
Thanks to both the referees for their time and effort in reviewing the manuscript, which we believe have
led to an improved version. In addition to the changes made in response to the referee comments, listed
below, we added a citation to recent work of Y Lee and AJ Majda on multiscale filtering at the beginning
of section 3.

Response to Referee #1

General Comments:

• “I have a hard time seeing the figure axis labels. At least in the version I received, the axis labels and
numbers are very small and can’t be read.”

We have increased the font size on the axis labels in both figures.

• “I wonder if the title could be a bit misleading. Not to detract from the excellent work that you’ve done,
but perhaps you would consider changing to e.g. ‘A framework for variational data assimilation with
superparameterization’ since you are not applying to a full NWP/climate SP model yet.”

This is an excellent suggestion, and we have revised the title.

• “I think you should consider changing the order of the sections so you introduce the model first and
then describe the data assimilation, followed by the experiments. The way it reads now it goes from
data assimilation to model and back to data assimilation. Reading your results I found myself having
to flick back to the beginning having moved on to thinking about the model that you’ve developed.”

We seriously considered the ordering suggested, but prefer the current one. The main emphasis of the
paper is the framework for data assimilation, not the new model that plays a supporting role, and
placing the model in section 2 could over-emphasize it at the expense of the framework.

Specific Comments:

• “P516 L22: I wonder if you should just state at this point that it is periodic between large scale grid
points. Although that quickly becomes clear it would save confusing a reader new to this topic.”

The sentence has been changed to read “The small scale variables exist on local periodic domains so
that the small scale variables at each coarse grid point are disconnected from those at surrounding
coarse grid points, and the small scale variables have zero average across the periodic directions.” It
can be hard to describe the SP multiscale grid, and we hope the above is an improvement.

• “P517 L6: You say mean of u computed from SP variables but later say that it is zero?”

We added the clarification: “Although the true small scale variables u′ can in principle have nonzero
statistical mean, the small scale SP variables ũ always have zero mean because their average over the
local periodic domains is always zero by definition.”

• “P517 L13: Could you comment on why you chose to interpolate the co-variances, rather than the
small scale variable itself?”

This is a good place to point out that we interpolate the co-variances rather than the variables, and
we added the sentence “We also assume that the statistics of the small scale variables vary on large
scales and can therefore be smoothly interpolated from the coarse grid points, where small scale SP
statistics are available, to the locations of the observations.”

• “P518 Ls20-21: Perhaps state here whether or not the periodic domain is centered on coarse grid
points?”

We added the following sentences at the beginning of section 2 to help clarify the nature of the multiscale
SP grid: “Each location in the small scale periodic domains doesn’t correspond to a different location in
the real physical domain. Instead, all points in a given periodic domain are best thought of as existing
at one physical location: the associated coarse grid point.” As a result, the small scale periodic domains
can’t really be ‘centered’ or ‘off-center.’
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• “P522 L16: can you state what the index i refers to here?”

We added the phrase “and the index i, which is periodic Yi+JK = Yi, is analogous to spatial location
on a latitude circle, similar to the original L96 model”

• “P523 L44: Should YN in fact by N(Y ) or NY (N)?”

We have corrected this typo.

• “P526 L15: This opening sentence is a bit wordy and could be shortened to just e.g. ‘In this section we
describe data assimilation experiments in both regimes of the test model using the 3D-Var framework
from Sect. 2.’. Start a new paragraph after the opening sentence.”

We have made the suggested change.

Response to Referee #2

“I would find the results more convincing if their filter using SP were compared to standard techniques
for the full true model (an ensemble filter would be feasible in this situation), rather than just comparing
with the observations and the climatology.”

Standard techniques are certainly possible in this model, but this comparison could be misleading.
The main point of our paper is not that SP models with our new assimilation framework are more
efficient or otherwise better than standard models with a standard assimilation framework, as would
be suggested by making such a comparison. Instead, we are simply demonstrating how to use our new
framework in the context of a simple test model, and comparing to climatology (though somewhat of a
weak comparison) serves to demonstrate that the combination “works.” Our new framework provides
the only practical way to use existing SP models in a data assimilation context.

“Page 518: In what sense is the assumption that they are uncorrelated [is] reasonable? Could the
authors elaborate on this?”

We re-arranged the ordering of the sentences following equation (5) so that we could insert the following
discussion:

. . . the assumption that they are uncorrelated is reasonable within the context of an SP model
where the small scale variables have zero mean. The joint probability distribution of large
and small scale variables can be factored into the large scale marginal and the small scale
conditional distributions p(u,u′) = pM (u)pC(u′|u). The cross-covariance between large and
small scale variables is∫∫

(u− µ)u′T pM (u)pC(u′|u)dudu′ =∫
(u− µ)pM (u)

[∫
u′T pC(u′|u)du′

]
du = 0 (6)

where the term in square brackets is zero because the small scale variables are assumed to
have zero mean regardless of the state of the large scale variables.

“pages 527/528: On page 527 the climatological mean value of Xk is 3.8 and 3.6, and on page 528 it
is 0.57 and 0.53, respectively.”

We have clarified that the values 0.57 and 0.53 are the climatological pattern correlations, not the
climatological means.

“The figure labels should be increased.”

