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Abstract. In this study, a six-dimensional Lorenz model (6DLM) is derived, based on a

recent study using a five-dimensional (5-D) Lorenz model (LM), in order to examine the im-

pact of an additional mode and its accompanying heating term on solution stability. The new

mode added to improve the representation of the steamfunction is referred to as a secondary5

streamfunction mode, while the two additional modes, that appear in both the 6DLM and

5DLM but not in the original LM, are referred to as secondary temperature modes. Two

energy conservation relationships of the 6DLM are first derived in the dissipationless limit.

The impact of three additional modes on solution stability is examined by comparing nu-

merical solutions and ensemble Lyapunov exponents of the 6DLM and 5DLM as well as the10

original LM. For the onset of chaos, the critical value of the normalized Rayleigh number (rc)

is determined to be 41.1. The critical value is larger than that in the 3DLM (rc ∼ 24.74), but

slightly smaller than the one in the 5DLM (rc ∼ 42.9). A stability analysis and numerical

experiments obtained using generalized LMs, with or without simplifications, suggest the

following: (1) negative nonlinear feedback in association with the secondary temperature15

modes, as first identified using the 5DLM, plays a dominant role in providing feedback for

improving the solution’s stability of the 6DLM, (2) the additional heating term in associa-

tion with the secondary streamfunction mode may destabilize the solution, and (3) overall

feedback due to the secondary streamfunction mode is much smaller than the feedback due

to the secondary temperature modes; therefore, the critical Rayleigh number of the 6DLM20

is comparable to that of the 5DLM. The 5DLM and 6DLM collectively suggest different

roles for small-scale processes (i.e., stabilization vs. destabilization), consistent with the

following statement by Lorenz (1972): If the flap of a butterfly’s wings can be instrumental
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in generating a tornado, it can equally well be instrumental in preventing a tornado. The

implications of this and previous work, as well as future work, are also discussed.25

1 Introduction

Fifty years have passed since Lorenz published his breakthrough modeling study (Lorenz,

1963) which changed our view regarding the predictability of weather and climate (e.g.,

IPCC, 2007; Pielke, 2008), laying the foundation for chaos theory (e.g., Gleick, 1987; Anthes,

2011). Since the degree of nonlinearity is finite in the original Lorenz model referred to as30

3DLM, the impact of increased nonlinearity on systems’ solutions and/or their stability has

been studied using generalized LMs with additional Fourier modes (e.g., Curry, 1978; Curry

et al., 1984; Franceschini and Tebaldi, 1985; Howard and Krishnamurti, 1986; Franceschini

et al., 1988; Hermiz et al., 1995; Thiffeault and Horton, 1996; Musielak et al., 2005; Roy and

Musielak, 2007a,b,c; Lucarini and Fraedrich, 2009). However, such studies do not provide35

a definite answer regarding whether or not higher-order LMs lead to more stable solutions.

Lorenz demonstrated the association of the nonlinearity with the existence of non-trivial

critical points and strange attractors in the 3DLM. Shen (2014a, denoted as Shen14) recently

discussed the importance of nonlinearity in both producing new modes and enabling subse-

quent negative feedback to improve solution stability. The feedback loop of the 3DLM was40

defined by Shen14 as a pair of downscale and upscale transfer processes associated with the

Jacobian function (in Eq. 2). The feedback loop has been suggested to stabilize the solution

for 1< r < 24.74 within the 3DLM, as compared to the linearized 3DLM. Extending the

nonlinear feedback loop in a five-dimensional LM (5DLM) can provide negative nonlinear

feedback to produce non-trivial stable critical points when 1< r < 42.9. The negative non-45

linear feedback represents the collective impact of additional nonlinear terms and dissipative

terms introduced by the two additional Fourier modes of the 5DLM. In this study (and in the

previous study, Shen14), the two modes are added to improve the representation of the tem-

perature perturbation, referred to here as secondary temperature modes. Improved stability

with a higher critical Rayleigh parameter was verified by linearizing the 5DLM with respect50

to a non-trivial critical point and then performing a stability analysis over a wide range of

values in parameters (σ, r). The outcome was possible due to the analytical solutions of the

critical points in the 5DLM (e.g., Shen14). The role of the negative nonlinear feedback was

further verified using the revised 3DLM that parameterizes the negative nonlinear feedback

to suppress chaotic responses using a nonlinear eddy dissipation term.55

In addition to the negative nonlinear feedback, Shen14 indicated that a conclusion de-

rived from lower-dimensional LMs may not be applicable in all circumstances in a higher-

dimensional LM. For example, although the butterfly effect (of the first kind) with depen-
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dence of solutions on initial conditions appears in the 3DLM within the range between r = 25

and 40, it does not exist in the 5DLM. Therefore, to examine whether or not small pertur-60

bations can alter large-scale structure (i.e., the butterfly effect of the second kind), a model

containing proper representations of multiscale processes and their nonlinear interactions is

required. As a result, it would require to improve the degree of nonlinearity to address the

question.

In a pioneering study using the generalized LM with a large number of Fourier modes,65

Curry et al. (1984) suggested that chaotic responses disappeared when sufficient modes were

included. Shen14 hypothesized that system’s stability in the LMs, with a finite number of

modes, can be improved with additional modes that provide negative nonlinear feedback

associated with additional dissipative terms. However, since new modes can also introduce

additional heating term(s), the competing role of the heating term(s) with nonlinear terms70

and/or with dissipative terms deserves to be examined so that the conditions under which

solutions become more stable or chaotic can be better understood. Results obtained from

work described here and the work of Shen14 are used to address the following question: for

generalized LMs, under which conditions can the increased degree of nonlinearity improve

solution stability?75

To achieve the goal outlined above, the 3DLM to 5DLM was previously extended in

Shen14 by including the two secondary temperature modes. In this study, the 5DLM is

extended to the 6DLM by adding an additional mode. The additional mode is included

to improve the representation of the streamfunction (e.g., Eqs. 4 and 5), and is, therefore,

referred as to the secondary streamfunction mode. While the secondary temperature modes80

of the 5DLM (as well as the 6DLM) introduces additional nonlinear terms and dissipative

terms, which, in turn, provide negative nonlinear feedback, the secondary streamfunction

mode of the 6DLM introduces additional nonlinear terms and adds a heating term. The

approach, using incremental changes in the number of Fourier modes, can help trace their

individual and/or collective impact on solution stability. For example, since the 6DLM also85

contains the negative nonlinear feedback in association with secondary temperature modes,

it becomes feasible to examine the role of the additional heating term in solution’s stability

and its competing impact with the negative nonlinear feedback.

The presented work is organized as follows. We describe the governing equations in

Sect. 2.1 and present the derivations of the 6DLM in Sect. 2.2. We then discuss the energy90

conservation of the 6DLM in the dissipationless limit in Sect. 2.3, and numerical approaches

for integrations of the LMs and calculations of ensemble Lyapunov exponents in Sect. 2.4.

In Sect. 3.1, we investigate the potential impact of the additional heating term on solution’s

stability by performing stability analysis near the trivial critical point. We also illustrate how

the feedback loop can be extended using the secondary streamfunction mode. In Sect. 3.2,95

3



numerical results obtained from the 6DLM are provided and compared to results obtained

from the 5DLM. To examine the role of the secondary streamfunction mode and to identify

the major nonlinear feedback term, additional numerical experiments using the 6DLM and

simplified 6DLMs are compared in Sect. 3.3. Then, we discuss the dependence of the solu-

tion’s stability on the Prandtl number (σ) in Sect. 3.4. Concluding remarks appear at the100

end.

