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2 

Abstract.  Directed graph representation of a Markov chain model to study global 

earthquake sequencing leads to a time-series of state-to-state transition 2 

probabilities that includes the spatio-temporally linked recurrent events in the 

record-breaking sense.  A state refers to a configuration comprised of zones with 4 

either the occurrence or non-occurrence of an earthquake in each zone in a pre-

determined time interval.  Since the time-series is derived from non-linear and 6 

non-stationary earthquake sequencing, we use known analysis methods to glean 

new information.  We apply decomposition procedures such as ensemble empirical 8 

mode decomposition (EEMD) to study the state-to-state fluctuations in each of the 

intrinsic mode functions.  We subject the intrinsic mode functions, derived from 10 

the time-series using the EEMD, to a detailed analysis to draw information-content 

of the time-series.  Also, we investigate the influence of random-noise on the data-12 

driven state-to-state transition probabilities.   We consider a second aspect of 

earthquake sequencing that is closely tied to its time-correlative behavior.  Here, 14 

we extend the Fano factor and Allan factor analysis to the time-series of state-to 

state transition frequencies of a Markov chain.   Our results support not only the 16 

usefulness the intrinsic mode functions in understanding the time-series but also 

the presence of power-law behaviour exemplified by the Fano factor and the Allan 18 

factor. 

 20 
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1    Introduction 

Earthquake sequencing has been the subject of detailed research (Nava et al., 2005; 2 

Ünal and Çelebioğlu, 2011, 2014; Telesca et al., 2001, 2008, 2009, 2011; Cavers 

and Vasudevan, 2013, 2015; Vasudevan and Cavers, 2012, 2013) both in the 4 

regional and global sense in recent years.  Nava et al. (2005) have introduced the 

Markov chain model to study the earthquake sequencing in a seismogenically active 6 

region where the region is partitioned into zones.  The functionality of the method 

is determined by the characteristics of the state-to-state transitions where each state 8 

is described by the earthquake occupancy of the zones.  In particular, for a given 

number of zones, N, a state corresponding to a time interval is expressed as a 10 

concatenation of binary digits bN-1…b1b0, where bL = 1 (or bL = 0) indicates there 

was (or was not) an earthquake occurrence in zone L during the specified time 12 

interval.  Thus, states can fall into zones of no occupancy to full occupancy at the 

extreme and into zones where some are occupied and some are not. The approach 14 

of Nava et al. (2005) was immediately extended to other regions (Herrera et al., 

2006; Ünal and Çelebioğlu, 2011, 2014).  Cavers and Vasudevan (2013) adapted 16 

the method of Nava et al. (2005) to a global catalogue which was partitioned into 

zones on the basis of the tectonic boundaries (DeMets et al. (1990, 2010), Bird 18 

(2003), Kagan et al., 2010).  The existing Markov chain model was refined by 

incorporating the record-breaking recurring events for each event in the catalogue 20 

under certain constraints.  A directed graph representation of the modified Markov 

chain model was then subjected to detailed analysis for forecasting purposes (Cavers 22 

and Vasudevan, 2015). 

     One consequence of the approach taken by Cavers and Vasudevan (2015) and 24 

Vasudevan and Cavers (2013) is that it results in a time-series of state-to-state 
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transition frequencies of the modified Markov chain model, xsstf(t).  This time-series 

is for an optimized time-interval, t.   The fluctuations in state-to-state transitions 2 

are t sampled.  The time-series is a comprehensive representation of earthquake 

sequencing in which interaction of seismic events within and among zones are 4 

considered.  Therefore, it can be subjected to a detailed analysis. 

     Earthquake sequencing may be considered a non-linear and non-stationary 6 

process (Kanamori, 2003; Telesca et al., 2001, 2008, 2009, 2011; Flores-Marquez 

and Valverde-Esparza, 2012).  In earthquake sequencing, earthquakes are viewed as 8 

part of a point process, with earthquake events occurring at some random locations 

in time.  This means that the earthquake sequencing is dictated by the set of event 10 

times, and can also be expressed by the set of time-intervals between events.  The 

time-series of earthquakes for any time-interval can be analyzed in many ways 12 

(Telesca et al., 2001, 2008, 2009, 2011).   

