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Abstract. Earthquake sequencing studies allow us to investigate empirical relationships
among spatio-temporal parameters describing the complexity of earthquake properties.
We have recently studied the relevance of Markov chain models to draw information
from global earthquake catalogues. In these studies, we considered directed graphs as
graph theoretic representations of the Markov chain model, and analyzed their properties.
Here, we look at earthquake sequencing itself as a directed graph. In general,
earthquakes are occurrences resulting from significant stress-interactions among faults.
As a result, stress-field fluctuations evolve continuously. We propose that they are akin
to the dynamics of the collective behaviour of weakly-coupled non-linear oscillators.
Since mapping of global stress-field fluctuations in real time at all scales is an impossible
task, we consider an earthquake zone as a proxy for a collection of weakly-coupled
oscillators, the dynamics of which would be appropriate for the ubiquitous Kuramoto
model. In the present work, we apply the Kuramoto model with phase-lag to the non-
linear dynamics on a directed graph of a sequence of earthquakes. For directed graphs

with certain properties, the Kuramoto model yields synchronization, and inclusion of

non-local effects evokes the occurrence of chimera states or the co-existence of
synchronous and asynchronous behaviour of oscillators. In this paper, we show how we
build the directed graphs derived from global seismicity data. Then, we present
conditions under which chimera states could occur and subsequently, point out the role of
Kuramoto model in understanding the evolution of synchronous and asynchronous
regions. We surmise that one implication of the emergence of chimera states will lead to
investigating the present and other mathematical models in detail to generate global

chimera-state maps similar to global seismicity maps for earthquake forecasting studies.
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1 Introduction

Earthquakes of differing magnitudes occur at different locations and depths in many
tectonically active regions of the earth. The magnitude is the most widely used and
theoretically studied earthquake parameter (Kanamori and Anderson, 1975; Hanks, T.C.,
and Kanamori, H., 1979). The moment magnitude scale, Mw, provides an estimate for all
medium to large earthquake magnitudes. Continuous recording and analysis of
earthquakes that occur in different regions of the earth has led to earthquake catalogues.
These catalogues carry information about the epicenter and the estimated hypocenter, the
time and the magnitude of the earthquakes, leading to a set of empirical rules for different
earthquake regions and the global seismicity (Omori, 1895; Gutenberg and Richter, 1954,
Bath, 1965; Bufe and Varnes, 1993; Utsu et al., 1995; Ogata, 2011). The empirical rules
allow us to understand and expand on the inter-relationships between the earthquake
magnitude and the frequency of occurrence of events, and the main shocks and their

aftershocks in space and in time.

The earthquake catalogues have recently become the basis for Markov chain models of
earthquake sequencing to explore probabilistic forecasting from the point of view of
seismic hazard analysis (Nava et al., 2005; Cavers and Vasudevan, 2014). Cavers and
Vasudevan (2014) have incorporated the spatio-temporal complexity of the earthquake
recurrences (Davidsen et al. 2008; Vasudevan et al., 2010) into their Markov chain

model.

Intrinsic to earthquake sequencing studies is the observation made on scaling behavior
and earthquake cycles (Turcotte, 1997; Rundle et al., 2002, 2003). In this regard, fractal
and fractal-rate stochastic point processes were found to be useful (Thurner et al., 1997).
Telesca et al. (2011) applied such models to earthquake sequencing. Vasudevan and
Cavers (2013) have recently extended the application of this model to study time-
correlative behavior in earthquake sequencing by carrying out Fano factor and Allan

factor analysis to a time-series of state-to-state transition frequencies of a Markov chain.
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One aspect of earthquake sequencing that requires a close look is a model for the non-
linear dynamics of earthquakes. In this paper, we investigate the synchronization
behavior of weakly-coupled “earthquake oscillations”. Such oscillations in the Earth’s
crust and the epileptic brain strike certain commonalities in that the distributions of
energies and recurrence times exhibit similar power-law behavior (Herz and Hopfield,
1995; Rundle et al., 2003; Osorio et al., 2010; Chialvo, 2010). A growing interest in
understanding the behavior of earthquakes and epileptic seizures with a view to exploring
possible forecasting methods is one reason for the present study. In the case of epileptic

seizures, the non-linear dynamics of pulse-coupled neuronal oscillations as an alternative

to Kuramoto model (1975) are under close scrutiny (Rothkegel and Lehnertz, 2014). To
our knowledge, neither a simple Kuramoto model nor a modification of it has been
worked out for earthquake sequencing studies. Mirollo and Strogatz (1990), Kuramoto
(1991) and Rothkegel and Lehnertz (2014) considered the synchronization of pulse-
coupled oscillators in which single oscillators release energy rapidly when they reach a
trigger threshold and become quiescent for some time until they reach the trigger
threshold again. Examples falling into this category are earthquakes and spiking neuronal
activities (Herz and Hopfield, 1995; Beggs and Plenz, 2002; Rundle et al., 2002, 2003;
Scholz, 2010; Karsai et al., 2012; Rothkegel and Lehnertz, 2014). Herz and Hopfield
(1995) studied the collective oscillations with pulse-coupled threshold elements on a fault
system to capture the earthquake processes. There are two time scales: the first is given
by the fault dynamics defining the duration of the earthquake, and the second time scale
is given by the recurrence time between “characteristic events”, the largest earthquakes
on a fault. The known recurrence times on several fault systems are 6 to 8 orders of
magnitude longer than the duration of single events. Rundle et al. (2002) examined the
self-organization in “leaky” threshold systems such as networks of earthquake faults. In
their paper, they argued that on the “macroscopic” scale of regional earthquake fault
systems, self-organization leads to the appearance of phase dynamics and a state vector
whose rotations would characterize the evolution of earthquake activity in the system.
Scholz (2010) invoked the Kuramoto model to represent the fault interactions, although
no numerical synchronization-simulation results were presented. He postulated that the

