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Abstract. Superparameterization (SP) is a multiscale com-
putational approach wherein a large scale atmosphere or
ocean model is coupled to an array of simulations of small
scale dynamics on periodic domains embedded into the com-
putational grid of the large scale model. SP has been success-5

fully developed in global atmosphere and climate models,
and is a promising approach for new applications, but there
is currently no practical data assimilation framework that can
be used with these models. The authors develop a 3D-Var
variational data assimilation framework for use with SP; the10

relatively low cost and simplicity of 3D-Var in comparison
with ensemble approaches makes it a natural fit for relatively
expensive multiscale SP models. To demonstrate the assim-
ilation framework in a simple model, the authors develop a
new system of ordinary differential equations similar to the15

two-scale Lorenz-‘96 model. The system has one set of vari-
ables denoted {Yi}, with large and small scale parts, and the
SP approximation to the system is straightforward. With the
new assimilation framework the SP model approximates the
large scale dynamics of the true system accurately.20

1 Introduction

Superparameterization (SP) is a multiscale computational
method for parameterizing small scale effects in large scale
atmosphere and ocean models. It was originally developed
and has been particularly effective as a cloud parameteriza-25

tion in atmosphere models (Grabowski and Smolarkiewicz,
1999; Randall et al., 2003), and has been implemented in
global atmosphere and climate models (Khairoutdinov and
Randall, 2001; Tao et al., 2009; Randall et al., 2013). SP cou-
ples a large scale, low resolution model to an array of local30

small scale, high resolution simulations embedded within the

computational grid of the large scale model. The computa-
tional cost is kept down through a variety of methods, most
prominently by reducing the dimensionality of the small
scale simulations, e.g. using one vertical and one horizontal35

coordinate in the aforementioned atmospheric applications.
Although atmosphere and climate models with SP are partic-
ularly successful at producing a realistic Madden-Julian os-
cillation and diurnal cycle of convection over land (Khairout-
dinov et al., 2005), there are as yet no data assimilation sys-40

tems designed for use with these models. Instead, the large
scale variables are initialized from state estimates generated
with non-SP models and the small scale variables are initial-
ized with small-amplitude noise (Khairoutdinov et al., 2005).
Once the SP model has been initialized, there is no practical45

framework for combining observational data with the multi-
scale model forecast to produce a new initial condition.

The authors recently developed an ensemble Kalman fil-
ter framework for data assimilation with SP (Grooms et al.,
2014, hereafter GLM14). This framework was developed in50

the context of stochastic SP, a variant of SP that reduces
computational cost by replacing the small scale simulations
of SP with quasilinear stochastic models (Grooms and Ma-
jda, 2013; Majda and Grooms, 2014). Stochastic SP has only
been developed for idealized turbulence models (Grooms and55

Majda, 2013, 2014a, b; Grooms et al., 2015), and is not yet
implemented in global atmosphere, ocean, or climate mod-
els. The relatively high cost and computational complexity
of global atmosphere and climate models with SP and the
extra cost associated with an ensemble-based data assimila-60

tion system makes it unlikely that it will be possible to use
these models with the framework of GLM14 in the near fu-
ture. Here we develop a 3D-Var variational data assimilation
framework for SP that builds on and modifies the framework
of GLM14.65
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Observations of physical variables have large scale and
small scale parts, the former of which is equated with the
large scale model variables, and the latter with the variables
of the small scale embedded simulations. A key feature of SP
is that the small scale simulations are periodic, so a location70

on the small scale computational grid does not correspond
precisely to any location in the real physical domain; as a
result, the small scale simulations provide only statistical in-
formation about the small scales, and this information can be
used as a prior in the data assimilation context. In GLM1475

an ensemble of SP simulations provides prior information
on the large scale variables, but in the present approach the
prior information on the large scales comes from a single
SP simulation and a time-independent ‘background’ covari-
ance matrix for the large scale variables. When the observa-80

tion operator is linear the analysis estimates of the large and
small scale variables can be computed independently of each
other, and the small scale covariance information effectively
provides a time- and state-dependent estimate of represen-
tation error. When the observation operator is nonlinear the85

large and small scale analysis must be computed simultane-
ously by minimizing an objective function. Although anal-
ysis estimates of the small scale variables can be computed
with linear observations, and must be computed with nonlin-
ear observations, our framework does not at this time use the90

small scale analysis estimate to update any of the small scale
SP variables because the latter cannot be unambiguously as-
sociated with any real physical location. A key update of the
GLM14 framework is that we here compute a small scale
analysis estimate at locations where observations are avail-95

able, rather than at every coarse grid point. This can result in
significant computational savings in the case of a nonlinear
observation operator. We also update the GLM14 framework
to better handle observations at locations off the coarse grid.