     We postulate here that the non-linear and non-stationary behavior in the time-14 

series should also be present in the time-series of the state-to-state transition 

frequencies derived from earthquake sequencing.  Hence, we consider the 16 

approaches of Telesca et al. (2001, 2008, 2009, 2011) to be appropriate for a study 

here. 18 

     Non-linear and non-stationary time-series have been examined in recent years 

with a method known as empirical mode decomposition (EMD) and the intrinsic 20 

mode functions derived from this are useful in this regard (Huang et al., 1998).  The 

present time-series of state-to-state transition frequencies is suited for such a study.   22 

     In general, the time-series has non-zero amplitudes for the state-to-state 

transition frequencies (Cavers and Vasudevan, 2015).  In this particular case, there 24 
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are instances where there are no earthquakes exceeding the magnitude of 5.6 in all 

zones for one or more time steps.  This introduces “intermittency” in the time series.  2 

     However, because of the presence of intermittency in it, an ensemble approach 

to empirical mode decomposition, EEMD (Wu and Huang, 2004, 2009; Flandrin et 4 

al., 2004, 2005) is applied here.  The intermittency problem is handled with the 

addition of random noise to the time-series before carrying out the EEMD (Wu and 6 

Huang, 2009).  We examine the criteria used for the selection of the added noise 

and the ensemble number for the EEMD.  8 

     Another aspect of the study here is to ask a question if the time-series resulting 

from a directed graph representation of the Markov chain model of earthquake 10 

sequences exhibits power-law statistics similar to a description of fractal stochastic 

point processes (Telesca et al., 2001, 2009, 2011) to model the time-occurrence-12 

sequence of seismic events.  Quantifying the earthquake sequencing in terms of its 

fractal properties was done by means of the Fano factor and the Allan factor (Allan, 14 

1966; Barnes and Allan, 1966; Lowen and Teich, 1993, 1995; Thurner et al., 1997; 

Telesca et al., 2001, 2009, 2011; Flores-Marquez and Valverde-Esparza, 2012; 16 

Serinaldi and Kilsby, 2013).  Since the fractal properties of the time-series studied 

here has never been investigated, we calculate the Fano factor and the Allan factor 18 

for the purpose of quantitative analysis. 

     The remainder of the paper is divided into three sections.  In the next section, we 20 

show how the time-series of the state-to-state transition frequencies for a modified 

Markov chain model as described in Cavers and Vasudevan (2015) is generated.  In 22 

the following section, we describe the EEMD procedure used and the analysis of 

the results that accrue from this procedure.  We extend the approaches of Telesca et 24 

al. (2001, 2008, 2009, 2011) to calculate the Fano factor and the Allan factor with a 
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view to study the fractal properties of the time-series. In the last section, we discuss 

the results of the analysis methods and draw certain inferences about the state-to-2 

state transition frequencies. 

 4 

2    Directed graph representation of earthquake sequencing 

A Markov chain is a discrete-time stochastic process X = {X0, X1, X2, ...} with state 6 

space S where Pr{Xn+1 = j | X0, …, Xn} = Pr{Xn+1 = j | Xn}, for all j in S and n in {0, 

1, 2, …}.  For each n, the state of Xn+1 is independent of X0, X1, ..., Xn-1 given Xn, and 8 

furthermore, we assume Pr{Xn+1 = j | Xn = i} is independent of n (Çınlar, 1975).  To 

build a Markov chain model we first partition the region, either local or global, into 10 

zones.  Typically these zones are made up of rectangles that divide the region (Nava 

et al., 2005; Ünal and Çelebioğlu, 2011).  Recently, other partitions have been used.  12 

In particular, Cavers and Vasudevan (2015) used a simplified 5-zone plate boundary 

template as given by Kagan et al. (2010) to study global seismicity, while Ünal et 14 

al. (2014) used a seismic zones map that uses geographic information system 

analysis to divide Turkey into regions.  For this particular study, we used the five-16 

zone model described in Cavers and Vasudevan (2015) and give an overview of its 

construction here. 18 

     Kagan et al. (2010) partitioned the shallow (≤ 70 km-depth) events with moment 

magnitude, Mw from the Global CMT catalogue (1982/01/01-2007/03/31) into 20 

5 zone sub-catalogues using their grid-assignment schemes (Table 1).  The selected 

catalogue consists of 6752 earthquakes with 4407 from Zone 4 (Trenches), 723 22 

from Zone 3 (Fast-spreading ridges), 487 from Zone 2 (Slow-spreading ridges), 898 

from Zone 1 (Active continent), and 237 from Zone 0 (Plate interior) respectively.  24 

For these five zones, we express a state, corresponding to a time interval ∆t, as a 
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concatenation of binary digits b4b3b2b1b0 , where bL = 1 indicates an earthquake 

occurrence in zone L during the specified time interval ∆t, and bL = 0 indicates the 2 

lack of an earthquake occurrence in zone L during the specified time interval ∆t.  