The figure labels have been increased.
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Abstract. Superparameterization (SP) is a multiscale com-
putational approach wherein a large scale atmosphere or
ocean model is coupled to an array of simulations of small
scale dynamics on periodic domains embedded into the com-
putational grid of the large scale model. SP has been success-5

fully developed in global atmosphere and climate models,
and is a promising approach for new applications. The au-
thors develop a 3D-Var variational data assimilation frame-
work for use with SP; the relatively low cost and simplicity
of 3D-Var in comparison with ensemble approaches makes10

it a natural fit for relatively expensive multiscale SP mod-
els. To demonstrate the assimilation framework in a simple
model, the authors develop a new system of ordinary differ-
ential equations similar to the two-scale Lorenz-‘96 model.
The system has one set of variables denoted {Yi}, with large15

and small scale parts, and the SP approximation to the sys-
tem is straightforward. With the new assimilation framework
the SP model approximates the large scale dynamics of the
true system accurately.

1 Introduction20

Superparameterization (SP) is a multiscale computational
method for parameterizing small scale effects in large scale
atmosphere and ocean models. It was originally developed
and has been particularly effective as a cloud parameteriza-
tion in atmosphere models (Grabowski and Smolarkiewicz,25

1999; Randall et al., 2003), and has been implemented in
global atmosphere and climate models (Khairoutdinov and
Randall, 2001; Tao et al., 2009; Randall et al., 2013). SP cou-
ples a large scale, low resolution model to an array of local
small scale, high resolution simulations embedded within the30

computational grid of the large scale model. The computa-
tional cost is kept down through a variety of methods, most

prominently by reducing the dimensionality of the small
scale simulations, e.g. using one vertical and one horizontal
coordinate in the aforementioned atmospheric applications.35

Although atmosphere and climate models with SP are partic-
ularly successful at producing a realistic Madden-Julian os-
cillation and diurnal cycle of convection over land (Khairout-
dinov et al., 2005), there are as yet no data assimilation sys-
tems designed for use with these models.40

The authors recently developed an ensemble Kalman fil-
ter framework for data assimilation with SP (Grooms et al.,
2014, hereafter GLM14). This framework was developed in
the context of stochastic SP, a variant of SP that reduces
computational cost by replacing the small scale simulations45

of SP with quasilinear stochastic models (Grooms and Ma-
jda, 2013; Majda and Grooms, 2014). Stochastic SP has only
been developed for idealized turbulence models (Grooms and
Majda, 2013, 2014a, b; Grooms et al., 2015), and is not yet
implemented in global atmosphere, ocean, or climate mod-50

els. Because of the relatively high cost and computational
complexity of global atmosphere and climate models with
SP, the extra cost associated with an ensemble-based data as-
similation system makes it unlikely that it will be possible to
use these models with the framework of GLM14 in the near55

future.
Here we develop a 3D-Var variational data assimilation

framework for SP that builds on and modifies the framework
of GLM14. Observations of physical variables have large
scale and small scale parts, the former of which is equated60

with the large scale model variables, and the latter with the
variables of the small scale embedded simulations. A key fea-
ture of SP is that the small scale simulations are periodic,
so a location on the small scale computational grid does not
correspond precisely to any location in the real physical do-65

main; as a result, the small scale simulations provide only
statistical information about the small scales, and this infor-
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mation can be used as a prior in the data assimilation context.
In GLM14 an ensemble of SP simulations provides prior in-
formation on the large scale variables, but in the present ap-70

proach the prior information on the large scales comes from
a single SP simulation and a time-independent ‘background’
covariance matrix for the large scale variables. When the ob-
servation operator is linear the analysis estimates of the large
and small scale variables can be computed independently of75

each other, and the small scale covariance information effec-
tively provides a time- and state-dependent estimate of rep-
resentation error. When the observation operator is nonlinear
the large and small scale analysis must be computed simulta-
neously by minimizing an objective function. Although anal-80

ysis estimates of the small scale variables can be computed
with linear observations, and must be computed with nonlin-
ear observations, our framework does not at this time use the
small scale analysis estimate to update any of the small scale
SP variables because the latter cannot be unambiguously as-85

sociated with any real physical location. A key update of the
GLM14 framework is that we here compute a small scale
analysis estimate at locations where observations are avail-
able, rather than at every coarse grid point. This can result in
significant computational savings in the case of a nonlinear90

observation operator. We also update the GLM14 framework
to better handle observations at locations off the coarse grid.

The 3D-Var framework with SP is presented in Sect. 2. In
Sect. 3 we develop a new system of ODEs based on the two-
scale Lorenz-‘96 (L96) model (Lorenz, 1996, 2006), and an95

SP approximation to that system. Assimilation experiments
using the new 3D-Var framework and the new system are
described in Sect. 4, followed by conclusions.

2 Variational data assimilation with superparameteri-
zation100

The key aspect of the GLM14 framework is the way in which
the variables of the true dynamical system are related to those
of the superparameterization. Let the large scale variables of
the SP simulation be denoted u (the overbar does not de-
note a statistical mean), and let the small scale variables be105

denoted ũ. In most SP applications there is a set of small
scale variables at every point of the large scale computa-
tional grid. The small scale variables exist on a local periodic
domain, and

::::
local

:::::::
periodic

:::::::
domains

:::
so

::::
that

:::
the

:::::
small

::::
scale

:::::::
variables

::
at
:::::

each
::::::
coarse

::::
grid

:::::
point

:::
are

::::::::::::
disconnected

::::
from110

::::
those

::
at
:::::::::::
surrounding

:::::
coarse

::::
grid

::::::
points,

::::
and

:::
the

:::::
small

::::
scale

:::::::
variables

:
have zero average across the periodic directions.

::::
Each

:::::::
location

:::
in

:::
the

:::::
small

:::::
scale

:::::::
periodic

::::::::
domains

::::::
doesn’t

:::::::::
correspond

::
to

:
a
:::::::
different

:::::::
location

::
in

:::
the

:::
real

:::::::
physical

:::::::
domain.