2 The six-dimensional Lorenz model and numerical methods

2.1 The governing equations

By assuming 2-D (x, z), incompressible and Boussinesq flow, the following equations were

used by Saltzman in 1962 and Lorenz in 1963:105

∂

∂t
∇2ψ =−J(ψ,∇2ψ)+ ν∇4ψ+ gα

∂θ

∂x
, (1)

∂θ

∂t
=−J(ψ,θ)+ ∆T

H

∂ψ

∂x
+κ∇2θ, (2)

here ψ is the streamfunction that gives the u=−ψz and w = ψx, which, respectively, rep-

resent the horizontal and vertical velocities; θ is the temperature perturbation; and ∆T110

represents the temperature difference at the bottom and top boundaries. The constants, g,

α, ν, and κ denote the acceleration of gravity, the coefficient of thermal expansion, the kine-

matic viscosity, and the thermal conductivity, respectively. The Jacobian of two arbitrary

functions is defined as J(A,B) = (∂A/∂x)(∂B/∂z)− (∂A/∂z)(∂B/∂x). Additionally,

∇4ψ = ∂/∂x(∇2∂ψ/∂x)+ ∂/∂z(∇2∂ψ/∂z).115

Based on the above partial differential equations, Lorenz (1963) introduce a system of three

ordinary differential equations to illusrtate the characteristics of chaotic solutions. This

system is a simplified version of the one derived by Saltzman (1962). For the reader’s

convenience, the same symbols as those in Saltzman (1962) and Lorenz (1963) are used120

here.

2.2 The 6-D Lorenz Model (6DLM)

To generalize the original Lorenz model, we first use the following six Fourier modes (which

are also listed in Table 1 of Shen14) to derive the 6DLM:

M1 =
√
2sin(lx)sin(mz),M2 =

√
2cos(lx)sin(mz),M3 = sin(2mz), (3)125

M4 =
√
2sin(lx)sin(3mz),M5 =

√
2cos(lx)sin(3mz),M6 = sin(4mz), (4)

here l and m are defined as πa/H and π/H, representing the horizontal and vertical

wavenumbers, respectively; and a is a ratio of the vertical scale of the convection cell to
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its horizontal scale, i.e., a= l/m. The term H is the domain height, and 2H/a represents130

the domain width. Using these modes, ψ and θ can be represented as follows:

ψ = C1(XM1 +X1M4), (5)

θ = C2(YM2 +Y1M5 −ZM3 −Z1M6), (6)

C1 = κ
(1+ a2)

a
,C2 =

∆T

π

Rc

Ra

,Rc =
π4

a2
(1+ a2)3,R−1

a =
νκ

gαH3∆T
,

135

where C1 and C2 are constants, Ra is the Rayleigh number and Rc is its critical value for

the free-slip Rayleigh–Benard problem. Using Eqs. (5) and (6), solutions within the 6DLM

are represented by the six spatial modes M1 to M6 (Eqs. 3-4) and their corresponding

time-varying amplitudes (X,Y,Z,X1,Y1,Z1), respectively. By comparison, Eq. (3) was used

to derived the 3DLM, and Eqs. (3) and (4) without M4 were used to derive the 5DLM.140

While the 3DLM and 6DLM (5DLM) have one horizontal wavenumber, they contain two

and four vertical wavenumbers, respectively. In the text below, to facilitate discussions,

M1 and M4 are referred to as primary and secondary streamfunction modes, respectively,

M2 and M3 are referred to as primary temperature modes, and M5 and M6 are referred to

as secondary temperature modes. Here, the reader should note that an implicit limitation145

of this approach is that nonlinear interactions among the selected modes cannot generate

(impact) any new (other) modes that are not pre-selected, suggesting limited (spatial) scale

interactions. While the impact of the secondary temperature modes (i.e., Y1 and Z1) on the

solution’s stability was discussed by Shen14 with the 5DLM, the impact of the secondary

streamfunction mode (i.e., X1), which introduces a heating term (rX1), is the focus of the150

6DLM provided here.

To transform Eqs. (1) and (2) into the “phase” space, a major step is to calculate the

nonlinear Jacobin functions. Calculations indicate that J(ψ,∇2ψ) in Eq. (1) does not lead

to any explicit term in the final 6DLM, or the 3DLM or the 5DLM. Here, the Jacobian term

of Eq. (2), which is written as follows, is discussed:155

J(ψ,θ) =C1C2(XY J(M1,M2)−XZJ(M1,M3)+XY1J(M1,M5)−XZ1J(M1,M6)

+X1Y J(M4,M2)−X1ZJ(M4,M3)+X1Y1J(M4,M5)−X1Z1J(M4,M6)). (7)

Note that the 3DLM only contains the first two terms on the right hand side of Eq. (7),

namely XY J(M1,M2) and −XZJ(M1,M3), while the 5DLM includes the first four terms.160
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After derivations, we obtain the 6DLM with the following six equations:

dX

dτ
=−σX +σY, (8)

dY

dτ
=−XZ +X1Z − 2X1Z1 + rX −Y, (9)

dZ

dτ
=XY −XY1 −X1Y − bZ, (10)

dX1

dτ
=−doσX1 +

σ

do
Y1, (11)165

dY1
dτ

=XZ − 2XZ1 + rX1 − doY1, (12)

dZ1

dτ
= 2XY1 +2X1Y − 4bZ1. (13)

Here, τ = κ(1+a2)(π/H)2t (dimensionless time), σ = ν/κ (the Prandtl number), r =Ra/Rc

(the normalized Rayleigh number, or the heating parameter), b= 4/(1+ a2), and do =170

(9+ a2)/(1+ a2). After deriving the 6DLM in the fall of 2011, the 6DLM outlined here

was compared with the work of Prof. Z. E. Musielak and his colleagues (e.g., Kennamer,

1995; Musielak et al., 2005; Roy and Musielak, 2007a) who obtained the same 6DLM. A more

detailed analysis regarding how the system conserves energy in the dissipationless limit, as

well as a comparison with the 3DLM and 5DLM, is provided in the following discussion.175

The 3DLM can be obtained from the 6DLM when terms that involve (X1,Y1,Z1) are

neglected. Alternatively, Eqs. (8)–(10) can be viewed as a 3DLM with the feedback processes

that result from the three additional modes. Therefore, the 6DLM can be viewed as a coupled

system that consists of the 3DLM (Eqs. 8–10) and a forced dissipative system with an

additional heating term (e.g., Eqs. 11–13). Here, and in Shen14, unless otherwise stated,180

the term “feedback” refers to the nonlinear process that involves the secondary modes,

namely (X1,Y1, and/or Z1). The 5DLM in Shen14 can be also obtained by ignoring the X1

and dX1/dτ in the 6DLM. As a result, the 6DLM can be viewed as a coupled system which

consists of the 5DLM and an additional equation (i.e., Eq. 11) that introduces nonlinear

feedback associated with an additional heating term (i.e., Eq. 12).185

2.3 Energy conservation in the 6-D non-dissipative LM

The domain-averaged kinetic energy (KE), available potential energy (APE), and potential

energy (PE) are defined (e.g., Treve and Manley, 1982; Thiffeault and Horton, 1996; Blender
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and Lucarini, 2013; Shen, 2014a), as follows:

KE =
1

2

2H/a
∫

0

H
∫

0

(u2 +w2)dzdx, (14)190

APE =−gαH
2∆T

2H/a
∫

0

H
∫

0

(θ)2dzdx, (15)

PE =−
2H/a
∫

0

H
∫

0

gα(zθ)dzdx. (16)

Through straightforward derivations, we obtain the following equations:

KE =
Co

2
(X2 + doX

2
1 ), (17a)195

KEp =
Co

2
X2, (17b)

here Co = π2κ2
(

1+a2

a

)3

. KEp contains only a portion of the total KE of the 6DLM from

the primary streamfunction mode X, but represents the total KE in the 5DLM and 3DLM.

