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Abstract. In this study, a six-dimensional Lorenz model (6DLM) is derived, based on a
recent study using a five-dimensional (5-D) Lorenz model (LM), in order to examine the im-
pact of an additional mode and its accompanying heating term on solution stability. The new
mode added to improve the representation of the steamfunction is referred to as a secondary
streamfunction mode, while the two additional modes, that appear in both the 6DLM and
5DLM but not in the original LM, are referred to as secondary temperature modes. Two
energy conservation relationships of the 6DLM are first derived in the dissipationless limit.
The impact of three additional modes on solution stability is examined by comparing nu-
merical solutions and ensemble Lyapunov exponents of the 6DLM and 5DLM as well as the
original LM. For the onset of chaos, the critical value of the normalized Rayleigh number (r.)
is determined to be 41.1. The critical value is larger than that in the 3DLM (r. ~24.74), but
slightly smaller than the one in the 5DLM (r.~42.9). A stability analysis and numerical
experiments obtained using generalized LMs, with or without simplifications, suggest the
following: (1) negative nonlinear feedback in association with the secondary temperature
modes, as first identified using the 5DLM, plays a dominant role in providing feedback for
improving the solution’s stability of the 6DLM, (2) the additional heating term in associa-
tion with the secondary streamfunction mode may destabilize the solution, and (3) overall
feedback due to the secondary streamfunction mode is much smaller than the feedback due
to the secondary temperature modes; therefore, the critical Rayleigh number of the 6DLM
is comparable to that of the 5DLM. The 5DLM and 6DLM collectively suggest different
roles for small-scale processes (i.e., stabilization vs. destabilization), consistent with the

following statement by Lorenz (1972): If the flap of a butterfly’s wings can be instrumental
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in generating a tornado, it can equally well be instrumental in preventing a tornado. The

implications of this and previous work, as well as future work, are also discussed.

1 Introduction

Fifty years have passed since Lorenz published his breakthrough modeling study (Lorenz,
1963) which changed our view regarding the predictability of weather and climate (e.g.,
IPCC, 2007; Pielke, 2008), laying the foundation for chaos theory (e.g., Gleick, 1987; Anthes,
2011). Since the degree of nonlinearity is finite in the original Lorenz model referred to as
3DLM, the impact of increased nonlinearity on systems’ solutions and/or their stability has
been studied using generalized LMs with additional Fourier modes (e.g., Curry, 1978; Curry
et al., 1984; Franceschini and Tebaldi, 1985; Howard and Krishnamurti, 1986; Franceschini
et al., 1988; Hermiz et al., 1995; Thiffeault and Horton, 1996; Musielak et al., 2005; Roy and
Musielak, 2007a,b,c; Lucarini and Fraedrich, 2009). However, such studies do not provide
a definite answer regarding whether or not higher-order LMs lead to more stable solutions.

Lorenz demonstrated the association of the nonlinearity with the existence of non-trivial
critical points and strange attractors in the 3DLM. Shen (2014a, denoted as Shen14) recently
discussed the importance of nonlinearity in both producing new modes and enabling subse-
quent negative feedback to improve solution stability. The feedback loop of the 3DLM was
defined by Shenl4 as a pair of downscale and upscale transfer processes associated with the
Jacobian function (in Eq. 2). The feedback loop has been suggested to stabilize the solution
for 1 <r < 24.74 within the 3DLM, as compared to the linearized 3SDLM. Extending the
nonlinear feedback loop in a five-dimensional LM (5DLM) can provide negative nonlinear
feedback to produce non-trivial stable critical points when 1 < r < 42.9. The negative non-
linear feedback represents the collective impact of additional nonlinear terms and dissipative
terms introduced by the two additional Fourier modes of the 5DLM. In this study (and in the
previous study, Shen14), the two modes are added to improve the representation of the tem-
perature perturbation, referred to here as secondary temperature modes. Improved stability
with a higher critical Rayleigh parameter was verified by linearizing the 5DLM with respect
to a non-trivial critical point and then performing a stability analysis over a wide range of
values in parameters (o, 7). The outcome was possible due to the analytical solutions of the
critical points in the 5DLM (e.g., Shenl4). The role of the negative nonlinear feedback was
further verified using the revised 3DLM that parameterizes the negative nonlinear feedback
to suppress chaotic responses using a nonlinear eddy dissipation term.

In addition to the negative nonlinear feedback, Shenl4 indicated that a conclusion de-
rived from lower-dimensional LMs may not be applicable in all circumstances in a higher-

dimensional LM. For example, although the butterfly effect (of the first kind) with depen-
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dence of solutions on initial conditions appears in the SDLM within the range between r = 25
and 40, it does not exist in the 5DLM. Therefore, to examine whether or not small pertur-
bations can alter large-scale structure (i.e., the butterfly effect of the second kind), a model
containing proper representations of multiscale processes and their nonlinear interactions is
required. As a result, it would require to improve the degree of nonlinearity to address the
question.

In a pioneering study using the generalized LM with a large number of Fourier modes,
Curry et al. (1984) suggested that chaotic responses disappeared when sufficient modes were
included. Shenl4 hypothesized that system’s stability in the LMs, with a finite number of
modes, can be improved with additional modes that provide negative nonlinear feedback
associated with additional dissipative terms. However, since new modes can also introduce
additional heating term(s), the competing role of the heating term(s) with nonlinear terms
and/or with dissipative terms deserves to be examined so that the conditions under which
solutions become more stable or chaotic can be better understood. Results obtained from
work described here and the work of Shen14 are used to address the following question: for
generalized LMs, under which conditions can the increased degree of nonlinearity improve
solution stability?

To achieve the goal outlined above, the 3DLM to 5DLM was previously extended in
Shenl14 by including the two secondary temperature modes. In this study, the 5DLM is
extended to the 6DLM by adding an additional mode. The additional mode is included
to improve the representation of the streamfunction (e.g., Eqs. 4 and 5), and is, therefore,
referred as to the secondary streamfunction mode. While the secondary temperature modes
of the 5DLM (as well as the 6DLM) introduces additional nonlinear terms and dissipative
terms, which, in turn, provide negative nonlinear feedback, the secondary streamfunction
mode of the 6DLM introduces additional nonlinear terms and adds a heating term. The
approach, using incremental changes in the number of Fourier modes, can help trace their
individual and/or collective impact on solution stability. For example, since the 6DLM also
contains the negative nonlinear feedback in association with secondary temperature modes,
it becomes feasible to examine the role of the additional heating term in solution’s stability
and its competing impact with the negative nonlinear feedback.