The complex superparameterized atmosphere and climate100

models mentioned above are not particularly convenient for
the development of a new data assimilation framework, and
existing toy models of SP are of limited utility for this pur-
pose. In Sect. 2 we develop a new system of ODEs based on
the two-scale Lorenz-‘96 (L96) model (Lorenz, 1996, 2006),105

and an SP approximation to that system. This new model
serves as a testbed in which to demonstrate our new SP 3D-
Var framework. The 3D-Var framework with SP is presented
in Sect. 3, and assimilation experiments using the new frame-
work and the new system are described in Sect. 4, followed110

by conclusions.

2 A multiscale Lorenz-‘96 model with superparameter-
ization

In this section we develop a new simple model for SP in
which to demonstrate our data assimilation framework. Ma-115

jda and Grote (2009) developed an idealized model of SP,
but the system suffers from one major drawback: it does not

consist of an SP approximation to an idealized system, but
rather consists only of an idealized SP model. Harlim and
Majda (2013) used the model of Majda and Grote (2009) to120

develop a data assimilation strategy for SP, but with the as-
sumption that direct observations of the large scale variables
were available, rather than having both large and small scale
contributions to the observations. Lee and Majda (2015) have
recently investigated a range of multiscale assimilation meth-125

ods in a highly condensed model where the ‘large scale’ con-
sists of a single scalar with no spatial extent.

Wilks (2012) developed an SP approximation for the
two-scale Lorenz-‘96 system, which has the following form
(Lorenz, 1996, 2006)130

Ẋk =−Xk−1(Xk−2−Xk+1)−Xk −
hc

b

J∑
j=1

Yj,k +F

(1)

Ẏj,k = c

[
−bYj+1,k(Yj+2,k −Yj−1,k)−Yj,k +

h

b
Xk

]
. (2)

TheXk variables have periodicityXk =Xk+K , and the Yj,k
variables have periodicity Yj+J,k = Yj,k+1 and Yj,k+K =
Yj,k, where j = 1, . . . ,J and k = 1, . . . ,K. The combined in-135

dex j+ J(k− 1) is naturally associated with spatial loca-
tion along a latitude circle, and the local average J−1

∑J
j=1

serves to separate large and small spatial scales. This system
is primarily useful as a two-time-scale model, since for large
c the Yj,k variables are faster than the Xk variables. Wilks’s140

SP approximation to this system reflects this fact by treating
the Yj,k variables as purely small-scale; also, in his SP ap-
proximation the periodicity of the Yj,k variables is replaced
by defining Y0,k = YJ+1,k = YJ+2,k which are set to a con-
stant value. Considering that the multiscale nature of SP is145

primarily based on spatial scale separation rather than time
scale separation, a more natural SP approximation to the two-
scale Lorenz-‘96 system might make the Yj,k variables lo-
cally periodic: Yj+J,k = Yj,k. Nevertheless, there would still
be two sets of large scale variables (Xk, and the j-average150

of Yj,k) but only one set of small scale variables (Yj,k minus
its j-average). Rather than bend the two-time-scale Lorenz-
‘96 model to our two-space-scale purpose, we develop a new
two-space-scale version of the Lorenz-‘96 model that is more
naturally suited to an SP approximation.155

The new model is defined by the following equation

Ẏ = hNY (Y ) +JTTNX(TY )−Y +F1JK (3)

where Y = {Yi}JKi=1, where 1JK is a vector of length JK
with all elements equal to 1, T is a matrix in RK×JK , and
the index i, which is periodic Yi+JK = Yi, is analogous to160

spatial location on a latitude circle, similar to the original
L96 model (Lorenz, 1996, 2006). The nonlinear functions
NY andNX are defined as

{NY (Y )}i =−Yi+1(Yi+2−Yi−1) (4)
{NX(X)}k =−Xk−1(Xk−2−Xk+1) (5)165
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Figure 1. Climatological statistics in regime I. (a) Time series of the Xk variables. (b) Time series of the Xk variables from the SP ap-
proximation. (c) A snapshot showing Yi (blue), the large scale part of Yi defined by projection onto the first 41 discrete Fourier modes
(red), and the Xk variables (yellow circles). (d) Time-averaged energy spectrum |Ŷκ|2 where Ŷκ is the discrete Fourier coefficient of Yi with
wavenumber κ. (e) Time-lagged autocorrelation functions for Xk (blue) and the small scale part of Yi (red), defined by projecting out the
first 41 Fourier modes. (f) Space-lagged autocorrelation functions for Xk from the true dynamics (blue) and the SP approximation (red).
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where Eqs. (4) and (5) are evaluated assuming periodic-
ity for the vectors X = {Xk}Kk=1 and Y : Xk+K =Xk and
Yi+JK = Yi. The matrix T extracts the large-scale part of
Y ; we choose to let T be defined as the projection onto the
first K discrete Fourier modes, followed by evaluation on an170

equispaced grid of K points. The large scale dynamics are
obtained by applying T to Eq. (3) from the left

Ẋ = hTNY (Y ) +NX(X)−X +F1K (6)

where we define the large scale component X = TY , and
use that JTTT is the identity matrix and that T1JK =175