common occurrence of triggering of a large earthquake by other earthquakes on nearby
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faults and the observation of space-time clustering of large earthquakes in the
paleoseismic record were both indicators of synchronization occurring between faults.
However, we need to bear in mind here that incorporating fault-fault interactions on a
global scale involving all the networks of earthquake faults is formidable and nearly

impossible. In this paper, we modify the simple non-linear mathematical model, the

Kuramoto model with a phase-lag, for the sequencing of global earthquake data. We
show here that the solutions to the Kuramoto model with phase-lag and with non-local
coupling effects reveal the co-existence of synchronized and asynchronized states or
chimera states for certain parameter values. We use this model as a precursor to our

planned studies on other mathematical models such as integrate and fire models.

As alluded earlier, there is a quiescence period between earthquakes in an earthquake
zone, also known as the recurrence times. Since the globally recorded earthquake data
are only available for a short-time period, incorporating the recurrence times into the
earthquake catalogue is impossible. Here, we consider the model proposed by Davidsen
et al. (2008) to include the spatio-temporal complexity of recurrences by identifying the
earthquakes occurring in close proximity to any occurred event in the record-breaking
sequence. In this paper, we also investigate the Kuramoto model with a phase-lag for the
sequencing of global earthquakes data influenced by the recurrences to point out the

emergence of chimera states under certain conditions.

2 Mathematical model of the earthquake sequencing

The Kuramoto model (1975) for a large number of weakly-coupled oscillators has
become a standard template in non-linear dynamical studies, pertinent to synchronization
behavior, following the ground-breaking study of Winfree (1967). To apply this model to
earthquake sequencing studies, we need to make a few justifiable assumptions and
incorporate certain essential features of earthquakes that we have come to know. For
example, plate motions and, hence, plate tectonics (Stein, 1993; Kagan et al., 2010;
DeMets, 2011) suggest that most of the earthquakes occur in and around plate boundaries

because of the varying plate motions of the plates that uniquely encompass the earth’s
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crust. In particular, different plates move at different rates and along different
orientations resulting in stress-field changes at the plate boundaries. When stress-field
accumulation reaches, at a particular location or in a zone, a certain critical threshold,
energy is released in the form of an earthquake. The relaxed system goes through the
stress-build-up process again, a similar mechanism being operative in neuronal
communication dynamics. We assume that there is a uniform stress increase during the
quiescent period. Collective synchronization of threshold-coupled or pulse-coupled
oscillators would be a candidate for such a study (Mirollo and Strogatz, 1990; Kuramoto,
1991; Rothkegel and Lehnertz, 2014). However, we defer the extension of their approach
to earthquake sequencing studies to a future date. Since the quiescence period is 6 to 8

Kris Vasudevan 2015-5-30 3:10 PM
Formatted: Highlight
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oscillators as a steady-state solution. Such states, addressed as chimera states, are the
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present study to defining a Kuramoto model with a phase-lag that would accommodate
the existence of chimera states. The Kuramoto model has been extensively studied for a
system made up of a large number of weakly-coupled oscillators, where most of the
physical problems are finite and can be described as non-linear dynamics on complex
networks (Acebron, 2005; Arenas et al., 2008). In the realm of graph theory, complex
networks can be cast as either undirected or directed graphs. In our studies on earthquake
sequencing, we consider a directed graph as a representation of an earthquake complex

network. The occurrence of chimera states as solutions to non-linear dynamics on both
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undirected and directed graphs has recently been investigated (Zhu et al., 2014;
Vasudevan and Cavers, 2014a). As a precursor to studying earthquake sequencing with
real data from the earthquake catalogues, we investigated the Kuramoto model on
synthetic networks that mimic Erdds-Rényi random networks, small- world networks,
and scale-free networks and directed graphs adapted from them, and examined chimera
state solutions (Vasudevan and Cavers, 2014a). For the earthquake sequencing studies
here, we use the following Kuramoto model with a phase-lag, o, with non-local coupling

effects terms added explicitly:

; 1 .
0;=w; - ;Z?’ﬂ Gyj sin (6; - 6; + o) )]

Here, 6, is the time-derivative of the phase of the i oscillator. The angle o (0 < a < 7/2)
corresponds to the phase lag between oscillators i and j. Gj; is the non-local coupling
function that depends on the shortest path length, dj;, between oscillators i and j in the

complex network:
Gy=Ae™ )

A is the global coupling strength and k is the strength of the non-local coupling. For
convenience, we use a constant natural frequency for all the oscillators, i.e.,
homogeneous case, and thus, we could use w; = 0 for i = 1,...,.N. Although we have not
investigated the influence of the global coupling strength on the steady-state solution of
the Kuramoto model, we treat this term to be constant, jn particular 4 = 1, based on

observations made by Zhu et al. (2014).