We use Θ = [θij] to denote the transition frequency matrix, where  θij is the number 4 

of occurrences of transitions from state i to state j.  Letting s(n) represent the state 

for interval number n, the probability transition matrix, P = [pij], consists of 6 

transition probabilities, pij, given as 

pij = Pr {s(n+1) = j | s(n) = i} = Pr {j|i},   (1) 8 

pij = θij / ξij,  where ξij = Σj  θij.   (2) 

     A finite-state Markov chain can be depicted using a digraph representation, G, 10 

where the set of possible states (binary strings of length 5) are the nodes, and an arc 

(i, j) connects two states i and j if and only if pij > 0 (Jarvis and Shier, 1996).  Figure 12 

1 shows an example of a digraph representing a Markov chain with a three zone 

partition, hence, there there are 23 = 8 states {000, 001, 010, 011, 100, 101, 110, 14 

111} that we write in decimal format {0, 1, 2, 3, 4, 5, 6, 7}, respectively.  In this 

figure, we do not show all of the possible transitions between states and typically an 16 

arc (i, j) is omitted when pij = 0.  We follow the same decimal state labelling format 

as in Figure 1 for our 25 = 32 states, that is, state ‘0’ (representing 00000 in binary) 18 

corresponds to no earthquake occurrence in all five zones in the chosen time 

interval, t, and state ‘31’ (representing 11111 in binary) points to earthquake 20 

occurrences in all five zones.  Table 2 shows details for defining all other states, ‘1’ 

to ‘29’. 22 

     For a Markov chain structure given earlier for the five zones, the computation 

of transition frequencies and hence, transition probabilities, depend on the chosen 24 

time-interval, ∆t. We use the simple rules outlined by Nava et al. (2005) to choose 
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∆t: 

1. ∆t should be small enough such that the hazard estimations are useful; 2 

2. ∆t should not be too small that the most frequently occurring transition is 

from state 0 to state 0; 4 

3. ∆t should not be too large that state 31 to state 31 transitions are dominant. 

So, for the threshold magnitudes chosen, ∆t should be large enough to allow 6 

interaction among regions and make estimates of Markov chain transition 

probabilities robust.  Following the selection rules given elsewhere (Nava et al., 8 

2005; Ünal and Çelebioğlu, 2011; Cavers and Vasudevan, 2015), we used a t value 

of 9 days for the construction of the Markov chain of transition probabilities.    The 10 

combinatorial structure of a digraph representation of the Markov chain model 

contains important information for earthquake sequencing (Cavers and Vasudevan, 12 

2015).  It is often useful to use a weight, wij, for each arc (i, j) of the digraph to get 

a weighted digraph.  The weights have the form wij = θij, wij = pij, or can be 14 

empirically derived from the Markov chain.  To introduce spatial-temporal 

complexity into the model so that transitions with earthquake occurrences at large 16 

distances have less of an impact on our model than transitions with earthquake 

occurrences at short distances, we follow the approach by Cavers and Vasudevan 18 

(2015) to modify the weights wij in the weighted digraph by considering recurrences.  

Each earthquake (event) in a zone may have several recurring events in the record-20 

breaking sense (Davidsen, 2008).  For example, an event j is treated as a record with 

respect to an earthquake i if no event takes place within the spatial distance, dij, 22 

between i and j around i during the time interval [ti,, tj] with ti < tj.  The next record-
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breaking event, k, in the catalogue with reference to the original event, i, during the 

time interval [ti, tk] with ti < tk will have a spatial distance, dik, less than dij.    The 2 

recurring events for one event in a given zone may fall into other zones or may be 

in the same zone.  This flexibility adds to the possibility of interactions among 4 

zones.  We first form the network of recurrences as described by Davidsen et al. 

(2008).  The weight applied to each arc in the network of recurrences is derived 6 

empirically by using a total count of record breaking events between the 

corresponding earthquake zones and the distance involved (Cavers and Vasudevan, 8 

2015; Vasudevan and Cavers, 2013).  Each recurrence from an earthquake a to an 

earthquake b in the sequence is given a weight between 0 and 1, with a weight equal 10 

to 1 if the distance between a and b is less than 50 km.  If the distance is r with r > 

50 km and earthquakes a and b occur in Zones j and k respectively, a weight of  12 

[Ljk(20000) - Ljk(r)] / [Ljk(20000) - Ljk(50)]  (3) 

is given, where Ljk(r) defined by Cavers and Vasudevan (2015) is the number of 14 

record-breaking events from zone j to zone k at distance at most r in the network of 

recurrences.  The function in Equation (3) is a decreasing function in r giving a 16 

weight close to 0 when the distance r is large.  Note that for r = 50 km, an output of 

