

1
2 **Earthquake Sequencing: Chimera States with Kuramoto Model**
3 **Dynamics on Directed Graphs**

4
5
6
7
8
9
10
11 **Kris Vasudevan, Michael Cavers and Antony Ware**

12 Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta T2N
13 1N4, Canada (vasudeva@ucalgary.ca; mcavers@ucalgary.ca; aware@ucalgary.ca)

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48 **Keywords:** Earthquake sequencing, global seismicity, Kuramoto model, Chimera states,
49 directed graphs, complex networks

50
51

1

2 **Abstract.** Earthquake sequencing studies allow us to investigate empirical relationships
3 among spatio-temporal parameters describing the complexity of earthquake properties.
4 We have recently studied the relevance of Markov chain models to draw information
5 from global earthquake catalogues. In these studies, we considered directed graphs as
6 graph theoretic representations of the Markov chain model, and analyzed their properties.
7 Here, we look at earthquake sequencing itself as a directed graph. In general,
8 earthquakes are occurrences resulting from significant stress-interactions among faults.
9 As a result, stress-field fluctuations evolve continuously. We propose that they are akin
10 to the dynamics of the collective behaviour of weakly-coupled non-linear oscillators.
11 Since mapping of global stress-field fluctuations in real time at all scales is an impossible
12 task, we consider an earthquake zone as a proxy for a collection of weakly-coupled
13 oscillators, the dynamics of which would be appropriate for the ubiquitous Kuramoto
14 model. In the present work, we apply the Kuramoto model with phase-lag to the non-
15 linear dynamics on a directed graph of a sequence of earthquakes. For directed graphs
16 with certain properties, the Kuramoto model yields synchronization, and inclusion of
17 non-local effects evokes the occurrence of chimera states or the co-existence of
18 synchronous and asynchronous behaviour of oscillators. In this paper, we show how we
19 build the directed graphs derived from global seismicity data. Then, we present
20 conditions under which chimera states could occur and subsequently, point out the role of
21 Kuramoto model in understanding the evolution of synchronous and asynchronous
22 regions. We surmise that one implication of the emergence of chimera states will lead to
23 investigating the present and other mathematical models in detail to generate global
24 chimera-state maps similar to global seismicity maps for earthquake forecasting studies.

25

26

27

28

29

30

31

32

33

34

35

36

37

2

Kris Vasudevan 2015-5-30 3:03 PM

Comment [1]: Referee 1 Comment 3

It is the phase-locking of the oscillators
that we attribute to the synchronization.

Kris Vasudevan 2015-5-30 3:01 PM

Formatted: Highlight

Kris Vasudevan 2015-5-30 2:45 PM

Comment [2]: Referee 1: Comment 1
Referee 2: Comment 3

We have added a sentence on the
implications of the chimera state in the
abstract. We have also added our
comments on the implications of the
chimera state in the discussion section.

1 **1 Introduction**

2

3 Earthquakes of differing magnitudes occur at different locations and depths in many
4 tectonically active regions of the earth. The magnitude is the most widely used and
5 theoretically studied earthquake parameter (Kanamori and Anderson, 1975; Hanks, T.C.,
6 and Kanamori, H., 1979). The moment magnitude scale, M_w , provides an estimate for all
7 medium to large earthquake magnitudes. Continuous recording and analysis of
8 earthquakes that occur in different [regions](#) of the earth has led to earthquake catalogues.
9 These catalogues carry information about the epicenter and the estimated hypocenter, the
10 time and the magnitude of the earthquakes, leading to a set of empirical rules for different
11 earthquake regions and the global seismicity (Omori, 1895; Gutenberg and Richter, 1954;
12 Bath, 1965; Bufe and Varnes, 1993; Utsu et al., 1995; Ogata, 2011). The empirical rules
13 allow us to understand and expand on the inter-relationships between the earthquake
14 magnitude and the frequency of occurrence of events, and the main shocks and their
15 aftershocks in space and in time.

16

17 The earthquake catalogues have recently become the basis for Markov chain models of
18 earthquake sequencing to explore probabilistic forecasting from the point of view of
19 seismic hazard analysis (Nava et al., 2005; Cavers and Vasudevan, 2014). Cavers and
20 Vasudevan (2014) have incorporated the spatio-temporal complexity of the earthquake
21 recurrences (Davidsen et al. 2008; Vasudevan et al., 2010) into their Markov chain
22 model.

23

24 Intrinsic to earthquake sequencing studies is the observation made on scaling behavior
25 and earthquake cycles (Turcotte, 1997; Rundle et al., 2002, 2003). In this regard, fractal
26 and fractal-rate stochastic point processes [were](#) found to be useful (Thurner et al., 1997).
27 Telesca et al. (2011) applied [such models](#) to earthquake sequencing. Vasudevan and
28 Cavers (2013) have recently extended the application of this model to study time-
29 correlative behavior in earthquake sequencing by carrying out Fano factor and Allan
30 factor analysis to a time-series of state-to-state transition frequencies of a Markov chain.

31

1 One aspect of earthquake sequencing that requires a close look is a model for the non-
2 linear dynamics of earthquakes. In this paper, we investigate the synchronization
3 behavior of weakly-coupled “earthquake oscillations”. Such oscillations in the Earth’s
4 crust and the epileptic brain strike certain commonalities in that the distributions of
5 energies and recurrence times exhibit similar power-law behavior (Herz and Hopfield,
6 1995; Rundle et al., 2003; Osorio et al., 2010; Chialvo, 2010). A growing interest in
7 understanding the behavior of earthquakes and epileptic seizures with a view to [exploring](#)
8 possible forecasting methods is one reason for the present study. In the case of epileptic
9 seizures, [the](#) non-linear dynamics of pulse-coupled neuronal oscillations as an alternative
10 to Kuramoto model (1975) [are](#) under close scrutiny (Rothkegel and Lehnertz, 2014). To
11 our knowledge, neither a simple Kuramoto model nor a modification of it [has](#) been
12 worked out for earthquake sequencing studies. Miroollo and Strogatz (1990), Kuramoto
13 (1991) and Rothkegel and Lehnertz (2014) considered the synchronization of pulse-
14 coupled oscillators in which single oscillators release energy rapidly when they reach a
15 trigger threshold and become quiescent for some time until they reach the trigger
16 threshold again. Examples falling into this category are earthquakes and spiking neuronal
17 activities (Herz and Hopfield, 1995; Beggs and Plenz, 2002; Rundle et al., 2002, 2003;
18 Scholz, 2010; Karsai et al., 2012; Rothkegel and Lehnertz, 2014). Herz and Hopfield
19 (1995) studied the collective oscillations with pulse-coupled threshold elements on a fault
20 system to capture the earthquake processes. There are two time scales: [the](#) first [is given](#)
21 [by](#) the fault dynamics defining the duration of the earthquake, and the second time scale
22 is given by the recurrence time between “characteristic events”, the largest earthquakes
23 on a fault. The known recurrence times on several fault systems are 6 to 8 orders of
24 magnitude longer than the duration of single events. Rundle et al. (2002) examined the
25 self-organization in “leaky” threshold systems such as networks of earthquake faults. In
26 their paper, they argued that on the “macroscopic” scale of regional earthquake fault
27 systems, self-organization leads to the appearance of phase dynamics and a state vector
28 whose rotations would characterize the evolution of earthquake activity in the system.
29 Scholz (2010) invoked the Kuramoto model to represent the fault interactions, although
30 no numerical synchronization-simulation results were presented. He postulated that the
31 common occurrence of triggering of a large earthquake by other earthquakes on nearby

1 faults and the observation of space-time clustering of large earthquakes in the
2 paleoseismic record were both indicators of synchronization occurring between faults.
3 However, we need to bear in mind here that incorporating fault-fault interactions on a
4 global scale involving all the networks of earthquake faults is formidable and nearly
5 impossible. In this paper, we modify ~~the~~ simple non-linear mathematical model, the
6 Kuramoto model with a phase-lag, for the sequencing of global earthquake data. We
7 show here that the solutions to the Kuramoto model with phase-lag and with non-local
8 coupling effects reveal the co-existence of synchronized and asynchronous states or
9 chimera states for certain parameter values. We use this model as a precursor to our
10 planned studies on other mathematical models such as integrate and fire models.

11

12 As alluded earlier, there is a quiescence period between earthquakes in an earthquake
13 zone, also known as the recurrence times. Since the globally recorded earthquake data
14 are only available for a short-time period, incorporating the recurrence times into the
15 earthquake catalogue is impossible. Here, we consider the model proposed by Davidsen
16 et al. (2008) to include the spatio-temporal complexity of recurrences by identifying the
17 earthquakes occurring in close proximity to any occurred event in the record-breaking
18 sequence. In this paper, we also investigate the Kuramoto model with a phase-lag for the
19 sequencing of global earthquakes data influenced by the recurrences to point out the
20 emergence of chimera states under certain conditions.

21

22 **2 Mathematical model of the earthquake sequencing**

23

24 The Kuramoto model (1975) for a large number of weakly-coupled oscillators has
25 become a standard template in non-linear dynamical studies, pertinent to synchronization
26 behavior, following the ground-breaking study of Winfree (1967). To apply this model to
27 earthquake sequencing studies, we need to make a few justifiable assumptions and
28 incorporate certain essential features of earthquakes that we have come to know. For
29 example, plate motions and hence, plate tectonics (Stein, 1993; Kagan et al., 2010;
30 DeMets, 2011) suggest that most of the earthquakes occur in and around plate boundaries
31 because of the varying plate motions of the plates that uniquely encompass the earth's

Kris Vasudevan 2015-5-30 4:07 PM
Comment [3]: Referee 1 Comment 4
Referee 2 Major point 2

We have incorporated the suggested
change.
Kris Vasudevan 2015-5-30 3:06 PM
Formatted: Highlight
Kris Vasudevan 2015-5-30 3:05 PM
Deleted: a