The presented work is organized as follows. We describe the governing equations in
Sect. 2.1 and present the derivations of the 6DLM in Sect. 2.2. We then discuss the energy
conservation of the 6DLM in the dissipationless limit in Sect. 2.3, and numerical approaches
for integrations of the LMs and calculations of ensemble Lyapunov exponents in Sect. 2.4.
In Sect. 3.1, we investigate the potential impact of the additional heating term on solution’s
stability by performing stability analysis near the trivial critical point. We also illustrate how

the feedback loop can be extended using the secondary streamfunction mode. In Sect. 3.2,
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numerical results obtained from the 6DLM are provided and compared to results obtained
from the 5DLM. To examine the role of the secondary streamfunction mode and to identify
the major nonlinear feedback term, additional numerical experiments using the 6DLM and
simplified 6DLMs are compared in Sect. 3.3. Then, we discuss the dependence of the solu-
tion’s stability on the Prandtl number (o) in Sect. 3.4. Concluding remarks appear at the

end.

2 The six-dimensional Lorenz model and numerical methods
2.1 The governing equations

By assuming 2-D (z, z), incompressible and Boussinesq flow, the following equations were

used by Saltzman in 1962 and Lorenz in 1963:

00
7V21/}_ —J(¢7V2¢)+VV41/}+9046*I, (1)
89 AT 81/) 9
here 1 is the streamfunction that gives the uw = —1, and w = 1, which, respectively, rep-

resent the horizontal and vertical velocities; 6 is the temperature perturbation; and AT
represents the temperature difference at the bottom and top boundaries. The constants, g,
«, v, and k denote the acceleration of gravity, the coefficient of thermal expansion, the kine-
matic viscosity, and the thermal conductivity, respectively. The Jacobian of two arbitrary

functions is defined as J(A, B) = (0A/0x)(0B/0z) — (0A/0z)(0B/0x). Additionally,
Vi =0/0x (V20 /0x) + 0/02(V20/0z).

Based on the above partial differential equations, Lorenz (1963) introduce a system of three
ordinary differential equations to illusrtate the characteristics of chaotic solutions. This
system is a simplified version of the one derived by Saltzman (1962). For the reader’s
convenience, the same symbols as those in Saltzman (1962) and Lorenz (1963) are used

here.
2.2 The 6-D Lorenz Model (6DLM)

To generalize the original Lorenz model, we first use the following six Fourier modes (which

are also listed in Table 1 of Shenl4) to derive the 6DLM:
M, = /2sin(lz)sin(mz), My = V2 cos(lx)sin(mz), Ms = sin(2mz), (3)
My = /2sin(Iz)sin(3mz), Ms = V2 cos(lz) sin(3mz), Mg = sin(4mz), (4)

here | and m are defined as ma/H and 7w/H, representing the horizontal and vertical

wavenumbers, respectively; and a is a ratio of the vertical scale of the convection cell to
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its horizontal scale, i.e., a =1/m. The term H is the domain height, and 2H/a represents

the domain width. Using these modes, ¥ and 6 can be represented as follows:

1/):01(XM1 +X1M4), (5)

0 =Co(YMy+Y1 M5 — ZM3 — Z1 M), (6)
 (14a?) AT R. ot 23 po1 VUK

Ci=k ,Cy = - Ra’RC_a2(1+a) R, = Jall*AT

where C; and Cy are constants, R, is the Rayleigh number and R, is its critical value for
the free-slip Rayleigh—-Benard problem. Using Eqgs. (5) and (6), solutions within the 6DLM
are represented by the six spatial modes M; to Mg (Egs. 3-4) and their corresponding
time-varying amplitudes (X,Y, Z, X;,Y1, Z;), respectively. By comparison, Eq. (3) was used
to derived the 3DLM, and Egs. (3) and (4) without M4 were used to derive the 5DLM.
While the 3DLM and 6DLM (5DLM) have one horizontal wavenumber, they contain two
and four vertical wavenumbers, respectively. In the text below, to facilitate discussions,
My and M, are referred to as primary and secondary streamfunction modes, respectively,
Ms and Mj are referred to as primary temperature modes, and Ms and My are referred to
as secondary temperature modes. Here, the reader should note that an implicit limitation
of this approach is that nonlinear interactions among the selected modes cannot generate
(impact) any new (other) modes that are not pre-selected, suggesting limited (spatial) scale
interactions. While the impact of the secondary temperature modes (i.e., Y7 and Z;) on the
solution’s stability was discussed by Shenl4 with the 5DLM, the impact of the secondary
streamfunction mode (i.e., X1), which introduces a heating term (rX}), is the focus of the
6DLM provided here.

To transform Egs. (1) and (2) into the “phase” space, a major step is to calculate the
nonlinear Jacobin functions. Calculations indicate that J(1, V?%) in Eq. (1) does not lead
to any explicit term in the final 6DLM, or the 3SDLM or the 5DLM. Here, the Jacobian term

of Eq. (2), which is written as follows, is discussed:

J(1,0) =C1C (XY J(My, My) — X ZJ(My, Ms) + XY1J(My, Ms) — X Z1J (M, Ms)
+X1YJ(M4,M2) — X1ZJ(M4,M3) +X1Y1J(M4,M5) — XlzlJ(M4,M6)). (7)

Note that the 3DLM only contains the first two terms on the right hand side of Eq. (7),
namely XY J(My, M) and —X ZJ(M;, Ms), while the 5DLM includes the first four terms.
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After derivations, we obtain the 6DLM with the following six equations:

dX

dy

= X2+ XaZ 22X D +rX Y, 9)
-

Z

% = XY - XY, - X,Y —bZ, (10)
-

dX1 g

—— = —dyo X1+ Y, 11
dr AL (11)

dv;

