dynamics in regimes I and II
are presented in Figs. 1 and 2, respectively. In regime I the
large scale dynamics consist of a train of eight propagating
and nonlinearly interacting ‘waves,’ as seen in the time se-
ries of the X variables in Fig. 1a. The large scale dynamics250

of the SP approximation are qualitatively similar, as shown
in Fig. 1b. The time-lagged autocorrelation function of the
Xk variables (averaged over k) is shown in Fig. 1e, and dis-
plays an oscillatory structure associated with the wave train.
The initial decay of the time-lagged autocorrelation is ap-255

proximated by an exponential of the form exp{−(λ+ iω)t}
with decorrelation time λ−1 = 0.84 and oscillation period
2π/ω = 0.71; the resurgence of correlation between 6 and
8 time units is associated with the time it takes a single wave
to propagate once around the domain. The regularity of the260

wave train is also reflected in the space-lagged autocorrela-
tion function for the Xk variables shown in Fig. 1f, which is
well approximated by the SP dynamics. Figure 1c shows the
Yi variables at an instant of time (blue), along with the large
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Figure 2. Climatological statistics in regime II. Panels are the same as Fig. 1.

scale part (red; the projection onto the first 41 Fourier modes)265

and the Xk variables (yellow circles). There is clearly strong
small scale variability, but not so strong that it completely ob-
scures the large scale pattern, and the amplitude of the small
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scale variability varies over the domain. Figure 1d shows the
time-averaged energy spectrum |Ŷκ|2, where Ŷκ is the dis-270

crete Fourier coefficient of Yi with wavenumber κ. There
is a clear separation in amplitude between the large scale
Fourier modes (κ≤ 20) and the small scale modes, showing
that the large scale energy is concentrated near wavenumbers
κ= 7 and 8, while the small scale energy is more broadly275

distributed among Fourier modes. The broad distribution of
small scale energy among Fourier modes is indicative of the
strongly chaotic small scale dynamics, as is the rapid tem-
poral decorrelation of the small scale variables yi shown in
Fig. 1e. The decorrelation time of the small scale variables280

yi is estimated as 0.2 using the integral of the time-lagged
autocorrelation function.

In regime II the large scale dynamics are more chaotic,
though wave trains are still evident in the time series of X
in Fig. 2a. The large scale dynamics of the SP approxima-285

tion are again qualitatively similar, as shown in Fig. 2b. The
time-lagged autocorrelation function of the Xk variables in
Fig. 2e decays much more rapidly than in regime I. The ini-
tial decay of the time-lagged autocorrelation is approximated
by an exponential of the form exp{−(λ+iω)t}with decorre-290

lation time λ−1 = 0.38 and oscillation period 2π/ω = 0.95,
and there is no resurgence of correlations at long lag times.
The decreased regularity of the wave train is reflected in the
space-lagged autocorrelation function for the Xk variables
shown in Fig. 2f, which is again well approximated by the295

SP dynamics. The snapshot of the Yi variables in Fig. 2c
shows a diminished level of small scale variability overall,
with some regions having almost no small scale activity and
others having strong small scale variability. The energy spec-
trum in Fig. 2d shows that the energy is more broadly dis-300

tributed among large scale Fourier modes, though there is
still a peak at wavenumber κ= 8. The broad distribution of
small scale energy among Fourier modes is again indicative
of the strongly chaotic small scale dynamics, as is the rapid
temporal decorrelation of the small scale variables yi shown305

in Fig. 2e. The decorrelation time of the small scale variables
yi is estimated as 0.23 using the integral of the time-lagged
autocorrelation function.

The Yi variables have a uniform time mean of 3.8 and 3.6
in regimes I and II, respectively, which is accurately repro-310

duced by the SP approximation. The Xk variables have vari-
ance 31 and 32 in regimes I and II, respectively, and their SP
counterparts have slightly higher variances of 33 and 34. The
small scale variables yi have climatological variance of 70 in
regime I and 29 in regime II, though Figs. 1c and 2c show315

that this variability is unevenly distributed over the physical
domain at any given instant. Data assimilation experiments
for both these regimes are described in the next section.

3 Variational data assimilation with superparameteri-
zation320

The key aspect of the GLM14 framework is the way in
which the variables

::::::
primary

::::::::
difficulty

::
in

::::::::::
developing

:
a
::::

data

::::::::::
assimilation

:::::::::
framework

:::
for

::
an

:::
SP

:::::
model

::
is
::::
that

::::::::::
observations

of the true dynamical system are related to those of the
superparameterization.

::::::
system

:::::::
include

:::::::::::
contributions

:::::
from325

::::
large

::::
and

:::::
small

:::::::
scales,

:::
and

:::
it

::
is

:::::::::
necessary

::
to
::::::

relate
:::
the

::::::::::
observations

:::
to

::::
the

:::::
large

::::
and

::::::
small

:::::
scale

::::::::
variables

:::
of

::
the

:::
SP

:::::::
model.

:::::::
GLM14

::::::::
provided

::
a
:::::::::
framework

:::
for

:::::::
relating

::::::::::
observations

::
to

:::
SP

::::::
model

::::::::
variables,

:::
and

:::
we

:::::::
improve

:::
on

:::
this

:::::::::
framework

:::::
below.