1K (these are true for our choice of a Fourier projec-
tion, but other choices of T are possible). Note that when
h= 0 the dynamics are those of the single-scale Lorenz-
‘96 model with K modes, and when h 6= 0 the nonlinearity
NY (Y ) couples large and small scales. Energy conserva-180

tion for the nonlinear terms in Eq. (3) is obtained by noting
that Eq. (4) implies Y TNY (Y ) = 0, and that (5) implies
Y TTTNX(TY ) =XTNX(X) = 0. The matrix JTT in-
terpolates from RK to RJK , and it is convenient to define
notation for the small scale part of Y :185

y = {yi}JKi=1 = Y − JTTTY . (7)

The superparameterization approximation is governed by

Ẏj,k =−hYj+1,k(Yj+2,k −Yj−1,k)

−Xk−1(Xk−2−Xk+1)−Yj,k +F (8)190

where Xk = J−1
∑J
j=1Yj,k, and there is local as well

as global periodicity: Yj+J,k = Yj,k and Xk+K =Xk. The
large scale dynamics in the SP approximation are obtained
by j-averaging Eq. (8), which gives

195

Ẋk =−h
J

J∑
j=1

Yj+1,k(Yj+2,k −Yj−1,k)

−Xk−1(Xk−2−Xk+1)−Xk +F. (9)

When h= 0 the large scale dynamics of the SP approxima-
tion and the true system are equivalent. As in more complex
SP applications, the small scale variables (here Yj,k −Xk)200

are locally periodic, and are coupled to the large scale
using a local average over a periodic domain in a manner
analogous to the coupling in more complex SP models (e.g.,
Grabowski, 2004). TheXk variables in the SP model attempt
to accurately model the dynamics of X in the true system,205

but the small scale variables of the SP approximation are
only statistically related to the small scale variables of the
true system, i.e. one does not expect an SP variable Yj,k to
be a direct approximation of any of the true system variables
Yi.210

The purpose of this research is not to study the SP ap-
proximation in this system, but rather to use the system as

a testbed for our data assimilation framework. We therefore
choose to focus on parameter regimes where the SP approxi-215

mation is reasonably accurate, setting J = 128 so that there is
a good scale separation (the SP approximation should break
down for small J). The number of large scale modes is set to
K = 41; we choose 41 rather than the usual 40 so that the dis-
crete Fourier modes associated with the large scale variables220

are 0,±1, . . . ,±20, and the twentieth mode is not split be-
tween large and small scales. It remains to choose F and h. In
general, for fixed nonzero h the small scale variables become
more chaotic and larger amplitude as F increases, and simi-
larly for fixed F as h increases. As the small scales become225

more chaotic and larger amplitude the large scale variables
become less chaotic. This behavior is perhaps counterintu-
itive, but similar behavior has been observed in the two-scale
Lorenz-‘96 system by Abramov (2012). Balancing the desire
for complex large scale dynamics and turbulent small scale230

dynamics, we choose to focus on two parameter regimes.

I: F = 30, h= 0.4

II: F = 21, h= 0.35

Some characteristics of the dynamics in regimes I and II
are presented in Figs. 1 and 2, respectively. In regime I the235

large scale dynamics consist of a train of eight propagating
and nonlinearly interacting ‘waves,’ as seen in the time se-
ries of the X variables in Fig. 1a. The large scale dynamics
of the SP approximation are qualitatively similar, as shown
in Fig. 1b. The time-lagged autocorrelation function of the240

Xk variables (averaged over k) is shown in Fig. 1e, and dis-
plays an oscillatory structure associated with the wave train.
The initial decay of the time-lagged autocorrelation is ap-
proximated by an exponential of the form exp{−(λ+ iω)t}
with decorrelation time λ−1 = 0.84 and oscillation period245

2π/ω = 0.71; the resurgence of correlation between 6 and
8 time units is associated with the time it takes a single wave
to propagate once around the domain. The regularity of the
wave train is also reflected in the space-lagged autocorrela-
tion function for the Xk variables shown in Fig. 1f, which is250

well approximated by the SP dynamics. Figure 1c shows the
Yi variables at an instant of time (blue), along with the large
scale part (red; the projection onto the first 41 Fourier modes)
and the Xk variables (yellow circles). There is clearly strong
small scale variability, but not so strong that it completely ob-255

scures the large scale pattern, and the amplitude of the small
scale variability varies over the domain. Figure 1d shows the
time-averaged energy spectrum |Ŷκ|2, where Ŷκ is the dis-
crete Fourier coefficient of Yi with wavenumber κ. There
is a clear separation in amplitude between the large scale260

Fourier modes (κ≤ 20) and the small scale modes, showing
that the large scale energy is concentrated near wavenumbers
κ= 7 and 8, while the small scale energy is more broadly
distributed among Fourier modes. The broad distribution of
small scale energy among Fourier modes is indicative of the265

strongly chaotic small scale dynamics, as is the rapid tem-
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Figure 2. Climatological statistics in regime II. Panels are the same as Fig. 1.