1 crust. In particular, different plates move at different rates and along different
2 orientations resulting in stress-field changes at the plate boundaries. When stress-field
3 accumulation reaches at a particular location or in a zone at a certain critical threshold,
4 energy is released in the form of an earthquake. The relaxed system goes through the
5 stress-build-up process again, a similar mechanism being operative in neuronal
6 communication dynamics. We assume that there is a uniform stress increase during the
7 quiescent period. **Collective synchronization of threshold-coupled or pulse-coupled**
8 **oscillators would be a candidate for such a study (Miroollo and Strogatz, 1990; Kuramoto,**
9 **1991; Rothkegel and Lehnertz, 2014).** However, we defer the extension of their approach
10 **to earthquake sequencing studies to a future date.** Since the quiescence period is 6 to 8
11 orders of magnitude longer than the event time duration, it would be an ideal platform on
12 which to carry out this study. We surmise that the behavior of earthquake cycles noted in
13 earthquake sequencing does not lend support, however, to a full synchronization or full
14 **asynchronization as a solution to this non-dynamics problem.** One proven modification is
15 the inclusion of non-local effects of the geometry of the system that has been shown to
16 lead to a co-existence of partially synchronized and partially asynchronized states of
17 oscillators as a **steady-state solution.** Such states addressed as chimera states, are the
18 subject of recent theoretical and experimental studies (Kuramoto and Battogtokh, 2002;
19 Abrams and Strogatz, 2004; Abrams et al., 2008; Ko and Ermentrout, 2008;
20 Omel'chenko et al., 2008; Sethia et al., 2008; Sheeba et al., 2009; Laing, 2009a, 2009b;
21 Laing et al., 2012; Martens et al., 2013; Yao et al., 2013; Rothkegel and Lehnertz, 2014;
22 Kapitaniak et al., 2014; Pazó and Montbrió, 2014; Panaggio and Abrams, 2014; Zhu et
23 al., 2014; Gupta et al., 2014; Vasudevan and Cavers, 2014a, 2014b). **We target our**
24 **present study to defining a Kuramoto model with a phase-lag that would accommodate**
25 **the existence of chimera states.** The Kuramoto model has been extensively studied for a
26 system made up of a large number of weakly-coupled oscillators, where most of the
27 physical problems are finite and can be described as non-linear dynamics on complex
28 networks (Acebrón, 2005; Arenas et al., 2008). In the realm of graph theory, complex
29 networks can be cast as either undirected or directed graphs. In our studies on earthquake
30 sequencing, we consider a directed graph as a representation of an earthquake complex
31 network. The occurrence of chimera states as solutions to non-linear dynamics on both

Kris Vasudevan 2015-5-30 3:10 PM

Formatted: Highlight

Kris Vasudevan 2015-5-30 3:11 PM

Comment [4]: Referee 1 Comment 6
The present study is limited to the Kuramoto model with the phase-lag term.

Kris Vasudevan 2015-5-30 3:10 PM

Formatted: Highlight

Kris Vasudevan 2015-5-30 5:34 PM

Deleted: stable

Kris Vasudevan 2015-5-30 4:25 PM

Comment [5]: Referee 1 Comment 5
We have replaced “stable solution” by “steady-state” solution, dictated by the number of time-steps we have taken.

Kris Vasudevan 2015-5-30 4:21 PM

Formatted: Highlight

Kris Vasudevan 2015-5-30 4:07 PM

Comment [6]: Referee 1 Comment 6
Referee 2 Major point 2
The present study is limited to the Kuramoto model with the phase lag term.

Kris Vasudevan 2015-5-30 3:00 PM

Formatted: Highlight

1 undirected and directed graphs has recently been investigated (Zhu et al., 2014;
2 Vasudevan and Cavers, 2014a). As a precursor to studying earthquake sequencing with
3 real data from the earthquake catalogues, we investigated the Kuramoto model on
4 synthetic networks that mimic Erdős-Rényi random networks, small- world networks,
5 and scale-free networks and directed graphs adapted from them, and examined chimera
6 state solutions (Vasudevan and Cavers, 2014a). For the earthquake sequencing studies
7 here, we use the following Kuramoto model with a phase-lag, α , with non-local coupling
8 effects terms added explicitly:

9

10
$$\dot{\theta}_i = \omega_i - \frac{1}{N} \sum_{j=1}^N G_{ij} \sin(\theta_i - \theta_j + \alpha) \quad (1)$$

11 Here, $\dot{\theta}_i$ is the time-derivative of the phase of the i^{th} oscillator. The angle α ($0 \leq \alpha \leq \pi/2$)
12 corresponds to the phase lag between oscillators i and j . G_{ij} is the non-local coupling
13 function that depends on the shortest path length, d_{ij} , between oscillators i and j in the
14 complex network:

15
$$G_{ij} = A e^{-\kappa d_{ij}} \quad (2)$$

16 A is the global coupling strength and κ is the strength of the non-local coupling. For
17 convenience, we use a constant natural frequency for all the oscillators, i.e.,
18 homogeneous case, and thus, we could use $\omega_i = 0$ for $i = 1, \dots, N$. Although we have not
19 investigated the influence of the global coupling strength on the steady-state solution of
20 the Kuramoto model, we treat this term to be constant, in particular $A = 1$, based on
21 observations made by Zhu et al. (2014).

Kris Vasudevan 2015-5-30 5:35 PM

Deleted: stable

Kris Vasudevan 2015-5-30 5:35 PM

Deleted: e.g.,

Kris Vasudevan 2015-5-30 5:37 PM

Deleted: equation

Kris Vasudevan 2015-5-30 4:00 PM

Formatted: Highlight

Kris Vasudevan 2015-5-30 4:00 PM

Formatted: Highlight

22 We would like to stress that the model in Equation 1 is not a pulse-coupled or threshold-
23 coupled oscillator model. Although it would be appropriate to consider a variation of the
24 Kuramoto model such as the Shinomoto-Kuramoto model (Shinomoto and Kuramoto,
25 1986; Sakaguchi et al., 1988; Lindner et al., 2004), we limit ourselves to a simpler model
26 which does not include the excitable behaviour of the model. We intend to use this
27 model as a precursor to our planned studies on other mathematical models such as

1 integrate and fire models.

2 A comment on the phase-lag parameter, α , in equation is also in order. Panaggio and
3 Abrams (2014) interpret the phase lag as an approximation for a time-delayed coupling
4 when the delay is small. The value of α used is $(\pi/2) - 0.10$. In some ways, we treat the
5 phase lag as a proxy for time delay. As Panaggio and Abrams (2014) demonstrate in
6 their paper, the value of α determines a balance between order and disorder. We have not
7 done an exhaustive search on the α parameter for the cases discussed in this paper.

8 Here, we construct a directed graph of earthquake events from the Incorporated
9 Institutions for Seismology (IRIS) earthquake catalogue for the time period between 1970
10 and 2014. We consider earthquake events with magnitudes exceeding or equal to **Mw 5.5**
11 observed to a depth of 70 kilometers. We partition the general latitude/longitude map of
12 the earthquake events into a grid. We show two maps of such grid matrices (Figure 1).
13 A cell in a smaller grid (128x128) could have higher multiplicity of earthquake events
14 than that in a large grid (1024x1024). We consider the coordinates of the topological
15 centre of each cell to represent the coordinates of the earthquake events that fall into that
16 cell. Thus, we explore the effect of hubs and community effects by looking at transition
17 probability matrices generated from grids of different orders such as 128, 192, 256, 512,
18 and 1024 representing the seismicity map on a global longitude-latitude grid. We
19 compute the transition probability matrix and the shortest-path distance matrix for the
20 directed graphs resulting from the catalogue considered. To keep the Kuramoto model
21 simple, we assume a constant phase-lag, α , in the phase of the ensemble of oscillators.
22 The value of α used is $(\pi/2) - 0.10$. We relax this condition in subsequent simulations.

23 The most difficult parameter to deal with here is the period of quiescence after the energy
24 release following a certain stress threshold. We incorporate the build-up of the threshold
25 effect indirectly by positing the inclusion of earthquake recurrences in transition
26 probability matrices. Here, we use the spatio-temporal recurrences based on the record-
27 breaking model of Davidsen et al. (2008). In all our initial simulations, we ignore the
28 influence of amplitude effects on the stability of the chimera states. We carry out
29 simulations on the Kuramoto model for **200,000** time-steps for the 128x128 oscillator
30 grid matrices and for the 1024x1024 oscillator grid matrices. We report here the

Kris Vasudevan 2015-5-30 4:05 PM

Comment [7]: Referee 1 Major point 1

We use only the Kuramoto model with phase lag although our intention is to invoke a pulse-coupled or threshold coupled oscillator model.

We have added a paragraph here to reflect on this.

Kris Vasudevan 2015-5-30 4:00 PM

Formatted: Highlight

Kris Vasudevan 2015-5-30 4:05 PM

Formatted: Highlight

Kris Vasudevan 2015-5-30 4:05 PM

Comment [8]: Referee 1 Comment 7
Referee 2 Minor comment 5

The value of alpha used is spelled out in the text.

Kris Vasudevan 2015-5-30 4:05 PM

Formatted: Highlight

Kris Vasudevan 2015-5-30 4:05 PM

Formatted: Highlight

Kris Vasudevan 2015-5-30 5:41 PM

Deleted:

Kris Vasudevan 2015-5-30 3:59 PM

Comment [9]: Referee 1 Comment 2 on the value of the phase-lag used.

Referee 2 Minor Comment 5

We have spelled out the phase-lag value used in the revised manuscript.

Kris Vasudevan 2015-5-30 2:57 PM

Formatted: Highlight

Kris Vasudevan 2015-5-30 2:57 PM

Comment [10]: Referee 1 Comment 2 on the number of time-steps

We have done new simulation runs with 200,000 time-steps. Results from this new work replace figures 4 to 12.

Kris Vasudevan 2015-5-30 2:56 PM

Formatted: Highlight

1 preliminary results of our simulations.

2 **3 Results**

3

4 We report the Kuramoto model experimental results for oscillators resulting from
5 128x128, 192x192, 256x256, 512x512, and 1024x1024 grids of the latitude-longitude
6 map of the earthquakes. We consider a total of 13190 earthquakes. We construct the
7 transition probability and the shortest-path distance matrices for the grids without (“non-
8 recurrence” results) and with the consideration of the spatio-temporally complex
9 recurrences (“recurrence” results), as shown in Figures 2 and 3.

10 To represent the results, we use snapshots of three attributes (Zhu et al. (2014)): (i) the
11 phase profile, (ii) the effective angular velocities of oscillators and (iii) the fluctuation of
12 the instantaneous angular velocity of oscillators. The effective angular velocity of
13 oscillator i is defined as

$$14 \quad \langle \omega_i \rangle = \lim_{T \rightarrow \infty} \frac{1}{T} \int_{t_0}^{t_0+T} \dot{\theta}_i dt \quad (3)$$

15 Here, we take $T = 1000$ so that the effective angular velocities of the oscillators are
16 averaged over the last 1000 time-steps. We take $t_0 = 199,001$ for the 128x128 grid and
17 for the 1024x1024 grid.

18 The fluctuation of the instantaneous angular velocity, σ_i , of an oscillator i around its
19 effective velocity is defined as

$$20 \quad \sigma_i^2 = \lim_{T \rightarrow \infty} \frac{1}{T} \int_{t_0}^{t_0+T} (\dot{\theta}_i - \langle \omega_i \rangle)^2 dt \quad (4)$$

21 If $\sigma_i = 0$ then oscillator i rotates at a constant angular velocity. We show the non-
22 recurrence and recurrence results obtained from the behavior of the last 1000 time-steps
23 of the simulations involving 200,000 time-steps. We present the results for the 128x128
24 grid without and with recurrences in Figures 4 and 5 for the three attributes using $\kappa =$
25 0.10. Figures 6 and 7 show these attributes for the 1024x1024 grid without and with

Kris Vasudevan 2015-5-30 2:56 PM
Comment [11]: Referee 1 Comment 2
On the number of time-steps

We have done new simulation runs with
200,000 time-steps. Results from this
new work replace figures 4 to 12.