In a similar manner, as follows:200

APE =−Co

2

σ

r
(Y 2 +Z2 +Y 2

1 +Z2
1 ), (18)

PE =−Coσ(Z +Z1/2). (19)

Equations (17a) and (18) yield the following

KE+APE =
Co

2

(

X2 + doX
2
1 −

σ

r

(

Y 2 +Z2 +Y 2
1 +Z2

1

)

)

= C3, (20)205

while Eqs. (17b) and (19) lead to the following

KEp +PE = Co

(

X2

2
−σ

(

Z +
Z1

2

))

= C4. (21)

With Eqs. (8–13) in the dissipationless limit, the time derivative of both Eqs. (20) and210

(21) are zero, so both C3 and C4 are constants. Therefore, Eqs. (20) and (21) indicate two

energy conservation laws, including the conservation of the total KE and APE (i.e., Eq. 20).

However, it should be noted that, as follows:

KE+PE = Co

(

X2

2
+ do

X2
1

2
−σ

(

Z +
Z1

2

))

6= constant (22)
215

By comparison, the two energy conservation laws of the 5DLM are written as follows:

KE5-D +APE5-D =
Co

2

(

X2 − σ

r

(

Y 2 +Z2 +Y 2
1 +Z2

1

)

)

= C5, (23)

KE5-D +PE5-D = Co

(

X2

2
−σ

(

Z +
Z1

2

))

= C6. (24)

It can been shown that both C5 and C6 are constants. Therefore, in the 5DLM, in addition220

to the conservation of the KE and APE, the KE and PE are also conserved.
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2.4 Numerical approaches

Using the 4th order Runge–Kutta scheme, the original and higher-order Lorenz models are

integrated forward in time. We vary the value of the heating parameter r but keep other

parameters as constants, including σ = 10, a= 1/
√
2, b= 8/3, do = 19/3, and a minimum225

value for Rc = 27π4/4. In Figs. 1, 2,3 and 6, the initial conditions are given as follows:

(X,Y,Z,X1,Y1,Z1) = (0,1,0,0,0,0). (25)

The dimensionless time interval (△τ) is 0.0001. The total number of time steps (N) is

1 000 000 in Fig. 1 and 500 000 in Figs. 2, 3, and 6, yielding a total dimensionless time (τ)230

of 100 and 50, respectively. In Figs. 2 and 6, the solutions of the 3DLM and 5DLM are

rescaled by the analytical solutions of their critical points, (i.e., Eqs. 21 and 19 of Shen14).

The solutions of the 6DLM are rescaled by the critical points of the 5DLM. In Sect. 3.4, the

dependence of solution stability on the Prandtl number (σ) is discussed with selected values

of (σ).235

To quantitatively evaluate whether or not the system is chaotic, we calculate the Lyapunov

exponent (LE), a measure of the average separation speed of nearby trajectories on the

critical point (e.g., Benettin et al., 1980; Froyland and Alfsen, 1984; Wolf et al., 1985;

Nese, 1989; Zeng et al., 1991; Eckhardt and Yao, 1993; Christiansen and Rugh, 1997;

Kazantsev 1999; Sprott, 2003; Ding and Li, 2007; Li and Ding, 2011). In Shen14, the two240

methods implemented and tested are the trajectory separation (TS) method (e.g., Sprott,

2003); and the Gram–Schmidt reorthonormalization (GSR) procedure (e.g., Wolf et al., 1985;

Christiansen and Rugh, 1997). Here, a brief summary of how LEs are calculated using the

two methods is provided. Using given initial conditions (ICs) and a set of parameters in the

LMs, the TS scheme calculates the largest LE, and the GSR scheme produces “n” LEs; here245

“n” is the dimension of the 5-D or 6-D LM. Calculations are conducted with△τ = 0.0001 and

N = 10000000, yielding τ = 1000. To minimize the dependence on the ICs, 10 000 ensemble

(En = 10000) runs with the same model configurations but different ICs are performed, and

an ensemble averaged LE (eLE) is obtained from the average of the 10 000 LEs. A large

N and En are used to understand the long-term average behavior of the solutions of the250

LMs and simplified LMs where some terms are ignored. While eLEs calculations using the

above two methods were previously discussed and compared in Shen14, here, a calculation

of the Kaplan–Yorke fractal dimension (Kaplan and Yorke, 1979) using the (three) leading

eLEs from the GSR method is provided in Appendix A as an additional verification. Unless

stated otherwise in the main text, the largest ensemble-averaged LE (eLE) for a given r is255

obtained from the TS method.

To examine the collective or individual impact of the nonlinear feedback terms and to

identify the major feedback that can improve numerical predictability in the 5-D and 6-
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D LMs, we perform additional runs using the 6DLM with additional simplifications. The

experiments, as listed in Table 1, include the following: (1) case 6DLMS1 where three260

nonlinear terms involving X1 are neglected and only one feedback term (XY1) is retained

in Eqs. (9) and (10), (2) case 6DLMS2 where only XY1 is ignored in Eq. (10), and (3) case

6DLMS3 where rX1 is removed from Eq. (12). Results from these simplified 6DLMs are

presented in Sect. 3.3.

3 Discussion265

In the following sections, we discuss the impact of additional modes on solution stability.

In Sect. 3.1, we illustrate the potential role of the M4 mode by performing linear stability

analysis at the trivial critical point. In Sects. 3.2 and 3.3, we present and compare numerical

results from the 6DLM with and without simplifcations to identify the major feedback

process. The dependence of solution stability on the Prandtl number (σ) is discussed in270

section 3.4.

3.1 The impact of M4 on linear stability

In this section, we first discuss the selection of M4 and then its impact. As indicated

in Shen14, the inclusion of M5 and M6 modes is based on the analysis of the Jacobian

term, J(ψ,θ), and can improve the representations of the temperature perturbation and the275

nonlinear advection of temperature. The appearance of ∂M5/∂x associated with the linear

term ∂θ/∂x of Eq. (1) requires the inclusion of an M4 mode and the ∂M4/∂x associated

with △T∂ψ/∂x of Eq. (2) provides feedback to the M5 mode (in Table 1 of Shen14). The

M4 mode shares the same horizontal and vertical wave numbers as theM5 but has a different

phase (i.e., sin(lx) vs. cos(lx) in Eq. 4). Alternatively, via the ∂θ/∂x and △T∂ψ/∂x, the280

M4 and M5 modes are linked as follows:

dX1

dτ
∝−doσX1 +

σ

do
Y1, (26)

dY1
dτ

∝ rX1 − doY1, (27)

which can be derived by linearizing Eqs. (11) and (12) at the trivial critical point. The285

linearized equations are decoupled with the rest of the equations on the 6DLM, suggesting

that the heating term (rX1) can impact other modes as well as the stability of the nonlinear

6DLM via nonlinear feedback, as discussed below. The above equations are reduced to the

following:

d2Y1
dτ2

+ do(σ+1)
dY1
dτ

− σ

do

(

r− d3o
)

= 0. (28)290
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By assuming the solution Y1 ∝ exp(βτ), we obtain the following two roots for β:

β±(r) =
−do(σ+1)±

√

d2o(σ+1)2 +4σ (r− d3o)/do
2

. (29)

Here, β+ (β−) represents the larger (smaller) root. An unstable normal mode with β+ > 0295

appears when r > d3o. When do = 1, the result in Eq. (29) can be applied to the linearized

3DLM. As do = 19/3 and r < d3o(∼ 254) in this study, both β+ and β− are negative and

∂β/∂r is positive. The focus is β+ because the corresponding mode dominates the solution

as a result of a smaller decay rate as compared to β−. β+ has a minimum (i.e., the largest

decay rate) as r = 0, and increases as r increases (up to 254), leading to a decreasing decay300

rate. In the limit of r = 0 and σ ≥ 1, the minima of Eq. (29) can be written as follows:

β+(r = 0) =−do and β−(r = 0) =−doσ. (30)

The β+ =−do provides the same decay rate as the one derived directly from Eq. (27) with

r = 0 (i.e., the removal of rX1). The simple analysis indicates that the inclusion of M4,305

as a result of β+ < 0 and |β+(r 6= 0)|< |β+(r = 0)|, can lead to a solution component with

a smaller decay rate. In other words, the inclusion of rX1 effectively reduces the dissipative

impact of −doY1 in Eq. (27). Here, the reader should note that the relative impact of r

with respect to σ can be estimated using the ratio between the first and second arguments

of the radical in Eq. (29), written as 4σ(r− d3o)/(σ+1)2/d3o. The result suggests that rX1310

becomes less important when a larger σ is used.