:
330

Let the large scale variables of the SP simulation be de-
noted u (the overbar does not denote a statistical mean), and
let the small scale variables be denoted ũ. In

:::
the

::::::
context

::
of

::
the

::::
new

::::::::::
Lorenz-‘96

::::::
model,

::::::
u=X

:::
and

:::::::::::::::::
ũ= {Yj,k −Xk}j,k.

::
In most SP applications there is a set of small scale vari-335

ables at every point of the large scale computational grid.
The small scale variables exist on local periodic domains so
that the small scale variables at each coarse grid point are
disconnected from those at surrounding coarse grid points,
and the small scale variables have zero average across the340

periodic directions. Each location in the small scale periodic
domains doesn’t correspond to a different location in the real
physical domain. Instead, all points in a given periodic do-
main are best thought of as existing at one physical location:
the associated coarse grid point.345

In GLM14, observations are related to the SP model vari-
ables using the following observation model

v =H(L(u+u′)) + ε (10)

whereH is the observation operator and ε is a vector of zero-
mean normal random variables associated with observation350

error. The vector u′ has the same size as u, and models the
small-scale contribution to physical variables at the coarse
grid points, i.e. u= u+u′ is the vector of real physical
variables at the coarse model grid points. The physical vari-
ables u are interpolated to the location of the observations355

by L. The
:::::
vector

:::
u′

::
is

:::
not

:::
the

:::::
same

::
as
::::

the
:::::
small

::::
scale

:::
SP

:::::::
variables

::̃
u.

:::::::
Instead,

:::
the

:
mean and covariance of u′ are com-

puted from the statistics of the small scale SP variables ũ. Al-
though the true small scale variables u′ can in principle have
nonzero statistical mean, the small scale SP variables ũ al-360

ways have zero mean because their average over the local pe-
riodic domains is always zero by definition.

::
For

::::::::
example,

::
in

::
the

:::::::
context

::
of

:::
the

:::
new

::::::::::
Lorenz-‘96

:::::
model

:::
the

:::::::
GLM14

::::::
version

::
of

:::
the

::::::
vector

::
u′

::::
has

::::::
length

:::
K,

:::
has

:::::
zero

:::::
mean,

::::
and

::::
has

:
a

:::::::
diagonal

:::::::::
covariance

::::
with

::::::
entries365

Var [u′k] =
1

J − 1

J∑
j=1

(Yj,k −Xk)2.

:::::::::::::::::::::::::::

(11)

As noted in GLM14, it is unrealistic to use the same in-
terpolation operator for both the large and small scale vari-
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ables because it assumes that the small scale variables vary
smoothly between the coarse grid points, whereas the small370

scale variables should by definition vary over shorter dis-
tances. (Observations in GLM14 were taken only on the
coarse grid points, avoiding the issue.) Instead of specify-
ing an alternative interpolation operator for the small scales,
we update the framework by altering the definition of u′ to375

include small scale variables only at the points where obser-
vations are taken. We also assume that the statistics of the
small scale variables vary on large scales and can therefore
be smoothly interpolated from the coarse grid points, where
small scale SP statistics are available, to the locations of the380

observations.
Let P denote the number of different physical locations

where observations are available (for simplicity of exposition
we assume that there is only one observation per location,
i.e. v ∈ RP ). The updated observation model for the p-th lo-385

cation is

vp =Hp(Lp(u) +u′p) + εp (12)

where Lp interpolates the large scale model variablesu to the
observation location and εp is a zero-mean Gaussian random
variable. There is thus one vector u′p of small scale variables390

per observation location. The updated observation model for
all P observations can be written in vector form as

v =H(L(u) +u′) + ε (13)

where u′ is no longer defined as in GLM14, but according to
the discussion above.395

To complete the specification of the 3D-Var framework we
specify a prior joint distribution for u and u′ with mean

E [u] = µ, E [u′] = 0

and covariance[
B 0
0 P′

]
.400

As typical in a 3D-Var setting, the background covariance
matrix B for the large scale variables is independent of time,
and the prior mean for the large scales is given by a single
forecast of the large scale part of the SP model. The small
scale variable u′ is assumed to be uncorrelated with the large405

scale variable. In practice, the large and small scale variables
are certainly not independent, but as shown in GLM14 the
assumption that they are uncorrelated is reasonable within
the context of an SP model where the small scale variables
have zero mean. The joint probability distribution of large410

and small scale variables can be factored into the large
scale marginal and the small scale conditional distributions
p(u,u′) = pM (u)pC(u′|u). The cross-covariance between

large and small scale variables is∫∫
(u−µ)u′T pM (u)pC(u′|u)dudu′ =415

∫
(u−µ)pM (u)

[∫
u′T pC(u′|u)du′

]
du= 0

where the term in square brackets is zero because the small
scale variables are assumed to have zero mean regardless of
the state of the large scale variables.

The covariance of the small scale variables P′ is com-420

puted from the small scale variables of the SP model, and
thus changes from one assimilation cycle to the next. Specif-
ically, it is first assumed that the small scale variables at dif-
ferent observation locations are uncorrelated from each other
so that one needs only compute the covariance matrices P′p425

of the u′p variables. This assumption is reasonable as long as
the observations are taken at locations reasonably well sep-
arated compared to the correlation length of the small scale
variables. (The framework could be updated for situations
where the observations are closer than this, e.g. by using spa-430

tial correlation information for the small scale variables com-
puted from the SP simulation, but this is beyond the scope of
the present investigation.) To compute P′p we begin by com-
puting auxiliary small scale sample covariance matrices P̃k
using the small scale SP variables ũ at each coarse grid point.435

Let {ũk,j}Jj=1 be the small scale SP variables located in a pe-
riodic domain at the k-th coarse grid point, where there are
J grid points in the periodic embedded domain. Then, recall-
ing that their average over J is zero, the auxiliary small scale
sample covariance matrix is440

P̃k =
1

J − 1

J∑
j=1

ũj,kũ
T
j,k (14)

where the superscript T denotes a vector transpose. It is typ-
ically the case that J is large enough that P̃k is full rank,
and we do not consider exceptions here.