Kris Vasudevan 2015-5-30 2:54 PM
Formatted: Highlight

1 recurrences respectively for $\kappa = 0.1$

2 Whether or not the Kuramoto model reaches the steady-state, we examine the ratio of the
3 number of coherent or synchronous oscillators to the total number of oscillators or
4 "chimera index" as a function of the number of time steps. Here, we carry out 200,000
5 time steps. After every 20,000 time-steps, we look at the chimera index for the last 1000
6 time-steps. As an example, in Figure 8, we find the asymptotic behaviour of the scatter
7 of the chimera index for ten such intervals for the 128x128 grid for $\kappa = 0.10$ suggesting
8 that the Kuramoto model has reached the steady-state.

9 We investigate the influence of the non-local coupling coefficient, κ , on the chimera
10 index for each grid and summarize our results for the non-recurrent 128x128 and
11 1024x1024 grids in Figure 9.

12
13 Most of the initial computations reported in this work were on a HP C7000 chassis cluster
14 system with dual-core 2.4 GHz AMD Opteron processors at the high performance
15 computing facility at the University of Calgary. We carried out a series of runs for
16 200,000 time steps on a Mac Pro Six-Core Intel Xeon E5 3.9GHz, 16 GB RAM desktop
17 work station and on Intel Xeon E7-4870 2.40 GHz 256 GB RAM processors. We used
18 the Matlab ODE113 solver to solve the Kuramoto model.

19 4 Discussion

20 4.1. Building the directed graph

21 Earthquake sequencing is a well-studied problem in earthquake seismological
22 communities around the globe, and yet, it hides a suite of phenomenological mysteries
23 that stand in the way of successful earthquake forecasting. One of the first steps in
24 carrying out any investigative work on earthquake sequencing is to look at the global
25 seismicity map such as the one posted by IRIS on a regular basis, with continuous
26 updating of the associated catalogue. In Figures 1a and 1b, we summarize the cumulative
27 results of the catalogue for magnitudes of earthquakes exceeding Mw 5.5 and the depths
28 of occurrence not exceeding 70 kilometres, recorded between January 1970 and
29 September 2014. One difference in the two figures lies in the coarseness of the gridding

Kris Vasudevan 2015-5-30 4:35 PM

Comment [12]: We have removed Figure 8 from the previous paper and replaced it with a different Figure 8 which looks at the asymptotic behaviour.

Kris Vasudevan 2015-5-30 4:33 PM

Formatted: Highlight

Kris Vasudevan 2015-5-30 4:33 PM

Formatted: Highlight

Kris Vasudevan 2015-5-30 4:33 PM

Formatted: Highlight

Kris Vasudevan 2015-5-30 5:41 PM

Deleted:

Kris Vasudevan 2015-5-30 5:41 PM

Deleted:

Kris Vasudevan 2015-5-30 5:39 PM

Deleted: kappa,

Kris Vasudevan 2015-5-30 4:37 PM

Comment [13]: We have replaced the old Figure 9 with a new Figure 9 since we have carried out 200,000 time steps.

Kris Vasudevan 2015-5-30 4:33 PM

Formatted: Highlight

Kris Vasudevan 2015-5-30 4:38 PM

Comment [14]: We have added the computers the ode solver used in the paper.

Kris Vasudevan 2015-5-30 4:33 PM

Formatted: Highlight

Kris Vasudevan 2015-5-30 4:33 PM

Formatted: Highlight

Kris Vasudevan 2015-5-30 4:33 PM

Deleted: u

Kris Vasudevan 2015-5-30 4:33 PM

Formatted: Highlight

Kris Vasudevan 2015-5-30 4:33 PM

Formatted: Highlight

1 with the first one being coarser than the second. A cursory glance at the figures
2 immediately suggests the relevance of plate tectonics in that most earthquakes seem to
3 occur at and around plate boundaries. A broad classification of these earthquakes could
4 consist of the following categories: strike-slip earthquakes, subduction-zone seismicity,
5 oceanic earthquakes, continental extensional regimes, intraplate earthquakes, and slow
6 earthquakes (Scholz, 2002). The interplay between these remains a topic of research
7 among seismologists. In general, fault systems play an important role in understanding
8 the cause and recurrence of earthquakes. Scholz (2002) provides an excellent account of
9 the mechanics of earthquakes and faulting. Ben-Zion and Sammis (2003) examined the
10 continuum-Euclidean, the granular, and the fractal views of the geometrical, mechanical,
11 and mathematical nature of faults and concluded that many aspects of the observed
12 spatio-temporal complexity of earthquakes and faults might be explained using the
13 continuum-Euclidean model. They contended that a continuum-based description would
14 provide a long-term attractor for structural evolution of fault zones at all scales. The
15 underpinning point in these works is the importance of the faulting in earthquake
16 processes. Earthquakes are known to occur at different depths. Excepting in instances
17 where there are surface ruptures as a result of earthquakes, fault zones at seismogenic
18 depths in kilometres cannot be directly observed (Ben-Zion and Sammis, 2003).
19 Continued geological mapping and high-resolution geophysical measurements afford a
20 mechanism to improve our understanding of the fault zones.

21

22 Rundle et al. (2003) took a statistical physics approach in emphasizing the significance of
23 faults and fault systems as high-dimensional non-linear dynamical systems characterized
24 by a wide range of scales in both space and time, from centimeters to thousands of
25 kilometers, and from seconds to many thousands of years. The signature of the residual
26 behavior in these systems is chaotic and complex. Understanding the coupling between
27 different space and time scales to comprehend the non-linear dynamics of the fault
28 systems is not an easy problem. In this regard, any attempt to explore the possibilities
29 that accrue from non-linear dynamics studies is welcome.

30

1 In earlier studies on model and theoretical seismicity (Burridge and Knopoff, 1967;
2 Vieira, 1999), special attention was paid to finding out if chaos was present in the
3 symmetric non-linear two-block Burridge-Knopff model for earthquakes. Vieira (1999)
4 demonstrated with a three-block system the appearance of synchronized chaos. A
5 consequence of this study was the speculation that earthquake faults, which are generally
6 coupled through the elastic media in the earth's crust, could in principle synchronize even
7 when they have an irregular chaotic dynamics (Vieira, 1999). Going one step further
8 would be to suggest that the occurrence of earthquakes and the space-time scale patterns
9 they leave behind is a sound proxy for modeling and theoretical studies of the fault
10 systems. It is this point that is pursued in this work.

11

12 In this study, we focus on the non-linear dynamics of weakly-coupled oscillators. Each
13 oscillator (corresponding to the occurrence of an earthquake) is a proxy for a fault system
14 or network with known information on its location, the time when the earthquake event
15 occurred, and magnitude. This defines an element in the earthquake sequence. A
16 continued sequence of events is represented as a directed graph (Vasudevan et al., 2010;
17 Cavers and Vasudevan, 2014; Vasudevan and Cavers, 2014b) with the vertices
18 representing the earthquakes (and their attributes) and the arcs the connecting links
19 between neighbours in a sequence. Figures 2a and 3a show the transition matrices for the
20 directed graphs of the two grids, 128x128 and 1024x1024 grids. The oscillator index is
21 determined by the grid partition with non-zero cells labelled in row-by-row order. A
22 log(log) display scale is used to highlight the “clustering”. The level of clustering along
23 the first leading off-diagonal elements of the transition matrix is highlighted and indicates
24 the partitioning and the relative significance of the seismicity zones in the globe.
25 However, this does not invoke any causality argument. Since the multiplicity of the
26 earthquakes in the cells of the grids used varies from ‘0’ to a large number, for the reason
27 mentioned concerning the Euclidean geometry mentioned earlier, inter-cell and intra-cell
28 transitions populate the transition matrices. These transition matrices are not symmetric.
29 The non-linear dynamics of weakly-coupled oscillators on such matrices has not been
30 fully understood.

31

1 As mentioned earlier, the quiescence period between earthquakes in an earthquake zone
 2 is what we interpret here as recurrence period. Studies on plate-boundary motions (Bird,
 3 2002; DeMets, 2010; Stein, 1993) will provide an insight into the recurrence period for
 4 earthquakes in certain major fault zones. Even in instances where knowledge of the
 5 recurrence periods is known, it is usually punctuated by random fluctuations, the statistics
 6 of which are not unknown. The quiescence period is analogous to the process in human
 7 brains that precedes epileptic seizures (Berg et al., 2006; Rothkegel and Lehnertz, 2014),
 8 the structure of which has been modeled using pulse-coupled phase-oscillators. Such
 9 pulse-coupling or threshold-coupling remains to be quantified for earthquakes. We defer
 10 this aspect of the work to future studies. Furthermore, the historical seismicity data set is
 11 short and, therefore, any information to be drawn from global records will be insufficient.
 12 However, the recurrence model introduced by Davidsen et al. (2008) offers a simple
 13 remedy to the problem. It rests in identifying the earthquakes occurring in close
 14 proximity to any occurred event in the record-breaking sequence. Incorporating this
 15 feature into the transition matrices results in modified transition matrices, as shown in
 16 Figures 2b and 3b. We propose that accounting for the quiescence period in this manner
 17 opens additional options such as feedback effects on the non-linear dynamics of weakly-
 18 coupled oscillators.

20 4.2. Synchronization

21 Scholz (2010) argued for the role of synchronization in fault interactions and earthquake
 22 clustering and for the usefulness of the Kuramoto model. Kuramoto (1975) proposed a
 23 mathematical model of phase oscillators interacting at arbitrary intrinsic frequencies and
 24 coupled through a sine of their phase differences. He suggested the following equations
 25 for each oscillator in the system:

$$28 \quad \dot{\theta}_i = \omega_i + K_i \sum_{j=1}^N \sin[\theta_j(t) - \theta_i(t)] \quad (i = 1, \dots, N) \quad (5)$$

29
 30 where θ_i is the phase of the i^{th} oscillator, $\dot{\theta}_i(t)$ is the first derivative of the phase of the i^{th}
 31 oscillator with time, ω_i is the natural frequency of the oscillator, K_i is the strength of

Kris Vasudevan 2015-5-30 3:57 PM

Formatted: Highlight

Kris Vasudevan 2015-5-30 3:58 PM

Comment [15]: Referee 2 Minor
 Comment 4

We have modified the text here.

Kris Vasudevan 2015-5-30 3:57 PM

Formatted: Highlight

Kris Vasudevan 2015-5-30 3:54 PM

Comment [16]: Referee 1 Comment 8
 Referee 2 Minor comment 1
 We have corrected the mistake pointed out by the referee.