The discussions provided above illustrate how the secondary streamfunction mode (M4)

may impact the growth rate of Y1 via the linear heating term (rX1). Additionally, M4 can

also provide its nonlinear feedback by extending the nonlinear feedback loop of the 5DLM

(as well as the 3DLM), as follows (also see Table 2 of Shen 2014a):315

J(M4,M2) = 2mlM6 −mlM3, (31)

J(M4,M3) =mlM2, (32)

J(M4,M6) =−2mlM2. (33)

While Eqs. (31) and (32) form a feedback loop with M2 →M3 →M2, Eqs. (31) and (33)320

enable another feedback loop with M2 →M6 →M2. Equations (32) and (33) only contain

the vertical advection of temperature due to ∂M3/∂x= ∂M6/∂x= 0. The two equations

suggest that bothM3 andM6 can provide upscaling feedback toM2 through their interaction

with M4, leading to two terms in Eq. (9), i.e., dY/dτ ∝X1Z−2X1Z1. When Z1 is close to

Z/2, their collective impact may become insignificant, X1(Z−2Z1)∼ 0, as compared to the325

other terms in Eq. (9). Since the former criterion can be met near the stable critical points

of the 5DLM (e.g., Eq. 20b of Shen14) and since the 6DLM shares some similarities with

the 5DLM, X1Z and −2X1Z1 are neglected in the 6DLMS1 whose results are discussed in
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section 3.3. In the next section, we first compare the numerical results of the 5DLM and

6DLM.330

3.2 Numerical results of the 6DLM

In this section, we discuss the numerical results of the 6DLM beginning with energy conser-

vation laws in the dissipationless limit. The non-dissipative version of the 6DLM (5DLM)

is referred to as the 6D-NLM (5D-NLM). Figure 1 provides the time evolution of the total

domain-averaged kinetic energy and available potential energy (KE+APE) for both the335

6D-NLM (blue) and 5D-NLM (red). While the total domain-averaged kinetic energy and

potential energy (KE+PE) is shown in pink for the 5D-NLM, the kinetic energy of the

primary streamfunction mode and the potential energy (KEp +PE) is shown in green for

the 6D-NLM. Using the initial conditions in Eq. (25), the initial values of the normalized

KE+APE for the 6D-NLM (Eq. 20) and the 5D-NLM (Eq. 23) are given as C3/Co and340

C5/Co, respectively, and equal to −σ/2r. C3/Co (or C5/Co) is −0.2 for r = 25 and −0.11

for r = 45. The initial values of the normalized KEp +PE for the 6D-NLM (Eq. 21) and

the KE+PE for the 5D-NLM (Eq. 24) are given as C4/Co and C6/Co, respectively, and

both zero. To effectively illustrate the conservation properties of the four quantities above,

the time evolution of their deviations from the corresponding initial values produce four345

lines when plotted. Each of the lines may be shifted by a constant. For example, while the

red line in Fig. 1 represents the time evolution of the deviation for KE+APE in the 5D-

NLM, (i.e., KE5-D(τ)+APE5-D(τ)−KE5-D(0)−APE5-D(0)), the blue line with a constant

shift of 0.02 represents the time evolution of the deviation for KE+PE in the 6D-NLM,

(i.e., KE(τ)+APE(τ)−KE(0)−APE(0)+0.02). As indicated in Fig. 1, each of the four350

quantities is conservative.

Next, we compare the normalized solutions of (Y , Z) in the 3DLM, 5DLM, and 6DLM

with two different values of r. Normalization scales are defined by the critical points listed

in Table 1. Figure 2a and b display the solutions from the 3DLM and 6DLM with r = 35.

Although the critical value (rc) for the onset of chaos is rc = 24.74 in the 3DLM (Lorenz,355

1963), a larger value is chosen for comparison with the 6DLM. The solution of the 3DLM

never reaches a steady state but oscillates irregularly with time surrounding the non-trivial

critical points. In contrast, as indicated by the converged trajectory that approaches a crit-

ical point which is close to (Y/Yc, Z/Zc) = (−1,1), the 6DLM yields a steady state solution.

Note that the normalization scales, Yc and Zc, are the critical points of the 5DLM, because360

it is difficult to obtain the analytical solution of the critical points in the 6DLM and the

former and latter share similarities as discussed later. The 6DLM continues to generate

steady state solutions until r is beyond 41.1 (as discussed in Fig. 4). With an r value of

42.0, the 6DLM leads to a chaotic solution with a “butterfly” pattern in Y-Z space (Fig. 2d),
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while the 5DLM still produces a stable solution (Fig. 2c).365

In the following, we discuss the time evolution of the solutions for the 5DLM and 6DLM

to examine the impact of the secondary modes on solution’s stability and to identify the

major feedback associated with these modes. First, we analyze the dZ/dτ (e.g., Eq. 10

for the 6DLM and Eq. 12 of Shen14 for the 5DLM) for the cases using r = 35 that have

steady-state solutions. Figure 3 indicates that all of the terms with the exception of X1Y ,370

in the dZ/dτ of the 6DLM, yield comparable results to their counterparts in the 5DLM,

indicating that XY1 also plays an important role in stabilizing the solution of the 6DLM as

compared to the 5DLM. While the negative feedback by XY1 was verified by parameterizing

its impact as a nonlinear eddy dissipation term into the 3DLM in Shen14, further verification

using the 6DLM is provided in the following section. Due to a small value of X1, the X1Y375

is small as compared to other terms. A small value of X1 could also be inferred from the

steady-state solution to Eq. (11), giving X1 = Y1/d
2 << Y1 as do = 19/3. Additionally, the

time evolution of the XY suggests that a steady state in the 5DLM is reached earlier than

it is in the 6DLM, consistent with the decay rate analysis in Sect. 3.1.

Figure 4 provides the analysis, used to determine the critical value of r for the onset of380

chaos for both the 5DLM and 6DLM, of the eLEs as a function of the normalized Rayleigh

paramter r. Both models produce similar distributions of the eLEs for 35≤ r ≤ 50, with the

following features: (1) within the stable region (as eLEs< 0), the magnitude of the eLEs is

relatively smaller in the 6DLM, (2) the 6DLM requires a slightly smaller r (rc ∼ 41.1) for

the onset of chaos than the 5DLM (rc ∼ 42.9); and (3) in fully chaotic regions (e.g., r > 44),385

the eLEs of the 5DLM and 6DLM are in good agreement, with very small differences. The

first two results are consistent with the stability analysis provided in section 3.1, suggesting

that inclusion of the M4 mode in the 6DLM may reduce the dissipative impact associated

with the M5 mode.