(TI =XZ-2XZ +rX, —d,Yi, (12)
-

Z

% —2XY, +2X,Y — 4bZ;. (13)
-

Here, 7 = r(1+a?)(m/H)?t (dimensionless time), o = v/k (the Prandtl number), r = R,/R.
(the normalized Rayleigh number, or the heating parameter), b=4/(1+a?), and d, =
(9+4+a?)/(1+a?). After deriving the 6DLM in the fall of 2011, the 6DLM outlined here
was compared with the work of Prof. Z. E. Musielak and his colleagues (e.g., Kennamer,
1995, Musielak et al., 2005; Roy and Musielak, 2007a) who obtained the same 6DLM. A more
detailed analysis regarding how the system conserves energy in the dissipationless limit, as
well as a comparison with the 3DLM and 5DLM, is provided in the following discussion.
The 3DLM can be obtained from the 6DLM when terms that involve (X;,Y7,Z;) are
neglected. Alternatively, Egs. (8)—(10) can be viewed as a 3DLM with the feedback processes
that result from the three additional modes. Therefore, the 6DLM can be viewed as a coupled
system that consists of the 3DLM (Egs. 8-10) and a forced dissipative system with an
additional heating term (e.g., Eqs. 11-13). Here, and in Shenl4, unless otherwise stated,
the term “feedback” refers to the nonlinear process that involves the secondary modes,
namely (X7,Y7, and/or Z7). The 5DLM in Shenl4 can be also obtained by ignoring the X7
and dX;/dr in the 6DLM. As a result, the 6DLM can be viewed as a coupled system which
consists of the 5DLM and an additional equation (i.e., Eq. 11) that introduces nonlinear

feedback associated with an additional heating term (i.e., Eq. 12).
2.3 Energy conservation in the 6-D non-dissipative LM

The domain-averaged kinetic energy (KE), available potential energy (APE), and potential
energy (PE) are defined (e.g., Treve and Manley, 1982; Thiffeault and Horton, 1996; Blender
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and Lucarini, 2013; Shen, 2014a), as follows:

2H/a H
ﬁ:% / /(u2+w2)dzdx, (14)
0 0
2H/a H
AP _ _QQH 2
APE= 207 / /(9) dzda, (15)
0 0
2H/a H
PE=— / go(z0)dzdz. (16)
0 0

Through straightforward derivations, we obtain the following equations:

C,

KE = 70()(2 +doX?), (17a)
KE, = %XQ, (17b)

3 _
here C, = m2x? (#) . KE, contains only a portion of the total KE of the 6DLM from
the primary streamfunction mode X, but represents the total KE in the 5DLM and 3DLM.

In a similar manner, as follows:

APE:f%%(Y2+Z2+Yf+Zf), (18)
PE =—Coo(Z+21/2). (19)

Equations (17a) and (18) yield the following

KE+ APE = -
while Egs. (17b) and (19) lead to the following

(X2+d0X127 % (Y2+Z2+Y12+Z12)> =y, (20)

— X2 Z
KEp+PE:CO<2—a(Z+21>>:C4. (21)
With Egs. (8-13) in the dissipationless limit, the time derivative of both Egs. (20) and
(21) are zero, so both C5 and Cjy are constants. Therefore, Egs. (20) and (21) indicate two
energy conservation laws, including the conservation of the total KE and APE (i.e., Eq. 20).

However, it should be noted that, as follows:

KE+PE=C, ()S—l—do);%—U(Z—i— Zzl)) = constant (22)
By comparison, the two energy conservation laws of the 5DLM are written as follows:

KEsp +APEs p = % (X2 - % (Y2+Z2+Y72 + Zf)) =Cs, (23)
KE5_D+PE5_D:CO<);2—U<Z+Z21>):C’6. (24)

It can been shown that both C5 and Cg are constants. Therefore, in the 5DLM, in addition
to the conservation of the KE and APE, the KE and PE are also conserved.
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2.4 Numerical approaches

Using the 4th order Runge-Kutta scheme, the original and higher-order Lorenz models are
integrated forward in time. We vary the value of the heating parameter r but keep other
parameters as constants, including o =10, a =1/v/2, b=8/3, d, = 19/3, and a minimum

value for R. = 277*/4. In Figs. 1, 2,3 and 6, the initial conditions are given as follows:
(X7Y7Z7X17Y17ZI):(071u0703070)' (25)

The dimensionless time interval (A7) is 0.0001. The total number of time steps (N) is
1000000 in Fig. 1 and 500000 in Figs. 2, 3, and 6, yielding a total dimensionless time (7)
of 100 and 50, respectively. In Figs. 2 and 6, the solutions of the 3DLM and 5DLM are
rescaled by the analytical solutions of their critical points, (i.e., Egs. 21 and 19 of Shenl4).
The solutions of the 6DLM are rescaled by the critical points of the 5DLM. In Sect. 3.4, the
dependence of solution stability on the Prandtl number (o) is discussed with selected values
of (o).

To quantitatively evaluate whether or not the system is chaotic, we calculate the Lyapunov
exponent (LE), a measure of the average separation speed of nearby trajectories on the
critical point (e.g., Benettin et al., 1980; Froyland and Alfsen, 1984; Wolf et al., 1985;
Nese, 1989; Zeng et al., 1991; Eckhardt and Yao, 1993; Christiansen and Rugh, 1997;
Kazantsev 1999; Sprott, 2003; Ding and Li, 2007; Li and Ding, 2011). In Shenl4, the two
methods implemented and tested are the trajectory separation (T'S) method (e.g., Sprott,
2003); and the Gram—Schmidt reorthonormalization (GSR) procedure (e.g., Wolf et al., 1985;
Christiansen and Rugh, 1997). Here, a brief summary of how LEs are calculated using the
two methods is provided. Using given initial conditions (ICs) and a set of parameters in the
LMs, the TS scheme calculates the largest LE, and the GSR scheme produces “n” LEs; here
“n” is the dimension of the 5-D or 6-D LM. Calculations are conducted with A7 = 0.0001 and
N =10000000, yielding 7 = 1000. To minimize the dependence on the ICs, 10 000 ensemble
(En =10000) runs with the same model configurations but different ICs are performed, and
an ensemble averaged LE (eLE) is obtained from the average of the 10000 LEs. A large
N and En are used to understand the long-term average behavior of the solutions of the
LMs and simplified LMs where some terms are ignored. While eLEs calculations using the
above two methods were previously discussed and compared in Shenl4, here, a calculation
of the Kaplan—Yorke fractal dimension (Kaplan and Yorke, 1979) using the (three) leading
eLEs from the GSR method is provided in Appendix A as an additional verification. Unless
stated otherwise in the main text, the largest ensemble-averaged LE (eLE) for a given r is
obtained from the TS method.

To examine the collective or individual impact of the nonlinear feedback terms and to

identify the major feedback that can improve numerical predictability in the 5-D and 6-
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D LMs, we perform additional runs using the 6DLM with additional simplifications. The
experiments, as listed in Table 1, include the following: (1) case 6DLMS1 where three
nonlinear terms involving X; are neglected and only one feedback term (XY7) is retained
in Egs. (9) and (10), (2) case 6DLMS2 where only XY is ignored in Eq. (10), and (3) case
6DLMS3 where rX; is removed from Eq. (12). Results from these simplified 6DLMs are
presented in Sect. 3.3.