::
In

:::
the

:::::::
context

::
of

::
the

::::
new

::::::::::
Lorenz-‘96

::::::
model

:::
the

:::::::
auxiliary

:::::
small

:::::
scale

::::::
sample445

:::::::::
covariances

::::
are

:::::
given

::
by

::::
Eq.

:::::
(11). Finally, the small scale

covariance matrices at the observation locations P′p are ob-
tained by interpolating the elements of the matrices P̃k from
the coarse grid to the locations of the observations, which
assumes that the small scale statistics vary smoothly on the450

large scale. The interpolation method used to interpolate the
small scale covariance matrices need not be the same as L,
and should have positive coefficients in order to ensure that
the small scale covariance matrices remain positive definite.
(It may not be necessary to compute sample covariance ma-455

trices P̃k at every coarse grid point; one only needs to com-
pute them at points needed in the interpolation.) For compari-
son, in GLM14 the covariance of the small scale variables P′

is the same size as the large scale background covariance B,
and consists of the auxiliary small scale sample covariance460
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matrices P̃k arranged in block-diagonal form. When obser-
vations are taken at every coarse grid location the GLM14
formulation is equivalent to the new one.

::
To

::::::::
complete

:::
the

::::::::::
specification

::
of

:::
the

::::::
3D-Var

::::::::::
framework

::
we

::::::
specify

:
a
:::::
prior

::::
joint

:::::::::
distribution

:::
for

::
u

:::
and

:::
u′

::::
with

:::::
mean465

E [u] = µ, E [u′] = 0
::::::::::::::::::

(15)

:::
and

:::::::::
covariance[

B 0
0 P′

]
.

::::::::::

(16)

::
As

::::::
typical

:::
in

:
a
:::::::

3D-Var
:::::::
setting,

:::
the

::::::::::
background

:::::::::
covariance

:::::
matrix

::
B

:::
for

:::
the

:::::
large

::::
scale

::::::::
variables

:
is
:::::::::::
independent

::
of

::::
time,470

:::
and

:::
the

:::::
prior

:::::
mean

:::
for

:::
the

::::
large

::::::
scales

::
is

:::::
given

::
by

::
a
:::::
single

::::::
forecast

:::
of

:::
the

::::
large

:::::
scale

::::
part

::
of

:::
the

:::
SP

:::::::
model.

:::
The

:::::
small

::::
scale

:::::::
variable

::
u′

::
is

:::::::
assumed

::
to

:::
be

::::::::::
uncorrelated

::::
with

:::
the

::::
large

::::
scale

:::::::
variable.

::
In
::::::::
practice,

:::
the

::::
large

:::
and

:::::
small

:::::
scale

:::::::
variables

::
are

::::::::
certainly

:::
not

:::::::::::
independent,

::::
but

::
as

::::::
shown

::
in

:::::::
GLM14

:::
the475

:::::::::
assumption

::::
that

::::
they

:::
are

:::::::::::
uncorrelated

::
is
:::::::::
reasonable

::::::
within

::
the

:::::::
context

::
of

:::
an

:::
SP

:::::
model

::::::
where

:::
the

:::::
small

:::::
scale

:::::::
variables

::::
have

::::
zero

:::::
mean.

:::
To

::::
wit,

:::
the

::::
joint

:::::::::
probability

::::::::::
distribution

::
of

::::
large

:::
and

:::::
small

:::::
scale

:::::::
variables

::::
can

::
be

:::::::
factored

::::
into

:::
the

::::
large

::::
scale

::::::::
marginal

:::
and

:::
the

:::::
small

:::::
scale

::::::::::
conditional

::::::::::
distributions480

:::::::::::::::::::::::
p(u,u′) = pM (u)pC(u′|u).

::::
The

::::::::::::::
cross-covariance

:::::::
between

::::
large

:::
and

:::::
small

:::::
scale

:::::::
variables

::
is
:∫∫

(u−µ)u′T pM (u)pC(u′|u)dudu′ =
:::::::::::::::::::::::::::::::::∫

(u−µ)pM (u)

[∫
u′T pC(u′|u)du′

]
du= 0

::::::::::::::::::::::::::::::::::::::

(17)485

:::::
where

:::
the

::::
term

::
in
::::::
square

:::::::
brackets

::
is
::::
zero

:::::::
because

:::
the

:::::
small

::::
scale

::::::::
variables

:::
are

:::::::
assumed

::
to

:::::
have

::::
zero

:::::
mean

::::::::
regardless

::
of

::
the

:::::
state

::
of

:::
the

::::
large

:::::
scale

::::::::
variables.

Having thus specified the observation model and prior
mean and covariance, the 3D-Var analysis estimate of the490

system state minimizes the following objective function (Ta-
lagrand, 2010)

Υ(u,u′) = (u−µ)TB
−1

(u−µ) +u′TP′−1u′

+ (v−H(L(u) +u′))TR−1(v−H(L(u) +u′)) (18)495

where R is the covariance matrix of the observation error
vector ε.