1 is given while for r = 20,000 km, an output of 0 is given.  As described by Cavers 18 

and Vasudevan (2015), a Markov chain with the inclusion of spatio-temporal 

complexity of recurring events is derived by summing the weights of the recurrence 20 

arcs corresponding to occurrences from state i to state j in consecutive time-

intervals.  Here, we calculated the time-series of the resulting state-to-state sequence 22 

(Figure 2a) and the corresponding transition frequency matrix (Figure 2b).  There is 

one comment in order here.  Figures 2a and 2b provide different representations of 24 

the same Markov chain.  The first can be considered “dynamic”, because it shows 
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the time evolution of the transition from one state to another in consecutive time 

intervals of 9 days each.  The second can be considered “static” because it shows 2 

the transition probabilities from one state to another but considering the whole 

earthquake sequence occurred during the whole observation period.  However, they 4 

are not equivalent.  We can go from the time-series data to transition-frequency 

matrix.  We cannot go from the transition-frequency matrix to time-series without 6 

the additional information such as the catalogue and the record-breaking statistics 

of recurrences. Since it is obtained from the non-linear, non-stationary global 8 

earthquake sequence, we consider it non-linear and non-stationary as well, and 

hence, can be subjected to analysis methods.  Although it is not shown here, the 10 

approach equally applies to earthquake catalogues from localized seismogenic 

zones.   12 

 

3    Analysis methods and results 14 

Each sample in the time-series shown in Figure 2a represents a “zone-configuration” 

state (Table 2).  By definition, a zone-configuration has no zone or some zones or 16 

all zones highlighted by an earthquake or more in the optimally chosen time-

interval.  Going from one sample to the next does not only represent going from one 18 

state to the next but also shows the amplitude fluctuation between them.  The 

adjacent states could represent the same zone-configuration or different zone-20 

configurations. The time-series deduced from using the present approach with the 

five-zones marks the state-to-state fluctuations arising out of the fluctuations of 22 

oscillations or earthquake occurrences in the five-zones.  We present in the 

following two analysis methods to glean an insight into the characteristics of the 24 

time-series. 
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3.1.    Ensemble empirical mode decomposition as applied to state-to-state    2 

            transition frequency sequence 

 4 

For non-linear and non-stationary time-series, the method of empirical mode 

decomposition (EMD) has been recently proposed as an adaptive time-frequency 6 

analysis method (Huang et al., 1998, 1999) to decompose the original data into a 

basis set of intrinsic mode functions.  Since the process that leads to the state-to-8 

state transition frequency sequence or time-series is inherently non-linear and non-

stationary, it is appropriate to apply the EMD to this data to understand the behavior 10 

of the intrinsic mode functions.  The time-series (Figure 2a) reveals the fluctuations 

in the state-to-state transition frequencies arising out of varying occupancy of the 12 

zones from one time interval to the next.  A situation would easily arise when two 

or three successive state-to-state transitions do not have earthquake occurrences in 14 

any of the zones studied.  This would translate into intermittency in the time-series.  

Recent studies (Flandrin et al., 2004, 2005; Gledhill, 2003; Wu and Huang, 2004, 16 

2009) support the idea of carrying out noise-added analyses with the EMD.  The 

noise added analyses involves multiple realization of added noises to the time-series 18 

in question, leading to the ensemble EMD (EEMD), as proposed by Wu and Huang 

(2004, 2009).   20 

     In the EEMD, the signal or the time-series in question with the added Gaussian 

white noise, denoted as one trial, would populate the whole time-frequency space 22 

uniformly with the constituting component of different scales.   Since the noise 

added in each trial is different, the ensemble mean of the noise cancels out and, 24 

hence, the signal resides in the intrinsic mode functions generated from the EEMD 

(Wu and Huang, 2009).  26 
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     The time-series of state-to-state transition frequencies of the modified Markov 

chain model, xsstf(t), is taken as the signal.  In each realization of the experiment, 2 

white noise, w(t), is added to the signal.  One might interpret the added Gaussian 

white noise as the possible random noise that would be encountered in the 4 

measurement process or in certain restrictions applied to the calculation of edge 

weights in the modified Markov chain.  So, for the ith realization,  6 

xsstf,i(t)  =  xsstf(t)  + wi(t).                             (4) 