3 Discussion

In the following sections, we discuss the impact of additional modes on solution stability.
In Sect. 3.1, we illustrate the potential role of the M, mode by performing linear stability
analysis at the trivial critical point. In Sects. 3.2 and 3.3, we present and compare numerical
results from the 6DLM with and without simplifcations to identify the major feedback
process. The dependence of solution stability on the Prandtl number (o) is discussed in

section 3.4.
3.1 The impact of M, on linear stability

In this section, we first discuss the selection of M, and then its impact. As indicated
in Shenl4, the inclusion of M5 and Mg modes is based on the analysis of the Jacobian
term, J(v,60), and can improve the representations of the temperature perturbation and the
nonlinear advection of temperature. The appearance of 9Ms5/dx associated with the linear
term 00/0x of Eq. (1) requires the inclusion of an My mode and the 9My/0x associated
with AT9Y/0z of Eq. (2) provides feedback to the Ms mode (in Table 1 of Shenl4). The
M4 mode shares the same horizontal and vertical wave numbers as the M5 but has a different
phase (i.e., sin(lx) vs. cos(lxz) in Eq. 4). Alternatively, via the 96/0z and ATdy/0x, the

M, and M5 modes are linked as follows:

dX o

7(1’7'1 X —dOO'Xl + dfoyl, (26)
dY;

71 X ’I“Xl — doyl, (27)
dr

which can be derived by linearizing Eqs. (11) and (12) at the trivial critical point. The
linearized equations are decoupled with the rest of the equations on the 6DLM, suggesting
that the heating term (rX;) can impact other modes as well as the stability of the nonlinear

6DLM via nonlinear feedback, as discussed below. The above equations are reduced to the

following:
d*Yy dy; o

1)— ——(r—d?) =0. 2
12 +do(0+ )dT i (r—d2)=0 (28)



295

300

305

310

315

320

325

By assuming the solution Y; o exp(87), we obtain the following two roots for 3:

—do(o+1) £ /d2(c +1)2 +4o (r—d3)/d,
5 .

Bx(r) = (29)

Here, 84 (6-) represents the larger (smaller) root. An unstable normal mode with 8+ >0
appears when 7 > d2. When d, = 1, the result in Eq. (29) can be applied to the linearized
3DLM. As d, =19/3 and r < d2(~ 254) in this study, both 3, and B_ are negative and
0B/0r is positive. The focus is 4 because the corresponding mode dominates the solution
as a result of a smaller decay rate as compared to f_. S84 has a minimum (i.e., the largest
decay rate) as r =0, and increases as r increases (up to 254), leading to a decreasing decay

rate. In the limit of r =0 and o > 1, the minima of Eq. (29) can be written as follows:
By(r=0)=—d, and S_(r =0) = —d,o0. (30)

The 84 = —d, provides the same decay rate as the one derived directly from Eq. (27) with
r=0 (i.e., the removal of rX;). The simple analysis indicates that the inclusion of My,
as a result of 4 <0 and |84 (r # 0)| < |B+(r =0)|, can lead to a solution component with
a smaller decay rate. In other words, the inclusion of rX; effectively reduces the dissipative
impact of —d,Y; in Eq. (27). Here, the reader should note that the relative impact of r
with respect to o can be estimated using the ratio between the first and second arguments
of the radical in Eq. (29), written as 40 (r —d3)/(o +1)?/d3. The result suggests that rX1
becomes less important when a larger o is used.

The discussions provided above illustrate how the secondary streamfunction mode (My)
may impact the growth rate of Y7 via the linear heating term (rX;). Additionally, My can
also provide its nonlinear feedback by extending the nonlinear feedback loop of the 5DLM
(as well as the 3DLM), as follows (also see Table 2 of Shen 2014a):

J(M4,M2) = 2mlM6 — mlM;;, (31)
J(M4,M3) :mlMg, (32)
J(M4,M6) = —2mlM2 (33)

While Egs. (31) and (32) form a feedback loop with Ms — M3 — M, Egs. (31) and (33)
enable another feedback loop with My — Mg — M;. Equations (32) and (33) only contain
the vertical advection of temperature due to dM3z/0x = OMg/Ox =0. The two equations
suggest that both M3 and Mg can provide upscaling feedback to Ms through their interaction
with My, leading to two terms in Eq. (9), i.e., dY/dr o« X1Z —2X,Z;. When Z; is close to
Z/2, their collective impact may become insignificant, X;(Z —2Z;) ~ 0, as compared to the
other terms in Eq. (9). Since the former criterion can be met near the stable critical points
of the 5DLM (e.g., Eq. 20b of Shenl4) and since the 6DLM shares some similarities with
the 5DLM, X;Z and —2X;Z; are neglected in the 6DLMS1 whose results are discussed in

10
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section 3.3. In the next section, we first compare the numerical results of the 5DLM and

6DLM.
3.2 Numerical results of the 6DLM

In this section, we discuss the numerical results of the 6DLM beginning with energy conser-
vation laws in the dissipationless limit. The non-dissipative version of the 6DLM (5DLM)
is referred to as the 6D-NLM (5D-NLM). Figure 1 provides the time evolution of the total
domain-averaged kinetic energy and available potential energy (KE + APE) for both the
6D-NLM (blue) and 5D-NLM (red). While the total domain-averaged kinetic energy and
potential energy (KE+ PE) is shown in pink for the 5D-NLM, the kinetic energy of the
primary streamfunction mode and the potential energy (E"‘ﬁ) is shown in green for
the 6D-NLM. Using the initial conditions in Eq. (25), the initial values of the normalized
KE + APE for the 6D-NLM (Eq. 20) and the 5D-NLM (Eq. 23) are given as C3/C, and
C5/C,, respectively, and equal to —o/2r. C3/C, (or C5/C,) is —0.2 for r =25 and —0.11
for r =45. The initial values of the normalized KE, 4+ PE for the 6D-NLM (Eq. 21) and
the KE + PE for the 5D-NLM (Eq. 24) are given as C4/C, and Cs/C,, respectively, and
both zero. To effectively illustrate the conservation properties of the four quantities above,
the time evolution of their deviations from the corresponding initial values produce four

lines when plotted. Each of the lines may be shifted by a constant. For example, while the

red line in Fig. 1 represents the time evolution of the deviation for KE + APE in the 5D-
NLM, (i.e., KE5 p(7) + APE5; p(7) — KE5 p(0) — APE5 p(0)), the blue line with a constant
shift of 0.02 represents the time evolution of the deviation for KE + PE in the 6D-NLM,
(i.e., KE(7) + APE(7) — KE(0) — APE(0) + 0.02). As indicated in Fig. 1, each of the four
quantities is conservative.