When the observation operator is linear,H = H, the anal-
ysis can be computed from the Kalman filter formulas (Tala-
grand, 2010), which in this case gives500

ua = µ+K(v−HLµ) (19)

K = B(HL)T
(
HLB(HL)T +HP′HT +R

)−1
(20)

u′a = K′(v−HLµ) (21)

K′ = P′HT
(
HLB(HL)T +HP′HT +R

)−1
(22)

where the superscript a denotes the analysis estimate. A key505

feature of these formulas is that the large scale and small
scale estimates can be computed independently. In particu-
lar, the large scale estimate can also be computed as the min-
imizer of the following objective function

510

Υ(u) = (u−µ)TB
−1

(u−µ)

+ (v−HLu)T
(
HP′HT +R

)−1
(v−HLu). (23)

In cases where the small scale estimate is not used and the
observation operator is linear, the small scale estimate does
not need to be computed. It can be seen from Eq. (20) and515

Eq. (23) that the observed small scale covariance matrix
HP′HT acts as a time-varying estimate of the representa-
tion error since it inflates the measurement error covariance
R.

In GLM14 the small scale covariance matrix P′ is defined520

differently (as described above) and the small scale vector u′

is the same size as the large scale vector u. In the GLM14
formulation the final term in the objective function Eq. (18)
is replaced by

(v−H(L(u+u′)))TR−1(v−H(L(u+u′))). (24)525

For linear observations the GLM14 versions of the Kalman
filter formulas are

ua = µ+K(v−HLµ) (25)

K = B(HL)T
(
HL

(
B+P′

)
(HL)T +R

)−1
(26)

u′a = K′(v−HLµ) (27)530

K′ = P′ (HL)
T (

HL
(
B+P′

)
(HL)T +R

)−1
(28)

In the new approach there is one set of small scale variables
for each location where observations are available, whereas
in GLM14 there are small scale variables at each coarse grid
point. In global atmosphere and climate models there are535

typically fewer observations than coarse grid points; when
the observation operator is nonlinear the new formulation is
more efficient because the objective function has fewer de-
grees of freedom. Another key difference is in the assump-
tions that go into the specification of the small scale back-540

ground covariance: in GLM14 the small scale variables are
tacitly assumed to vary smoothly over the physical domain,
since they are smoothly interpolated between coarse grid
points, whereas in the present approach only the small scale
covariance is assumed to vary smoothly over the domain.545

The following section develops a system of
nonlinear ordinary differential equations and an SP
approximation based on the two-scale Lorenz-‘96 model
(Lorenz, 1996, 2006) , and the 3D-Var assimilation
framework is tested in the context of this model in550

Sect. 4.
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Table 1. Results of the assimilation experiments for regime I. There are P =MK equispaced observations, assimilated at time intervals of
∆t, and σ2 is the amplitude of the background covariance matrix. For comparison, the climatological RMS error and pattern correlation are
5.6 and 0.57.

∆t M Observation Type σ2 RMS Error Smoothed Observation Error Pattern Correlation

0.2 1 Linear 15 4.9 → 4.3 8.2 0.73 → 0.79
0.2 1 Nonlinear 20 4.7 → 4.1 8.1 0.74 → 0.80
0.2 2 Linear 10 4.1 → 3.4 5.7 0.81 → 0.87
0.2 2 Nonlinear 20 4.2 → 3.4 5.7 0.80 → 0.87
0.2 4 Linear 10 3.4 → 2.6 4.1 0.87 → 0.92
0.2 4 Nonlinear 15 3.8 → 2.8 4.0 0.83 → 0.91
0.6 1 Linear 35 6.1 → 5.1 8.2 0.60 → 0.72
0.6 1 Nonlinear 40 5.6 → 4.8 8.2 0.63 → 0.74
0.6 2 Linear 30 5.5 → 4.2 5.7 0.66 → 0.82
0.6 2 Nonlinear 30 5.2 → 4.0 5.7 0.68 → 0.82
0.6 4 Linear 25 5.0 → 3.3 4.1 0.72 → 0.89
0.6 4 Nonlinear 30 4.8 → 3.2 4.0 0.73 → 0.89

4 Assimilation Experiments

In this section we describe data assimilation experiments in
both regimes of the test model using the 3D-Var framework
from Sect. 3.555

Observations are taken at P =MK equispaced points
with M = 1, 2, and 4; specifically, observations are taken
at ip = 1 + pJ/M for p= 1, . . . ,P . Observations are either
linear, with vp = Yip + εp, or nonlinear, with vp = (Yip +
30)2/50 + εp. In both cases the observation errors εp are iid560

Gaussians with zero mean and variance 0.1. Observations are
assimilated every ∆t time units. In regime I we test ∆t = 0.2
and 0.6; for comparison the decorrelation times of the small
scale and large scale variables in this regime are 0.2 and 0.84.
In regime II we test ∆t = 0.2 and 0.4, which are close to the565

decorrelation times of the small scale and large scale vari-
ables, respectively.

Specification of the background covariance matrix is a cru-
cial aspect of any 3D-Var assimilation system. We consider
the simplest possible estimate B = σ2IK where IK is the570

K ×K identity matrix and σ2 is a tunable parameter. As-
similation experiments are run over a range of σ2 and the
optimal value is chosen based on RMS errors; the results are
very weakly sensitive to σ2 as long as it is within a factor of 2
of the diagnosed forecast error variance. Since our observing575

system includes at least one observation for every Xk vari-
able, it is less important to build a background covariance
matrix with correlations between the Xk variables.