We would like to stress that the model in Fquation 1 is not a pulse-coupled or threshold-

coupled oscillator model. Although it would be appropriate to consider a variation of the
Kuramoto model such as the Shinomoto-Kuramoto model (Shinomoto and Kuramoto,
1986; Sakaguchi et al., 1988; Lindner et al., 2004), we limit ourselves to a simpler model
which does not include the excitable behaviour of the model. We intend to use this

model as a precursor to our planned studies on other mathematical models such as
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integrate and fire models,

A comment on the phase-lag parameter, o, in equation is also in order. Panaggio and
Abrams (2014) interpret the phase lag as an approximation for a time-delayed coupling

when the delay is small. The value of o used is (pi/2) — 0.\10L In some ways, we treat the

phase lag as a proxy for time delay. As Panaggio and Abrams (2014) demonstrate in
their paper, the value of a determines a balance between order and disorder. We have not

done an exhaustive search on the a parameter for the cases discussed in this paper.

Here, we construct a directed graph of earthquake events from the Incorporated
Institutions for Seismology (IRIS) earthquake catalogue for the time period between 1970
and 2014. We consider earthquake events with magnitudes exceeding or equal to Mw 5.5
observed to a depth of 70 kilometers. We partition the general latitude/longitude map of
the earthquake events into a grid. We show two maps of such grid matrices (Figure 1).
A cell in a smaller grid (128x128) could have higher multiplicity of earthquake events

than that in a large grid (1024x1024). We consider the coordinates of the topological

centre of each cell to represent the coordinates of the earthquake events that fall into that
cell. Thus, we explore the effect of hubs and community effects by looking at transition
probability matrices generated from grids of different orders such as 128, 192, 256, 512,
and 1024 representing the seismicity map on a global longitude-latitude grid. We
compute the transition probability matrix and the shortest-path distance matrix for the
directed graphs resulting from the catalogue considered. To keep the Kuramoto model
simple, we assume a constant phase-lag, o, in the phase of the ensemble of oscillators.

The value of a used is (pi/2) — 0.10. We relax this condition in subsequent simulations.

The most difficult parameter to deal with here is the period of quiescence after the energy
release following a certain stress threshold. We incorporate the build-up of the threshold
effect indirectly by positing the inclusion of earthquake recurrences in transition
probability matrices. Here, we use the spatio-temporal recurrences based on the record-
breaking model of Davidsen et al. (2008). In all our initial simulations, we ignore the
influence of amplitude effects on the stability of the chimera states. We carry out

simulations on the Kuramoto model for 200,000 time-steps for the 128x128 oscillator

grid matrices and for the 1024x1024 oscillator grid matrices. We report here the

Kris Vasudevan 2015-5-30 4:05 PM

Comment [7]: Referee 1 Major point 1

We use only the Kuramoto model with
phase lag although our intention is to
invoke a pulse-coupled or threshold
couped oscillator model.

We have added a paragraph here to reflect

on this.

Kris Vasudevan 2015-5-30 4:00 PM
Formatted: Highlight
Kris Vasudevan 2015-5-30 4:05 PM
Formatted: Highlight
Kris Vasudevan 2015-5-30 4:05 PM

Comment [8]: Referee 1 Comment 7
Referee 2 Minor comment 5

The value of alpha used is spelled out in
the text.

Kris Vasudevan 2015-5-30 4:05 PM

Formatted: Highlight

Kris Vasudevan 2015-5-30 4:05 PM

Formatted: Highlight

Kris Vasudevan 2015-5-30 5:41 PM
Deleted:
Kris Vasudevan 2015-5-30 5:41 PM

Kris Vasudevan 2015-5-30 5:41 PM
Deleted:

Kris Vasudevan 2015-5-30 5:41 PM
Deleted:
Kris Vasudevan 2015-5-30 3:59 PM

Comment [9]: Referee 1 Comment 2 on
the value of the phase-lag used.

Referee 2 Minor Comment 5

We have spelled out the phase-lag value
used in the revised manuscript.

Kris Vasudevan 2015-5-30 2:57 PM
Formatted: Highlight

Kris Vasudevan 2015-5-30 2:57 PM
Comment [10]: Refereee 1 Comment 2
on the number of time-steps

We have done new simulation runs with
200,000 time-steps. Results from this
new work replace figures 4 to 12.

Kris Vasudevan 2015-5-30 2:56 PM
Formatted: Highlight




10
11
12

13

14

16

17

18

19

20

21
22
23
24

25

preliminary results of our simulations.

3 Results

We report the Kuramoto model experimental results for oscillators resulting from
128x128, 192x192, 256x256, 512x512, and 1024x1024 grids of the latitude-longitude
map of the earthquakes. We consider a total of 13190 earthquakes. We construct the
transition probability and the shortest-path distance matrices for the grids without (“non-
recurrence” results) and with the consideration of the spatio-temporally complex

recurrences (“recurrence” results), as shown in Figures 2 and 3.

To represent the results, we use snapshots of three attributes (Zhu et al. (2014)): (i) the
phase profile, (ii) the effective angular velocities of oscillators and (iii) the fluctuation of
the instantaneous angular velocity of oscillators. The effective angular velocity of
oscillator 7 is defined as

(i) = limp_q, %f;ﬁT 6; dt A3)

Here, we take 7 = 1000 so that the effective angular velocities of the oscillators are
averaged over the last 1000 time-steps. We take 7 = 199,001 for the 128x128 grid and
for the 1024x1024 grid.