::::::
Instead,

:::
all

:::::
points

::
in

:
a
:::::
given

:::::::
periodic

::::::
domain

:::
are

::::
best

::::::
thought115

::
of

::
as

:::::::
existing

::
at

:::
one

:::::::
physical

::::::::
location:

:::
the

:::::::::
associated

:::::
coarse

:::
grid

:::::
point.

:

In GLM14, observations are related to the SP model vari-
ables using the following observation model

v =H(L(u+u′)) + ε (1)120

where H is the observation operator and ε is a vector of
zero-mean normal random variables associated with obser-
vation error. The vector u′ has the same size as u, and mod-
els the small-scale contribution to physical variables at the
coarse grid points, i.e. u= u+u′ is the vector of real phys-125

ical variables at the coarse model grid points. The physi-
cal variables u are interpolated to the location of the ob-
servations by L. The mean and covariance of u′ are com-
puted from the statistics of the small scale SP variables ũ.

::::::::
Although

:::
the

::::
true

:::::
small

::::
scale

::::::::
variables

:::
u′

:::
can

:::
in

:::::::
principle130

::::
have

:::::::
nonzero

::::::::
statistical

:::::
mean,

:::
the

:::::
small

::::
scale

:::
SP

::::::::
variables

:̃
u

::::::
always

::::
have

::::
zero

:::::
mean

:::::::
because

::::
their

:::::::
average

::::
over

:::
the

::::
local

:::::::
periodic

:::::::
domains

::
is

::::::
always

::::
zero

::
by

:::::::::
definition.

As noted in GLM14, it is unrealistic to use the same in-
terpolation operator for both the large and small scale vari-135

ables because it assumes that the small scale variables vary
smoothly between the coarse grid points, whereas the small
scale variables should by definition vary over shorter dis-
tances. (Observations in GLM14 were taken only on the
coarse grid points, avoiding the issue.) Instead of specify-140

ing an alternative interpolation operator for the small scales,
we update the framework by altering the definition of u′ to
include small scale variables only at the points where obser-
vations are taken.

:::
We

::::
also

::::::
assume

::::
that

:::
the

::::::::
statistics

::
of

:::
the

::::
small

:::::
scale

::::::::
variables

::::
vary

:::
on

::::
large

::::::
scales

:::
and

::::
can

:::::::
therefore145

::
be

::::::::
smoothly

::::::::::
interpolated

::::
from

:::
the

::::::
coarse

::::
grid

::::::
points,

:::::
where

::::
small

:::::
scale

:::
SP

:::::::
statistics

:::
are

::::::::
available,

::
to
:::
the

::::::::
locations

::
of

:::
the

:::::::::::
observations.

Let P denote the number of different physical locations
where observations are available (for simplicity of exposition150

we assume that there is only one observation per location,
i.e. v ∈ RP ). The updated observation model for the p-th lo-
cation is

vp =Hp(Lp(u) +u′p) + εp (2)

where Lp interpolates the large scale model variablesu to the155

observation location and εp is a zero-mean Gaussian random
variable. There is thus one vector u′p of small scale variables
per observation location. The updated observation model for
all P observations can be written in vector form as

v =H(L(u) +u′) + ε (3)160

where u′ is no longer defined as in GLM14, but according to
the discussion above.

To complete the specification of the 3D-Var framework we
specify a prior joint distribution for u and u′ with mean

E [u] = µ, E [u′] = 0 (4)165

and covariance[
B 0
0 P′

]
. (5)
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::
As

::::::
typical

:::
in

:
a
:::::::

3D-Var
:::::::
setting,

:::
the

::::::::::
background

:::::::::
covariance

:::::
matrix

::
B

:::
for

:::
the

:::::
large

::::
scale

::::::::
variables

:
is
:::::::::::
independent

::
of

::::
time,

:::
and

:::
the

:::::
prior

:::::
mean

:::
for

:::
the

::::
large

::::::
scales

::
is

:::::
given

::
by

::
a
:::::
single170

::::::
forecast

:::
of

:::
the

::::
large

:::::
scale

::::
part

::
of

:::
the

:::
SP

:::::::
model. The small

scale variable u′ is assumed to be uncorrelated with the large
scale variable. In practice, the large and small scale vari-
ables are certainly not independent, but as shown in GLM14
the assumption that they are uncorrelated is reasonable .175

As typical in a 3D-Var setting, the background covariance
matrix B for the large scale variables is independent of
time, and the prior mean for the large scales is given by a
single forecast of the large scale part of the SP model

:::::
within

::
the

:::::::
context

::
of

:::
an

:::
SP

:::::
model

::::::
where

:::
the

:::::
small

:::::
scale

:::::::
variables180

::::
have

::::
zero

:::::
mean.

::::
The

:::::
joint

:::::::::
probability

::::::::::
distribution

:::
of

::::
large

:::
and

:::::
small

:::::
scale

::::::::
variables

::::
can

:::
be

::::::::
factored

::::
into

:::
the

:::::
large

::::
scale

::::::::
marginal

:::
and

:::
the

:::::
small

:::::
scale

::::::::::
conditional

::::::::::
distributions

:::::::::::::::::::::::
p(u,u′) = pM (u)pC(u′|u).

::::
The

::::::::::::::
cross-covariance

:::::::
between

::::
large

:::
and

:::::
small

:::::
scale

:::::::
variables

::
is
:

185 ∫∫
(u−µ)u′T pM (u)pC(u′|u)dudu′ =

:::::::::::::::::::::::::::::::::∫
(u−µ)pM (u)

[∫
u′T pC(u′|u)du′

]
du= 0

::::::::::::::::::::::::::::::::::::::

(6)

:::::
where

:::
the

::::
term

::
in
::::::
square

:::::::
brackets

::
is
::::
zero

:::::::
because

:::
the

:::::
small

::::
scale

::::::::
variables

:::
are

:::::::
assumed

::
to

:::::
have

::::
zero

:::::
mean

::::::::
regardless

::
of190

::
the

:::::
state

::
of

:::
the

::::
large

:::::
scale

:::::::
variables.