Kris Vasudevan 2015-5-30 3:15 PM

Formatted: Highlight

1 coupling of the i^{th} oscillator to other oscillators and N is the size of the population of the
2 oscillators. The frequencies ω_i are chosen from a uniform distribution. Kuramoto (1975)
3 demonstrated that synchronization was accomplished in the case of mean-field coupling
4 with

5 $K_i = \frac{K}{N} > 0 \quad (i = 1, \dots, N)$ (6)

6 in the above equation. We can describe the Kuramoto model in a simpler form by
7 introducing the complex-valued order parameter $r(t)$:

8

9 $Z = r(t)e^{i\psi(t)} = \frac{1}{N} \sum_{j=1}^N e^{i\theta_j(t)}$ (7)

10

11 where $\Psi(t)$ is the average phase and $r(t)$ honours $0 \leq r(t) \leq 1$. The expression of the
12 Kuramoto model becomes:

13

14 $\dot{\theta}_i(t) = \omega_i + Kr \sin[\Psi - \theta_i(t)] \quad (i = 1, \dots, N)$ (8)

15

16 The collective behavior of all the oscillators is monitored by examining the time
17 evolution of the order parameter, r , (Kuramoto (1975), Strogatz (2000); Pikovsky et al.
18 (2003); Strogatz (2003)). The order parameter can assume values in the range 0 to 1
19 including the limits. From this, it is obvious that each oscillator is connected to the
20 common average phase with the coupling strength is given by $K r$. A value of '0' for r
21 corresponds to total incoherence, i.e., no phase locking of the phases of the oscillators; a
22 value of '1' for r corresponds to full coherence, i.e., phase locking of all the phases of the
23 oscillators. The time evolution of the Kuramoto model can be monitored either by
24 looking at the polar plots of the phases on a unit circle (Kuramoto (1975)) or by
25 following the plot of the order parameter, r , as a function of the coupling strength, K .
26 Acebrón et al. (2005) have provided a comprehensive review of the Kuramoto model.

27

28 For the stability of the solution from the Kuramoto model, use of a large population of
29 oscillators for calculability in the thermodynamic limit is a pre-requisite. Over the last
30 decade, efforts have gone into considering a finite number of oscillators satisfying the

1 original conditions of the Kuramoto model. Easing the restrictions on the interaction
2 model can be cast as an investigation of synchronization on complex networks. This
3 would allow one to relate the complex topology and the heterogeneity of the network to
4 the synchronization behavior.

5

6 We rewrite the original Kuramoto model for a complex network corresponding to
7 undirected and directed graphs as

8

9
$$\dot{\theta}_i(t) = \omega_i + \sum_{j=1}^N \sigma_{ij} a_{ij} \sin[\theta_j(t) - \theta_i(t)] \quad (i = 1, \dots, N) \quad (9)$$

10

11 where σ_{ij} is the coupling strength between pairs of connected oscillators and a_{ij} refers to
12 the elements of the adjacency or connectivity matrix. Much effort has gone into
13 understanding the role of the coupling strength (Hong et al. 2002; Arenas et al., 2008;
14 Dörfler et al., 2013) in the synchronization behavior of small-world and scale-free graphs.

15 Here, we leave the coupling strength term a constant, unlike in the model under the
16 thermodynamic limit where the size of the population, N , enters explicitly in the coupling
17 strength term as a divisor. The structure of the adjacency matrix decides essentially the
18 nature of the interaction term made up of the sine coupling of the phases. Vasudevan and
19 Cavers (2014a) have investigated the synchronization behaviour of the random graphs
20 under different rewiring probabilities and the scale free-graphs from a spectral graph
21 theory point of view. These studies did not include a study on the effect of clustering on
22 the synchronization. In this regard, the work of McGraw and Menzinger (2005) is quite
23 appealing. They conclude that for random networks and scale-free networks, increased
24 clustering promotes the synchronization of the most connected nodes (hubs) even though
25 it inhibits global synchronization. We see the role of the effect of clustering on the nature
26 of synchronization behaviour in earthquake sequencing studies and will constitute a
27 separate study. Whether or not we reach similar conclusions for directed graphs, we have
28 recently investigated synthetic networks that mimic real data structures (Vasudevan and
29 Cavers, 2014a). In this regard, it is worth mentioning that synchronization of Kuramoto
30 oscillators in directed networks has been subjected to a detailed study (Restrepo et al.,
31 2006).

Kris Vasudevan 2015-5-30 3:49 PM
Formatted: Highlight

Kris Vasudevan 2015-5-30 3:52 PM
Comment [17]: Referee 2 Minor Point 2
We have incorporated the reference to a detailed study on directed networks by Restrepo et al (2006).

Kris Vasudevan 2015-5-30 3:49 PM
Formatted: Highlight

1

2 4.3. Chimera states

3

4 While the synchronization and asynchronization studies on earthquake sequencing are
5 important in terms of the Kuramoto model given in Equation 9, very little attention has
6 been paid to the co-existence of synchronized and asynchronized states or the chimera
7 states. Kuramoto and Battogtokh (2002) and Abrams and Strogatz (2004) paved the way
8 for such a study by including the non-local effects into the Kuramoto model, as expressed
9 in Equations 1 and 2. Non-local effects mean simply the inclusion of geometry effects.
10 For the global seismicity map considered in this study, we generated the shortest-path
11 distance matrices with and without the inclusion of recurrences (Figures 2c, 3c, 2d, and
12 3d). The shortest-path algorithm encapsulates both the cascading effects of earthquakes
13 and the negation of long-range distance effects. In this study, we kept the global coupling
14 strength constant and allowed the non-local coupling strength, κ , to vary from one
15 simulation to the next one, similar to what was done in the recent work of Zhu et al.
16 (2014).

17

18

19 Symmetry breaking phenomena like chimera states have also been observed for two-
20 cluster network of oscillators with a Lorentizian frequency distribution (Montbrió et al.,
21 2004) for all values of time-delay. A crucial result by Laing (2009a, 2009b) extends the
22 previous observation to oscillators with heterogeneous frequencies. Also interesting to
23 observe in this regard is that these heterogeneities can lead to new bifurcations allowing
24 for alternating synchrony between the distinct populations over time. Ko and Ermentrout
25 (2008) demonstrated the presence of chimera-like states when the coupling strengths
26 were heterogeneous. The last study used coupled Morris-Lecar oscillators. Although
27 there is overwhelming evidence for the existence of chimera states in the presence of time
28 delay or phase-lag, all of our initial Kuramoto model simulations on the directed graph
29 transition matrices and the associated shortest-path distance matrices included a constant
30 phase-lag only.

31

Kris Vasudevan 2015-5-30 3:38 PM

Comment [18]: Referee 1 Comment 9

We thank the referee in pointing this
mistake to us. We have deleted the
sentence in the revised manuscript.

Kris Vasudevan 2015-5-30 3:37 PM

Deleted: The model in equation 1
contains a time-delay term or a phase-lag
term (Kuramoto and Battogtokh, 2002;
Abrams and Strogatz, 2004; Sethia et al.,
2008; Yao et al., 2013; Zhu et al., 2014;
Pannagio and Abrams, 2014; Vasudevan
and Cavers, 2014b).

Kris Vasudevan 2015-5-30 3:36 PM

Formatted: Highlight

Kris Vasudevan 2015-5-30 3:36 PM

Formatted: Highlight

1 A postulation for the existence of evolving chimera states in data from earthquake
2 catalogues has certain implications. For instance, it would pave way for understanding
3 the evolving alterations in stress-field fluctuations in fault-zones frequented by
4 earthquakes. Also, it would suggest a need to consider steps to quantify partially or fully
5 the ratio of the number of synchronized oscillators to the total number of oscillators. The
6 steps would involve extensive testing of the dependence of the parameters and additional
7 mathematical models. We interpret the zones with synchronized oscillators as the ones
8 being susceptible to earthquakes and the zones with asynchronous oscillators as the ones
9 going through a quiescence period. The hope is that confirmation of chimera states in
10 earthquake sequencing would signal a possible use for earthquake forecasting studies.

11

12 4.4. Simulation results and analysis

13

14 The Kuramoto model simulation with non-local coupling effects ($\kappa=0.10$) with a phase-
15 lag, as expressed in [Equation 1](#) [for a](#) 128x128 grid transition probability [and](#) the
16 corresponding shortest-path distance matrices [lead](#) to snapshots of three attributes: (1)
17 the phase profile; (ii) the effective angular velocities of oscillators, and (iii) the
18 fluctuation of the instantaneous angular velocity of oscillators. We did not sort the results
19 according to an increase in the values of the attributes. Panels (a), (b), and (c) in Figure 4
20 show that [for](#) a case of no recurrences, there exists a chimera state. The ensemble
21 averages from the last 1000 time steps of the 200,000 time steps in the numerical
22 simulations reveal the co-existence of synchronous and asynchronous oscillators. This
23 means that some of the cells in the grid strike a synchronous behavior and some others do
24 not. In this particular case of no recurrences (Figure 4), the number of synchronous
25 oscillators to the number of asynchronous oscillators is large. In the case of recurrences,
26 as shown in Figure 5, this ratio is much larger. Also, the [chimera](#) pattern of the
27 synchronized and asynchronous components of the oscillators is similar to what was
28 observed by Abrams and Strogatz (2004). Figures 4a and 5a are the first evidence of the
29 possible existence of a chimera state in earthquake sequencing. Figures 4b, 4c, 5b, and
30 5c confirm [this](#).

Kris Vasudevan 2015-5-30 4:08 PM

Comment [19]: Referee 1 Comment 1 and Referee2 Major point 3

We have responded to the implications of the chimera state here.

Kris Vasudevan 2015-5-30 2:49 PM

Formatted: Highlight

Kris Vasudevan 2015-5-30 2:49 PM

Formatted: Highlight

1 Going from the 128x128 grid to 1024x1024 grid, there are more non-zero cells with
2 multiplicity of earthquakes at least 1. The number of oscillators is substantially larger,
3 1693 vs 7697. Figures 6 and 7 reveal the chimera state as the steady-state solution to the
4 non-linear dynamics on weakly-coupled oscillators without and with recurrences for the
5 1024x1024 grid with the non-local coupling coefficient, $\kappa = 0.1$. Figure 8 shows the
6 behaviour of the chimera index as a function of the number of time-steps for the non-
7 recurrent 128x128 grid with the non-local coupling coefficient, κ , set at 0.10. The
8 purpose of this figure is to demonstrate that the asymptotic behaviour of the chimera
9 index with an increase in the number of time steps could be used to look at the steady-
10 state solution of the Kuramoto model.

11

12 We looked at the influence of the non-local coupling coefficient, κ , on the ratio of the
13 number of coherent oscillators to the total number of oscillators for both the 128x128 and
14 1024x1024 grids without recurrences in Figure 9. A similar observation is made for the
15 case of recurrences. As the non-local coupling coefficient, κ , increases from 0.01 to 1.0,
16 the ratio decreases. For values of κ approaching 0, the non-local Kuramoto model acts as
17 a simple Kuramoto model in that there is full synchronization for the global coupling
18 parameter, A, (or used as K in literature) of 1.0. What is surprising to begin with is that,
19 as κ approaches 1, the steady-state solution becomes more asynchronized. Investigations
20 on the effect of the non-local coupling effect parameter, κ , on the steady-state solution of
21 the phase angle distribution in the chimera state (Figures 10a, 10b, 11a and 11b) suggest
22 that for both the 128x128 grid and the 1024x1024 grid, for larger κ values, the number of
23 asynchronous oscillators is larger, and for smaller κ values, the presence of synchronous
24 oscillators becomes dominant. For in-between values, i.e., between 1.0 and 0.03, the
25 nature of the chimera states changes.