3.3 Numerical results of the simplified 6DLMs390

In this section, we analyze the eLEs of the 6DLM with or without additional approximations

to identify the major feedback term and the impact of M4 in the 6DLM. While the 6DLM

has four non-linear feedback terms (X1Z and −2X1Z1 in Eq. 9; and −XY1 and −X1Y in

Eq. 10), the 5DLM only has one term, −XY1. Nonlinear feedback terms are defined as the

nonlinear terms involving the secondary modes (X1, Y1, and Z1). Therefore, comparable395

eLEs between these two LMs suggest that −XY1 may play the most significant role in

providing feedback for stabilizing solutions in the 6DLM. To verify this hypothesis, additional

experiments are performed with the following simplified 6DLMs: 6DLMS1, 6DLMS2 and

6DLMS3, as introduced in Sect. 2.4 and listed in Table 1. While the 6DLMS1 case retains

only one nonlinear feedback term, XY1, the 6DLMS2 case only neglects this term. By400
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comparison, the 6DLMS3 case is designed to examine the role of the linear heating term

(rX1) in Eq. (12). The corresponding eLEs are shown in Figure 5. The eLEs of the

6DLMS2 resemble those of the 3DLM (Fig. 5a) with the exception of the window regions,

indirectly indicating the importance of XY1 in stabilizing the solutions in the 6DLM. With

the exception of the transition regions from eLEs< 0 to eLEs> 0 over a small range of r405

(i.e., r ∼ 41− 43), the eLEs of the 6DLMS1 and 6DLMS3 are close to those in the 6DLM

and 5DLM. The rc of these two cases are determined to be 42.3 and 42.1, respectively, which

are slightly larger (smaller) than rc = 41.1 (rc = 42.9) for the 6DLM (5DLM), as shown in

Fig. 5b. In addition, the magnitudes of the LEs in the stable regions are determined to be

relatively larger (smaller) than those in the 6DLM (5DLM). Since the 6DLMS1 ignores the410

nonlinear feedback terms associated with the X1 and since the 6DLMS3 neglects the rX1

term, the features of the 6DLMS1 and 6DLMS3, as compared to the 6DLM, also indicate

that the impact of the M4 may slightly destabilize solutions.

The eLEs represent the averaged behavior of the model’s solutions over a very large

time scale, so N = 10000000 and T =N△t= 1000 (e.g., the T in Eq. 23 of Shen14 should415

approach infinity) are used. Since some of terms in the simplified LMs (e.g., 6DLMS1-3) are

ignored, it is important to check the time evolution of the solutions on a finite-time scale

in order to understand if and how the solutions approach a stable critical point, or oscillate

rapidly between (unstable) non-trivial critical points. To this end, we examine the r-time

diagram of the normalized solutions in Fig. 6, which displays the primary mode, −Y/Yc,420

and secondary mode, −Y1/Y1c, from the 6DLM, 6DLMS1, and 6DLMS3. Here, Yc and Y1c

are the analytical solutions of the critical points from the 5DLM. Using this approach, the

deviation of the normalized solutions from one (i.e., −Y/Yc−1) indicates the impact of the

M4 mode that is missing in the 5DLM. In Fig. 6, the sharp gradient of the solutions with

dense contour lines near the constant value of r = 43 (in black) roughly indicates the critical425

value of r for the onset of chaos, consistent with the analysis of the eLEs in Fig. 5 (see

Table 1). In stable regions, the primary mode, −Y/Yc, evolves with time and comes within

1±0.01 in each of the three cases (Fig. 6a, c, and e). For the 6DLMS1 that only includes one

nonlinear feedback term (XY1), the values of the secondary mode, −Y1/Y1c, in stable regions

are also within 1±0.01 (Fig. 6d). By comparison, the normalized solutions (−Y1/Y1c) for the430

6DLM and 6DLMS3 are within 1 and 0.9 in the steady state, suggesting a deviation within

10% from the corresponding critical point of the 5DLM. If we view the stable solutions of

the 5DLM as the results of the control run, the 6DLM provides approximate steady-state

solutions that have derivations of only around 1% in Y and approximately 10% in Y1. The

above results indicate that the nonlinear terms associated with the X1 (i.e., M4 mode) may435

produce larger relative deviations in the secondary mode Y1 (a high wavenumber mode)

than in the primary mode Y (a low wavenumber mode).
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By comparing the 3DLM and 5DLM, Shen14 suggested that the stability of solutions in

the 3DLM can be improved by the negative nonlinear feedback through the term (−XY1),
enabled by the secondary temperature modes (Y1 and Z1) in the 5DLM. The result moti-440

vated an examination of whether or not a higher-dimensional model is more stable or less

chaotic (i.e., a larger critical value of r) than a lower-dimensional model. In this study,

the comparison of the 5DLM and 6DLM indicates that the additional mode (M4) in the

6DLM does not help increase but slightly decreases the critical value of r for the onset of

chaos. In other words, the inclusion of M4 provides positive feedback that destabilizes the445

solutions through the heating term (e.g., rX1 in Eq. 12) and/or through its nonlinear in-

teraction with other modes. Based on the results obtained from the 5DLM and 6DLM, we

have demonstrated the roles of secondary modes (i.e., small-scale processes) in stablizing

and destabilizing system’s solutions. In addition, the collective impact of these secondary

modes on the improvement of solution’s stability have been examined. Since the aforemen-450

tioned results are obtained from the LMs with a fixed value of σ = 10, the dependence of

the stability in the 6DLM on various values of σ is discussed in the next section.

3.4 Dependence of stability on σ

Previous sections discussed the stability problem only by varying the heating parameter,

r. Here, we examine the dependence of solution stability on the parameter σ, and address455

the question of whether or not the 6DLM still requires a smaller (larger) rc for the onset of

chaos than the 5DLM (3DLM) when different values of σ are used. To efficiently achieve

the goal, we conduct the eLE analysis for the 6DLM using selected values of σ, and compare

it with that from the 5DLM. The dependence of the 5DLM’s stability on σ were previously

examined by Shen14 by performing both linear stability and eLEs analyses.460

For comparisons, the results obtained from the stability analysis of the 5DLM and 3DLM

in Shen14 are briefly summarized as follows: in Fig. 7, pink and black lines indicate the

contour lines of the Re(λ) = 0 in the (σ, r) space for the linearized 3DLM and 5DLM,

respectively. Since λ is the largest eigenvalue, each line describes the critical value rlc as

a function of σ, where the superscript “l” of rlc indicates the local (or linear) analysis.465

Following each of the contour lines in the direction of increasing σ, its right (or left) hand

side contains areas with negative (or positive) values of Re(λ), suggesting stable (or unstable)

solutions. Therefore, unstable solutions (Re(λ)> 0) appear as rlc < r. Solid circles with the

same color scheme indicate the rc determined using the eLE analysis with selected values

of σ, σ = 10, 13, 16, 19, 22 and 25. Given a σ, rc is, in general, smaller than rlc in both the470

3DLM and 5DLM, as previously documented (see Shen14 for additional details).

The rc of the 6DLM, with the eLE analysis, is shown in Fig. 7 with blue multiplication

signs. For all of the selected cases, the critical value rc in the 6DLM is larger than that in
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the 3DLM, suggesting that over the range between σ = 10∼ 25, the 6DLM requires a larger

r for the onset of chaos than the 3DLM. By comparison, in each of the selected cases with475

σ = 10, 13, 16, and 19, the critical value (rc) in the 6DLM is (slightly) smaller than the one

in the 5DLM. As a result, the 6DLM is less stable than the 5DLM as 10≤ r < 22. However,

for the case with σ = 22 (or σ = 25), the rc of the 6DLM is comparable (or slightly larger),

as compared to that of the 5DLM. The results may indicate a different role for theM4 mode

between σ < 22 and σ > 22, or suggest the importance of increasing the ensemble members480

and/or increasing the coverage of the initial conditions for the calculations of the eLEs, all

of which are subject to future study.

4 Concluding remarks

Five- and six-dimensional Lorenz models (5DLM and 6DLM) were derived here and in

Shen14 to examine the impact of additional modes on solution’s stability. The 5DLM485

includes two new Fourier modes (i.e., the secondary temperature modes M5 and M6) that

introduce the additional nonlinear and dissipative terms. The 6DLM is a super set of the

5DLM, and contains one more Fourier mode (i.e., the secondary streamfunction mode M4)

that introduces additional nonlinear terms and adds a heating term. The individual and

collective impacts of these terms on solution stability were investigated. The 5DLM and490

6DLM have comparable critical Rayleigh parameters for the onset of the chaos, and the

parameters are larger than that of the 3DLM. Based on the calculations of the ensemble

averaged Lyapunov exponents (eLEs), the critical value rc for the 6DLM (5DLM) with σ = 10

is approximately 41.1 (42.9). Therefore, while the solution of the 3DLM becomes chaotic

when r ranges from 25 to 40, the 6DLM (5DLM) still produces stable steady-state solutions,495

suggesting that predictability can be improved by the increased degree of nonlinearity.