A single assimilation experiment consists of 1000 cycles,
where the SP variables for the first forecast are initialized580

directly from the true model variables. Although the assim-
ilation system provides estimates of the small scale part of
the true system at the location of the observations, this infor-
mation is far from sufficient to provide an estimate of the full
state Y of the true system. We view the 3D-Var assimilation585

as primarily aimed at estimating the large scale model vari-

ables Xk, and error statistics are tracked only for the large
scale variables. We track two performance metrics for the
large scale variables, the time averaged RMS error

RMS Error = ‖X −XSP‖2 (29)590

and the time averaged pattern correlation

Pattern Correlation =
XTXSP

‖X‖2‖XSP‖2
(30)

both for the forecast and for the analysis.
As a point of comparison for the performance of the fore-

cast in the assimilation experiments, we consider climato-595

logical values of RMS error and pattern correlation defined
using the uniform climatological mean value of Xk as a pre-
diction:Xk = 3.8 in regime I andXk = 3.6 in regime II. The
climatological RMS error is simply the square root of the cli-
matological variance: 5.6 in regime I and 5.7 in regime II.600

The climatological pattern correlation is the time averaged
pattern correlation between Xk and its uniform climatologi-
cal mean value: the climatological pattern correlation is 0.57
in regime I and 0.53 in regime II. If the forecast has larger
RMS error or smaller pattern correlation than the climatolog-605

ical values then the forecast is of very limited utility.
As a point of comparison for the performance of the

analysis estimate in the assimilation experiments we take
a ‘smoothed observation’ estimate that is obtained by pro-
jecting the observations onto the largest K Fourier modes.610

For example, when M = 1 there are K observations and the
‘smoothed observation’ estimate of the Xk variables is sim-
ply Xk ≈ vp for the linear case and Xk ≈

√
50vp− 30 for

the nonlinear case. The RMS errors in the smoothed obser-
vation estimate are tracked over the course of each assimi-615

lation experiment, rather than computing climatological val-
ues. The 3D-Var should at a minimum perform better than the
smoothed observations. The results for both regimes are pre-
sented in Tables 1 and 2 in the format Forecast→Analysis. In
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all cases the errors decrease as M increases, and the analysis620

significantly improves over the forecast.

:::
We

::::
also

::::::::
compare

::
to
::::

the
:::::::::::
performance

:::
of

:::
an

::::::::
ensemble

:::::::::
adjustment

:::::::
Kalman

:::::
filter

:::::
using

:::
the

::::
true

::::::
system

:::::::::
dynamics.

:::::
These

::::::::::
experiments

:::
and

::::
their

::::::
results

:::
are

::::::::
described

::
in

::::
Sect.

:::
4.1.

625

The large scale dynamics are more predictable in regime
I than in regime II, but the small scale variance is larger
as well, making it harder to obtain an accurate estimate of
the large scales. With a short observation time ∆t = 0.2, the
forecast and analysis for linear and nonlinear observations630

both have RMS errors smaller than both the climatological
error of 5.6 and the error in the smoothed observation esti-
mate. The nonlinear observations generate slightly more ac-
curate results than the linear observations when M = 1, and
the linear observations generate slightly more accurate re-635

sults for M = 4, but overall the results are similar. With a
longer observation time ∆t = 0.6 the results are, naturally,
less accurate. In every case the analysis is more accurate than
both the climatological error and the smoothed observations,
but the forecasts are more accurate than the climatological640

mean only withM = 4. WithM = 1 and 2, the RMS forecast
errors are worse than the climatological error, but the forecast
pattern correlations are still a bit better than the climatologi-
cal pattern correlation. As with the shorter observation time,
the results are more accurate with the nonlinear observations.645

In regime II the results with the linear and nonlinear obser-
vations are very similar in all cases. With a short observation
time ∆t = 0.2, the forecast is always more accurate than the
climatological mean, and the analysis is always more accu-
rate than the smoothed observations. With a longer observa-650

tion time ∆t = 0.4 the forecasts are no more accurate than
climatology, but the analysis is still more accurate than the
smoothed observations, though at M = 4 the analysis is only
slightly more accurate.

4.1
::::::::::
Comparison

::
to

::::::
EAKF655

::
To

:::
put

::::
the

::::::::
foregoing

:::::::
results

::::
into

:::::::::
perspective

::::
we

:::::::
compare

::
to

:::
the

:::::::
results

::
of

:::
an

:::::::::
ensemble

::::::::::
adjustment

:::::::
Kalman

:::::
filter

:::::::::::::::::::::::::
(EAKF; Anderson, 2001) using

::::
an

::::::::::
ensemble

::::
of

:::::
100

:::::::::
simulations

:::
of

::::
the

:::::
true,

:::::::
non-SP

::::::
model

::::::::::
dynamics.

::::
The

::::::::::
experiments

::::
were

::::
run

::::
with

:::::::::
relatively

:::::::
frequent

::::::::::
(∆t = 0.2),660

:::::::
relatively

::::::::
plentiful

::::::::
(M = 4),

:::::
linear

:::::::::::
observations

::
in

::
an

:::::
effort

::
to

:::::
obtain

::::
the

::::
best

:::::::
possible

:::::::
results.