26

27 The outcome of each one of the simulations described for both the non-recurrence and
28 recurrence cases contains synchronous and asynchronous vectors. Mapping these vectors
29 on the respective grids (128x128 or 1024x1024 grids) should reveal the “non-readiness or
30 readiness” cells or zones for earthquakes. One such map for a 128x128 grid without

Kris Vasudevan 2015-5-30 5:42 PM

Deleted:

Kris Vasudevan 2015-5-30 4:55 PM

Formatted: Highlight

Kris Vasudevan 2015-5-30 5:45 PM

Deleted:

Kris Vasudevan 2015-5-30 4:55 PM

Formatted: Highlight

Kris Vasudevan 2015-5-30 5:42 PM

Deleted:

Kris Vasudevan 2015-5-30 5:42 PM

Deleted:

Kris Vasudevan 2015-5-30 4:56 PM

Comment [20]: We have modified the text to accommodate Figures 10a, 10b, 11a and 11b.

Kris Vasudevan 2015-5-30 4:55 PM

Formatted: Highlight

1 recurrences for $\kappa = 0.10$ is shown in Figure 12. This qualitative description of the
2 evolutionary dynamics of the earthquake sequencing is highly instructive.

3

4

5 **5 Conclusions and future work**

6

7 Earthquake sequencing is an intriguing research topic. The dynamics involved in the
8 evolution of earthquake sequencing [are](#) complex. Very much has been understood, and
9 yet, the evolving picture is incomplete. In this regard, the work of Scholz (2010) acted as
10 a catalyst in us investigating the synchronization aspect of earthquakes using the
11 Kuramoto model. To name a few, the works of Vieira (1999), Rundle et al. (2002, 2003),
12 Kuramoto and Battogtokh (2002), Abrams and Strogatz (2004), and Laing (2009a,
13 2009b) have helped us take this step forward with this work. We summarize below the
14 main points of this paper and also, point out the direction in which we are going:

15

16 (1) Earthquake sequencing from the IRIS earthquake catalogue browser can be
17 expressed as a transition matrix of a directed graph. Partitioning of the
18 latitude/longitude grid of the globe into grids of finite dimensions such as
19 128x128, 192x192, 256x256, 512x512, and 1024x1024 grids result in differing
20 dimensions of transition matrices of oscillators in increasing order. Short-path
21 distance matrices for the latter are generated concurrently to study the non-local
22 effects used in the Kuramoto model.

23 (2) Inclusion of the non-local effects in the Kuramoto model of the directed graphs is
24 tested for different values of the non-local coupling coefficient, κ .

25 (3) For [a](#) non-local coupling strength, κ , of 0.10, the Kuramoto model yields chimera
26 states as a steady-state solution, i.e., co-existence of synchronized and
27 asynchronized states. This is true for all the grid sizes considered. Differences
28 exist in the ratio of the number of coherent oscillators to the number of incoherent
29 oscillators.

30 (4) As the non-local coupling strength, κ , is lowered from 1.0 to 0.01, there is a
31 general tendency towards an increase in synchronization, as is expected. While

1 this general trend is observed for directed graphs generated from grids of orders
2 128, 192, 256, and 512, the graph from 1024x1024 grid reveals the presence of
3 the chimera state.

Kris Vasudevan 2015-5-30 5:46 PM
Deleted: dimensions
Kris Vasudevan 2015-5-30 5:46 PM
Deleted: persistence

4 (5) As the non-local coupling strength is increased from 0.1 to 1.0, there is a steady
5 increase in the asynchronous behavior.

6 (6) The recurrence results support the presence of chimera states for both 128x128
7 and 1024x1024 grids. However, it is quite intriguing to find out that the
8 asynchronous oscillators come from a sub-set of the oscillators in both cases.

9 (7) There is still a nagging question about which non-local coupling coefficient would
10 be an ideal candidate for understanding the global stress-field fluctuations.

11 Figure 12 illustrates an example of how a chimera state could be displayed on the
12 map grid. Imposing geophysical and geodetic constraints on the earthquake zones
13 in terms of heterogeneity of the natural frequencies would provide a quantitative
14 answer to the above question.

15 (8) In general, the hypothesis that all networks of earthquake faults around the globe
16 go through full synchronization still needs to be strongly tested. On the other
17 hand, the prevalence of chimera states or multi-chimera states is an attractive
18 option to understand the earthquake sequencing.

19 (9) We believe that there is, now, a mechanism available to us to explore and seek an
20 answer to the non-linear dynamics of earthquake oscillations.

21 Needless to say, the role of the parameters such as the heterogeneity of the oscillators as
22 expressed in the natural frequency of the oscillators, the variability of the time-delay
23 corrections instead of a constant time-delay, and the heterogeneity of the non-local
24 coupling strength and the global coupling strength in the present Kuramoto model
25 remains to be investigated. Work is currently in progress.

Kris Vasudevan 2015-5-30 3:24 PM
Comment [21]: Referee 1 Comment 10

We have removed the last three sentences
from the original manuscript to avoid
misleading the readers.

Kris Vasudevan 2015-5-30 5:47 PM
Formatted: Highlight

Kris Vasudevan 2015-5-30 5:48 PM
Comment [22]: We have added this
sentence.

Kris Vasudevan 2015-5-30 5:47 PM
Formatted: Highlight

26
27
28 *Acknowledgements.* We would like to thank two anonymous referees for their constructive criticisms and
29 helpful suggestions that helped us improve the initial manuscript. We would like to express deep gratitude
30 to the department of Mathematics and Statistics for support and computing time and to the generosity and
31 hospitality shown at the Max Planck Institute of the Physics of Complex Systems at Dresden, Germany
32 during KV's short-visit to the institute last summer. We thank Incorporated Institutions for Seismology

1 (IRIS) for the information on global earthquake catalogue and the high performance computing at the
2 university of Calgary.

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

1 **References**

2

3 Abrams, D.M., and Strogatz, S.H.: Chimera states for coupled oscillators, *Phys. Rev. Lett.*, 93, 174102, 2004. DOI: <http://dx.doi.org/10.1103/PhysRevLett.93.174102>

4

5 Abrams, D.M., Mirocco, R., Strogatz, S.H., and Wiley, D. A.: Solvable model for chimera states of coupled oscillators, *Phys. Rev. Lett.*, 101:084103, 2008. DOI: <http://dx.doi.org/10.1103/PhysRevLett.101.084103>

6

7

8

9

10 Acebrón, J. A., Bonilla, L.L., Vicente, C.J.P., Ritort, F., and Spigler, R.: The Kuramoto model: A simple paradigm for synchronization phenomena, *Rev. Mod. Phys.*, 77, 137-185, 2005.

11

12

13

14 Arenas, A., Diaz-Guilera, A., Kurths, J., Moreno, Y., and Zhou, C.: Synchronization in complex networks, *Physics Reports*, 469(3), 93-153, 2008.

15

16 Bath, M.: Lateral inhomogeneities of the upper mantle, *Tectonophysics*, 2, 483-514, 1965.

17

18

19 Beggs, J. M., and Plenz, D.: Neuronal avalanches in neocortical circuits, *J. Neurosciences*, 23(35), 11167-11177, 2003.

20

21

22 Berg, A.T., Vickrey, B.G., Testa, F.M., Levy, S. R., Shinnar, S., DiMario, F., Smith, S.: How long does it take for epilepsy to become intractable? A prospective investigation, *Ann. Neurol.*, 60(1), 73-79, 2006.

23

24

25

26 Ben-Zion, Y., and Sammis, C.G.: Characterization of fault zones, *Pure Appl. Geophys.*, 160, 677-715, 2002.

27

28

29 Bird, P.: An updated digital model of plate boundaries, *Geochem. Geophys. Geosys.*, 4(3) 1027, 2003. DOI: 10.1029/2001GC00025

30

31

32 Bufe, C.G., and Varnes, D. J.: Predictive modeling of the seismic cycle of the greater San Francisco Bay region, *J. Geophys. Res.*, 98, 9871-9883, 1993.

33

34

35 Burridge, R., and Knopoff, L.: Model and theoretical seismicity, *Bull. Seismol. Soc. Am.*, 57, 341-371, 1967.

36

37

38 Cavers, M., and Vasudevan, K.: Spatio-temporal complex Markov Chain (SCMC) model using directed graphs: Earthquake sequencing, *Pure Appl. Geophys.*, 172(2), 225-241, 2015. DOI: 10.1007/s00024-014-0850-7

39

40

41

42 Chialvo, D. R.: Emergent complex neural dynamics, *Nature Physics*, 6, 744-750, 2010.

43

1 Davidsen, J., Grassberger, P., and Paczuski, M.: Networks of recurrent events, a theory of
2 records, and an application to finding causal signatures in seismicity, *Phys. Rev. E.*,
3 77, 66-104, 2008.

4

5 DeMets, C., Gordon, R.G., and Argus, D.F.: Geologically current plate motions,
6 *Geophys. J. Int.*, 181, 1-80, 2010.

7

8 Dörfler, F., Chertkov, M., and Bullo, F.: Synchronization in complex oscillator networks
9 and smart grids, *Proc. Natl. Acad. Sci.*, 110(6), 2005-2010, 2013.

10 Gupta, S., Campa, A., and Ruffo, S.: Kuramoto model of synchronization: equilibrium
11 and nonequilibrium aspects, *J. Stat. Mechanics: Theory and Experiment*, R08001,
12 2014. DOI: 10.1088/1742-5468/14/08/R08001

13

14 Gutenberg, M.B., and Richter, C.F.: *Seismicity of the Earth and Associated Phenomena*,
15 Princeton University press, 310pp, 1954.

16

17 Hanks, T. C., and Kanamori, H.: A moment magnitude scale, *J. Geophys. Res. (Solid
Earth)*, 84(B5), 2348-2350, 1979.

18

19 Herz, A. V. M., and Hopfield, J.J.: Earthquake cycles and natural reverberations:
20 Collective oscillations in systems with pulse-coupled threshold elements, *Phys. Rev.
Letters*, 75(6), 1222-1225, 1995.

21

22

23 Hong, H., Chou, M.Y., and Kim, B.J.: Synchronization on small-world networks, *Phys.
Rev. E*, 65, 026139, 2002. DOI: 10.1103/PhysRevE.65.026139

24

25 Kagan, Y.Y., Bird, P., and Jackson, D.D.: Earthquake patterns in diverse tectonic zones
26 of the globe, *Pure Appl. Geophys.*, 167, 721-741, 2010.

27

28 Kanamori, H., and Anderson, D.L.: Theoretical basis of some empirical relations in
29 seismology, *Bull. Seism. Soc. Am.*, 65(5), 1073-1095, 1975.

30

31 Kapitaniak, T., Kuzma, P., Wojewada, J., Czolczynski, K., and Maistrenko, Y.: Imperfect
32 chimera states for coupled pendula, *Sci. Rep.*, 4:6379, 1-4, 2014.