A quantitative comparison of the eLEs from the generalized LMs with or without ad-

ditional simplifications suggests the following: (1) The negative nonlinear feedback, first

identified in the 5DLM and represented by XY1 in both the 5DLM and 6DLM, plays a dom-

inant role in providing feedback for stablizing the solution in the 6DLM, (2) The additional500

heating term (rX1) associated with the M4 mode may destabilize the solution in the 6DLM

which has a smaller rc as compared to the 5DLM. The stability analysis provided in Sect. 3.1

indicates that the heating term rX1 may effectively reduce the dissipative effect associated

with theM5 mode, and, in turn, provides effective “positive” feedback through the nonlinear

feedback loop, (3) as a result of much smaller values in the X1, the induced destabilization505

(by the additional heating term) is much smaller than the induced stabilization (by the

negative nonlinear feedback term). Additionally, two nonlinear feedback terms associated

with M4 nearly cancel one another (e.g., Eqs. 32 and 33). Therefore, the rc of the 6DLM
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is only slightly smaller than that of the 5DLM. The 5DLM and 6DLM collectively illus-

trate the different roles of various high-wavenumber modes in stablizing or destabilizing510

system’s solutions. Additional analyses on mathematical derivations and numerical results

are summarized below.

As compared to the 3-D and 5-D LMs in the dissipationless limit, the 6-D non-dissipative

LM also poses two energy conservation relations. One states the conservation of the total

domain-averaged kinetic energy (KE) and available potential energy (APE), enabling the515

transfer between KE and APE. The results is consistent with the result in the 3-D and 5-D

non-dissipative LMs. In contrast, the additional conservation law only provides the conser-

vation of the domain-averaged kinetic energy associated with the primary streamfunction

mode (KEp) and the total domain-averaged potential energy (PE), instead of the total KE

and PE, as compared to the 3DLM and 5DLM. The two conservations do pose constraints520

on all six modes of the 6DLM. However, the potential issues (e.g., whether inconsistent

forcing may exist) are beyond the scope of the present study.

The competing impact of the nonlinearities and the dissipation and heating terms can be

illustrated using Eq. (10) of the 6DLM, as follows:

dZ

dτ
=XY −XY1 −X1Y − bZ.525

The first nonlinear term (XY ) and the linear term (bZ) can act as a forcing and dissipative

term, respectively, in the 3-D, 5-D, and 6-D LMs. The second and third nonlinear terms

(XY1 and X1Y ) are introduced as additional dissipative terms by the new modes. X1Y

is much smaller than the other terms, and XY1 can help reach a balance with XY and530

bZ to stabilize the solution. The negative nonlinear feedback by XY1 was first illustrated

by Shen14 for the 5DLM. However, the feedback by XY1 in the 6DLM may be (slightly)

different from that in the 5DLM. Specifically, while XY1 of the 5DLM includes the feedback

associated with additional nonlinear and dissipative terms, XY1 of the 6DLM includes the

feedback from the additional nonlinear and heating terms such as rX1.535

The above results provide different impacts associated with various secondary modes,

consistent with Lorenz’s statement in 1972, as follows: If the flap of a butterfly’s wings can

be instrumental in generating a tornado, it can equally well be instrumental in preventing

a tornado. The quote suggests the appearance of both positive and negative feedbacks (i.e.,

stabilization and destabilization) in association with various “small-scale” processes. Since540

mode truncation is unavoidable in finite-resolution models, the answer to the question of

whether or not the feedback by new modes is positive or negative should be made in the

proper context. The approach outlined here may help us understand why some generalized

LMs have a larger rc, while others have a smaller rc as compared to the 3DLM. For example,

among the five different generalized LMs in Tables 1 and 2 of Roy and Musielak (2007c),545

the two LMs that include M5 and M6 have a rc of ∼ 40− 42, comparable to the rc in
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the 5DLM (6DLM) outlined here. The Θ2(1,3) and Θ2(0,4) modes in Roy and Musielak

(2007c) are the same as the M5 and M6 modes in this study. In addition, the 14D LM,

with a comparable rc (rc ∼ 43.48) described by Curry (1978), also includes these two modes

Θ2(1,3) and Θ2(0,4), and does not have a vertical wavenumber higher than that of Θ2(0,4).550

In contrast, the 5-D LM of Roy and Musielak (2007b), which has a smaller rc (rc ∼ 22.5), does

include an additional heating term, although the two additional modes are different from the

secondary modes of the 5DLM and 6DLM in this study. Although preliminary analyses seem

encouraging, however, detailed comparisons with other generalized LMs (e.g., Howard and

Krishnamurti, 1986; Hermiz et al., 1995; Thiffeault and Horton, 1996) are still required. In555

addition, the further extenstion of the nonlinear feedback loop is being studied with M7−M9

modes, here M7 =
√
2sin(lx)sin(5mz), M8 =

√
2cos(lx)sin(5mz), M9 = sin(6mz). Using a

3D non-dissipative Lorenz model, which is shown to be a conservative system, we discussed

the collective and competing impact of the nonlinear feedback loop and heating term on the

energy cycle with four different regimes (e.g., Shen 2014b). We will further analyze the560

energy cycle in the higher-order dissipative or non-dissipative Lorenz models using the same

approach and compare the results with those using a different approach (e.g., Pelino et al.,

2014).

The 5DLM and 6DLM share some similarities regarding the system’s stability, but the

6DLM has one additional model. To further our understanding of the dynamics of chaos, it is565

required to address if and where additional critical points may appear and impact solution’s

stability in the 6DLM. Due to increasing difficulties in obtaining the analytical solutions of

the critical points for the 6DLM, it becomes more challenging to perform an analysis near the

critical points. In addition to the analysis for examining the competing impact between the

additional dissipative and heating terms, the dependence of solution’s stability on the time570

scale (i.e., duration) of the “forcing” terms deserves additional attention. Results obtained

in this study indicate eLE dependence on the number of modes (i.e., different resolutions)

and resolved processes (i.e., dissipative terms or heating term). To improve our confidence

in the model’s long-term climate projections using high-resolution global weather or climate

models, it is important to understand whether and how the long-term stability (eLE) in575

the global models may be influenced by the change of a model’s grid spacing as well as

the resolved “forcing” associated with different physics parameterizations. Achieving this

goal requires the extension or revision of the TS method for eLE calculations in the global

models, likely performed in future studies.

17



Appendix A580

Fractal dimension of the 6DLM

Various methods are available for calculating fractal dimensions. There are several mathe-

matical definitions of different types of fractal dimension. (Grassberger and Procaccia, 1983;

Nese et al., 1987; Ruelle, 1989; Zeng et al., 1992). In this study, we only discuss the method

for calculating the so-called Kaplan–Yorke dimension (Dky), which requires the calculation of585

Lyapunov exponents (LEs) and thus can be used for the verification of LE calculation. The

Kaplan–Yorke dimension is defined as follows (Kaplan and Yorke, 1979; Nese et al., 1987):

Dky =K +

∑K
i=1LEi

|LEK+1|
, (A1)

where LEi is the ith Lyapunov exponent, and K(≤ n) is the largest integer for which590

∑K
i=1LEi ≥ 0. Dky = 0 as LE1 < 0 and Dky = n as

∑n
i=1LEi > 0. In this study, “n”

ensemble-averaged Lyapunov exponents (eLEs), which are produced using the GSR method

(e.g., Shen14), are used to estimate the corresponding Dky. The summation of all eLEs

is provided in Fig. A1a, where −13.667, −30.667, and −94 are the values for the 3DLM,

5DLM and 6DLM, respectively; and are consistent with the stability analysis. For example,595

in the 6DLM, the summation of all eLEs should be equal to −(σ+1+ b+ doσ+ do +4b).