The covariance of the small scale variables P′ is com-
puted from the small scale variables of the SP model, and
thus changes from one assimilation cycle to the next. Specif-
ically, it is first assumed that the small scale variables at dif-195

ferent observation locations are uncorrelated from each other
so that one needs only compute the covariance matrices P′p
of the u′p variables. This assumption is reasonable as long as
the observations are taken at locations reasonably well sep-
arated compared to the correlation length of the small scale200

variables. (The framework could be updated for situations
where the observations are closer than this, e.g. by using spa-
tial correlation information for the small scale variables com-
puted from the SP simulation, but this is beyond the scope of
the present investigation.) To compute P′p we begin by com-205

puting auxiliary small scale sample covariance matrices P̃k
using the small scale SP variables ũ at each coarse grid point.
Let {ũk,j}Jj=1 be the small scale SP variables located in a pe-
riodic domain at the k-th coarse grid point, where there are
J grid points in the periodic embedded domain. Then, recall-210

ing that their average over J is zero, the auxiliary small scale
sample covariance matrix is

P̃k =
1

J − 1

J∑
j=1

ũj,kũ
T
j,k (7)

where the superscript T denotes a vector transpose. It is typ-
ically the case that J is large enough that P̃k is full rank, and215

we do not consider exceptions here. Finally, the small scale
covariance matrices at the observation locations P′p are ob-
tained by interpolating the elements of the matrices P̃k from
the coarse grid to the locations of the observations, which
assumes that the small scale statistics vary smoothly on the220

large scale. The interpolation method used to interpolate the
small scale covariance matrices need not be the same as L,
and should have positive coefficients in order to ensure that
the small scale covariance matrices remain positive definite.
(It may not be necessary to compute sample covariance ma-225

trices P̃k at every coarse grid point; one only needs to com-
pute them at points needed in the interpolation.) For compari-
son, in GLM14 the covariance of the small scale variables P′

is the same size as the large scale background covariance B,
and consists of the auxiliary small scale sample covariance230

matrices P̃k arranged in block-diagonal form. When obser-
vations are taken at every coarse grid location the GLM14
formulation is equivalent to the new one.

Having thus specified the observation model and prior
mean and covariance, the 3D-Var analysis estimate of the235

system state minimizes the following objective function (Ta-
lagrand, 2010)

Υ(u,u′) = (u−µ)TB
−1

(u−µ) +u′TP′−1u′

+ (v−H(L(u) +u′))TR−1(v−H(L(u) +u′)) (8)240

where R is the covariance matrix of the observation error
vector ε.

When the observation operator is linear,H = H, the anal-
ysis can be computed from the Kalman filter formulas (Tala-
grand, 2010), which in this case gives245

ua = µ+K(v−HLµ) (9)

K = B(HL)T
(
HLB(HL)T +HP′HT +R

)−1
(10)

u′a = K′(v−HLµ) (11)

K′ = P′HT
(
HLB(HL)T +HP′HT +R

)−1
(12)

where the superscript a denotes the analysis estimate. A key250

feature of these formulas is that the large scale and small
scale estimates can be computed independently. In particu-
lar, the large scale estimate can also be computed as the min-
imizer of the following objective function

255

Υ(u) = (u−µ)TB
−1

(u−µ)

+ (v−HLu)T
(
HP′HT +R

)−1
(v−HLu). (13)

In cases where the small scale estimate is not used and the
observation operator is linear, the small scale estimate does
not need to be computed. It can be seen from Eq. (10) and260

Eq. (13) that the observed small scale covariance matrix
HP′HT acts as a time-varying estimate of the representa-
tion error since it inflates the measurement error covariance
R.
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In GLM14 the small scale covariance matrix P′ is defined265

differently (as described above) and the small scale vector u′

is the same size as the large scale vector u. In the GLM14
formulation the final term in the objective function Eq. (8) is
replaced by

(v−H(L(u+u′)))TR−1(v−H(L(u+u′))). (14)270

For linear observations the GLM14 versions of the Kalman
filter formulas are

ua = µ+K(v−HLµ) (15)

K = B(HL)T
(
HL

(
B+P′

)
(HL)T +R

)−1
(16)

u′a = K′(v−HLµ) (17)275

K′ = P′ (HL)
T (

HL
(
B+P′

)
(HL)T +R

)−1
(18)

In the new approach there is one set of small scale variables
for each location where observations are available, whereas
in GLM14 there are small scale variables at each coarse grid
point. In global atmosphere and climate models there are280

typically fewer observations than coarse grid points; when
the observation operator is nonlinear the new formulation is
more efficient because the objective function has fewer de-
grees of freedom. Another key difference is in the assump-
tions that go into the specification of the small scale back-285

ground covariance: in GLM14 the small scale variables are
tacitly assumed to vary smoothly over the physical domain,
since they are smoothly interpolated between coarse grid
points, whereas in the present approach only the small scale
covariance is assumed to vary smoothly over the domain.290

The following section develops a system of nonlinear ordi-
nary differential equations and an SP approximation based on
the two-scale Lorenz-‘96 model (Lorenz, 1996, 2006), and
the 3D-Var assimilation framework is tested in the context of
this model in Sect. 4.295

3 A multiscale Lorenz-‘96 Model with superparameter-
ization

In this section we develop a new simple model for SP in
which to demonstrate our data assimilation framework. Ma-
jda and Grote (2009) developed an idealized model of SP,300

but the system suffers from one major drawback: it does
not consist of an SP approximation to an idealized sys-
tem, but rather consists only of an idealized SP model.
Harlim and Majda (2013) used the model of Majda and
Grote (2009) to develop a data assimilation strategy for305

SP, but with the assumption that direct observations of
the large scale variables were available, rather than having
both large and small scale contributions to the observations.