The fluctuation of the instantaneous angular velocity, o;, of an oscillator i around its

effective velocity is defined as

2 1. 1 pto+T
a; —llmT_,ooT fto

(6; — (wp)” dt )

If 6; = 0 then oscillator i rotates at a constant angular velocity. We show the non-
recurrence and recurrence results obtained from the behavior of the last 1000 time-steps

of the simulations involving 200,000 time-steps. We present the results for the 128x128

grid without and with recurrences in Figures 4 and 5 for the three attributes using x =

0.10. Figures 6 and 7 show these attributes for the 1024x1024 grid without and with

Kris Vasudevan 2015-5-30 2:56 PM
Comment [11]: Referee 1 Comment 2
On the number of time-steps

We have done new simulation runs with
200,000 time-steps. Results from this
new work replace figures 4 to 12.

Kris Vasudevan 2015-5-30 2:54 PM
Formatted: Highlight




10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

recurrences respectively for k =0.1

Whether, or not the Kuramoto model reaches, the steady-state, we examine the ratio of the ‘

number of coherent or synchronous oscillators to the total number of oscillators or
“chimera index” as a function of the number of time steps. Here, we carry out 200,000
time steps. After every 20,000 time-steps, we look at the chimera index for the last 1000

time-steps. As an example, in Figure 8, we find the asymptotic behaviour of the scatter

of the chimera index for ten such intervals for the 128x128 grid for, k = 0.10 suggesting

that the Kuramoto model has reached the steady-state.

’Wel investigate the influence of the non-local coupling coefficient, k, on the chimera

index for each grid and summarize our results for the non-recurrent 128x128 and

1024x1024 grids in Figure 9.

Most of the initial computations reported in this work were on a HP C7000 chasis cluster

system with dual-core 2.4 GHz AMD Opetron processors at the high performance

computing facility at the University of Calgary. We carried out a series of runs for

200,000 time steps on a Mac Pro Six-Core Intel Xeon E5 3.9GHz, 16 GB RAM desktop

work station and on Intel Xeon E7-4870 2.40 GHz 256 GB RAM processors. We used
the Matlab ODE113 solver to solve the Kuramoto model.

4 Discussion

4.1. Building the directed graph

Earthquake sequencing is a well-studied problem in earthquake seismological
communities around the globe, and yet, it hides a suite of phenomenological mysteries
that stand in the way of successful earthquake forecasting. One of the first steps in
carrying out any investigative work on earthquake sequencing is to look at the global
seismicity map such as the one posted by IRIS on a regular basis, with continuous
updating of the associated catalogue. In Figures la and 1b, we summarize the cumulative
results of the catalogue for magnitudes of earthquakes exceeding Mw 5.5 and the depths
of occurrence not exceeding 70 kilometres, recorded between January 1970 and

September 2014. One difference in the two figures lies in the coarseness of the gridding
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with the first one being coarser than the second. A cursory glance at the figures
immediately suggests the relevance of plate tectonics in that most earthquakes seem to
occur at and around plate boundaries. A broad classification of these earthquakes could
consist of the following categories: strike-slip earthquakes, subduction-zone seismicity,
oceanic earthquakes, continental extensional regimes, intraplate earthquakes, and slow
earthquakes (Scholz, 2002). The interplay between these remains a topic of research
among seismologists. In general, fault systems play an important role in understanding
the cause and recurrence of earthquakes. Scholz (2002) provides an excellent account of
the mechanics of earthquakes and faulting. Ben-Zion and Sammis (2003) examined the
continuum-Euclidean, the granular, and the fractal views of the geometrical, mechanical,
and mathematical nature of faults and concluded that many aspects of the observed
spatio-temporal complexity of earthquakes and faults might be explained using the
continuum-Euclidean model. They contended that a continuum-based description would
provide a long-term attractor for structural evolution of fault zones at all scales. The
underpinning point in these works is the importance of the faulting in earthquake
processes. Earthquakes are known to occur at different depths. Excepting in instances
where there are surface ruptures as a result of earthquakes, fault zones at seismogenic
depths in kilometres cannot be directly observed (Ben-Zion and Sammis, 2003).
Continued geological mapping and high-resolution geophysical measurements afford a

mechanism to improve our understanding of the fault zones.

Rundle et al. (2003) took a statistical physics approach in emphasizing the significance of
faults and fault systems as high-dimensional non-linear dynamical systems characterized
by a wide range of scales in both space and time, from centimeters to thousands of
kilometers, and from seconds to many thousands of years. The signature of the residual
behavior in these systems is chaotic and complex. Understanding the coupling between
different space and time scales to comprehend the non-linear dynamics of the fault
systems is not an easy problem. In this regard, any attempt to explore the possibilities

that accrue from non-linear dynamics studies is welcome.
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In earlier studies on model and theoretical seismicity (Burridge and Knopoft, 1967,
Vieira, 1999), special attention was paid to finding out if chaos was present in the
symmetric non-linear two-block Burridge-Knopff model for earthquakes. Viera (1999)
demonstrated with a three-block system the appearance of synchronized chaos. A
consequence of this study was the speculation that earthquake faults, which are generally
coupled through the elastic media in the earth’s crust, could in principle synchronize even
when they have an irregular chaotic dynamics (Viera, 1999). Going one step further
would be to suggest that the occurrence of earthquakes and the space-time scale patterns
they leave behind is a sound proxy for modeling and theoretical studies of the fault

systems. It is this point that is pursued in this work.