Next, we compare the normalized solutions of (Y, Z) in the 3DLM, 5DLM, and 6DLM

with two different values of . Normalization scales are defined by the critical points listed
in Table 1. Figure 2a and b display the solutions from the 3DLM and 6DLM with r = 35.
Although the critical value (r.) for the onset of chaos is r. =24.74 in the 3DLM (Lorenz,
1963), a larger value is chosen for comparison with the 6DLM. The solution of the 3DLM
never reaches a steady state but oscillates irregularly with time surrounding the non-trivial
critical points. In contrast, as indicated by the converged trajectory that approaches a crit-
ical point which is close to (Y/Y., Z/Z.) = (—1,1), the 6DLM yields a steady state solution.
Note that the normalization scales, Y. and Z., are the critical points of the 5DLM, because
it is difficult to obtain the analytical solution of the critical points in the 6DLM and the
former and latter share similarities as discussed later. The 6DLM continues to generate
steady state solutions until r is beyond 41.1 (as discussed in Fig. 4). With an r value of

42.0, the 6DLM leads to a chaotic solution with a “butterfly” pattern in Y-Z space (Fig. 2d),
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while the 5DLM still produces a stable solution (Fig. 2c).

In the following, we discuss the time evolution of the solutions for the 5DLM and 6DLM
to examine the impact of the secondary modes on solution’s stability and to identify the
major feedback associated with these modes. First, we analyze the dZ/dr (e.g., Eq. 10
for the 6DLM and Eq. 12 of Shenl4 for the 5DLM) for the cases using r = 35 that have
steady-state solutions. Figure 3 indicates that all of the terms with the exception of XY,
in the dZ/dr of the 6DLM, yield comparable results to their counterparts in the 5DLM,
indicating that XY; also plays an important role in stabilizing the solution of the 6DLM as
compared to the 5DLM. While the negative feedback by XY; was verified by parameterizing
its impact as a nonlinear eddy dissipation term into the 3DLM in Shen14, further verification
using the 6DLM is provided in the following section. Due to a small value of X7, the X Y
is small as compared to other terms. A small value of X7 could also be inferred from the
steady-state solution to Eq. (11), giving X; = Y;/d? << Y; as d, = 19/3. Additionally, the
time evolution of the XY suggests that a steady state in the 5DLM is reached earlier than
it is in the 6DLM, consistent with the decay rate analysis in Sect. 3.1.

Figure 4 provides the analysis, used to determine the critical value of r for the onset of
chaos for both the 5DLM and 6DLM, of the eLEs as a function of the normalized Rayleigh
paramter r. Both models produce similar distributions of the eLEs for 35 < r < 50, with the
following features: (1) within the stable region (as eLEs < 0), the magnitude of the eLEs is
relatively smaller in the 6DLM, (2) the 6DLM requires a slightly smaller r (r. ~41.1) for
the onset of chaos than the 5DLM (7 ~ 42.9); and (3) in fully chaotic regions (e.g., r > 44),
the eLEs of the 5DLM and 6DLM are in good agreement, with very small differences. The
first two results are consistent with the stability analysis provided in section 3.1, suggesting
that inclusion of the M4 mode in the 6DLM may reduce the dissipative impact associated

with the M5 mode.
3.3 Numerical results of the simplified 6DLMs

In this section, we analyze the eLEs of the 6DLM with or without additional approximations
to identify the major feedback term and the impact of My in the 6DLM. While the 6DLM
has four non-linear feedback terms (X772 and —2X;7; in Eq. 9; and —XY; and —X Y in
Eq. 10), the 5DLM only has one term, —XY7. Nonlinear feedback terms are defined as the
nonlinear terms involving the secondary modes (X7, Y7, and Z;). Therefore, comparable
eLEs between these two LMs suggest that —XY; may play the most significant role in
providing feedback for stabilizing solutions in the 6DLM. To verify this hypothesis, additional
experiments are performed with the following simplified 6DLMs: 6DLMS1, 6DLMS2 and
6DLMS3, as introduced in Sect. 2.4 and listed in Table 1. While the 6DLMSI1 case retains
only one nonlinear feedback term, XY7, the 6DLMS2 case only neglects this term. By
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comparison, the 6DLMS3 case is designed to examine the role of the linear heating term
(rX1) in Eq. (12). The corresponding eLEs are shown in Figure 5. The eLEs of the
6DLMS2 resemble those of the 3DLM (Fig. 5a) with the exception of the window regions,
indirectly indicating the importance of X'Y7 in stabilizing the solutions in the 6DLM. With
the exception of the transition regions from eLEs < 0 to eLEs > 0 over a small range of r
(i.e., 7 ~41—43), the eLEs of the 6DLMS1 and 6DLMS3 are close to those in the 6DLM
and 5DLM. The r. of these two cases are determined to be 42.3 and 42.1, respectively, which
are slightly larger (smaller) than r. =41.1 (r. = 42.9) for the 6DLM (5DLM), as shown in
Fig. 5b. In addition, the magnitudes of the LEs in the stable regions are determined to be
relatively larger (smaller) than those in the 6DLM (5DLM). Since the 6DLMS1 ignores the
nonlinear feedback terms associated with the X; and since the 6DLMS3 neglects the rX;
term, the features of the 6DLMS1 and 6DLMS3, as compared to the 6DLM, also indicate
that the impact of the M, may slightly destabilize solutions.

The eLEs represent the averaged behavior of the model’s solutions over a very large
time scale, so N =10000000 and T'= NAt = 1000 (e.g., the T" in Eq. 23 of Shen1l4 should
approach infinity) are used. Since some of terms in the simplified LMs (e.g., 6DLMS1-3) are
ignored, it is important to check the time evolution of the solutions on a finite-time scale
in order to understand if and how the solutions approach a stable critical point, or oscillate
rapidly between (unstable) non-trivial critical points. To this end, we examine the r-time
diagram of the normalized solutions in Fig. 6, which displays the primary mode, —Y/Y,
and secondary mode, —Y; /Y., from the 6DLM, 6DLMS1, and 6DLMS3. Here, Y, and Y.
are the analytical solutions of the critical points from the 5DLM. Using this approach, the
deviation of the normalized solutions from one (i.e., —=Y/Y. — 1) indicates the impact of the
M, mode that is missing in the 5DLM. In Fig. 6, the sharp gradient of the solutions with
dense contour lines near the constant value of r = 43 (in black) roughly indicates the critical
value of r for the onset of chaos, consistent with the analysis of the eLEs in Fig. 5 (see
Table 1). In stable regions, the primary mode, —Y/Y;, evolves with time and comes within
1£0.01 in each of the three cases (Fig. 6a, ¢, and e). For the 6DLMS1 that only includes one
nonlinear feedback term (XY7), the values of the secondary mode, —Y7 /Y1, in stable regions
are also within 14+0.01 (Fig. 6d). By comparison, the normalized solutions (—Y;/Y;.) for the
6DLM and 6DLMS3 are within 1 and 0.9 in the steady state, suggesting a deviation within
10% from the corresponding critical point of the 5DLM. If we view the stable solutions of
the 5DLM as the results of the control run, the 6DLM provides approximate steady-state
solutions that have derivations of only around 1% in Y and approximately 10 % in Y;. The
above results indicate that the nonlinear terms associated with the X; (i.e., My mode) may
produce larger relative deviations in the secondary mode Y; (a high wavenumber mode)