::::::::::::::::::::::
Lee and Majda (2015) have

:::::::
recently

::::::::::
investigated

::
a
:::::
range

::
of

::::::::
multiscale

::::::::::
assimilation

:::::::
methods

::
in
::
a

:::::
highly

:::::::::
condensed

:::::
model310

:::::
where

:::
the

::::::
‘large

:::::
scale’

:::::::
consists

:::
of

:
a
::::::

single
:::::
scalar

:::::
with

::
no

:::::
spatial

::::::
extent.

:

Wilks (2012) developed an SP approximation for the
two-scale Lorenz-‘96 system, which has the following form
(Lorenz, 1996, 2006)315

Ẋk =−Xk−1(Xk−2−Xk+1)−Xk −
hc

b

J∑
j=1

Yj,k +F

(19)

Ẏj,k = c

[
−bYj+1,k(Yj+2,k −Yj−1,k)−Yj,k +

h

b
Xk

]
.

(20)

TheXk variables have periodicityXk =Xk+K , and the Yj,k
variables have periodicity Yj+J,k = Yj,k+1 and Yj,k+K =
Yj,k, where j = 1, . . . ,J and k = 1, . . . ,K. The combined in-320

dex j+ J(k− 1) is naturally associated with spatial loca-
tion along a latitude circle, and the local average J−1

∑J
j=1

serves to separate large and small spatial scales. There are
two sets of large scale variables (Xk, and the j-average of
Yj,k) but only one set of small scale variables (Yj,k minus its325

j-average). Observations of the Yj,k variables include contri-
butions from the large and small spatial scales, but observa-
tions of the Xk variables are purely large-scale. It is not dif-
ficult to incorporate this into the filtering framework (simply
set the small scale part of the Xk variables to zero), but we330

prefer an idealized model with only one set of variables. We
therefore develop an alternative model with a similar form
but with only one set of variables and with spatially homoge-
neous statistics.

The model is defined by the following equation335

Ẏ = hNY (Y ) +JTTNX(TY )−Y +F1JK (21)

where Y = {Yi}JKi=1, where 1JK is a vector of length JK
with all elements equal to 1, and T is a matrix in RK×JK ,

:::
and

:::
the

:::::
index

::
i,

:::::
which

::
is

:::::::
periodic

:::::::::::
Yi+JK = Yi,::

is
::::::::
analogous

::
to

:::::
spatial

:::::::
location

:::
on

:
a
:::::::
latitude

:::::
circle,

::::::
similar

:::
to

:::
the

::::::
original340

:::
L96

::::::
model

::::::::::::::::::
(Lorenz, 1996, 2006) . The nonlinear functions

NY andNX are defined as

{NY (Y )}i =−Yi+1(Yi+2−Yi−1) (22)
{NX(X)}k =−Xk−1(Xk−2−Xk+1) (23)

where Eqs. (22) and (23) are evaluated assuming periodic-345

ity for the vectors X = {Xk}Kk=1 and Y : Xk+K =Xk and
Yi+JK = Yi. The matrix T extracts the large-scale part of
Y ; we choose to let T be defined as the projection onto the
first K discrete Fourier modes, followed by evaluation on an
equispaced grid of K points. The large scale dynamics are350

obtained by applying T to Eq. (21) from the left

Ẋ = hTNY (Y ) +NX(X)−X +F1K (24)

where we define the large scale component X = TY , and
use that JTTT is the identity matrix and that T1JK =
1K (these are true for our choice of a Fourier projection,355



Grooms and Lee: A framework for variational data assimilation with superparameterization 5

Figure 1. Climatological statistics in regime I. (a) Time series of the Xk variables. (b) Time series of the Xk variables from the SP ap-
proximation. (c) A snapshot showing Yi (blue), the large scale part of Yi defined by projection onto the first 41 discrete Fourier modes
(red), and the Xk variables (yellow circles). (d) Time-averaged energy spectrum |Ŷκ|2 where Ŷκ is the discrete Fourier coefficient of Yi with
wavenumber κ. (e) Time-lagged autocorrelation functions for Xk (blue) and the small scale part of Yi (red), defined by projecting out the
first 41 Fourier modes. (f) Space-lagged autocorrelation functions for Xk from the true dynamics (blue) and the SP approximation (red).
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but other choices of T are possible). Note that when h=
0 the dynamics are those of the single-scale Lorenz-‘96
model with K modes, and when h 6= 0 the nonlinearity Y N

:::::::
NY (Y )

:
couples large and small scales. Energy conserva-

tion for the nonlinear terms in Eq. (21) is obtained by noting360

that Eq. (22) implies Y TNY (Y ) = 0, and that (23) implies
Y TTTNX(TY ) =XTNX(X) = 0. The matrix JTT in-
terpolates from RK to RJK , and it is convenient to define
notation for the small scale part of Y :

y = {yi}JKi=1 = Y − JTTTY . (25)365

The superparameterization approximation is governed by

Ẏj,k =−hYj+1,k(Yj+2,k −Yj−1,k)