For each realization, we decompose the data with the added Gaussian white noise 8 

into intrinsic mode functions (IMFs). We consider the ensemble means of the IMFs 

of the decompositions as the final result.   10 

     Wu and Huang (2009) recommended that the ensemble size should be kept large 

and the amplitude of the added noise should not be small.  We set the ensemble 12 

number for the number of realizations in EEMD large such that the noise series 

cancel each other in the final mean of the corresponding IMFs.  For the two 14 

parameters, we used an ensemble size of 1000 and added noise with an amplitude 

of 0.2 times the standard deviation of the original data.  We assume that the IMFs 16 

resulting from the EEMD represent a substantial improvement over the IMFs of the 

original EMD in that it utilizes the full advantage of the statistical characteristics of 18 

white noise to perturb the signal in its true solution neighbourhood, and to cancel 

itself after serving its purpose (Wu and Huang, 2009).  EEMD results are 20 

summarized in Figures 3a to 3t with intrinsic mode functions followed by their state-

to-state relative weight matrices derived from the basis set of the intrinsic mode 22 

functions of the time-series in a fashion identical to the original time-series.  By 

summing the weights of the recurrence arcs corresponding to occurrences from state 24 

i to state j in consecutive time-intervals, we calculate the weighted matrix for state-
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to-state transitions for each intrinsic mode function.  Since the intrinsic mode 

functions are the mathematical basis set of the original time-series, their static 2 

displays or the weighted matrices show negative values.  Identical to the sum of the 

intrinsic mode functions yielding the original time-series, the sum of the weighted 4 

matrices yields its transition frequency matrix.  Similar to what Huang et al. (1998, 

Figure 6 in their paper) have observed with the wind data, all of the intrinsic mode 6 

functions excluding the trend for the wind data contain both positive and negative 

values.   We observe the same thing with the time-series in that the transition 8 

probability values for the IMFs show both positive and negative values except that 

the first two IMFs have negative values larger than the lowest positive value of the 10 

trend.  So, it is not surprising that the transition frequency matrices of the IMFs 

contain the positive and negative numbers.  However, viewing each IMF with the 12 

trend starting with the third IMF will obviate this difficulty in that the high or low 

frequency fluctuations ride on the trend with no negative values and the 14 

corresponding transition-frequency matrices are positive.  A similar observation has 

been made by Huang et al. (1998, Figure 7) with their wind data.  The observation 16 

made with the first two IMFs suggests a limit on the proposed method, and it would 

require further investigation. 18 

     The decomposition of the original time series into intrinsic mode functions and 

the trend is dyadic in nature, as shown in Figure 3.   This means that as we go from 20 

the first intrinsic mode function to the second and so on, the interval increases by a 

factor of 2 from t = 9 days to t = 18 days and so on.  With an increase in the time 22 

interval from one IMF to the next, we observe the relative weights of the state-to-

state transitions to vary.  We also find that the state-to-state transitions within each 24 

IMF occur in packets, and the number of packets progressively decreases.   The last 
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packet of state-to-state transitions is persistent over the first 8 IMFs corresponding 

to a time-interval of 9 days to 1152 days suggests the importance of the zone 4 2 

earthquakes in understanding the earthquake sequencing.   Although zone 4 

earthquakes persist in the state-to-state transitions in the first few intrinsic mode 4 

functions, the participation of other zones in state-to-state transitions becomes 

significant in the higher intrinsic mode functions, IMFs 6 to 9. 6 

In general, the intrinsic mode functions are characterized by (1) a certain number of 

a pattern of rise and fall of the arc weights and (2) by a systematic decrease in the 8 

frequency of the number of such patterns as one goes intrinsic mode function 1 to 

the intrinsic mode function 9.   Since the rise and fall of the arc weights covers the 10 

entire catalogue of data, the periodicity that we notice could be intrinsic to 

earthquake processes. 12 

  The Hilbert-Huang amplitude spectrum of the time series, shown in Figure 4, 

reveals at least two important features: (1) The temporal fluctuations in amplitudes 14 

occur in packets, each packet containing a set of zone to zone interactions.  The 

oscillatory behaviour of packets contains certain periodicity within the earthquake 16 

sequence.  A periodic trend at low frequencies suggests the role of zone 4 (Trenches) 

and zone 0 (Intraplate).  A higher power at 2004/03/06 and 2005/05/30 indicates the 18 

importance of zone 4 with earthquakes of larger magnitude prompting a cascade of 

aftershocks in zone 4 and main shocks in zones that are in close proximity to zone 20 

4. (2) The frequency-dependence of amplitude packets encapsulates the relative 

importance of the interaction among multiple zones over different time intervals.  22 

We interpret them to mean that certain state-to-state transitions involving zone 4 are 

important over a range of frequencies. 24 

3.2    Evaluation of fractality in a state-to-state transition frequency sequence 
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Earthquake occurrences have been modelled to be stochastic point processes 