than in the primary mode Y (a low wavenumber mode).
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By comparing the 3DLM and 5DLM, Shen14 suggested that the stability of solutions in
the 3DLM can be improved by the negative nonlinear feedback through the term (—XY7),
enabled by the secondary temperature modes (Y; and Z;) in the 5DLM. The result moti-
vated an examination of whether or not a higher-dimensional model is more stable or less
chaotic (i.e., a larger critical value of r) than a lower-dimensional model. In this study,
the comparison of the 5DLM and 6DLM indicates that the additional mode (My) in the
6DLM does not help increase but slightly decreases the critical value of r for the onset of
chaos. In other words, the inclusion of M, provides positive feedback that destabilizes the
solutions through the heating term (e.g., rX; in Eq. 12) and/or through its nonlinear in-
teraction with other modes. Based on the results obtained from the 5DLM and 6DLM, we
have demonstrated the roles of secondary modes (i.e., small-scale processes) in stablizing
and destabilizing system’s solutions. In addition, the collective impact of these secondary
modes on the improvement of solution’s stability have been examined. Since the aforemen-
tioned results are obtained from the LMs with a fixed value of ¢ = 10, the dependence of

the stability in the 6DLM on various values of ¢ is discussed in the next section.
3.4 Dependence of stability on o

Previous sections discussed the stability problem only by varying the heating parameter,
r. Here, we examine the dependence of solution stability on the parameter o, and address
the question of whether or not the 6DLM still requires a smaller (larger) r. for the onset of
chaos than the 5DLM (3DLM) when different values of o are used. To efficiently achieve
the goal, we conduct the eLE analysis for the 6DLM using selected values of o, and compare
it with that from the 5DLM. The dependence of the 5DLM’s stability on ¢ were previously
examined by Shenl4 by performing both linear stability and eLEs analyses.

For comparisons, the results obtained from the stability analysis of the 5DLM and 3DLM
in Shenl4 are briefly summarized as follows: in Fig. 7, pink and black lines indicate the
contour lines of the Re(A\) =0 in the (o, r) space for the linearized 3DLM and 5DLM,
respectively. Since A is the largest eigenvalue, each line describes the critical value r. as
a function of o, where the superscript “I” of r! indicates the local (or linear) analysis.
Following each of the contour lines in the direction of increasing o, its right (or left) hand
side contains areas with negative (or positive) values of Re()\), suggesting stable (or unstable)
solutions. Therefore, unstable solutions (Re()\) > 0) appear as . < r. Solid circles with the
same color scheme indicate the r. determined using the eLE analysis with selected values
of o, 0 =10, 13, 16, 19, 22 and 25. Given a o, r. is, in general, smaller than ré in both the
3DLM and 5DLM, as previously documented (see Shenl4 for additional details).

The r. of the 6DLM, with the eLE analysis, is shown in Fig. 7 with blue multiplication

signs. For all of the selected cases, the critical value r. in the 6DLM is larger than that in
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the 3DLM, suggesting that over the range between o = 10 ~ 25, the 6DLM requires a larger
r for the onset of chaos than the 3DLM. By comparison, in each of the selected cases with
o =10, 13, 16, and 19, the critical value (r.) in the 6DLM is (slightly) smaller than the one
in the 5DLM. As a result, the 6DLM is less stable than the 5DLM as 10 < r < 22. However,
for the case with o =22 (or o = 25), the r. of the 6DLM is comparable (or slightly larger),
as compared to that of the 5DLM. The results may indicate a different role for the My mode
between o < 22 and ¢ > 22, or suggest the importance of increasing the ensemble members
and/or increasing the coverage of the initial conditions for the calculations of the eLEs, all

of which are subject to future study.

4 Concluding remarks

Five- and six-dimensional Lorenz models (5DLM and 6DLM) were derived here and in
Shenl4 to examine the impact of additional modes on solution’s stability. The 5DLM
includes two new Fourier modes (i.e., the secondary temperature modes M; and M;g) that
introduce the additional nonlinear and dissipative terms. The 6DLM is a super set of the
5DLM, and contains one more Fourier mode (i.e., the secondary streamfunction mode My)
that introduces additional nonlinear terms and adds a heating term. The individual and
collective impacts of these terms on solution stability were investigated. The 5DLM and
6DLM have comparable critical Rayleigh parameters for the onset of the chaos, and the
parameters are larger than that of the 3DLM. Based on the calculations of the ensemble
averaged Lyapunov exponents (eLEs), the critical value r. for the 6DLM (5DLM) with o = 10
is approximately 41.1 (42.9). Therefore, while the solution of the 3DLM becomes chaotic
when r ranges from 25 to 40, the 6DLM (5DLM) still produces stable steady-state solutions,
suggesting that predictability can be improved by the increased degree of nonlinearity.

A quantitative comparison of the eLEs from the generalized LMs with or without ad-
ditional simplifications suggests the following: (1) The negative nonlinear feedback, first
identified in the 5DLM and represented by XY; in both the 5DLM and 6DLM, plays a dom-
inant role in providing feedback for stablizing the solution in the 6DLM, (2) The additional
heating term (rX7) associated with the My mode may destabilize the solution in the 6DLM
which has a smaller . as compared to the 5DLM. The stability analysis provided in Sect. 3.1
indicates that the heating term rX; may effectively reduce the dissipative effect associated
with the M5 mode, and, in turn, provides effective “positive” feedback through the nonlinear
feedback loop, (3) as a result of much smaller values in the X7, the induced destabilization
(by the additional heating term) is much smaller than the induced stabilization (by the
negative nonlinear feedback term). Additionally, two nonlinear feedback terms associated

with My nearly cancel one another (e.g., Eqs. 32 and 33). Therefore, the r. of the 6DLM
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is only slightly smaller than that of the 5DLM. The 5DLM and 6DLM collectively illus-
trate the different roles of various high-wavenumber modes in stablizing or destabilizing
system’s solutions. Additional analyses on mathematical derivations and numerical results
are summarized below.