poral decorrelation of the small scale variables yi shown in
Fig. 1e. The decorrelation time of the small scale variables

yi is estimated as 0.2 using the integral of the time-lagged
autocorrelation function.270
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In regime II the large scale dynamics are more chaotic,
though wave trains are still evident in the time series of X
in Fig. 2a. The large scale dynamics of the SP approxima-
tion are again qualitatively similar, as shown in Fig. 2b. The
time-lagged autocorrelation function of the Xk variables in275

Fig. 2e decays much more rapidly than in regime I. The ini-
tial decay of the time-lagged autocorrelation is approximated
by an exponential of the form exp{−(λ+iω)t}with decorre-
lation time λ−1 = 0.38 and oscillation period 2π/ω = 0.95,
and there is no resurgence of correlations at long lag times.280

The decreased regularity of the wave train is reflected in the
space-lagged autocorrelation function for the Xk variables
shown in Fig. 2f, which is again well approximated by the
SP dynamics. The snapshot of the Yi variables in Fig. 2c
shows a diminished level of small scale variability overall,285

with some regions having almost no small scale activity and
others having strong small scale variability. The energy spec-
trum in Fig. 2d shows that the energy is more broadly dis-
tributed among large scale Fourier modes, though there is
still a peak at wavenumber κ= 8. The broad distribution of290

small scale energy among Fourier modes is again indicative
of the strongly chaotic small scale dynamics, as is the rapid
temporal decorrelation of the small scale variables yi shown
in Fig. 2e. The decorrelation time of the small scale variables
yi is estimated as 0.23 using the integral of the time-lagged295

autocorrelation function.
The Yi variables have a uniform time mean of 3.8 and 3.6

in regimes I and II, respectively, which is accurately repro-
duced by the SP approximation. The Xk variables have vari-
ance 31 and 32 in regimes I and II, respectively, and their SP300

counterparts have slightly higher variances of 33 and 34. The
small scale variables yi have climatological variance of 70 in
regime I and 29 in regime II, though Figs. 1c and 2c show
that this variability is unevenly distributed over the physical
domain at any given instant.305

3 Variational data assimilation with superparameteri-
zation

The primary difficulty in developing a data assimilation
framework for an SP model is that observations of the true
system include contributions from large and small scales, and310

it is necessary to relate the observations to the large and small
scale variables of the SP model. GLM14 provided a frame-
work for relating observations to SP model variables, and we
improve on this framework below.

Let the large scale variables of the SP simulation be de-315

noted u (the overbar does not denote a statistical mean), and
let the small scale variables be denoted ũ. In the context of
the new Lorenz-‘96 model, u=X and ũ= {Yj,k−Xk}j,k.
In most SP applications there is a set of small scale vari-
ables at every point of the large scale computational grid. The320

small scale variables exist on local periodic domains so that
the small scale variables at each coarse grid point are discon-

nected from those at surrounding coarse grid points, and the
small scale variables have zero average across the periodic
directions. Each location in the small scale periodic domains325

does not correspond to a different location in the real phys-
ical domain. Instead, all points in a given periodic domain
are best thought of as existing at one physical location: the
associated coarse grid point.

In GLM14, observations are related to the SP model vari-330

ables using the following observation model

v =H(L(u+u′)) + ε (10)

whereH is the observation operator and ε is a vector of zero-
mean normal random variables associated with observation
error. The vector u′ has the same size as u, and models the335

small-scale contribution to physical variables at the coarse
grid points, i.e. u= u+u′ is the vector of real physical
variables at the coarse model grid points. The physical vari-
ables u are interpolated to the location of the observations
by L. The vector u′ is not the same as the small scale SP340

variables ũ. Instead, the mean and covariance of u′ are com-
puted from the statistics of the small scale SP variables ũ.
Although the true small scale variables u′ can in principle
have nonzero statistical mean, the small scale SP variables ũ
always have zero mean because their average over the local345

periodic domains is always zero by definition. For example,
in the context of the new Lorenz-‘96 model the GLM14 ver-
sion of the vector u′ has length K, has zero mean, and has a
diagonal covariance with entries

Var [u′k] =
1

J − 1

J∑
j=1

(Yj,k −Xk)2. (11)350

As noted in GLM14, it is unrealistic to use the same in-
terpolation operator for both the large and small scale vari-
ables because it assumes that the small scale variables vary
smoothly between the coarse grid points, whereas the small
scale variables should by definition vary over shorter dis-355

tances. (Observations in GLM14 were taken only on the
coarse grid points, avoiding the issue.) Instead of specify-
ing an alternative interpolation operator for the small scales,
we update the framework by altering the definition of u′ to
include small scale variables only at the points where obser-360

vations are taken. We also assume that the statistics of the
small scale variables vary on large scales and can therefore
be smoothly interpolated from the coarse grid points, where
small scale SP statistics are available, to the locations of the
observations.365

Let P denote the number of different physical locations
where observations are available (for simplicity of exposition
we assume that there is only one observation per location,
i.e. v ∈ RP ). The updated observation model for the p-th lo-
cation is370

vp =Hp(Lp(u) +u′p) + εp (12)
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where Lp interpolates the large scale model variablesu to the
observation location and εp is a zero-mean Gaussian random
variable. There is thus one vector u′p of small scale variables
per observation location. The updated observation model for375

all P observations can be written in vector form as

v =H(L(u) +u′) + ε (13)

where u′ is no longer defined as in GLM14, but according to
the discussion above.