The three leading eLEs for the 3DLM, 5DLM and 6DLM are provided in Fig. A1b. The

corresponding fractal dimension obtained using the eLEs is provided in Fig. A2. For r = 28,

the leading eLEs of the 3DLM are (0.892743× 10+0, −0.701148× 10−3, −0.145587× 10+2),

which results in Dky = 2.06127208. The value is very close to the value of 2.063 docu-600

mented in Nese et al. (1987, p. 1957), and the value of 2.062 reported by Prof. Sprott

(http://sprott.physics.wisc.edu/chaos/lorenzle.htm). Here, the reader should note that the

2nd eLE is very small but not exactly equal to zero, indicating the impact of the 10 000

different initial conditions and/or the ”finite” integration time (T = 1000) in this study.

Acknowledgements. We thank Y.-L. Lin, R. Anthes, X. Zeng, and R. Pielke Sr. for valuable com-605

ments and encouragement. We are grateful for support from the NASA Advanced Information

System Technology (AIST) program of the Earth Science Technology Office (ESTO) and from the

NASA Computational Modeling Algorithms and Cyberinfrastructure (CMAC) program. Resources

supporting this work were provided by the NASA High-End Computing (HEC) Program through

the NASA Advanced Supercomputing division at Ames Research Center.610

18



References

Anthes, R.: Turning the tables on chaos: is the atmosphere more predictable than

we assume?, UCAR Magazine, available at: https://www2.ucar.edu/atmosnews/opinion/

turning-tables-chaos-atmosphere-more-predictable-we-assume-0, 2011.

Bender, C. M. and Orszag, S. A.: Advanced Mathematical Methods for Scientists and Engineers,615

McGraw-Hill, New York, 593 pp., 1978.

Benettin, G., L. Galgani, A. Giorgilli, and J. M. Strelcyn, 1980: Lyapunov Characteristic Exponents

fro Smooth Dynamical Systems and for Hamiltonian Systems; A method for computing all of

them. Part 1: Theory. Meccanica. 15, 9-20.

Blender, R. and Lucarini, V.: Nambu representation of an extended Lorenz model with viscous620

heating, Physica D, 243, 86–91, 2013.

Chen, Z.-M. and W. G. Price, 2006: On the relation between Raleigh-Benard convection and Lorenz

system. Chaos, Solitons Fractals, 28, 571-578.

Christiansen, F. and Rugh, H.: Computing Lyapunov spectra with continuous Gram–Schmid or-

thonormalization, Nonlinearity, 10, 1063–1072, 1997.625

Curry, J. H.: Generalized Lorenz systems, Commun. Math. Phys., 60, 193–204, 1978.

Curry, J. H., Herring, J. R., Loncaric, J., and Orszag, S. A.: Order and disorder in two- and

three-dimensional Benard convection, J. Fluid. Mech., 147, 1–38, 1984.

Ding, R. O. and Li, J. P.: Nonlinear finite-time Lyapunov exponent and predictability, Phys. Lett.,

354, 396–400, 2007.630

Eckhardt, B. and Yao, D.: Local Lyapunov exponents in chaotic systems, Physica D, 65, 100–108,

1993.

Franceschini, V. and C. Tebaldi, 1985: Truncations to 12, 14 and 18 Modes of the Navier-Stokes

Equations on a Two-Dimensional Torus. Meccanica 20, 207-230.

Franceschini, V., C. Giberti, and M. Nicolini, 1988: Common Period Behavior in Larger and Larger635

Truncations of the Navier Stokes Equations. J. Stat. Phys. 50, 879-896.

Froyland, J. and Alfsen, K. H.: Lyapunov-exponent spectra for the Lorenz model, Phys. Rev. A,

29, 2928–2931, 1984.

Gleick, J.: Chaos: Making a New Science, Penguin, New York, 360 pp., 1987.

Grassberger, P. and Procaccia, I.: Characterization of strange attractors, Phys. Rev. Lett., 5, 346–640

349, 1983.

Hermiz, K. B., Guzdar, P. N., and Finn, J. M.: Improved low-order model for shear flow driven by

Rayleigh–Benard convection, Phys. Rev. E, 51, 325–331, 1995.

Howard, L. N. and Krishnamurti, R. K.: Large-scale flow in turbulent convection: a mathematical

model, J. Fluid Mech., 170, 385–410, 1986.645

IPCC: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to

the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by:

Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and

Miller, H. L., Cambridge University Press, Cambridge, UK and New York, NY, USA, 996 pp.,

available at: http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-faqs.pdf, 2007.650

19



Kaplan, J. L. and Yorke, J. A.: Chaotic behavior of multidimensional difference equations, in: Func-

tional Differential Equations and the Approximations of Fixed Points, edited by: Peitgen, H. O.

and Walther, H. O., Lect. Notes in Math. 730, Springer-Verlag, New York, 228–237, 1979.

Kazantsev, E.: Local Lyapunov exponents of the quasi-geostrophic ocean dynamics, Appl. Math.

Comput., 104, 217–257, 1999.655

Kennamer K.S.: M.S. Thesis The University of Alabama in Huntsville, 1995.

Li, J., and Ding, R.: Temporal-Spatial Distribution of atmospheric predictability limit by local

dynamical analogs, Mon. Weather Rev., 139, 3265–3283, 2011.

Lorenz, E.: Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130–141, 1963.

Lorenz, E.: Predictability: does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?,660

Talk presented 29 December, 1972, AAAS Section on Environmental Sciences, New Approaches

to Global Weather: GARP Boston, Mass., available at: http://eaps4.mit.edu/research/Lorenz/

Butterfly 1972.pdf, 1972.

Lucarini, V., and K. Fraedrich: Symmetry breaking, mixing, instability, and low-frequency vari-

ability in a minimal Lorenz-like system, PRE 80, 026313, 2009.665

Musielak, Z. E., Musielak, D. E., and Kennamer, K. S.: The onset of chaos in nonlinear dynamical

systems determined with a new fractal technique, Fractals, 13, 19–31, 2005.

Nese, J. M.: Quantifying local predictability in phase space, Physica, 35, 237–250, 1989.

Nese, J. M. and Dutton, J. A.: Quantifying predictability variations in a low-order ocean atmosphere

model: a dynamical systems approach, J. Climate, 6, 185–204, 1993.670

Nese, J. M., Dutton, J. A., and Wells, R.: Calculated attractor dimensions for low-order spectral

models, J. Atmos. Sci., 44, 1950–1972, 1987.

Nicolis, C., 1999: Entropy production and dynamical complexity in a low-order atmospheric model.

Q. J. R. Meteorol. SOC., 125, pp. 1859-1 878

Pelino, V., F, Maimone, A. Pasini: Energy cycle for the Lorenz attractor, Chaos, Solitons Fractals675

64 (2014), 67–77, 2004.

Pielke, R.: The Real Butterfly Effect, available at: http://pielkeclimatesci.wordpress.com/2008/

04/29/the-real-butterfly-effect/, 2008.

Roy, D. and Musielak, Z. E.: Generalized Lorenz models and their routes to chaos, I. Energy-

conserving vertical mode truncations, Chaos Soliton Fract., 32, 1038–1052, 2007a.680

Roy, D. and Musielak, Z. E.: Generalized Lorenz models and their routes to chaos, II. Energy-

conserving horizontal mode truncations, Chaos Soliton Fract., 31, 747–756, 2007b.

Roy, D. and Musielak, Z. E.: Generalized Lorenz models and their routes to chaos, III. Energy-

conserving horizontal and vertical mode truncations, Chaos Soliton Fract., 33, 1064–1070, 2007c.