As compared to the 3-D and 5-D LMs in the dissipationless limit, the 6-D non-dissipative
LM also poses two energy conservation relations. One states the conservation of the total
domain-averaged kinetic energy (KE) and available potential energy (APE), enabling the
transfer between KE and APE. The results is consistent with the result in the 3-D and 5-D
non-dissipative LMs. In contrast, the additional conservation law only provides the conser-
vation of the domain-averaged kinetic energy associated with the primary streamfunction
mode (KE,) and the total domain-averaged potential energy (PE), instead of the total KE
and PE, as compared to the 3DLM and 5DLM. The two conservations do pose constraints
on all six modes of the 6DLM. However, the potential issues (e.g., whether inconsistent
forcing may exist) are beyond the scope of the present study.

The competing impact of the nonlinearities and the dissipation and heating terms can be

illustrated using Eq. (10) of the 6DLM, as follows:

dz
— =XY - XY, - XY -bZ
dr

The first nonlinear term (XY) and the linear term (bZ) can act as a forcing and dissipative
term, respectively, in the 3-D, 5-D, and 6-D LMs. The second and third nonlinear terms
(XY; and X1Y) are introduced as additional dissipative terms by the new modes. X;Y
is much smaller than the other terms, and XY; can help reach a balance with XY and
bZ to stabilize the solution. The negative nonlinear feedback by XY; was first illustrated
by Shenl4 for the 5DLM. However, the feedback by XY; in the 6DLM may be (slightly)
different from that in the 5DLM. Specifically, while XY; of the 5DLM includes the feedback
associated with additional nonlinear and dissipative terms, XY; of the 6DLM includes the
feedback from the additional nonlinear and heating terms such as rX;.

The above results provide different impacts associated with various secondary modes,
consistent with Lorenz’s statement in 1972, as follows: If the flap of a butterfly’s wings can
be instrumental in generating a tornado, it can equally well be instrumental in preventing
a tornado. The quote suggests the appearance of both positive and negative feedbacks (i.e.,
stabilization and destabilization) in association with various “small-scale” processes. Since
mode truncation is unavoidable in finite-resolution models, the answer to the question of
whether or not the feedback by new modes is positive or negative should be made in the
proper context. The approach outlined here may help us understand why some generalized
LMs have a larger r., while others have a smaller r. as compared to the SDLM. For example,
among the five different generalized LMs in Tables 1 and 2 of Roy and Musielak (2007c¢),
the two LMs that include M5 and Mg have a r. of ~ 40— 42, comparable to the r. in
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the 5DLM (6DLM) outlined here. The ©3(1,3) and ©3(0,4) modes in Roy and Musielak
(2007c) are the same as the M5 and Mg modes in this study. In addition, the 14D LM,
with a comparable r. (r. ~ 43.48) described by Curry (1978), also includes these two modes
05(1,3) and ©3(0,4), and does not have a vertical wavenumber higher than that of ©2(0,4).
In contrast, the 5-D LM of Roy and Musielak (2007b), which has a smaller r. (r. ~ 22.5), does
include an additional heating term, although the two additional modes are different from the
secondary modes of the 5DLM and 6DLM in this study. Although preliminary analyses seem
encouraging, however, detailed comparisons with other generalized LMs (e.g., Howard and
Krishnamurti, 1986; Hermiz et al., 1995; Thiffeault and Horton, 1996) are still required. In
addition, the further extenstion of the nonlinear feedback loop is being studied with M7 — My
modes, here My = +/2sin(lx)sin(5mz), Mg = v/2cos(lx)sin(5mz), My = sin(6mz). Using a
3D non-dissipative Lorenz model, which is shown to be a conservative system, we discussed
the collective and competing impact of the nonlinear feedback loop and heating term on the
energy cycle with four different regimes (e.g., Shen 2014b). We will further analyze the
energy cycle in the higher-order dissipative or non-dissipative Lorenz models using the same
approach and compare the results with those using a different approach (e.g., Pelino et al.,
2014).

The 5DLM and 6DLM share some similarities regarding the system’s stability, but the
6DLM has one additional model. To further our understanding of the dynamics of chaos, it is
required to address if and where additional critical points may appear and impact solution’s
stability in the 6DLM. Due to increasing difficulties in obtaining the analytical solutions of
the critical points for the 6DLM, it becomes more challenging to perform an analysis near the
critical points. In addition to the analysis for examining the competing impact between the
additional dissipative and heating terms, the dependence of solution’s stability on the time
scale (i.e., duration) of the “forcing” terms deserves additional attention. Results obtained
in this study indicate eLE dependence on the number of modes (i.e., different resolutions)
and resolved processes (i.e., dissipative terms or heating term). To improve our confidence
in the model’s long-term climate projections using high-resolution global weather or climate
models, it is important to understand whether and how the long-term stability (eLE) in
the global models may be influenced by the change of a model’s grid spacing as well as
the resolved “forcing” associated with different physics parameterizations. Achieving this
goal requires the extension or revision of the TS method for eLE calculations in the global

models, likely performed in future studies.
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Appendix A

Fractal dimension of the 6DLM

Various methods are available for calculating fractal dimensions. There are several mathe-
matical definitions of different types of fractal dimension. (Grassberger and Procaccia, 1983;
Nese et al., 1987; Ruelle, 1989; Zeng et al., 1992). In this study, we only discuss the method
for calculating the so-called Kaplan-Yorke dimension (Dy,), which requires the calculation of
Lyapunov exponents (LEs) and thus can be used for the verification of LE calculation. The
Kaplan—Yorke dimension is defined as follows (Kaplan and Yorke, 1979; Nese et al., 1987):

Ef; LE;

Dy, = K + ==t
& [LEk+1]