The covariance of the small scale variables P′ is com-380

puted from the small scale variables of the SP model, and
thus changes from one assimilation cycle to the next. Specif-
ically, it is first assumed that the small scale variables at dif-
ferent observation locations are uncorrelated from each other
so that one needs only compute the covariance matrices P′p385

of the u′p variables. This assumption is reasonable as long as
the observations are taken at locations reasonably well sep-
arated compared to the correlation length of the small scale
variables. (The framework could be updated for situations
where the observations are closer than this, e.g. by using spa-390

tial correlation information for the small scale variables com-
puted from the SP simulation, but this is beyond the scope of
the present investigation.) To compute P′p we begin by com-
puting auxiliary small scale sample covariance matrices P̃k
using the small scale SP variables ũ at each coarse grid point.395

Let {ũk,j}Jj=1 be the small scale SP variables located in a pe-
riodic domain at the k-th coarse grid point, where there are
J grid points in the periodic embedded domain. Then, recall-
ing that their average over J is zero, the auxiliary small scale
sample covariance matrix is400

P̃k =
1

J − 1

J∑
j=1

ũj,kũ
T
j,k (14)

where the superscript T denotes a vector transpose. It is typ-
ically the case that J is large enough that P̃k is full rank,
and we do not consider exceptions here. In the context of
the new Lorenz-‘96 model the auxiliary small scale sample405

covariances are given by Eq. (11). Finally, the small scale
covariance matrices at the observation locations P′p are ob-
tained by interpolating the elements of the matrices P̃k from
the coarse grid to the locations of the observations, which
assumes that the small scale statistics vary smoothly on the410

large scale. The interpolation method used to interpolate the
small scale covariance matrices need not be the same as L,
and should have positive coefficients in order to ensure that
the small scale covariance matrices remain positive definite.
(It may not be necessary to compute sample covariance ma-415

trices P̃k at every coarse grid point; one only needs to com-
pute them at points needed in the interpolation.) For compari-
son, in GLM14 the covariance of the small scale variables P′

is the same size as the large scale background covariance B,
and consists of the auxiliary small scale sample covariance420

matrices P̃k arranged in block-diagonal form. When obser-

vations are taken at every coarse grid location the GLM14
formulation is equivalent to the new one.

To complete the specification of the 3D-Var framework we
specify a prior joint distribution for u and u′ with mean425

E [u] = µ, E [u′] = 0 (15)

and covariance[
B 0
0 P′

]
. (16)

As typical in a 3D-Var setting, the background covariance
matrix B for the large scale variables is independent of time,430

and the prior mean for the large scales is given by a single
forecast of the large scale part of the SP model. The small
scale variable u′ is assumed to be uncorrelated with the large
scale variable. In practice, the large and small scale variables
are certainly not independent, but as shown in GLM14 the435

assumption that they are uncorrelated is reasonable within
the context of an SP model where the small scale variables
have zero mean. To wit, the joint probability distribution of
large and small scale variables can be factored into the large
scale marginal and the small scale conditional distributions440

p(u,u′) = pM (u)pC(u′|u). The cross-covariance between
large and small scale variables is∫∫

(u−µ)u′T pM (u)pC(u′|u)dudu′ =∫
(u−µ)pM (u)

[∫
u′T pC(u′|u)du′

]
du= 0 (17)445

where the term in square brackets is zero because the small
scale variables are assumed to have zero mean regardless of
the state of the large scale variables.

Having thus specified the observation model and prior
mean and covariance, the 3D-Var analysis estimate of the450

system state minimizes the following objective function (Ta-
lagrand, 2010)

Υ(u,u′) = (u−µ)TB
−1

(u−µ) +u′TP′−1u′

+ (v−H(L(u) +u′))TR−1(v−H(L(u) +u′)) (18)455

where R is the covariance matrix of the observation error
vector ε.