(Thurner et al., 1997; Telesca et al., 2001, 2005, 2009 and 2011; Flores-Marquez 2 

and Valverde-Esparza, 2012).  One representation of the point process is to examine 

the inter-event time-intervals.  The resulting inter-event interval probability density 4 

function says something about the behavior of the times between events.  We do not 

know anything about the information contained in the relationships among these 6 

items.  Since successive events do not occur in constant time-intervals, another 

representation of a point process is given by dividing the time-axis into equally 8 

spaced contiguous counting windows of duration , and producing a sequence of 

counts that fall within each time-window.  For example, for the kth time-window, 10 

the expression for the number of counts, Nk(), is given by 

𝑁𝑘(𝜏) = ∫ ∑ 𝛿(𝑡 − 𝑡𝑗)𝑛
𝑗=1

𝑡𝑘

𝑡𝑘−1
dt  (5) 12 

where Nk() is the number of earthquakes in the kth window (Figure 5; panels a to 

d).  The correlation in the process {Nk()} is the correlation in the underlying point 14 

process (Lowen and Teich, 1993a, 1993b; Thurner et al., 1997; Telesca et al., 2001, 

2005, 2009, 2011) have accessed such a representation of the point-processes to 16 

underscore the existence or non-existence of fractality in them.  They have two 

calculable measures, Fano factor (FF) and Allan factor (AF), to quantify the 18 

fractality of the process (Lowen and Teich, 1993a, 1993b; Thurner et al., 1997; 

Telesca et al., 2001, 2005, 2009, 2011; Flores-Marquez and Valverde-Esparza, 20 

2012). 

     The Fano factor is a measure of correlation over different timescales (Thurner et 22 

al. 1997).  It is defined as the ratio of the variance of the number of events in a 

specified counting time  to the mean number of events in the counting time, as is 24 

given by       
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𝐹𝐹(𝜏) = 
〈𝑁𝑘

2(𝜏)−𝑁𝑘(𝜏)〉2

〈𝑁𝑘(𝜏)〉
    (6) 

 2 

where < > denotes the expectation value.  Lowen and Teich (1995) point out that 

the FF of a fractal point process follows a power law with the power-law exponent, 4 

, obeying 0 <  < 1.  In other words, the FF is always greater than 1.  For Poisson 

processes, the FF is always near unity for all counting times, and the fractal 6 

exponent is approximately equal to zero. 

     The Allan factor is a relation with the variability of successive counts (Allan, 8 

1996; Barnes and Allan, 1966).  It is the ratio of the variance of successive counts 

for a specified counting time divided by twice the mean number of events in the 10 

counting time.  The expression of AF is given as      

𝐴𝐹(𝜏) = 
〈𝑁𝑘+1(𝜏)−𝑁𝑘(𝜏)〉2

2〈𝑁𝑘(𝜏)〉
   (7) 12 

Similar to the FF, the AF assumes values near unity for Poisson processes.  Telesca 

et al. (2009, 2011; henceforth, referred to as Telesca’s approach) and Flores-14 

Marquez and Valverde-Esparza (2012) have shown the power-law exponent for the 

AF to be 0 <  < 1. 16 

     In this paper, we examine both the results of Telesca’s approach to the initial 

catalogue of the data used and of the new representation of the point process with a 18 

Markov chain model.  For the working model, we compute the state-to-state 

transition frequencies as described by Nava et al. (2005) and as applied to global 20 

seismicity (Vasudevan and Cavers, 2012; Cavers and Vasudevan, 2013). 

Expressions similar to equations (6) and (7) can be derived if we know the optimal 22 

time-interval for the Markov chain model.  Since we know the optimal time-interval, 

we introduce a sequence of state-to-state transition frequencies, {Nsstf,k()}, with 24 
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Nsstf,k() referring to the weight of state-to-state transitions over the kth window for 

the optimal time-interval, as is shown in Figure 5f.   For an easy understanding of 2 

Figure 5f, we have included Figure 5e. 

     There are a few observations to be made.  First, Nsstf,k() is not necessarily an 4 

integer number for any kth window.  Following the definition of a state, in the context 

of a directed graph of a Markov chain model, a state-to-state transition refers to an 6 

edge of a graph.   It is the weight associated with the edge of the directed graph that 

plays an important role.  Since we have used a modified Markov chain model which 8 

includes the influence of the event recurrences in the record-breaking sense, the 

above expression includes their weights as well in the computation of Nsstf,k().  The 10 

sequence of state-to-state transition frequencies, {Nsstf,k()}, yields a time-series.  