(A1)

where LE; is the ith Lyapunov exponent, and K(<n) is the largest integer for which
Zfil LE; >0. Dy, =0 as LE; <0 and Dyy=n as y . LE;>0. In this study, “n”
ensemble-averaged Lyapunov exponents (eLEs), which are produced using the GSR method
(e.g., Shenl4), are used to estimate the corresponding Dy,. The summation of all eLEs
is provided in Fig. Ala, where —13.667, —30.667, and —94 are the values for the 3DLM,
5DLM and 6DLM, respectively; and are consistent with the stability analysis. For example,
in the 6DLM, the summation of all eLEs should be equal to —(¢ +1+b+ doo + do, +4b).
The three leading eLEs for the 3DLM, 5DLM and 6DLM are provided in Fig. Alb. The
corresponding fractal dimension obtained using the eLEs is provided in Fig. A2. For r = 28,
the leading eLEs of the 3DLM are (0.892743 x 107°, —0.701148 x 1073, —0.145587 x 1072),
which results in Dy, =2.06127208. The value is very close to the value of 2.063 docu-
mented in Nese et al. (1987, p. 1957), and the value of 2.062 reported by Prof. Sprott
(http://sprott.physics.wisc.edu/chaos/lorenzle.htm). Here, the reader should note that the
2nd eLE is very small but not exactly equal to zero, indicating the impact of the 10000
different initial conditions and/or the “finite” integration time (T =1000) in this study.
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Table 1. A list of numerical experiments for different Lorenz models. The column “Modifications”

indicates additional changes in the “Equations”. The r. and 7. are determined based on the eLEs

analyses and the linear stability analysis, respectively. Solutions in “Figures” are rescaled using the

factors listed in the “Scaling factors”. * for the 3DLM, the ensemble averaged LE is 1.2 x 1072 at
r=23.7, and becomes 0.26 at r =24. The 5-D and 6-D non-dissipative Lorenz models (5D-NLM

and 6D-NLM) are used to examine the energy conservation properties.

Case IDs  Equations Modifications Figures 7. Te Scaling factors
3DLM  Egs. (15)-(17) N/A 2 23.7* 2474 Eq. (21)
of Shenl4 of Shenl4
5DLM  Egs. (10)-(14) N/A 25,7 429 4594 Eq. (19)
of Shenl4 of Shenl4
6DLM Eqgs. (8)-(13) N/A 2-7 41.1 N/A  same
6DLMS1  Egs. (8)-(13) ignoring terms that 5-6 423  N/A  same
involve X in Egs. (9) and (10)
6DLMS2 Egs. (8)—(13) ignoring the term 5-6 239 N/A  same
— XY, in Eq. (10)
6DLMS3  Eqgs. (8)—(13) ignoring the term 5-6 42.1 N/A  same
rX1 in Eq. (12)
5D-NLM  Egs. (10)—(14) ignoring dissipative terms 1 N/A N/A N/A
of Shenl4
6D-NLM  Egs. (8)—(13)  ignoring dissipative terms 1 N/A N/A N/A
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Figure Al: Three leading ensemble averaged Lyapunov exponents (eLEs) as a function of the normalized Rayleigh
number (r) (a), and the summation of all eLEs in the LMs (b). The pink, black, and blue lines indicate the eLEs
for the 3D, 5D and 6D LMs, respectively. The solid, dotted, and dashed lines display the first, second and third
eLEs, respectively. In panel (a), the pink, black, and blue lines are shifted with a constant value of 13.667,
30.66740.02 and 94.04-0.04, respectively. To save computational resources, the eLEs of the 5D and 6D LMs are
calculated over a shorter range of values for r (i.e., 35 < r < 50).
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Figure A2: The Kaplan-Yorke fractal dimension of the 3D, 5D, and 6D LMs as a function of the normalized
Rayleigh number (r).
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Figure 1: Time evolution of energy conservation laws from the 5D-NLM and 6D-NLM. (K E + PFE) and (KE +
APE) are displayed for the 5D-NLM, while (K E, + PE) and (KE+ APE) are shown for the 6D-NLM. Panels (a)
and (b) are for r = 25, and r = 45, respectively. All fields are normalized using the constant C, (:772,%2(#)3),
and each of the above lines is shifted to the summation of the corresponding initial value and a constant value
(e.g., 0.06 in the green line).
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Figure 2: (Y, Z) plots in the 3DLM (a) and 6DLM (b) with r=35; and 5DLM (c) and 6DLM (d) with r=42.
Lorenz strange attractors appear in (a) and (d). All of the solutions are normalized by the the corresponding
critical points, namely, Eq. (21) of Shenl4 for the 3DLM and Eq. (19) of Shen14 for the 5DLM and 6DLM.



(a) (b)

400 Forcing Terms of dZ/dt (5D,r=35) 400 Forcing Terms of dZ/dt (6D,r=35)
350 — X7 | 350 — XY
b/ bz
300 ‘ XY, 300 XY,
‘ __BXY
250 r H 250 1
= |||
150 | . 150 ,
100 | 100 ih
* WW\P‘N‘-‘W ; W‘MMWW
s04|i!" 50
0 0

0 5 10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50
Time (unit; tou) Time (unit: tau)
Figure 3: Forcing terms of dZ/dr with r = 35, which are from Eq. (12) for the 5DLM (a) and Eq. (10) for the

6DLM (b), respectively. The black and orange lines represent XY and bZ, respectively, while the blue and red
lines represent XY; and 5X;Y, respectively.



Lyapunov Exponent in the 5DLM and 6DLM
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Figure 4: The largest ensemble-averaged Lyapunov Exponents (eLEs) as a function of the forcing parameter r
in different LMs. The eLEs with Ar=0.1 for the 5DLM (black) and 6DLM (blue). The appearance of chaotic
solutions is indicated by positive eLLEs.
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Lyapunov Exponent in the 3DLM and 6DLMS2
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Figure 5: Same as Fig. 4 except for (a) the 3DLM (in pink) and the 6DLMS2 (in orange); and (b) the 6DLMS1
(in red) and 6DLMS3 (in green).
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Figure 6: The r-time diagram of numerical solutions from the 6DLM (a,b), 6DLMSI (c,d), and 6DLMS3 (e,f). r
ranges from 25 to 50 with Ar = 0.5. Panels (a, ¢, ) show —Y/Y, and panels (b, d, f) show —Y;/Y7.. Y, and Y;,
are the critical points of the 5DLM as defined in Eq. (19) of Shenl4. The black line indicates a constant value of
r =43.
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Figure 7: The r. of the 6DLM as a function of 0. The r., shown by blue multiplication signs (X) are determined
by the eLEs of the nonlinear 6DLM. The pink and black lines indicate a constant contour of Re(A)=0 for the linear
3DLM and 5DLM, respectively, indicating the corresponding r. based on a linear stability analysis. Solid circles
with the same color scheme indicate a r. determined by the eLEs analysis with Ar = 0.1 in the corresponding
nonlinear LM.