When the observation operator is linear,H = H, the anal-
ysis can be computed from the Kalman filter formulas (Tala-
grand, 2010), which in this case gives460

ua = µ+K(v−HLµ) (19)

K = B(HL)T
(
HLB(HL)T +HP′HT +R

)−1
(20)

u′a = K′(v−HLµ) (21)

K′ = P′HT
(
HLB(HL)T +HP′HT +R

)−1
(22)

where the superscript a denotes the analysis estimate. A key465

feature of these formulas is that the large scale and small
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scale estimates can be computed independently. In particu-
lar, the large scale estimate can also be computed as the min-
imizer of the following objective function

470

Υ(u) = (u−µ)TB
−1

(u−µ)

+ (v−HLu)T
(
HP′HT +R

)−1
(v−HLu). (23)

In cases where the small scale estimate is not used and the
observation operator is linear, the small scale estimate does
not need to be computed. It can be seen from Eq. (20) and475

Eq. (23) that the observed small scale covariance matrix
HP′HT acts as a time-varying estimate of the representa-
tion error since it inflates the measurement error covariance
R.

In GLM14 the small scale covariance matrix P′ is defined480

differently (as described above) and the small scale vector u′

is the same size as the large scale vector u. In the GLM14
formulation the final term in the objective function Eq. (18)
is replaced by

(v−H(L(u+u′)))TR−1(v−H(L(u+u′))). (24)485

For linear observations the GLM14 versions of the Kalman
filter formulas are

ua = µ+K(v−HLµ) (25)

K = B(HL)T
(
HL

(
B+P′

)
(HL)T +R

)−1
(26)

u′a = K′(v−HLµ) (27)490

K′ = P′ (HL)
T (

HL
(
B+P′

)
(HL)T +R

)−1
(28)

In the new approach there is one set of small scale variables
for each location where observations are available, whereas
in GLM14 there are small scale variables at each coarse grid
point. In global atmosphere and climate models there are495

typically fewer observations than coarse grid points; when
the observation operator is nonlinear the new formulation is
more efficient because the objective function has fewer de-
grees of freedom. Another key difference is in the assump-
tions that go into the specification of the small scale back-500

ground covariance: in GLM14 the small scale variables are
tacitly assumed to vary smoothly over the physical domain,
since they are smoothly interpolated between coarse grid
points, whereas in the present approach only the small scale
covariance is assumed to vary smoothly over the domain.505

4 Assimilation Experiments

In this section we describe data assimilation experiments in
both regimes of the test model using the 3D-Var framework
from Sect. 3.

Observations are taken at P =MK equispaced points510

with M = 1, 2, and 4; specifically, observations are taken
at ip = 1 + pJ/M for p= 1, . . . ,P . Observations are either

linear, with vp = Yip + εp, or nonlinear, with vp = (Yip +
30)2/50 + εp. In both cases the observation errors εp are iid
Gaussians with zero mean and variance 0.1. Observations are515

assimilated every ∆t time units. In regime I we test ∆t = 0.2
and 0.6; for comparison the decorrelation times of the small
scale and large scale variables in this regime are 0.2 and 0.84.
In regime II we test ∆t = 0.2 and 0.4, which are close to the
decorrelation times of the small scale and large scale vari-520

ables, respectively.
Specification of the background covariance matrix is a cru-

cial aspect of any 3D-Var assimilation system. We consider
the simplest possible estimate B = σ2IK where IK is the
K ×K identity matrix and σ2 is a tunable parameter. As-525

similation experiments are run over a range of σ2 and the
optimal value is chosen based on RMS errors; the results are
very weakly sensitive to σ2 as long as it is within a factor of 2
of the diagnosed forecast error variance. Since our observing
system includes at least one observation for every Xk vari-530

able, it is less important to build a background covariance
matrix with correlations between the Xk variables.

A single assimilation experiment consists of 1000 cycles,
where the SP variables for the first forecast are initialized
directly from the true model variables. Although the assim-535

ilation system provides estimates of the small scale part of
the true system at the location of the observations, this infor-
mation is far from sufficient to provide an estimate of the full
state Y of the true system. We view the 3D-Var assimilation
as primarily aimed at estimating the large scale model vari-540

ables Xk, and error statistics are tracked only for the large
scale variables. We track two performance metrics for the
large scale variables, the time averaged RMS error

RMS Error = ‖X −XSP‖2 (29)

and the time averaged pattern correlation545

Pattern Correlation =
XTXSP

‖X‖2‖XSP‖2
(30)

both for the forecast and for the analysis.
As a point of comparison for the performance of the fore-

cast in the assimilation experiments, we consider climato-
logical values of RMS error and pattern correlation defined550

using the uniform climatological mean value of Xk as a pre-
diction:Xk = 3.8 in regime I andXk = 3.6 in regime II. The
climatological RMS error is simply the square root of the cli-
matological variance: 5.6 in regime I and 5.7 in regime II.
The climatological pattern correlation is the time averaged555

pattern correlation between Xk and its uniform climatologi-
cal mean value: the climatological pattern correlation is 0.57
in regime I and 0.53 in regime II. If the forecast has larger
RMS error or smaller pattern correlation than the climatolog-
ical values then the forecast is of very limited utility.560

As a point of comparison for the performance of the
analysis estimate in the assimilation experiments we take
a ‘smoothed observation’ estimate that is obtained by pro-
jecting the observations onto the largest K Fourier modes.
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Table 1. Results of the assimilation experiments for regime I. There are P =MK equispaced observations, assimilated at time intervals of
∆t, and σ2 is the amplitude of the background covariance matrix. For comparison, the climatological RMS error and pattern correlation are
5.6 and 0.57.