33

34 Karsai, M., Kaski, K., Barabási, A-L., and Kertész, J.: Universal features of correlated
35 bursty behavior, *Sci. Rep.*, 2, 397, 2012. DOI:10.1038/srep00397, 2012.

36

37 Ko, T.W., and Ermentrout, G.B.: Partially locked states in coupled oscillators due to
38 inhomogeneous coupling, *Phys. Rev. E*, 78(1), 016203, 2008. DOI:
39 10.1103/PhysRevE.78.016203

40

41 Kuramoto, Y.: Self-entrainment of a population of coupled non-linear oscillators, In
42 Huzihiro Araki, editor, *International symposium in Mathematical Problems on
43 Theoretical Physics*, 39, *Lecture Notes in Physics*, pages 420-422, Springer Berlin
44 Heidelberg, 1975.

45

46

1 Kuramoto, Y.: Collective synchronization of pulse-coupled oscillators and excitable
2 units, *Physica D*, 50(1), 15-30, 1991.

3 Kuramoto, Y., and Battogtokh, D.: Coexistence of coherence and incoherence in non-
4 locally coupled phase oscillators, *Nonlinear Phenom. Complex Syst.*, 5, 380-385,
5 2002.

6

7 Laing, C.R.: Chimera states in heterogeneous networks, *Chaos*, 19, 013113, 2009a. DOI:
8 <http://dx.doi.org/10.1063/1.3068353>

9

10 Laing, C. R.: The dynamics of chimera states in heterogeneous Kuramoto networks,
11 *Physica D*, 238, 1569, 2009b. DOI:10.1016/j.physd.2009.04.012

12

13 Laing, C. R., Rajendran, K., and Kevrekidis, I. G.: Chimeras in random non-complete
14 networks of phase oscillators, *Chaos*, 22, 013132, 2012.
15 <http://dx.doi.org/10.1063/1.3694118>

16

17 Lindner, B., Garcia-Ojalvo, J., Neima, A., and Schimansky-Geier, L.: Effects of noise in
18 excitable systems, *Phys. Reports*, 392, 321-424, 2004.

19

20 Martens, E. A., Thutupalli, S., Fourrière, A., and Hallatschek, O.: Chimera states in
21 mechanical oscillator networks, *Proc. Natl. Acad. Sci.*, 110(26), 10563-10567, 2013.

22

23 McGraw, P.N., and Menzinger, M.: Clustering and the synchronization of oscillator
24 networks, *Phys. Rev. E*, 72, 015101(R), 2005. DOI:
25 <http://dx.doi.org/10.1103/PhysRevE.72.015101>

26

27 Miroollo, R.E., and Strogatz, S.H.: Synchronization of pulse-coupled biological oscillators,
28 *SIAM J. Appl. Math.*, 50, 1645-1662, 1990.

29

30 Montbrió, E., Kurths, J., Blasius, B.: Synchronization of two interacting populations of
31 oscillators, *Phys. Rev. E*, 70, 056125, 2004. DOI:
32 <http://dx.doi.org/10.1103/PhysRevE.70.056125>

33

34 Nava, F.A., Herrera, C., Frez, J., and Glowacka, E.: Seismic hazard evaluation using
35 Markov chains: Application to the Japan area, *Pure Appl. Geophys.*, 162, 1347-1366,
36 2005.

37

38 Ogata, Y.: Significant improvements of the space-time ETAS model for forecasting of
39 accurate baseline seismicity, *Earth Planets Space*, 63, 217-229, 2011.

40

41 Omel'chenko, O.E., Maistrenko, Y. L., and Tass, P. A.: Chimera states: The natural link
42 between coherence and incoherence *Phys. Rev. Lett.*, 100, 044105, 2008. DOI:
43 <http://dx.doi.org/10.1103/PhysRevLett.100.044105>

44 Omori, F.: On the aftershocks of earthquakes, *J. Coll. Soc. Imper. Univ. Tokyo* 7, 111-
45 200, 1895.

Kris Vasudevan 2015-5-30 4:59 PM
Comment [23]: This reference is added.
Kris Vasudevan 2015-5-30 4:57 PM
Formatted: Highlight
Kris Vasudevan 2015-5-30 4:57 PM
Formatted: Highlight

1
2 Osorio, I., Frei, M.G., Sornette, D., Milton, J., and Lai, Y-C.: Epileptic seizures: Quakes
3 of the brain? *Phys. Rev. E.*, 82, 021919, 2010. DOI: 10.1103/PhysRevE.82.021919
4
5 Panaggio, M.J., and Abrams, D. M.: Chimera states: Coexistence of coherence and
6 incoherence in networks of coupled oscillators, *Nonlinear sciences: Chaotic*
7 *dynamics*, arXiv:1403.6204v2, 12 May, 2014.
8
9 Pazó, D., and Montbrió, E.: Low-dimensional dynamics of populations of pulse-coupled
10 oscillators, *Phys. Rev. X*, 4, 011009, 2014. DOI:
11 <http://dx.doi.org/10.1103/PhysRevX.4.011009>
12
13 Pikovsky, A., Rosenblum, M., and Kurths, J.: *Synchronization: a universal concept in*
14 *nonlinear sciences*, volume 12, Cambridge University Press, 2003.
15
16 Restrepo, J. G., Ott, E., and Hunt, B. E., *Synchronization in large directed networks of*
17 *coupled phase of oscillators, Chaos*, 16(1), 015107, 2006.
18
19 Rothkegel, A., and Lehnertz, K., Irregular macroscopic dynamics due to chimera states in
20 small-world networks of pulse-coupled oscillators, *New Journal of Phys.*, 16,
21 055006, 2014. DOI: 10.1088/1367-2630/16/5/055006
22
23 Rundle, J.B., Tiampo, K. F., Klein, W., and Sa Martins, J. S.: Self-organization in leaky
24 threshold systems: The influence of near-mean field dynamics and its implications
25 for earthquakes, neurobiology, and forecasting, *Proc. Natl. Acad. Sci.*, 99, 2514-
26 2541, 2002.
27
28 Rundle, J.B., Turcotte, D. L., Shcherbakov, R., Klein, W., and Sammis, C.: Statistical
29 physics approach to understanding the multiscale dynamics of earthquake fault
30 systems, *Rev. Geophys.*, 41(4), 1019, doi:10.1029/2003RG000135, 2003.
31
32 Sakaguchi, H., Shinomoto, S., and Kuramoto, Y., *Phase transitions and their bifurcation*
33 *analysis in a large population of active rotators with mean-field coupling, Prog.*
34 *Theor. Phys.*, 79(3), 600-607, 1988.
35
36 Shinomoto, S., and Kuaramoto, Y., *Prog. Theor. Phys.*, 75(5), 1105-1110, 1986.
37
38 Scholz, C.H., *The Mechanics of earthquakes and faulting*, 2nd ed., Cambridge Univ.
39 Press, New York, 2002.
40
41 Scholz, C.H.: Large earthquake triggering, clustering, and the synchronization of faults,
42 *Bull. Seism. Soc. Am.*, 100(3), 901-909, 2010.
43
44 Sethia, G.C., Sen, A., and Atay, F.M.: Clustered chimera states in delay-coupled
45 oscillator systems, *Phys. Rev. Lett.*, 100, 144102, 2008. DOI:
46 <http://dx.doi.org/10.1103/PhysRevLett.100.144102>

Kris Vasudevan 2015-5-30 4:59 PM
Comment [24]: This reference is added.
Kris Vasudevan 2015-5-30 4:57 PM
Formatted: Highlight
Kris Vasudevan 2015-5-30 4:57 PM
Formatted: Highlight

Kris Vasudevan 2015-5-30 4:58 PM
Formatted: Highlight

Kris Vasudevan 2015-5-30 4:59 PM
Comment [25]: New references are added.
Kris Vasudevan 2015-5-30 4:58 PM
Formatted: Highlight

1 Sheeba, J.H., Chandrasekar, V.K., and Lakshmanan, M.: Globally clustered chimera
2 states in delay-coupled populations, *Phys. Rev. E*, 79, 055203(R), 2009. DOI:
3 <http://dx.doi.org/10.1103/PhysRevE.79.055203>
4

5 Stein, S., Space geodesy and plate motions, in: *Contributions of Space Geodesy to*
6 *Geodynamics*, Editors: David E. Smith, Donald L. Turcotte, *Geodynamics Series* 23,
7 5-20, American Geophysical Union, 1993. John Wiley & Sons, Inc., DOI:
8 10.1029.GD023
9

10 Strogatz, S. H.: From Kuramoto to Crawford: Exploring the onset of synchronization in
11 populations of coupled oscillators, *Physica D*, 143, 1-20, 2000.
12

13 Telesca, L., Cherkaoui, T-E., and Rouai, M.: Revealing scaling and cycles in earthquake
14 sequences, *International J. Nonlinear Science*, 11(2), 137-142, 2011.
15

16 Thurner, S., Lowen, S.B., Feurstein, M.C., Heneghan, C., Feichtinger, H.G., and
17 Teich, M.C.: Analysis, synthesis, and estimation of fractal-rate stochastic
18 point processes. *Fractals*, 5, 565-596, 1997.
19

20 Turcotte, D. L.: *Fractals and Chaos in Geology and Geophysics*, 2nd ed., Cambridge
21 Univ. Press, New York, 1997.
22

23 Utsu, T., Ogata, Y., Matsu'ura, R.D.: The centenary of the Omori formula for a decay
24 law of aftershock activity, *J. Phys. Earth*, 43, 1-33, 1995.
25

26 Vasudevan, K., Eaton, D.W., and Davidsen, J.: Intraplate seismicity in Canada: a graph
27 theoretic approach to data analysis and interpretation, *Nonlin. Processes Geophys.*,
28 17, 513-527 (2010).
29

30 Vasudevan, K., and Cavers, M.: Insight into earthquake sequencing: Analysis and
31 interpretation of the time-series of the Markov chain model, Presented at the
32 American Geophysical Union's Fall Meeting San Francisco, California, December 9-
33 13, Poster ID: NG24A-06 1574, 2013.
34

35 Vasudevan, K., and Cavers, M.: Synchronization on directed graphs: Kuramoto model,
36 Poster presented at the CIDNET14 Workshop, June 16-20 at Max-Planck-Institut für,
37 Physik Komplexer Systeme, Dresden, Germany, 2014a. Abstract Number 50
38

39 Vasudevan, K., and Cavers, M.: Earthquake sequencing: Significance of Kuramoto model
40 dynamics on directed graphs, Presented at the American Geophysical Union's Fall
41 Meeting San Francisco, California, December 15-19, Poster ID: NG43A-3758,
42 2014b.
43

44 Vieira, M. D.: Chaos and synchronized chaos in an earthquake model, *Phys. Rev. Lett.*,
45 82(1), 201-204, 1999.
46

1 Winfree, A.T.: Biological rhythms and the behavior of populations of coupled oscillators,
2 J. Theoret. Biol., 16, 15-42, 1967.
3
4 Yao, N., Huang, Z-G., Lai, Y-C., and Zheng, Z-G.: Robustness of chimera states in
5 complex dynamical systems, Scientific Rep., 3:3522, doi: 10.1038, 2013.
6
7 Zhu, Y., Zheng, Z., and Yang, J.: Chimera states on complex networks, Phys. Rev. E., 89,
8 022914, 2014. DOI: <http://dx.doi.org/10.1103/PhysRevE.89.022914>
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

1
2 **List of tables**
3
4 **Table 1.** Grid sizes and the number of oscillators corresponding to non-zero cells.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

1
2 **List of figures**
3

4 **Fig. 1.** Partitioning of the global seismicity map: a) 128x128 gridding of the latitude-longitude map. b)
5 1024x1024 gridding of the latitude-longitude map. Earthquakes of magnitudes exceeding or equal to M_w
6 5.5 and location depth not exceeding 70 kilometres for the time period from January 1970 to September
7 2014 constitute the glacial seismicity map. Earthquake information was downloaded from IRIS
8 (Incorporated Research Institutions for Seismology). The earthquake frequency used in the maps is plotted
9 on a log(log) display scale, with larger circles representing higher frequencies.