In this study, we focus on the non-linear dynamics of weakly-coupled oscillators. Each
oscillator (corresponding to the occurrence of an earthquake) is a proxy for a fault system
or network with known information on its location, the time when the earthquake event
occurred, and magnitude. This defines an element in the earthquake sequence. A
continued sequence of events is represented as a directed graph (Vasudevan et al., 2010;
Cavers and Vasudevan, 2014; Vasudevan and Cavers, 2014b) with the vertices
representing the earthquakes (and their attributes) and the arcs the connecting links
between neighbours in a sequence. Figures 2a and 3a show the transition matrices for the
directed graphs of the two grids, 128x128 and 1024x1024 grids. The oscillator index is
determined by the grid partition with non-zero cells labelled in row-by-row order. A
log(log)) display scale is used to highlight the “clustering”. The level of clustering along
the first leading off-diagonal elements of the transition matrix is highlighted and indicates
the partitioning and the relative significance of the seismicity zones in the globe.
However, this does not invoke any causality argument. Since the multiplicity of the
earthquakes in the cells of the grids used varies from ‘0’ to a large number, for the reason
mentioned concerning the Euclidean geometry mentioned earlier, inter-cell and intra-cell
transitions populate the transition matrices. These transition matrices are not symmetric.
The non-linear dynamics of weakly-coupled oscillators on such matrices has not been

fully understood.
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As mentioned earlier, the quiescence period between earthquakes in an earthquake zone
is what we interpret here as recurrence period. Studies on plate-boundary motions (Bird,
2002; DeMets, 2010; Stein, 1993) will provide an insight into the recurrence period for
earthquakes in certain major fault zones. Even in instances where knowledge of the
recurrence periods is known, it is usually punctuated by random fluctuations, the statistics
of which are not unknown. The quiescence period is analogous to the process in human
brains that precedes epileptic seizures (Berg et al., 2006; Rothkegel and Lehnertz, 2014),
the structure of which has been modeled using pulse-coupled phase-oscillators. Such
pulse-coupling or threshold-coupling remains to be quantified for earthquakes. We defer

this aspect of the work to future studies. Furthermore, the historical seismicity data set is

short and, therefore, any information to be drawn from global records will be insufficient.
However, the recurrence model introduced by Davidsen et al. (2008) offers a simple
remedy to the problem. It rests in identifying the earthquakes occurring in close
proximity to any occurred event in the record-breaking sequence. Incorporating this
feature into the transition matrices results in modified transition matrices, as shown in
Figures 2b and 3b. We propose that accounting for the quiescence period in this manner
opens additional options such as feedback effects on the non-linear dynamics of weakly-

coupled oscillators,

4.2. Synchronization

Scholz (2010) argued for the role of synchronization in fault interactions and earthquake
clustering and for the usefulness of the Kuramoto model. Kuramoto (1975) proposed a
mathematical model of phase oscillators interacting at arbitrary intrinsic frequencies and
coupled through a sine of their phase differences. He suggested the following equations

for each oscillator in the system:

N)) ®)

| Formatted: Highlight

where 6; is the phase of the i " oscillator, 8;(t) is the first derivative of the phase of the i *

oscillator with time, w; is the natural frequency of the oscillator, K; is the strength of
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coupling of the i ™ oscillator to other oscillators and N is the size of the population of the
oscillators. The frequencies w; are chosen from a uniform distribution. Kuramoto (1975)
demonstrated that synchronization was accomplished in the case of mean-field coupling
with

Ki=2>0 (i=1..,N) (6)

in the above equation. We can describe the Kuramoto model in a simpler form by

introducing the complex-valued order parameter r(?):
i 1 0
Z=r)e® = 3L e?® (7

where P(?) is the average phase and r(z) honours 0 < r(f) < 1. The expression of the

Kuramoto model becomes:
6;(t) = w; + Kr sinfy - 6;(t)] (i=1,..,N) (®)

The collective behavior of all the oscillators is monitored by examining the time
evolution of the order parameter, r, (Kuramoto (1975), Strogatz (2000); Pikovsky et al.
(2003); Strogatz (2003)). The order parameter can assume values in the range 0 to 1
including the limits. From this, it is obvious that each oscillator is connected to the
common average phase with the coupling strength is given by K ». A value of ‘0’ for
corresponds to total incoherence, i.e., no phase locking of the phases of the oscillators; a
value of ‘1’ for » corresponds to full coherence, i.e., phase locking of all the phases of the
oscillators. The time evolution of the Kuramoto model can be monitored either by
looking at the polar plots of the phases on a unit circle (Kuramoto (1975)) or by
following the plot of the order parameter, r, as a function of the coupling strength, K.

Acebron et al. (2005) have provided a comprehensive review of the Kuramoto model.

For the stability of the solution from the Kuramoto model, use of a large population of
oscillators for calculability in the thermodynamic limit is a pre-requisite. Over the last

decade, efforts have gone into considering a finite number of oscillators satisfying the
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original conditions of the Kuramoto model. Easing the restrictions on the interaction
model can be cast as an investigation of synchronization on complex networks. This
would allow one to relate the complex topology and the heterogeneity of the network to

the synchronization behavior.