:::::::::::
Experiments

:::::
were

:::
run

::::
with

::::::::::::
multiplicative

:::::::::
covariance

::::::::
inflation

::::::
factors

:::::
from

::
0
::
to

::
20%

::
and

::::::::::
covariance

::::::::::
localization

:::::
radii

::
of

::
2,
:::

4,
:::
and

::
6
::::

grid

:::::
points

::::::::::::::::::::::
(Gaspari and Cohn, 1999) ,

::::
and

:::::::
optimal

::::::
results

::::
were665

:::::::
obtained

::::
with

:
5%

::::::
inflation

::::
and

:
a
::::::::::
localization

:::::
radius

::
of

::
4

:::
grid

:::::
points.

:

::
In

::::::
regime

:
I

::
the

:::::
RMS

:::::::
forecast

::::::
errors

::
of

:::
the

::::
Xk :::::::

variables

::::
were

::::
5.1,

:::::::::
decreasing

:::
to

::::
4.6

::::
after

::::
the

::::::::
analysis;

:::
the

:::::
RMS

::::::
forecast

::::::
pattern

:::::::::
correlation

::::
was

::::
0.61,

:::::::::
improving

::
to

::::
0.69

::::
after670

::
the

::::::::
analysis.

:::
In

::::::
regime

:::
II

:::
the

:::::
RMS

:::::::
forecast

::::::
errors

::
of

:::
the

:::
Xk :::::::

variables
:::::

were
::::
5.9,

:::::::::
decreasing

::
to

:::
5.6

:::::
after

:::
the

:::::::
analysis;

::
the

:::::
RMS

:::::::
forecast

::::::
pattern

:::::::::
correlation

::::
was

::::
0.53,

:::
and

::::::::
remained

::::::::
essentially

::::::::::
unchanged

::
at

::::
0.52

::::
after

:::
the

:::::::
analysis.

:

::
In

::::
both

:::::::
regimes

:::
the

::::::
EAKF

::::::::
estimates

:::
the

::::::::::
large-scale

:::
part675

::
of

:::
the

:::::::
solution

::::
very

::::::
poorly,

:::::
much

:::::
worse

::::
than

:::
the

:::
SP

::::::
3D-Var.

::::
This

::::
poor

::::::::::
performance

::
is

::::::::::
presumably

::::::::
associated

::::
with

:::
the

:::
fact

:::
that

:::
the

::::::
EAKF

::
is

:::::::::
attempting

::
to

:::::::
estimate

:::
the

:::
full

::::::
system

::::
state

::
Y ,

:::::::
whereas

:::
the

:::
SP

:::::::
3D-Var

:
is
:::::
only

::::::::
estimating

:::
the

:::::
large

::::
scale

::::
part.

:::::
From

:::
the

::::
point

:::
of

::::
view

:::
of

:::
the

::::::
EAKF

:::
the

::::::::::
observations680

::
are

:::::
very

:::::::
sparse,

:::::
since

:::::
there

::
is

:::::
only

::::
one

::::::::::
observation

:::
for

::::
every

:::
32

:::::::::
variables,

:::::::
whereas

:::::
from

:::
the

:::::
point

::
of

:::::
view

::
of

:::
the

::
SP

:::::::
3D-Var

::::
there

:::
are

::::
four

:::::::::::
observations

:::
for

:::::
every

:::::
large

::::
scale

:::
Xk :::::::

variable.
::::
The

:::::::::
significant

:::::::::::
improvement

:::
in

::::
both

::::
cost

:::
and

:::::::
accuracy

::
of

:::::
using

:::
the

:::
SP

:::::::
3D-Var

::::::
instead

::
of

::
a

:::::::::::
perfect-model685

::::::::
ensemble

::::::
Kalman

:::::
filter

::::::::::
underscores

:::
the

:::::
utility

::
of

:::
the

::::::
present

::::::::
approach,

::::::
though

::
it
:::::

bears
::::::

noting
::::

that
::::

one
::::::
should

:::
be

::::
very

::::::
hesitant

::
to
::::::::::

extrapolate
::::::
results

::::
such

:::
as

::::
these

:::
to

:::
the

:::
far

::::
more

:::::::
complex

::::::
setting

:::
of

:::
SP

::::::::::
atmosphere

::::::::
models.

:::::::::::
Furthermore,

::::::
whether

:::
or

:::
not

::
SP

:::::::
3D-Var

::::
will

::
be

:::::
more

:::::::
accurate

::::
than

:
a
::::
state690

::
of

:::
the

:::
art

::::::::
ensemble

:::::::
Kalman

::::
filter

:::
in

::
an

:::::::::::
atmospheric

:::::
model

::::::
context

::
is

::::::::
somewhat

::::::
beside

:::
the

::::
point

:::::
since

:::
the

::::
goal

::::
here

:
is
::
to

::::::
provide

::
a

:::::::
practical

:::::::::
framework

:::
for

::::
data

::::::::::
assimilation

:::::
with

::
SP

::::::
models

:::::
where

:::
no

::::
such

:::::::::
framework

::::::::
currently

:::::
exists.