Ruelle D., 1989: Chaotic Evolution and Strange Attractors. [Online]. Lezioni Lincee.685

Cambridge: Cambridge University Press. Available from: Cambridge Books Online

¡http://dx.doi.org/10.1017/CBO9780511608773¿ [Accessed 27 September 2015].

Saltzman, B.: Finite amplitude free convection as an initial value problem, J. Atmos. Sci., 19,

329–341, 1962.

Shen, B.-W.: Nonlinear feedback in a five-dimensional Lorenz model, J. Atmos. Sci., 71, 1701–1723,690

20



doi:http://dx.doi.org/10.1175/JAS-D-13-0223.110.1175/JAS-D-13-0223.1, 2014.

Shen, B.-W.: On the nonlinear feedback loop and energy cycle of the non-dissipative Lorenz

model. Nonlin. Processes Geophys. Discuss., 1, 519–541, 2014 www.nonlin-processes-geophys-

discuss.net/1/519/2014/

Shen, B.-W., Atlas, R., Reale, O., Lin, S.-J., Chern, J.-D., Chang, J., Henze, C.,695

and Li, J.-L.: Hurricane forecasts with a global mesoscale-resolving model:

preliminary results with hurricane Katrina (2005), Geophys. Res. Lett., 33,

doi:http://dx.doi.org/10.1029/2006GL02614310.1029/2006GL026143, 2006.

Shen, B.-W., Tao, W.-K., Lin, Y.-L., and Laing, A.: Genesis of twin tropical cyclones as revealed

by a global mesoscale model: the role of mixed Rossby gravity waves, J. Geophys. Res., 117,700

D13114, doi:http://dx.doi.org/10.1029/2012JD01745010.1029/2012JD017450, 2012.

Shen, B. W., DeMaria, M., Li, J.-L. F., and Cheung, S.: Genesis of hurricane Sandy

(2012) simulated with a global mesoscale model, Geophys. Res. Lett., 40, 4944–4950,

doi:http://dx.doi.org/10.1002/grl.5093410.1002/grl.50934, 2013.

Sprott, J. C.: Chaos and Time-Series Analysis, the numerical method is briefly discussed on http:705

//sprott.physics.wisc.edu/chaos/lyapexp.htm., Oxford University Press, 528 pp., 2003.

Thiffeault, J.-L. and Horton, W.: Energy-conserving truncations for convection with shear flow,

Phys. Fluids, 8, 1715–1719, 1996.

Treve, Y. M. and Manley, O. P.: Energy conserving Galerkin approximations for 2-D hydrodynamic

and MHD Benard Convection. Physica, 4, 319–342, 1982.710

Wolf, A., Swift, J. B., Swinney, H. L., and Vastano, J. A.: Determining Lyapunov exponents from

a time series, Physica, 16, 285–317, 1985.

Zeng, X., Eykholt, R., and Pielke, R. A.: Estimating the Lyapunov-exponent spectrum from short

time series of low precision, Phys. Rev. Lett., 66, 3229–3232, 1991.

Zeng. X., Pielke, R. A., and Eykholt, R.: Estimate of the fractal dimension and predictability of715

the atmosphere, J. Atmos. Sci., 49, 649–659, 1992.

21



Table 1. A list of numerical experiments for different Lorenz models. The column “Modifications”

indicates additional changes in the “Equations”. The rc and rlc are determined based on the eLEs

analyses and the linear stability analysis, respectively. Solutions in “Figures” are rescaled using the

factors listed in the “Scaling factors”. ∗ for the 3DLM, the ensemble averaged LE is 1.2× 10−2 at

r = 23.7, and becomes 0.26 at r = 24. The 5-D and 6-D non-dissipative Lorenz models (5D-NLM

and 6D-NLM) are used to examine the energy conservation properties.

Case IDs Equations Modifications Figures rc rlc Scaling factors

3DLM Eqs. (15)–(17) N/A 2 23.7∗ 24.74 Eq. (21)

of Shen14 of Shen14

5DLM Eqs. (10)–(14) N/A 2–5, 7 42.9 45.94 Eq. (19)

of Shen14 of Shen14

6DLM Eqs. (8)–(13) N/A 2–7 41.1 N/A same

6DLMS1 Eqs. (8)–(13) ignoring terms that 5–6 42.3 N/A same

involve X1 in Eqs. (9) and (10)

6DLMS2 Eqs. (8)–(13) ignoring the term 5–6 23.9 N/A same

−XY1 in Eq. (10)

6DLMS3 Eqs. (8)–(13) ignoring the term 5–6 42.1 N/A same

rX1 in Eq. (12)

5D-NLM Eqs. (10)–(14) ignoring dissipative terms 1 N/A N/A N/A

of Shen14

6D-NLM Eqs. (8)–(13) ignoring dissipative terms 1 N/A N/A N/A
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Figure A1: Three leading ensemble averaged Lyapunov exponents (eLEs) as a function of the normalized Rayleigh
number (r) (a), and the summation of all eLEs in the LMs (b). The pink, black, and blue lines indicate the eLEs
for the 3D, 5D and 6D LMs, respectively. The solid, dotted, and dashed lines display the first, second and third
eLEs, respectively. In panel (a), the pink, black, and blue lines are shifted with a constant value of 13.667,
30.667+0.02 and 94.0+0.04, respectively. To save computational resources, the eLEs of the 5D and 6D LMs are
calculated over a shorter range of values for r (i.e., 35 ≤ r ≤ 50).
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Figure 1: Time evolution of energy conservation laws from the 5D-NLM and 6D-NLM. (KE + PE) and (KE +
APE) are displayed for the 5D-NLM, while (KEp+PE) and (KE+APE) are shown for the 6D-NLM. Panels (a)

and (b) are for r = 25, and r = 45, respectively. All fields are normalized using the constant Co (=π2κ2( 1+a
2

a
)3),

and each of the above lines is shifted to the summation of the corresponding initial value and a constant value
(e.g., 0.06 in the green line).
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Figure 2: (Y,Z) plots in the 3DLM (a) and 6DLM (b) with r=35; and 5DLM (c) and 6DLM (d) with r=42.
Lorenz strange attractors appear in (a) and (d). All of the solutions are normalized by the the corresponding
critical points, namely, Eq. (21) of Shen14 for the 3DLM and Eq. (19) of Shen14 for the 5DLM and 6DLM.



(a) (b)

Figure 3: Forcing terms of dZ/dτ with r = 35, which are from Eq. (12) for the 5DLM (a) and Eq. (10) for the
6DLM (b), respectively. The black and orange lines represent XY and bZ, respectively, while the blue and red
lines represent XY1 and 5X1Y , respectively.
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solutions is indicated by positive eLEs.
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Figure 5: Same as Fig. 4 except for (a) the 3DLM (in pink) and the 6DLMS2 (in orange); and (b) the 6DLMS1
(in red) and 6DLMS3 (in green).
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Figure 6: The r-time diagram of numerical solutions from the 6DLM (a,b), 6DLMS1 (c,d), and 6DLMS3 (e,f). r
ranges from 25 to 50 with ∆r = 0.5. Panels (a, c, e) show −Y/Yc and panels (b, d, f) show −Y1/Y1c. Yc and Y1c

are the critical points of the 5DLM as defined in Eq. (19) of Shen14. The black line indicates a constant value of
r = 43.



Figure 7: The rc of the 6DLM as a function of σ. The rc, shown by blue multiplication signs (X) are determined
by the eLEs of the nonlinear 6DLM. The pink and black lines indicate a constant contour of Re(λ)=0 for the linear
3DLM and 5DLM, respectively, indicating the corresponding rc based on a linear stability analysis. Solid circles
with the same color scheme indicate a rc determined by the eLEs analysis with △r = 0.1 in the corresponding
nonlinear LM.