∆t M Observation Type σ2 RMS Error Smoothed Observation Error Pattern Correlation

0.2 1 Linear 15 4.9 → 4.3 8.2 0.73 → 0.79
0.2 1 Nonlinear 20 4.7 → 4.1 8.1 0.74 → 0.80
0.2 2 Linear 10 4.1 → 3.4 5.7 0.81 → 0.87
0.2 2 Nonlinear 20 4.2 → 3.4 5.7 0.80 → 0.87
0.2 4 Linear 10 3.4 → 2.6 4.1 0.87 → 0.92
0.2 4 Nonlinear 15 3.8 → 2.8 4.0 0.83 → 0.91
0.6 1 Linear 35 6.1 → 5.1 8.2 0.60 → 0.72
0.6 1 Nonlinear 40 5.6 → 4.8 8.2 0.63 → 0.74
0.6 2 Linear 30 5.5 → 4.2 5.7 0.66 → 0.82
0.6 2 Nonlinear 30 5.2 → 4.0 5.7 0.68 → 0.82
0.6 4 Linear 25 5.0 → 3.3 4.1 0.72 → 0.89
0.6 4 Nonlinear 30 4.8 → 3.2 4.0 0.73 → 0.89

For example, when M = 1 there are K observations and the565

‘smoothed observation’ estimate of the Xk variables is sim-
ply Xk ≈ vp for the linear case and Xk ≈

√
50vp− 30 for

the nonlinear case. The RMS errors in the smoothed obser-
vation estimate are tracked over the course of each assimi-
lation experiment, rather than computing climatological val-570

ues. The 3D-Var should at a minimum perform better than the
smoothed observations. The results for both regimes are pre-
sented in Tables 1 and 2 in the format Forecast→Analysis. In
all cases the errors decrease as M increases, and the analysis
significantly improves over the forecast.575

We also compare to the performance of an ensemble
adjustment Kalman filter using the true system dynamics.
These experiments and their results are described in Sect. 4.1.

The large scale dynamics are more predictable in regime
I than in regime II, but the small scale variance is larger580

as well, making it harder to obtain an accurate estimate of
the large scales. With a short observation time ∆t = 0.2, the
forecast and analysis for linear and nonlinear observations
both have RMS errors smaller than both the climatological
error of 5.6 and the error in the smoothed observation esti-585

mate. The nonlinear observations generate slightly more ac-
curate results than the linear observations when M = 1, and
the linear observations generate slightly more accurate re-
sults for M = 4, but overall the results are similar. With a
longer observation time ∆t = 0.6 the results are, naturally,590

less accurate. In every case the analysis is more accurate than
both the climatological error and the smoothed observations,
but the forecasts are more accurate than the climatological
mean only withM = 4. WithM = 1 and 2, the RMS forecast
errors are worse than the climatological error, but the forecast595

pattern correlations are still a bit better than the climatologi-
cal pattern correlation. As with the shorter observation time,
the results are more accurate with the nonlinear observations.

In regime II the results with the linear and nonlinear obser-
vations are very similar in all cases. With a short observation600

time ∆t = 0.2, the forecast is always more accurate than the
climatological mean, and the analysis is always more accu-
rate than the smoothed observations. With a longer observa-
tion time ∆t = 0.4 the forecasts are no more accurate than
climatology, but the analysis is still more accurate than the605

smoothed observations, though at M = 4 the analysis is only
slightly more accurate.

4.1 Comparison to EAKF

To put the foregoing results into perspective we compare to
the results of an ensemble adjustment Kalman filter (EAKF;610

Anderson, 2001) using an ensemble of 100 simulations of
the true, non-SP model dynamics. The experiments were run
with relatively frequent (∆t = 0.2), relatively plentiful (M =
4), linear observations in an effort to obtain the best possible
results. Experiments were run with multiplicative covariance615

inflation factors from 0 to 20% and covariance localization
radii of 2, 4, and 6 grid points (Gaspari and Cohn, 1999),
and optimal results were obtained with 5% inflation and a
localization radius of 4 grid points.

In regime I the RMS forecast errors of the Xk variables620

were 5.1, decreasing to 4.6 after the analysis; the RMS fore-
cast pattern correlation was 0.61, improving to 0.69 after the
analysis. In regime II the RMS forecast errors of theXk vari-
ables were 5.9, decreasing to 5.6 after the analysis; the RMS
forecast pattern correlation was 0.53, and remained essen-625

tially unchanged at 0.52 after the analysis.
In both regimes the EAKF estimates the large-scale part

of the solution very poorly, much worse than the SP 3D-Var.
This poor performance is presumably associated with the fact
that the EAKF is attempting to estimate the full system state630

Y , whereas the SP 3D-Var is only estimating the large scale
part. From the point of view of the EAKF the observations
are very sparse, since there is only one observation for every
32 variables, whereas from the point of view of the SP 3D-
Var there are four observations for every large scale Xk vari-635
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Table 2. Results of the assimilation experiments for regime II. There are P =MK equispaced observations, assimilated at time intervals of
∆t, and σ2 is the amplitude of the background covariance matrix. For comparison, the climatological RMS error and pattern correlation are
5.7 and 0.53.