−Xk−1(Xk−2−Xk+1)−Yj,k +F (26)

where Xk = J−1
∑J
j=1Yj,k, and there is local as well370

as global periodicity: Yj+J,k = Yj,k and Xk+K =Xk. The
large scale dynamics in the SP approximation are obtained
by j-averaging Eq. (26), which gives

Ẋk =−h
J

J∑
j=1

Yj+1,k(Yj+2,k −Yj−1,k)375

−Xk−1(Xk−2−Xk+1)−Xk +F. (27)

When h= 0 the large scale dynamics of the SP approxima-
tion and the true system are equivalent. As in more complex
SP applications, the small scale variables (here Yj,k −Xk)
are locally periodic, and are coupled to the large scale380

using a local average over a periodic domain in a manner
analogous to the coupling in more complex SP models (e.g.,
Grabowski, 2004). TheXk variables in the SP model attempt
to accurately model the dynamics of X in the true system,
but the small scale variables of the SP approximation are385

only statistically related to the small scale variables of the
true system, i.e. one does not expect an SP variable Yj,k to
be a direct approximation of any of the true system variables
Yi.

390

The purpose of this research is not to study the SP ap-
proximation in this system, but rather to use the system as
a testbed for our data assimilation framework. We therefore
choose to focus on parameter regimes where the SP approxi-
mation is reasonably accurate, setting J = 128 so that there is395

a good scale separation (the SP approximation should break
down for small J). The number of large scale modes is set to
K = 41; we choose 41 rather than the usual 40 so that the dis-
crete Fourier modes associated with the large scale variables
are 0,±1, . . . ,±20, and the twentieth mode is not split be-400

tween large and small scales. It remains to choose F and h. In
general, for fixed nonzero h the small scale variables become
more chaotic and larger amplitude as F increases, and simi-
larly for fixed F as h increases. As the small scales become

more chaotic and larger amplitude the large scale variables405

become less chaotic. This behavior is perhaps counterintu-
itive, but similar behavior has been observed in the two-scale
Lorenz-‘96 system by Abramov (2012). Balancing the desire
for complex large scale dynamics and turbulent small scale
dynamics, we choose to focus on two parameter regimes.410

I: F = 30, h= 0.4

II: F = 21, h= 0.35

Some characteristics of the dynamics in regimes I and II
are presented in Figs. 1 and 2, respectively. In regime I the
large scale dynamics consist of a train of eight propagating415

and nonlinearly interacting ‘waves,’ as seen in the time se-
ries of the X variables in Fig. 1a. The large scale dynamics
of the SP approximation are qualitatively similar, as shown
in Fig. 1b. The time-lagged autocorrelation function of the
Xk variables (averaged over k) is shown in Fig. 1e, and dis-420

plays an oscillatory structure associated with the wave train.
The initial decay of the time-lagged autocorrelation is ap-
proximated by an exponential of the form exp{−(λ+ iω)t}
with decorrelation time λ−1 = 0.84 and oscillation period
2π/ω = 0.71; the resurgence of correlation between 6 and425

8 time units is associated with the time it takes a single wave
to propagate once around the domain. The regularity of the
wave train is also reflected in the space-lagged autocorrela-
tion function for the Xk variables shown in Fig. 1f, which is
well approximated by the SP dynamics. Figure 1c shows the430

Yi variables at an instant of time (blue), along with the large
scale part (red; the projection onto the first 41 Fourier modes)
and the Xk variables (yellow circles). There is clearly strong
small scale variability, but not so strong that it completely ob-
scures the large scale pattern, and the amplitude of the small435

scale variability varies over the domain. Figure 1d shows the
time-averaged energy spectrum |Ŷκ|2, where Ŷκ is the dis-
crete Fourier coefficient of Yi with wavenumber κ. There
is a clear separation in amplitude between the large scale
Fourier modes (κ≤ 20) and the small scale modes, showing440

that the large scale energy is concentrated near wavenumbers
κ= 7 and 8, while the small scale energy is more broadly
distributed among Fourier modes. The broad distribution of
small scale energy among Fourier modes is indicative of the
strongly chaotic small scale dynamics, as is the rapid tem-445

poral decorrelation of the small scale variables yi shown in
Fig. 1e. The decorrelation time of the small scale variables
yi is estimated as 0.2 using the integral of the time-lagged
autocorrelation function.

In regime II the large scale dynamics are more chaotic,450

though wave trains are still evident in the time series of X
in Fig. 2a. The large scale dynamics of the SP approxima-
tion are again qualitatively similar, as shown in Fig. 2b. The
time-lagged autocorrelation function of the Xk variables in
Fig. 2e decays much more rapidly than in regime I. The ini-455

tial decay of the time-lagged autocorrelation is approximated
by an exponential of the form exp{−(λ+iω)t}with decorre-



Grooms and Lee: A framework for variational data assimilation with superparameterization 7

Figure 2. Climatological statistics in regime II. Panels are the same as Fig. 1.

lation time λ−1 = 0.38 and oscillation period 2π/ω = 0.95,
and there is no resurgence of correlations at long lag times.