10
11 **Fig. 2.** 128x128 gridded map: a) Transition probability matrix without recurrences. b) Transition
12 probability matrix with recurrences. c) Shortest-path distance matrix without recurrences. d) Shortest-path
13 distance matrix with recurrences. In a) and b), the transition frequencies used in the maps are plotted using
14 a log(log) display scale, with larger circles representing higher frequencies.

15 **Fig. 3.** A 1024x1024 gridded map: a) Transition probability matrix without recurrences. b) Transition
16 probability matrix with recurrences. c) Shortest-path distance matrix without recurrences. d) Shortest-path
17 distance matrix with recurrences. In a) and b), the transition frequencies used in the maps are plotted using
18 a log(log) display scale, with larger circles representing higher frequencies.

19 **Fig. 4.** Three attributes of a chimera state of the 1693 oscillators for a 128x128 gridded map **without**
20 recurrences using $\kappa = 0.10$. a) Stationary phase angle. b) Effective angular velocity. c) Fluctuations in
21 instantaneous angular velocity.

22 **Fig. 5.** Three attributes of a chimera state of the 1693 oscillators for a 128x128 gridded map **with**
23 recurrences using $\kappa = 0.10$. a) Stationary phase angle. b) Effective angular velocity. c) Fluctuations in
24 instantaneous angular velocity.

25 **Fig. 6.** Three attributes of a chimera state of the 7697 oscillators for a 1024x1024 gridded map **without**
26 recurrences using $\kappa = 0.10$. a) Stationary phase angle. b) Effective angular velocity. c) Fluctuations in
27 instantaneous angular velocity.

28 **Fig. 7.** Three attributes of a chimera state of the 7697 oscillators for a 1024x1024 gridded map **with**
29 recurrences using $\kappa = 0.10$. a) Stationary phase angle. b) Effective angular velocity. c) Fluctuations in
30 instantaneous angular velocity.

31 **Fig. 8.** Chimera index as a function of time-steps for the 128x128 grid **without** recurrences for $\kappa = 0.10$.

32 **Fig. 9.** Influence of the non-local coupling coefficient parameter, κ , on the ratio of the number of
33 synchronized oscillators to the total number of oscillators for both the 128x128 and the 1024x1024 grids
34 **without** recurrences.

35 **Fig. 10a.** Effect of the non-local coupling coefficient parameter, κ , on evolution and disappearance of the
36 Chimera states for the 128x128 grid **without** recurrence. Stationary phase angle as a function of the
37 oscillator index: (a) kappa, $\kappa = 1.0$; (b) kappa, $\kappa = 0.3$; (c) kappa, $\kappa = 0.1$; (d) kappa, $\kappa = 0.03$

38 **Fig. 10b.** Effect of the non-local coupling coefficient parameter, κ , on evolution and disappearance of the
39 Chimera states for the 128x128 grid **with** recurrence. Stationary phase angle as a function of the oscillator
40 index: (a) kappa, $\kappa = 1.0$; (b) kappa, $\kappa = 0.3$; (c) kappa, $\kappa = 0.1$; (d) kappa, $\kappa = 0.03$

41 **Fig. 11a.** Effect of the non-local coupling coefficient parameter, κ , on evolution and disappearance of the
42 Chimera states for the 1024x1024 grid **without** recurrence. Stationary phase angle as a function of the
43 oscillator index: (a) kappa, $\kappa = 1.0$; (b) kappa, $\kappa = 0.3$; (c) kappa, $\kappa = 0.1$; (d) kappa, $\kappa = 0.03$

44

Kris Vasudevan 2015-5-30 3:25 PM

Formatted: Highlight

Kris Vasudevan 2015-5-30 3:27 PM

Comment [26]: Referee 1 Comment 11

As mentioned here, we use the log(log) scale of the counts in each cell. This should explain the colour bar. The purpose is to accentuate the earthquake zones and their juxtapositions to plate boundaries in many instances.

Kris Vasudevan 2015-5-30 3:25 PM

Formatted: Highlight

Kris Vasudevan 2015-5-30 3:28 PM

Formatted: Highlight

Kris Vasudevan 2015-5-30 3:33 PM

Comment [27]: Referee 1 Comment 12

Our initial response to this referee was not correct. In fact, the nodes' index of panel (a) and of panel (b or c) are different. Panel a had the indices unsorted with reference to the phase value but the indices were sorted according to the effective angular velocity or fluctuation to the angular velocity. We have removed this inconsistency by using the unsorted indices in all three panels in the revised version here.

Kris Vasudevan 2015-5-30 5:41 PM

Deleted:

Kris Vasudevan 2015-5-30 5:41 PM

Deleted:

Kris Vasudevan 2015-5-30 3:28 PM

Formatted: Highlight

Kris Vasudevan 2015-5-30 4:51 PM

Formatted: Highlight

1 **Fig. 11b.** Effect of the non-local coupling coefficient parameter, κ , on evolution and disappearance of the
2 Chimera states for the 1024x1024 grid **with** recurrence. Stationary phase angle as a function of the
3 oscillator index: (a) kappa, $\kappa = 1.0$; (b) kappa, $\kappa = 0.3$; (c) kappa, $\kappa = 0.1$; (d) kappa, $\kappa = 0.03$

4 **Fig. 12.** Chimera state map of the synchronous and asynchronous oscillators as a steady-state solution for a
5 **non-recurrence** case. The non-local coupling coefficient parameter, κ , is 0.1. Blue dots refer to the
6 asynchronous oscillators and red dots to the synchronous oscillators.

Kris Vasudevan 2015-5-30 4:53 PM

Comment [28]: Figures 4 to 12 are new
since we have done 200,000 time-steps in
numerical simulations, as suggested by
referee 1.

Kris Vasudevan 2015-5-30 4:51 PM

Formatted: Highlight

Kris Vasudevan 2015-5-30 4:51 PM

Formatted: Highlight

1 **Table 1.**

2

Grid Size	Number of Oscillators
128x128	1693
192x192	2390
256x256	3087
512x512	5119
1024x1024	7697

3

| **Figure 1.** Old Figure Delete it

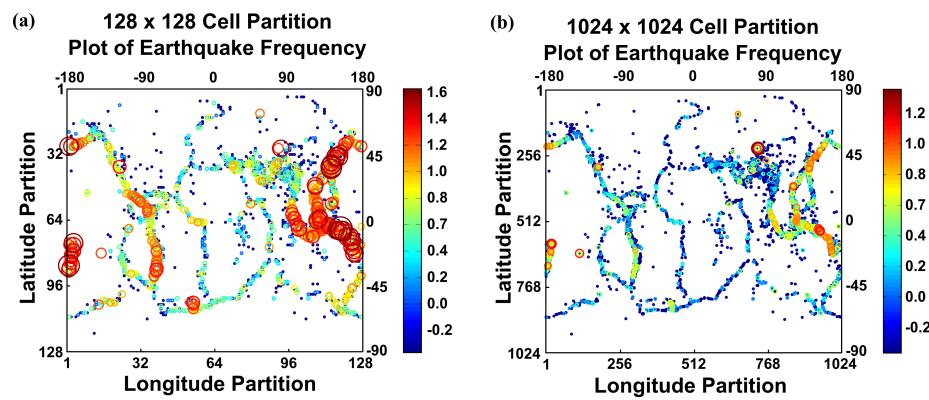
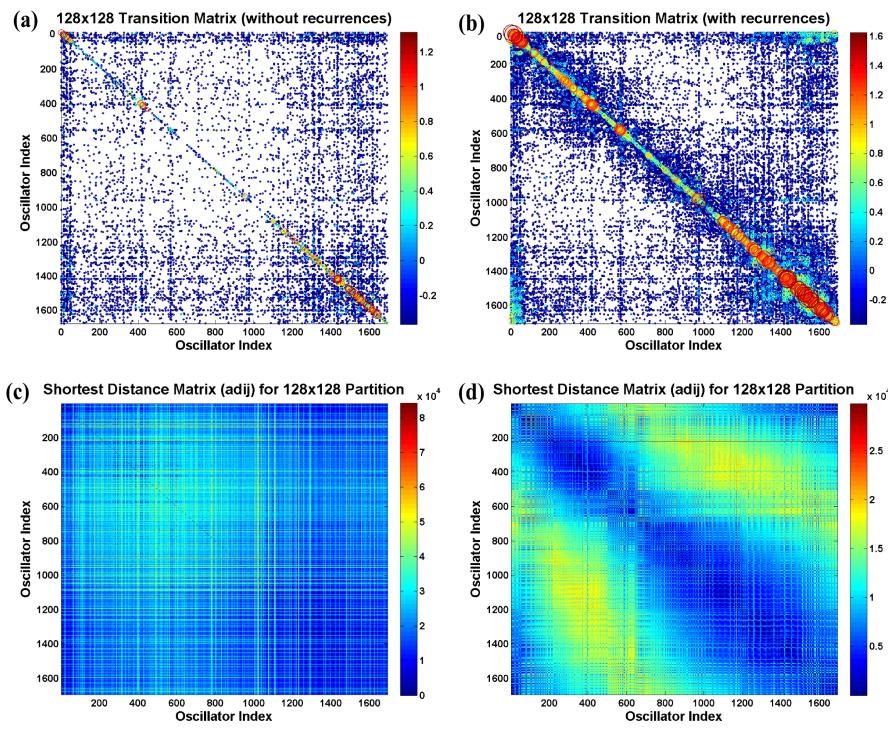