:

5 Conclusions695

Superparameterization (SP) is a multiscale computational
approach that has been successfully applied to modeling at-
mospheric dynamics, and that shows promise for more gen-
eral applications (Tao et al., 2009; Randall et al., 2013; Ma-
jda and Grooms, 2014). Grooms et al. (2014) have devel-700

oped an ensemble Kalman filter framework for use with SP,
but the standard approach to SP in global atmosphere and
climate models, where small scale nonlinear dynamics are
simulated on an array of periodic domains embedded in the
computational grid of a large scale model, is too computa-705

tionally demanding for use in an ensemble framework.
::
As

:
a
::::::
result,

::::
there

::
is
::
at
:::::::
present

::
no

::::::::
practical

:::::::::
framework

:::
for

::::
data

::::::::::
assimilation

::::
with

:::
SP

::::::::
models.

:
We here develop a 3D-Var

variational data assimilation framework for SP that builds
on and modifies the framework of GLM14. The main up-710

date to the GLM14 framework, in addition to using a vari-
ational as opposed to ensemble Kalman filter setting, is that
small scale estimates are computed at locations where ob-
servations are taken, rather than at every point of the large
scale model’s computational grid.

:::
The

:::::::::::::
computational

::::
costs715

::
of

:::
the

::::
new

:::::::::
framework

::::
are

::::
such

::::
that

::
it

:::::
could

:::
be

::::
used

::::
with

:::::::::::::
computationally

::::::::::
demanding

:::::
global

::::::::::
atmosphere

::::
and

::::::
climate

::
SP

:::::::
models,

:::::::
allowing

::::
such

:::::::
models

:
to
:::
be

::::
used

:::
for,

:::
for

:::::::
example,

:::::::
seasonal

::::::::::
forecasting.

The data assimilation framework is demonstrated in a new720

system of ordinary differential equations based on the two-
scale Lorenz-‘96 model (Lorenz, 1996, 2006). Unlike the
two-scale Lorenz-‘96 model the new model has only one
set of variables, Yi, and these variables have large and small
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Table 2. Results of the assimilation experiments for regime II. There are P =MK equispaced observations, assimilated at time intervals of
∆t, and σ2 is the amplitude of the background covariance matrix. For comparison, the climatological RMS error and pattern correlation are
5.7 and 0.53.

∆t M Observation Type σ2 RMS Error Smoothed Observation Error Pattern Correlation

0.2 1 Linear 50 5.2 → 3.8 5.5 0.66 → 0.83
0.2 1 Nonlinear 30 5.2 → 3.8 5.5 0.66 → 0.83
0.2 2 Linear 30 4.8 → 3.0 3.8 0.70 → 0.89
0.2 2 Nonlinear 30 4.9 → 3.1 3.8 0.70 → 0.89
0.2 4 Linear 15 4.6 → 2.4 2.7 0.73 → 0.93
0.2 4 Nonlinear 30 4.6 → 2.4 2.7 0.74 → 0.94
0.4 1 Linear 40 6.2 → 4.2 5.5 0.53 → 0.79
0.4 1 Nonlinear 50 6.1 → 4.2 5.5 0.53 → 0.80
0.4 2 Linear 40 5.9 → 3.3 3.8 0.57 → 0.87
0.4 2 Nonlinear 50 5.9 → 3.4 3.8 0.56 → 0.87
0.4 4 Linear 40 5.7 → 2.6 2.7 0.59 → 0.92
0.4 4 Nonlinear 50 5.8 → 2.5 2.7 0.59 → 0.93

scale parts. An SP approximation to the new system is devel-725

oped, which is perhaps the simplest idealized model of SP.
The new data assimilation framework is tested in two regimes
of the new model, with both linear and nonlinear observation
operators. In regime I the large scale dynamics consist of a
weakly chaotic wave train, with relatively strong small scale730

variability superposed. In regime II the large scale dynam-
ics are more strongly chaotic, and there is less small scale
variability. In both regimes the data assimilation performs as
expected

:::
(and

::::::
better

::::
than

::
an

:::::::::
ensemble

:::::::
Kalman

::::
filter

:::::
using

:::
100

::::::::::
simulations

::
of

:::
the

::::
true

:::::::::
dynamics), with increased accu-735

racy as the number of observations increases.
Our work lays a foundation for 3D-Var data assimila-

tion with existing SP models. The main difficulty in using
the

::
In

:::::
order

:::
to

:::::::::
implement

:::
our

:
framework with an SP at-

mosphere or climate model is in specifying
::
it

:::::
would

:::
be740

::::::::
necessary

::
to

:::::::
specify an appropriate background covariance

matrix for the large scale model, but this difficulty should not
be insurmountable

:::::
should

:::
be

:::::::::::::
straightforward

:
given the ex-

tensive use of the 3D-Var approach in atmosphere and ocean
data assimilation (e.g. Kalnay, 2002; Kleist et al., 2009). In745

addition, the new framework removes one of the difficul-
ties associated with development of a 3D-Var framework for
large scale models: the small scale simulations in the multi-
scale SP computation provide direct information on the small
scale statistics, obviating, or at least simplifying, the need to750

develop models of representation error.

Author contribution

I. G. designed the research, I. G. and Y. L. carried out the
experiments, and I. G. prepared the manuscript.

Acknowledgements. The authors acknowledge funding from the755

United States Office of Naval Research MURI grant N00014-12-

1-0912. The authors thank A. J. Majda for suggesting the addition
of a second regime (regime II).

References

Abramov, R. V.: Suppression of chaos at slow variables by rapidly760

mixing fast dynamics through linear energy-preserving coupling,
Commun. Math. Sci., 10, 595–624, 2012.

Anderson, J.: An ensemble adjustment Kalman filter for data assim-
ilation, Mon. Wea. Rev., 129, 2884–2903, 2001.