The decreased regularity of the wave train is reflected in the460

space-lagged autocorrelation function for the Xk variables



8 Grooms and Lee: A framework for variational data assimilation with superparameterization

shown in Fig. 2f, which is again well approximated by the
SP dynamics. The snapshot of the Yi variables in Fig. 2c
shows a diminished level of small scale variability overall,
with some regions having almost no small scale activity and465

others having strong small scale variability. The energy spec-
trum in Fig. 2d shows that the energy is more broadly dis-
tributed among large scale Fourier modes, though there is
still a peak at wavenumber κ= 8. The broad distribution of
small scale energy among Fourier modes is again indicative470

of the strongly chaotic small scale dynamics, as is the rapid
temporal decorrelation of the small scale variables yi shown
in Fig. 2e. The decorrelation time of the small scale variables
yi is estimated as 0.23 using the integral of the time-lagged
autocorrelation function.475

The Yi variables have a uniform time mean of 3.8 and 3.6
in regimes I and II, respectively, which is accurately repro-
duced by the SP approximation. The Xk variables have vari-
ance 31 and 32 in regimes I and II, respectively, and their SP
counterparts have slightly higher variances of 33 and 34. The480

small scale variables yi have climatological variance of 70 in
regime I and 29 in regime II, though Figs. 1c and 2c show
that this variability is unevenly distributed over the physical
domain at any given instant. Data assimilation experiments
for both these regimes are described in the next section.485

4 Assimilation Experiments

In this section we describe data assimilation experiments in
both regimes of the test model of the foregoing section using
the 3D-Var framework from Sect. 2and the SP approximation
described in the foregoing section.

:
.490

Observations are taken at P =MK equispaced points
with M = 1, 2, and 4; specifically, observations are taken
at ip = 1 + pJ/M for p= 1, . . . ,P . Observations are either
linear, with vp = Yip + εp, or nonlinear, with vp = (Yip +
30)2/50 + εp. In both cases the observation errors εp are iid495

Gaussians with zero mean and variance 0.1. Observations are
assimilated every ∆t time units. In regime I we test ∆t = 0.2
and 0.6; for comparison the decorrelation times of the small
scale and large scale variables in this regime are 0.2 and 0.84.
In regime II we test ∆t = 0.2 and 0.4, which are close to the500

decorrelation times of the small scale and large scale vari-
ables, respectively.

Specification of the background covariance matrix is a cru-
cial aspect of any 3D-Var assimilation system. We consider
the simplest possible estimate B = σ2IK where IK is the505

K ×K identity matrix and σ2 is a tunable parameter. As-
similation experiments are run over a range of σ2 and the
optimal value is chosen based on RMS errors; the results are
very weakly sensitive to σ2 as long as it is within a factor of 2
of the diagnosed forecast error variance. Since our observing510

system includes at least one observation for every Xk vari-
able, it is less important to build a background covariance
matrix with correlations between the Xk variables.

A single assimilation experiment consists of 1000 cycles,
where the SP variables for the first forecast are initialized515

directly from the true model variables. Although the assim-
ilation system provides estimates of the small scale part of
the true system at the location of the observations, this infor-
mation is far from sufficient to provide an estimate of the full
state Y of the true system. We view the 3D-Var assimilation520

as primarily aimed at estimating the large scale model vari-
ables Xk, and error statistics are tracked only for the large
scale variables. We track two performance metrics for the
large scale variables, the time averaged RMS error

RMS Error = ‖X −XSP‖2 (28)525

and the time averaged pattern correlation

Pattern Correlation =
XTXSP

‖X‖2‖XSP‖2
(29)

both for the forecast and for the analysis.
As a point of comparison for the performance of the fore-

cast in the assimilation experiments, we consider climato-530

logical values of RMS error and pattern correlation defined
using the uniform climatological mean value of Xk as a pre-
diction:Xk = 3.8 in regime I andXk = 3.6 in regime II. The
climatological RMS error is simply the square root of the cli-
matological variance: 5.6 in regime I and 5.7 in regime II.535

The climatological pattern correlation is the time averaged
pattern correlation between Xk and its uniform climatologi-
cal mean value:

::
the

::::::::::::
climatological

::::::
pattern

::::::::::
correlation

:
is
:
0.57

in regime I and 0.53 in regime II. If the forecast has larger
RMS error or smaller pattern correlation than the climatolog-540

ical values then the forecast is of very limited utility.
As a point of comparison for the performance of the

analysis estimate in the assimilation experiments we take
a ‘smoothed observation’ estimate that is obtained by pro-
jecting the observations onto the largest K Fourier modes.545

For example, when M = 1 there are K observations and the
‘smoothed observation’ estimate of the Xk variables is sim-
ply Xk ≈ vp for the linear case and Xk ≈

√
50vp− 30 for

the nonlinear case. The RMS errors in the smoothed obser-
vation estimate are tracked over the course of each assimi-550

lation experiment, rather than computing climatological val-
ues. The 3D-Var should at a minimum perform better than the
smoothed observations. The results for both regimes are pre-
sented in Tables 1 and 2 in the format Forecast→Analysis. In
all cases the errors decrease as M increases, and the analysis555

significantly improves over the forecast.
The large scale dynamics are more predictable in regime

I than in regime II, but the small scale variance is larger
as well, making it harder to obtain an accurate estimate of
the large scales. With a short observation time ∆t = 0.2, the560

forecast and analysis for linear and nonlinear observations
both have RMS errors smaller than both the climatological
error of 5.6 and the error in the smoothed observation esti-
mate. The nonlinear observations generate slightly more ac-
curate results than the linear observations when M = 1, and565
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Table 1. Results of the assimilation experiments for regime I. There are P =MK equispaced observations, assimilated at time intervals of
∆t, and σ2 is the amplitude of the background covariance matrix. For comparison, the climatological RMS error and pattern correlation are
5.6 and 0.57.