∆t M Observation Type σ2 RMS Error Smoothed Observation Error Pattern Correlation

0.2 1 Linear 50 5.2 → 3.8 5.5 0.66 → 0.83
0.2 1 Nonlinear 30 5.2 → 3.8 5.5 0.66 → 0.83
0.2 2 Linear 30 4.8 → 3.0 3.8 0.70 → 0.89
0.2 2 Nonlinear 30 4.9 → 3.1 3.8 0.70 → 0.89
0.2 4 Linear 15 4.6 → 2.4 2.7 0.73 → 0.93
0.2 4 Nonlinear 30 4.6 → 2.4 2.7 0.74 → 0.94
0.4 1 Linear 40 6.2 → 4.2 5.5 0.53 → 0.79
0.4 1 Nonlinear 50 6.1 → 4.2 5.5 0.53 → 0.80
0.4 2 Linear 40 5.9 → 3.3 3.8 0.57 → 0.87
0.4 2 Nonlinear 50 5.9 → 3.4 3.8 0.56 → 0.87
0.4 4 Linear 40 5.7 → 2.6 2.7 0.59 → 0.92
0.4 4 Nonlinear 50 5.8 → 2.5 2.7 0.59 → 0.93

able. The significant improvement in both cost and accuracy
of using the SP 3D-Var instead of a perfect-model ensemble
Kalman filter underscores the utility of the present approach,
though it bears noting that one should be very hesitant to ex-
trapolate results such as these to the far more complex setting640

of SP atmosphere models. Furthermore, whether or not SP
3D-Var will be more accurate than a state of the art ensemble
Kalman filter in an atmospheric model context is somewhat
beside the point since the goal here is to provide a practical
framework for data assimilation with SP models where no645

such framework currently exists.

5 Conclusions

Superparameterization (SP) is a multiscale computational
approach that has been successfully applied to modeling at-
mospheric dynamics, and that shows promise for more gen-650

eral applications (Tao et al., 2009; Randall et al., 2013; Ma-
jda and Grooms, 2014). Grooms et al. (2014) have devel-
oped an ensemble Kalman filter framework for use with SP.
However, the standard approach to SP in global atmosphere
and climate models, where small scale nonlinear dynamics655

are simulated on an array of periodic domains embedded in
the computational grid of a large scale model, is too com-
putationally demanding for use in an ensemble framework.
As a result, there is at present no practical framework for
data assimilation with SP models. We here develop a 3D-Var660

variational data assimilation framework for SP that builds
on and modifies the framework of GLM14. The main up-
date to the GLM14 framework, in addition to using a vari-
ational as opposed to ensemble Kalman filter setting, is that
small scale estimates are computed at locations where ob-665

servations are taken, rather than at every point of the large
scale model’s computational grid. The computational costs
of the new framework are such that it could be used with

computationally demanding global atmosphere and climate
SP models.670

The data assimilation framework is demonstrated in a new
system of ordinary differential equations based on the two-
scale Lorenz-‘96 model (Lorenz, 1996, 2006). Unlike the
two-scale Lorenz-‘96 model the new model has only one
set of variables, Yi, and these variables have large and small675

scale parts. An SP approximation to the new system is devel-
oped, which is perhaps the simplest idealized model of SP.
The new data assimilation framework is tested in two regimes
of the new model, with both linear and nonlinear observation
operators. In regime I the large scale dynamics consist of a680

weakly chaotic wave train, with relatively strong small scale
variability superposed. In regime II the large scale dynam-
ics are more strongly chaotic, and there is less small scale
variability. In both regimes the data assimilation performs as
expected (and better than an ensemble Kalman filter using685

100 simulations of the true dynamics), with increased accu-
racy as the number of observations increases.

Our work lays a foundation for 3D-Var data assimilation
with existing SP models. In order to implement our frame-
work with an SP atmosphere or climate model it would be690

necessary to specify an appropriate background covariance
matrix for the large scale model, but this should be straight-
forward given the extensive use of the 3D-Var approach in
atmosphere and ocean data assimilation (e.g. Kalnay, 2002;
Kleist et al., 2009). In addition, the new framework removes695

one of the difficulties associated with development of a 3D-
Var framework for large scale models: the small scale sim-
ulations in the multiscale SP computation provide direct in-
formation on the small scale statistics, obviating, or at least
simplifying, the need to develop models of representation er-700

ror.
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