This time-series is the new expression of the point-process where the weighted 12 

edges of directed graph of the modified Markov chain represent the significance of 

the earthquakes between states.  This new alternative representation signifies the 14 

behavior of the state-to-state transition frequencies over a large time window. Here, 

seeking to find the time-correlative behavior of the time-series would be of great 16 

importance since this would give us an opportunity to see the interaction of zones 

considered in a collective sense.   18 

Here, we seek to understand the correlative behavior by looking at the two 

statistical measures, FFsstf and AFsstf, as defined below:     20 

𝐹𝐹𝑠𝑠𝑡𝑓(𝜏) =  
〈𝑁𝑠𝑠𝑡𝑓,𝑘

2 (𝜏)−𝑁𝑠𝑠𝑡𝑓,𝑘(𝜏)〉2

〈𝑁𝑘(𝜏)〉
  (8) 

   𝐴𝐹𝑠𝑠𝑡𝑓(𝜏) = 
〈𝑁𝑠𝑠𝑡𝑓,𝑘+1(𝜏)− 𝑁𝑠𝑠𝑡𝑓,𝑘(𝜏)〉2

2〈𝑁𝑠𝑠𝑡𝑓,𝑘(𝜏)〉
  (9) 22 

The behavior of the two measures, FFsstf and AFsstf, with respect to the optimal time-

interval should shed some light on the correlative behavior of the time-series but 24 



18 

also on the selective clustering of the certain state-to-state transitions.  We consider 

this knowledge to be useful for forecasting purposes. 2 

 In our adaptation of the sum of edge weights for the state-to-state transition 

frequencies as a new representation of a point-process embedded in the modified 4 

Markov chain here, the arguments of Thurner et al. (1997) and Telesca et al. (2001, 

2005, 2009, 2011) would apply.  This means that the FF of the modified Markov 6 

chain sequence would follow a power-law with the power-law exponent, , 

satisfying 0 < < 1. 8 

     Extending this to FFsstf and AFsstf , as is shown in Figure 6 (panels 6c and 6d), we 

find that the power law exponent calculated, corresponding to the least-squares fit 10 

of the data is greater than zero (0.27 and 0.30 respectively).  They suggest not only 

the fractality of the modified Markov chain sequence for optimal time-interval but 12 

also the deviation from the Poissonian behavior of earthquake sequencing 

considered in this present study. 14 

 

4    Discussion and conclusions 16 

Thurner et al. (1997) pointed out that the sequence of counts, generated by recording 

the number of events in successive counting time-windows of certain length, 18 

contained information about the point process depicted by the set of event times.  

This idea was further tested in understanding the dynamics of earthquake 20 

sequencing (Telesca et al., 2009, 2011; Flores-Marquez and Valverde-Esparza, 

2013), and in particular, the fractal behavior of the sequence of counts.  We know 22 

that this idea was initially restricted to the sequence of counts for varying windows 

of interval-times.  However, for comparison purposes, we calculated the Fano factor 24 

and the Alan factor for the initial catalogue of data using equations (6) and (7).  We 
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include their graphs in Figure 6 (panels 6a and 6b).  Similar to observations made 

by Telesca et al. (2009) with the earthquake data from the Taiwan region, we find 2 

the presence of two distinctly different regions of scaling behaviour.  For small time-

intervals, we also observe the Poisson behaviour.   Since very poor statistics at time-4 

scales larger than 108 seconds would influence the Fano factor and the Allan factor,  

we have restricted our analysis to 3.17 years or roughly 108 seconds. 6 

     In our description of the directed graph of the Markov chain model of any 

earthquake sequencing, regional or global, we stress the significance of the state-to-8 

state transition probabilities for multiple zones that span the sequence of 

earthquakes over an optimal time window (Cavers and Vasudevan, 2013; 10 

Vasudevan and Cavers, 2013).  In other words, the edges of the directed graph carry 

weights.  We conjecture that these weights represent a new definition of the point 12 

process.  Furthermore, a consideration of the earthquake recurrences within each 

zone and among zones, following the concept of recurrences in the record-breaking 14 

sense (Davidsen et al., 2008), leads to an empirically-determined distance-

dependent weights for the edges.  Unlike extending the idea of the sequence of 16 

counts where every event occurrence augments the counting value by unity (Thurner 

et al., 1997; Telesca et al., 2009, 2011; Flores-Marquez and Valverde-Esparza, 18 

2013), we consider the summing of the weights for each edge such that the sum 

represents a “pulse” for each state-to-state transition.  We analyse the resulting time-20 

series from the point of view of its Fano factor and Allan factor.  There is evidence 

for fractality of the multi-state modified Markov chain to represent the earthquake 22 

sequencing, as is revealed by the power-law scaling behavior present in the Fano 

and Allan factors with their respective exponents of 0.27 and 0.30 (Figure 6, panels 24 



20 

6c and 6d).  However, it is important to note that the exponents of the power-laws 

in both cases have a smaller value than those observed for the initial catalogue. 2 