Gaspari, G. and Cohn, S.: Construction of correlation functions in765

two and three dimensions, Quart. J. Roy. Meteorol. Soc., 125,
723–757, 1999.

Grabowski, W.: An improved framework for superparameterization,
J. Atmos. Sci., 61, 1940–1952, 2004.

Grabowski, W. and Smolarkiewicz, P.: CRCP: a Cloud Resolving770

Convection Parameterization for modeling the tropical convect-
ing atmosphere, Physica D, 133, 171–178, 1999.

Grooms, I. and Majda, A. J.: Efficient stochastic superparameteri-
zation for geophysical turbulence, Proc. Natl. Acad. Sci. (USA),
110, 4464–4469, doi:10.1073/pnas.1302548110, 2013.775

Grooms, I. and Majda, A. J.: Stochastic superparameterization in
a one-dimensional model for wave turbulence, Commun. Math.
Sci., 12, 509–525, 2014a.

Grooms, I. and Majda, A. J.: Stochastic superparameterization in
quasigeostrophic turbulence, J. Comp. Phys., 271, 78–98, 2014b.780

Grooms, I., Lee, Y., and Majda, A. J.: Ensemble Kalman filters for
dynamical systems with unresolved turbulence, J. Comp. Phys.,
273, 435–452, doi:10.1016/j.jcp.2014.05.037, 2014.

Grooms, I., Majda, A. J., and Smith, K. S.: Stochastic superparam-
eterization in a quasigeostrophic model of the Antarctic Circum-785

polar Current, Ocean Modelling, 85, 1–15, 2015.
Harlim, J. and Majda, A. J.: Test models for filtering with superpa-

rameterization, Mult. Model. Simul., 11, 282–308, 2013.
Kalnay, E.: Atmospheric modeling, data assimilation, and pre-

dictability, Cambridge University Press, 2002.790

Khairoutdinov, M. and Randall, D.: A cloud resolving model as a
cloud parameterization in the NCAR Community Climate Sys-

http://dx.doi.org/10.1073/pnas.1302548110
http://dx.doi.org/10.1016/j.jcp.2014.05.037


12 Grooms and Lee: A framework for variational data assimilation with superparameterization

tem Model: Preliminary results, Geophys. Res. Lett., 28, 3617–
3620, doi:10.1029/2001GL013552, 2001.

Khairoutdinov, M., Randall, D., and DeMott, C.: Simulations of the795

atmospheric general circulation using a cloud-resolving model
as a superparameterization of physical processes, J. Atmos. Sci.,
62, 2136–2154, doi:10.1175/JAS3453.1, 2005.

Kleist, D. T., Parrish, D. F., Derber, J. C., Treadon, R., Wu, W.-S.,
and Lord, S.: Introduction of the GSI into the NCEP global data800

assimilation system, Weather and Forecasting, 24, 1691–1705,
2009.

Lee, Y. and Majda, A. J.: Multi-scale methods for data assimilation
in turbulent systems, Mult. Model. Simul. in press, 2015.

Lorenz, E.: Predictability: A problem partly solved, in: Proceedings805

of Seminar on Predicability, vol. 1, pp. 1–18, ECMWF, Reading,
UK, 1996.

Lorenz, E.: Predictability: A problem partly solved, in: Predictabil-
ity of Weather and Climate, edited by Palmer, T. and Hagedorn,
R., pp. 40–58, Cambridge University Press, 2006.810

Majda, A. J. and Grooms, I.: New Perspectives on Superparameter-
ization for Geophysical Turbulence, J. Comp. Phys., 271, 60–77,
doi:10.1016/j.jcp.2013.09.014, 2014.

Majda, A. J. and Grote, M. J.: Mathematical test models for super-
parameterization in anisotropic turbulence, Proc. Natl. Acad. Sci.815

(USA), 106, 5470–5474, 2009.
Randall, D., Khairoutdinov, M., Arakawa, A., and Grabowski, W.:

Breaking the cloud parameterization deadlock, Bull. Amer. Me-
teor. Soc., 84, 1547–1564, 2003.

Randall, D., Branson, M., Wang, M., Ghan, S., Craig, C., Gettel-820

man, A., and Edwards, J.: A community atmosphere model with
superparameterized clouds, EOS, 94, 221–228, 2013.

Talagrand, O.: Variational Assimilation, in: Data Assimilation Mak-
ing Sense of Observations, edited by Lahoz, W., Khattatov, B.,
and Menard, R., pp. 41–67, Springer, 2010.825

Tao, W. K., Anderson, D., Chern, J., Entin, J., Hou, A., Houser, P.,
Kakar, R., Lang, S., Lau, W., Peters-Lidard, C., Li, X., Matsui,
T., Rienecker, M., Schoeberl, M. R., Shen, B. W., Shi, J. J., and
Zeng, X.: The Goddard multi-scale modeling system with unified
physics, Ann. Geophys., 27, 3055–3064, 2009.830

Wilks, D. S.: ‘Superparameterization’ and statistical emulation in
the Lorenz ‘96 system, Q J Roy. Meteor. Soc., 138, 1379–1387,
doi:10.1002/qj.1866, 2012.

http://dx.doi.org/{10.1029/2001GL013552}
http://dx.doi.org/10.1175/JAS3453.1
http://dx.doi.org/10.1016/j.jcp.2013.09.014
http://dx.doi.org/10.1002/qj.1866