We rewrite the original Kuramoto model for a complex network corresponding to

undirected and directed graphs as
Bl(t) = Wi + 2?’21 O-ij al-j Sln[ej(t) - Bl(t)] (l = 1, ,N) (9)

where oy is the coupling strength between pairs of connected oscillators and a;; refers to
the elements of the adjacency or connectivity matrix. Much effort has gone into
understanding the role of the coupling strength (Hong et al. 2002; Arenas et al., 2008;
Dorfler et al., 2013) in the synchronization behavior of small-world and scale-free graphs.
Here, we leave the coupling strength term a constant, unlike in the model under the
thermodynamic limit where the size of the population, N, enters explicitly in the coupling
strength term as a divisor. The structure of the adjacency matrix decides essentially the
nature of the interaction term made up of the sine coupling of the phases. Vasudevan and
Cavers (2014a) have investigated the synchronization behaviour of the random graphs
under different rewiring probabilities and the scale free-graphs from a spectral graph
theory point of view. These studies did not include a study on the effect of clustering on
the synchronization. In this regard, the work of McGraw and Menzinger (2005) is quite
appealing. They conclude that for random networks and scale-free networks, increased
clustering promotes the synchronization of the most connected nodes (hubs) even though
it inhibits global synchronization. We see the role of the effect of clustering on the nature
of synchronization behaviour in earthquake sequencing studies and will constitute a
separate study. Whether or not we reach similar conclusions for directed graphs, we have
recently investigated synthetic networks that mimic real data structures (Vasudevan and
Cavers, 2014a). In this regard, it is worth mentioning that synchronization of Kuramoto
oscillators in directed networks has been subjected to a detailed study (Restrepo et al.,

2006).
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4.3. Chimera states

While the synchronization and asynchronization studies on earthquake sequencing are
important in terms of the Kuramoto model given in Equation 9, very little attention has
been paid to the co-existence of synchronized and asynchronized states or the chimera
states. Kuramoto and Battogtokh (2002) and Abrams and Strogatz (2004) paved the way
for such a study by including the non-local effects into the Kuramoto model, as expressed
in Equations 1 and 2. Non-local effects mean simply the inclusion of geometry effects.
For the global seismicity map considered in this study, we generated the shortest-path
distance matrices with and without the inclusion of recurrences (Figures 2c, 3c, 2d, and
3d). The shortest-path algorithm encapsulates both the cascading effects of earthquakes
and the negation of long-range distance effects. In this study, we kept the global coupling
strength constant and allowed the non-local coupling strength, k, to vary from one
simulation to the next one, similar to what was done in the recent work of Zhu et al.

(2014).

Symmetry breaking phenomena like chimera states have also been observed for two- |

cluster network of oscillators with a Lorentizian frequency distribution (Montbri6 et al.,
2004) for all values of time-delay. A crucial result by Laing (2009a, 2009b) extends the
previous observation to oscillators with heterogeneous frequencies. Also interesting to
observe in this regard is that these heterogeneities can lead to new bifurcations allowing
for alternating synchrony between the distinct populations over time. Ko and Ermentrout
(2008) demonstrated the presence of chimera-like states when the coupling strengths
were heterogeneous. The last study used coupled Morris-Lecar oscillators. Although
there is overwhelming evidence for the existence of chimera states in the presence of time
delay or phase-lag, all of our initial Kuramoto model simulations on the directed graph

transition matrices and the associated shortest-path distance matrices included a constant

phase-lag only.
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A postulation for the existence of evolving chimera states in data from earthquake

catalogues has certain implications. For instance, it would pave way for understanding
the evolving alterations in stress-field fluctuations in fault-zones frequented by
earthquakes. Also, it would suggest a need to consider steps to quantify partially or fully
the ratio of the number of synchronized oscillators to the total number of oscillators. The
steps would involve extensive testing of the dependence of the parameters and additional
mathematical models. We interpret the zones with synchronized oscillators as the ones
being susceptible to earthquakes and the zones with asynchronised oscillators as the ones
going through a quiescence period. The hope is that confirmation of chimera states in

earthquake sequencing would signal a possible use for earthquake forecasting studies.

4.4. Simulation results and analysis

The Kuramoto model simulation with non-local coupling effects (k=0.10) with a phase-
lag, as expressed in Equation 1 for a 128x128 grid transition probability, and the
corresponding shortest-path distance matrices, lead to snapshots of three attributes: (1)
the phase profile; (ii) the effective angular velocities of oscillators, and (iii) the
fluctuation of the instantaneous angular velocity of oscillators. We did not sort the results
according to an increase in the values of the attributes. Panels (a), (b), and (c) in Figure 4
show that, for a case of no recurrences, there exists a chimera state. The ensemble
averages from the last 1000 time steps of the 200,000 time steps in the numerical
simulations reveal the co-existence of synchronous and asynchronous oscillators. This
means that some of the cells in the grid strike a synchronous behavior and some others do
not. In this particular case of no recurrences (Figure 4), the number of synchronous
oscillators to the number of asynchronous oscillators is large. In the case of recurrences,
as shown in Figure 5, this ratio is much larger. Also, the chimera pattern of the
synchronized and asynchronized components of the oscillators is similar to what was
observed by Abrams and Strogatz (2004). Figures 4a and Sa are the first evidence of the
possible existence of a chimera state in earthquake sequencing. Figures 4b, 4c, 5b, and