     Cavers and Vasudevan (2013) interpreted the Markov chain of 32-states for five-

distinctly different zones to contain the basic combinatoric structure superimposed 4 

by the thumb-print of the undulatory structure of the recurrence weights.  Since the 

earthquake sequencing is in general non-linear and non-stationary, we contend that 6 

the time-series representing the above Markov chain is also non-linear and non-

stationary, and is conducive to an ensemble empirical mode decomposition (EEMD) 8 

procedure to understand its intrinsic mode functions (IMFs).  The ensemble 

empirical model decomposition of the time-series leads to nine intrinsic mode 10 

functions and a trend.  Each one of the IMFs reveals the amplitude fluctuation of 

the state-to-state transitions.  While there is a commonality in the relative dominance 12 

of the subduction-style earthquakes, represented by the top right corner grid of the 

relative weight matrices (Figure 3), the presence or absence of certain state-to-state 14 

transitions in certain IMFs reveals the importance of integral multiples of the 

optimal time-interval. 16 

     A simple observation of the first 6 or 7 IMFs stresses the importance of multiple-

zone approach to global seismicity problem in that the earthquake sequencing for 18 

the time period we considered has similar oscillatory behavior of the state-to-state 

transition probabilities from the point of view of the amplitude scaling and the 20 

oscillating period.  The growth and decay of oscillations in easily identifiable 

packets in each IMF following certain periodicity is an intrinsic signature of the role 22 

of multiple zones in earthquake sequencing.  

 24 
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Table 1. 

Zone identifier Tectonic zone N N/Ntotal 

0 Plate-interior     237 0.0351 

1 Active continent     898 0.1330 

2 Slow-spreading ridges     487 0.0721 

3 Fast-spreading ridges     723 0.1071 

4 Trenches   4407 0.6527 

 Global (or Ntotal)   6752 1.0000 

 2 
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Table 2.   

State Zone 4 Zone 3 Zone 2 Zone 1 Zone 0 

0 0 0 0 0 0 

1 0 0 0 0 1 

2 0 0 0 1 0 

3 0 0 0 1 1 

4 0 0 1 0 0 

5 0 0 1 0 1 

6 0 0 1 1 0 

7 0 0 1 1 1 

8 0 1 0 0 0 

9 0 1 0 0 1 

10 0 1 0 1 0 

11 0 1 0 1 1 

12 0 1 1 0 0 

13 0 1 1 0 1 

14 0 1 1 1 0 

15 0 1 1 1 1 

16 1 0 0 0 0 

17 1 0 0 0 1 

18 1 0 0 1 0 

19 1 0 0 1 1 

20 1 0 1 0 0 

21 1 0 1 0 1 

22 1 0 1 1 0 

23 1 0 1 1 1 

24 1 1 0 0 0 

25 1 1 0 0 1 

26 1 1 0 1 0 

27 1 1 0 1 1 

28 1 1 1 0 0 

29 1 1 1 0 1 

30 1 1 1 1 0 

31 1 1 1 1 1 

 2 
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Fig 1.  A graph representation of earthquake sequencing with arcs (with weights wij) representing 

transitions between states. 4 

 

Fig 2. (a) A time-series of the state-to-state transition frequencies of the modified Markov chain 6 

model of the earthquake sequencing. The sampling time (t) of 9 days is used.  (b) The state-to-

state transition frequencies of the modified Markov chain model of the earthquake sequencing. 8 

 

Fig 3.  Ensemble empirical mode decomposition of the time series. (a-i) Intrinsic mode functions 10 

from the first to the ninth; (j) Intrinsic mode function of the trend;  (k-s) State-to-state relative 

weight matrices for the intrinsic mode functions from the first to the ninth; (t) State-to-state relative 12 

weight matrix of the trend.  Time steps and the corresponding calendar dates: 0 t -> 1982/01/01; 

200 t -> 1986/12/06;  400 t -> 1991/11/10; 600 t -> 1996/10/14; 800 t -> 2001/09/18; 1000 t 14 

-> 2006/08/23; 1024 t -> 2007/03/27.  We provide this information here to avoid any cluttering of 

the plots. 16 

 

Fig 4.  Hilbert-Huang amplitude spectrum of the intrinsic functions.  18 

 

Fig 5.  Representation of a point process (panels a to d) versus representation of a state-to-state 20 

transition (panels e and f). (Adapted from Thurner et al. (1997))  

 22 

Fig 6.  (a) and (b) show the Fano and Allan factor graphs, respectively, derived from the 

earthquake catalogue data using the approach of Telesca et al. (2001, 2008, 2009, 2011); (c) and 24 

(d) show the Fano and Allan factor graphs, respectively, for the time series of the state-to-state 

transition frequencies of the modified Markov chain model of the earthquake sequencing.  26 
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