∆t M Observation Type σ2 RMS Error Smoothed Observation Error Pattern Correlation

0.2 1 Linear 15 4.9 → 4.3 8.2 0.73 → 0.79
0.2 1 Nonlinear 20 4.7 → 4.1 8.1 0.74 → 0.80
0.2 2 Linear 10 4.1 → 3.4 5.7 0.81 → 0.87
0.2 2 Nonlinear 20 4.2 → 3.4 5.7 0.80 → 0.87
0.2 4 Linear 10 3.4 → 2.6 4.1 0.87 → 0.92
0.2 4 Nonlinear 15 3.8 → 2.8 4.0 0.83 → 0.91
0.6 1 Linear 35 6.1 → 5.1 8.2 0.60 → 0.72
0.6 1 Nonlinear 40 5.6 → 4.8 8.2 0.63 → 0.74
0.6 2 Linear 30 5.5 → 4.2 5.7 0.66 → 0.82
0.6 2 Nonlinear 30 5.2 → 4.0 5.7 0.68 → 0.82
0.6 4 Linear 25 5.0 → 3.3 4.1 0.72 → 0.89
0.6 4 Nonlinear 30 4.8 → 3.2 4.0 0.73 → 0.89

the linear observations generate slightly more accurate re-
sults for M = 4, but overall the results are similar. With a
longer observation time ∆t = 0.6 the results are, naturally,
less accurate. In every case the analysis is more accurate than
both the climatological error and the smoothed observations,570

but the forecasts are more accurate than the climatological
mean only withM = 4. WithM = 1 and 2, the RMS forecast
errors are worse than the climatological error, but the forecast
pattern correlations are still a bit better than the climatologi-
cal pattern correlation. As with the shorter observation time,575

the results are more accurate with the nonlinear observations.
In regime II the results with the linear and nonlinear obser-

vations are very similar in all cases. With a short observation
time ∆t = 0.2, the forecast is always more accurate than the
climatological mean, and the analysis is always more accu-580

rate than the smoothed observations. With a longer observa-
tion time ∆t = 0.4 the forecasts are no more accurate than
climatology, but the analysis is still more accurate than the
smoothed observations, though at M = 4 the analysis is only
slightly more accurate.585

5 Conclusions

Superparameterization (SP) is a multiscale computational
approach that has been successfully applied to modeling at-
mospheric dynamics, and that shows promise for more gen-
eral applications (Tao et al., 2009; Randall et al., 2013; Majda590

and Grooms, 2014). Grooms et al. (2014) have developed an
ensemble Kalman filter framework for use with SP, but the
standard approach to SP in global atmosphere and climate
models, where small scale nonlinear dynamics are simulated
on an array of periodic domains embedded in the computa-595

tional grid of a large scale model, is too computationally de-
manding for use in an ensemble framework. We here develop
a 3D-Var variational data assimilation framework for SP that
builds on and modifies the framework of GLM14. The main

update to the GLM14 framework, in addition to using a vari-600

ational as opposed to ensemble Kalman filter setting, is that
small scale estimates are computed at locations where obser-
vations are taken, rather than at every point of the large scale
model’s computational grid.

The data assimilation framework is demonstrated in a new605

system of ordinary differential equations based on the two-
scale Lorenz-‘96 model (Lorenz, 1996, 2006). Unlike the
two-scale Lorenz-‘96 model the new model has only one
set of variables, Yi, and these variables have large and small
scale parts. An SP approximation to the new system is devel-610

oped, which is perhaps the simplest idealized model of SP.
The new data assimilation framework is tested in two regimes
of the new model, with both linear and nonlinear observation
operators. In regime I the large scale dynamics consist of a
weakly chaotic wave train, with relatively strong small scale615

variability superposed. In regime II the large scale dynam-
ics are more strongly chaotic, and there is less small scale
variability. In both regimes the data assimilation performs as
expected, with increased accuracy as the number of observa-
tions increases.620

Our work lays a foundation for 3D-Var data assimilation
with existing SP models. The main difficulty in using the
framework with an SP atmosphere or climate model is in
specifying an appropriate background covariance matrix for
the large scale model, but this difficulty should not be insur-625

mountable given the extensive use of the 3D-Var approach in
atmosphere and ocean data assimilation (e.g. Kalnay, 2002;
Kleist et al., 2009). In addition, the new framework removes
one of the difficulties associated with development of a 3D-
Var framework for large scale models: the small scale sim-630

ulations in the multiscale SP computation provide direct in-
formation on the small scale statistics, obviating, or at least
simplifying, the need to develop models of representation er-
ror.
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Table 2. Results of the assimilation experiments for regime II. There are P =MK equispaced observations, assimilated at time intervals of
∆t, and σ2 is the amplitude of the background covariance matrix. For comparison, the climatological RMS error and pattern correlation are
5.7 and 0.53.

∆t M Observation Type σ2 RMS Error Smoothed Observation Error Pattern Correlation

0.2 1 Linear 50 5.2 → 3.8 5.5 0.66 → 0.83
0.2 1 Nonlinear 30 5.2 → 3.8 5.5 0.66 → 0.83
0.2 2 Linear 30 4.8 → 3.0 3.8 0.70 → 0.89
0.2 2 Nonlinear 30 4.9 → 3.1 3.8 0.70 → 0.89
0.2 4 Linear 15 4.6 → 2.4 2.7 0.73 → 0.93
0.2 4 Nonlinear 30 4.6 → 2.4 2.7 0.74 → 0.94
0.4 1 Linear 40 6.2 → 4.2 5.5 0.53 → 0.79
0.4 1 Nonlinear 50 6.1 → 4.2 5.5 0.53 → 0.80
0.4 2 Linear 40 5.9 → 3.3 3.8 0.57 → 0.87
0.4 2 Nonlinear 50 5.9 → 3.4 3.8 0.56 → 0.87
0.4 4 Linear 40 5.7 → 2.6 2.7 0.59 → 0.92
0.4 4 Nonlinear 50 5.8 → 2.5 2.7 0.59 → 0.93
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