5c¢ confirm this.
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Going from the 128x128 grid to 1024x1024 grid, there are more non-zero cells with
multiplicity of earthquakes at least 1. The number of oscillators is substantially larger,
1693 vs 7697. Figures 6 and 7 reveal the chimera state as the steady-state solution to the
non-linear dynamics on weakly-coupled oscillators without and with recurrences for the

1024x1024 grid with the non-local coupling coefficient, x = 0.1. Figure 8 shows the

behaviour of the chimera index as a function of the number of time-steps for the non-

recurrent 128x128 grid with the non-local coupling coefficient, x, set at 0.10. The

purpose of this figure is to demonstrate that the asymptotic behaviour of the chimera
index with an increase in the number of time steps could be used to look at the steady-

state solution of the Kuamoto model.

We looked at the influence of the non-local coupling coefficient, K, on the ratio of the
number of coherent oscillators to the total number of oscillators for both the 128x128 and
1024x1024 grids without recurrences in Figure 9. A similar observation is made for the
case of recurrences. As the non-local coupling coefficient, k, increases from 0.01 to 1.0,
the ratio decreases. For values of k approaching 0, the non-local Kuramoto model acts as
a simple Kuramoto model in that there is full synchronization for the global coupling
parameter, A, (or used as K in literature) of 1.0. What is surprising to begin with is that,

as K approaches 1, the steady-state solution becomes more asynchronized. Investigations

on the effect of the non-local coupling effect parameter, «, on the steady-state solution of
the phase angle distribution in the chimera state (Figures 10a, 10b, 11a and 11b) suggest
that for both the 128x128 grid and the 1024x1024 grid, for larger k values, the number of

asynchronous oscillators is larger, and for smaller k values, the presence of synchronous
oscillators becomes dominant. For in-between values, i.e., between 1.0 and 0.03, the

nature of the chimera states changes,

The outcome of each one of the simulations described for both the non-recurrence and
recurrence cases contains synchronous and asynchronous vectors. Mapping these vectors
on the respective grids (128x128 or 1024x1024 grids) should reveal the “non-readiness or

readiness” cells or zones for earthquakes. One such map for a 128x128 grid without
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recurrences for k = 0.10 is shown in Figure 12. This qualitative description of the

evolutionary dynamics of the earthquake sequencing is highly instructive.

5 Conclusions and future work

Earthquake sequencing is an intriguing research topic. The dynamics involved in the

evolution of earthquake sequencing are complex. Very much has been understood, and

yet, the evolving picture is incomplete. In this regard, the work of Scholz (2010) acted as

a catalyst in us investigating the synchronization aspect of earthquakes using the
Kuramoto model. To name a few, the works of Vieira (1999), Rundle et al. (2002, 2003),
Kuramoto and Battogtokh (2002), Abrams and Strogatz (2004), and Laing (2009a,

2009b) have helped us take this step forward with this work. We summarize below the

main points of this paper and also, point out the direction in which we are going:

19

(1) Earthquake sequencing from the IRIS earthquake catalogue browser can be
expressed as a transition matrix of a directed graph. Partitioning of the
latitude/longitude grid of the globe into grids of finite dimensions such as
128x128, 192x192, 256x256, 512x512, and 1024x1024 grids result in differing
dimensions of transition matrices of oscillators in increasing order. Short-path
distance matrices for the latter are generated concurrently to study the non-local
effects used in the Kuramoto model.

(2) Inclusion of the non-local effects in the Kuramoto model of the directed graphs is
tested for different values of the non-local coupling coefficient, x.

(3) For a non-local coupling strength, «, of 0.10, the Kuramoto model yields chimera
states as a steady-state solution, i.e., co-existence of synchronized and
asynchronized states. This is true for all the grid sizes considered. Differences
exist in the ratio of the number of coherent oscillators to the number of incoherent
oscillators.

(4) As the non-local coupling strength, x, is lowered from 1.0 to 0.01, there is a

general tendency towards an increase in synchronization, as is expected. While
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this general trend is observed for directed graphs generated from grids of orders
128, 192, 256, and 512, the graph from 1024x1024 grid reveals the presence of
the chimera state.

(5) As the non-local coupling strength is increased from 0.1 to 1.0, there is a steady
increase in the asynchronous behavior.

(6) The recurrence results support the presence of chimera states for both 128x128
and 1024x1024 grids. However, it is quite intriguing to find out that the
asynchronous oscillators come from a sub-set of the oscillators in both cases.

(7) There is still a nagging question about which non-local coupling coefficient would

be an ideal candidate for understanding the global stress-field fluctuations.
Figure 12 illustrates an example of how a chimera state could be displayed on the
map grid. Imposing geophysical and geodetic constraints on the earthquake zones
in terms of heterogeneity of the natural frequencies would provide a quantitative
answer to the above question.

(8) In general, the hypothesis that all networks of earthquake faults around the globe
go through full synchronization still needs to be strongly tested. On the other
hand, the prevalence of chimera states or multi-chimera states is an attractive
option to understand the earthquake sequencing.

(9) We believe that there is, now, a mechanism available to us to explore and seek an
answer to the non-linear dynamics of earthquake oscillations.

Needless to say, the role of the parameters such as the heterogeneity of the oscillators as
expressed in the natural frequency of the oscillators, the variability of the time-delay
corrections instead of a constant time-delay, and the heterogeneity of the non-local
coupling strength and the global coupling strength in the present Kuramoto model

remains to be investigated. Work is currently in progress.
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Fig. 1. Partitioning of the global seismicity map: a) 128x128 gridding of the latitude-longitude map. b)
1024x1024 gridding of the latitude-longitude map. Earthquakes of magnitudes exceeding or equal to My
5.5 and location depth not exceeding 70 kilometres for the time period from January 1970 to September
2014 constitute the glacial seismicity map. Earthquake information was downloaded from IRIS
(Incorporated Research Institutions for Seismology). The earthquake frequency used in the maps is plotted
on a log(log) display scale, with larger circles representing higher frequencies.

Fig. 2. 128x128 gridded map: a) Transition probability matrix without recurrences. b) Transition
probability matrix with recurrences. ¢) Shortest-path distance matrix without recurrences. d) Shortest-path
distance matrix with recurrences. In a) and b), the transition frequencies used in the maps are plotted using
a log(log) display scale, with larger circles representing higher frequencies.

Fig. 3. A 1024x1024 gridded map: a) Transition probability matrix without recurrences. b) Transition
probability matrix with recurrences. ¢) Shortest-path distance matrix without recurrences. d) Shortest-path
distance matrix with recurrences. In a) and b), the transition frequencies used in the maps are plotted using
a log(log) display scale, with larger circles representing higher frequencies.

Fig. 4. Three attributes of a chimera state of the 1693 oscillators for a 128x128 gridded map without
recurrences using k¥ = 0.10. a) Stationary phase angle. b) Effective angular velocity. ¢) Fluctuations in
instantaneous angular velocity.

Fig. 5. Three attributes of a chimera state of the 1693 oscillators for a 128x128 gridded map with
recurrences using k = 0.10. a) Stationary phase angle. b) Effective angular velocity. ¢) Fluctuations in
instantaneous angular velocity.

Fig. 6. Three attributes of a chimera state of the 7697 oscillators for a 1024x1024 gridded map without
recurrences using k = 0.10. a) Stationary phase angle. b) Effective angular velocity. ¢) Fluctuations in
instantaneous angular velocity.

Fig. 7. Three attributes of a chimera state of the 7697 oscillators for a 1024x1024 gridded map with
recurrences using k = 0.10. a) Stationary phase angle. b) Effective angular velocity. ¢) Fluctuations in

instantaneous angular velocity.

Fig. 8. Chimera index as a function of time-steps for the 128x128 grid without recurrences for x = O.‘l Ol

Fig. 9. Influence of the non-local coupling coefficient parameter, k, on the ratio of the number of
synchronized oscillators to the total number of oscillators for both the 128x128 and the 1024x1024 grids
without recurrences.

Fig. 10a. Effect of the non-local coupling coefficient parameter, k, on evolution and disappearance of the
Chimera states for the 128x128 grid without recurrence. Stationary phase angle as a function of the
oscillator index: (a) kappa, k= 1.0; (b) kappa, k¥ = 0.3; (c) kappa, k= 0.1; (d) kappa, k= 0.03

Fig. 10b. Effect of the non-local coupling coefficient parameter, k, on evolution and disappearance of the
Chimera states for the 128x128 grid with recurrence. Stationary phase angle as a function of the oscillator
index: (a) kappa, K = 1.0; (b) kappa, k= 0.3; (c) kappa, k= 0.1; (d) kappa, k = 0.03

Fig. 11a. Effect of the non-local coupling coefficient parameter, k, on evolution and disappearance of the

Chimera states for the 1024x1024 grid without recurrence. Stationary phase angle as a function of the
oscillator index: (a) kappa, k= 1.0; (b) kappa, k = 0.3; (c) kappa, Kk = 0.1; (d) kappa, k= 0.03
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fFiﬁ, 11b. Effect of the non-local coupling coefficient parameter, k, on evolution and disappearance of the

Chimera states for the 1024x1024 grid with recurrence. Stationary phase angle as a function of the
oscillator index: (a) kappa, Kk = 1.0; (b) kappa, k = 0.3; (c) kappa, k¥ = 0.1; (d) kappa, k= 0.03

Fig. 12. Chimera state map of the synchronous and asynchronous oscillators as a steady-state solution for a

non-recurrence case. The non-local coupling coefficient parameter, k, is 0.1. Blue dots refer to the
asynchronous oscillators and red dots to the synchronous oscillators.
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Table 1.

Grid Size Number of Oscillators
128x128 1693
192x192 2390
256x256 3087
512x512 5119
1024x1024 7697
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(a)  stationary phase and Directed non-local effects (b) Effective Angular Velocity (c) Fluctuation in Effective Angular Velocity
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Figure 8. New Figure Include it

Ns/N vs Time steps
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| Figure 9. New Figure Include it

Ns/N vs Kappa
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Figure 10, New Figure Include it Comment [29]: Figure 10. text refers to
the following figure.
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| [Figure 11

Kris Vasudevan 2015-5-30 5:52 PM
Comment [30]: New Figure Include it
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