Figure 2. Old Figure Delete it



| **Figure 3.** Old Figure Delete it

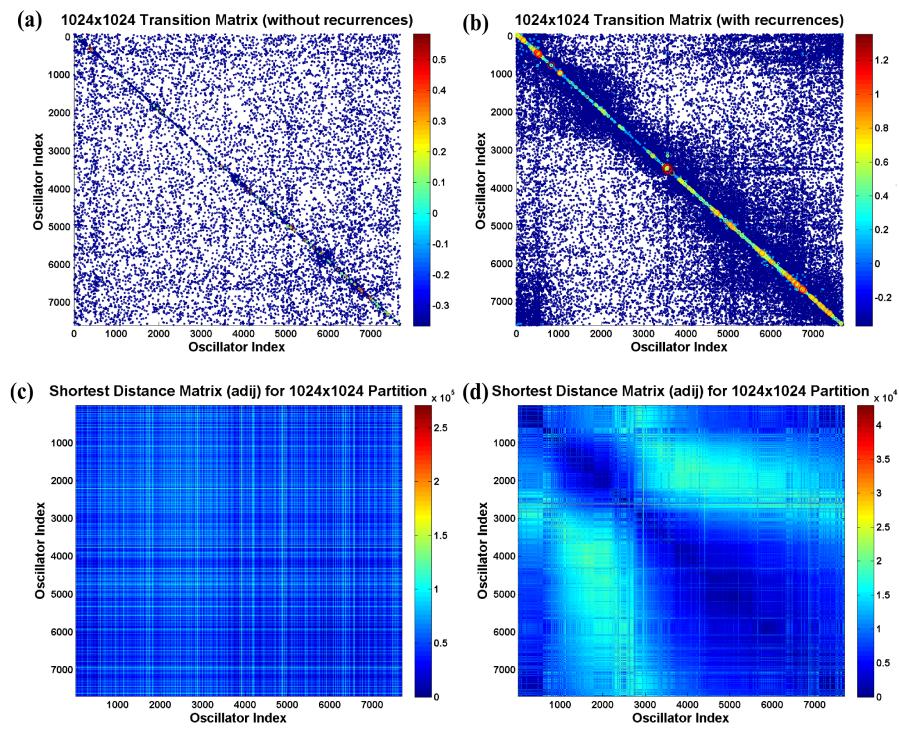
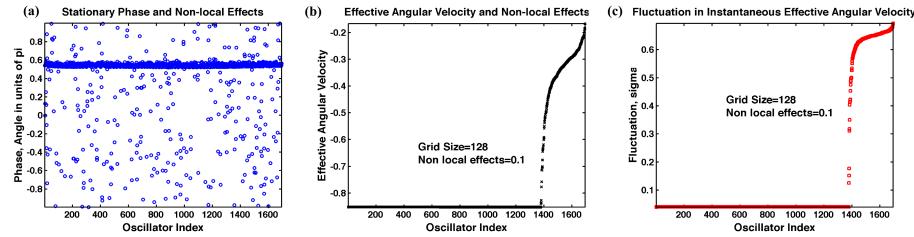


Figure 4. Old Figure Delete it



| **Figure 5. Old Figure Delete it**

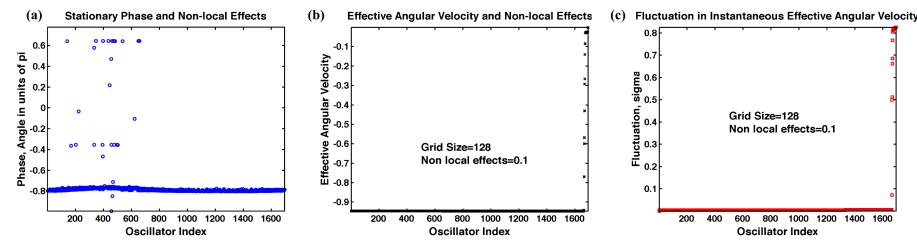
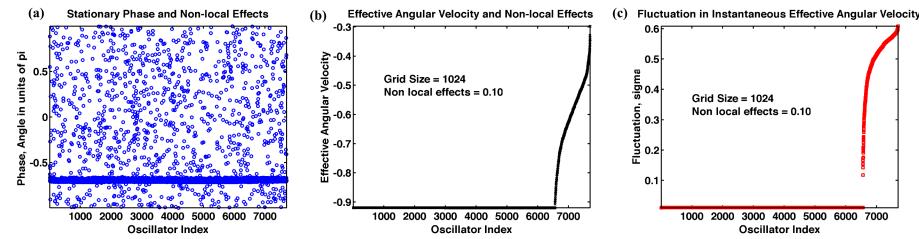


Figure 6. Old Figure Delete it



| **Figure 7. Old Figure Delete it**

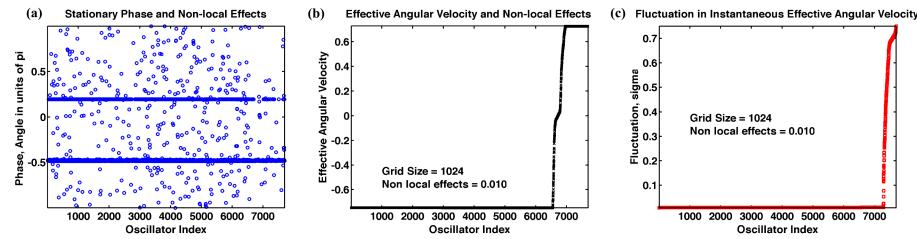
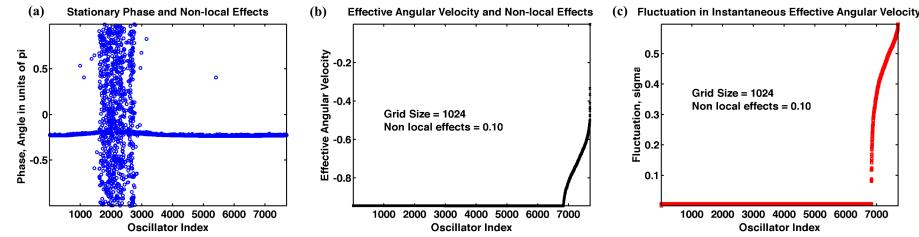


Figure 8. Old Figure. Delete it



| Figure 9. Old Figure Delte it

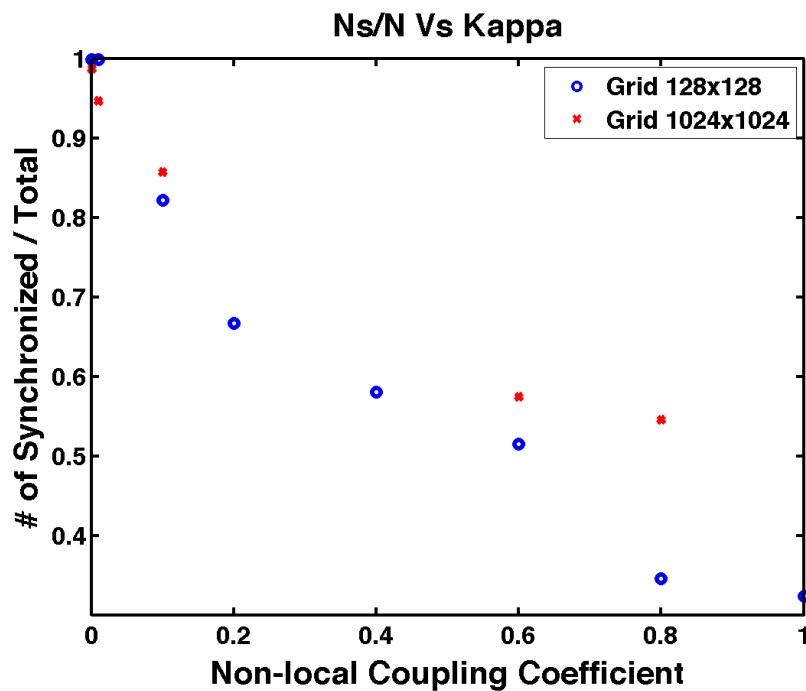
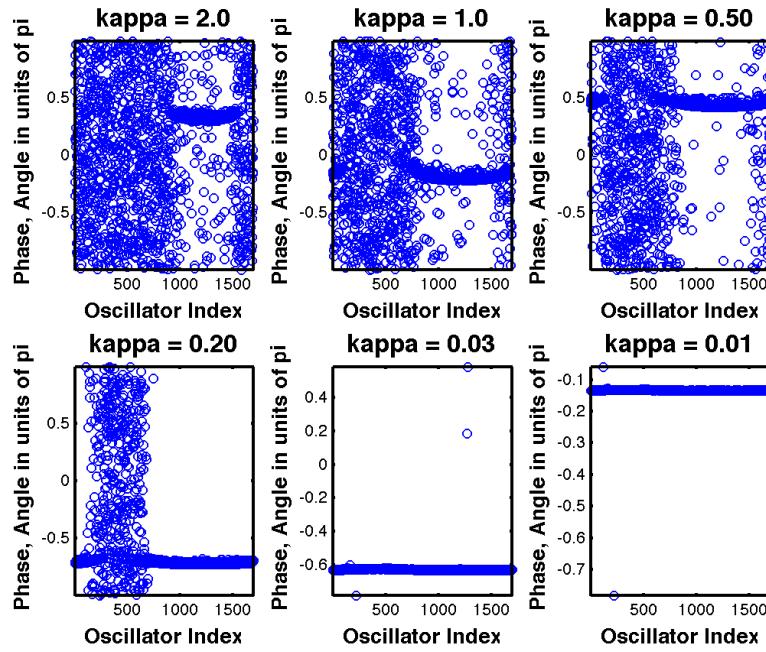


Figure 10. Old Figure Delete it.



| Figure 11. Old Figure Delete it

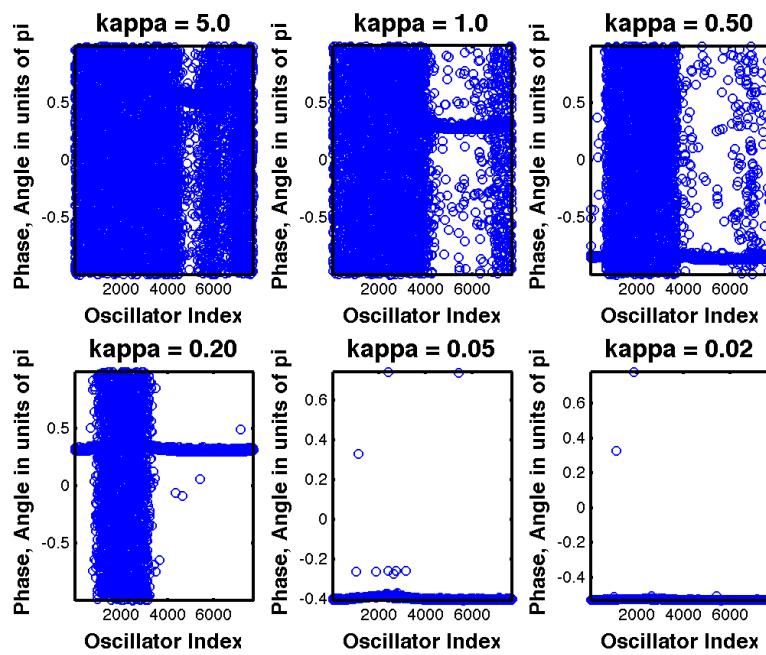
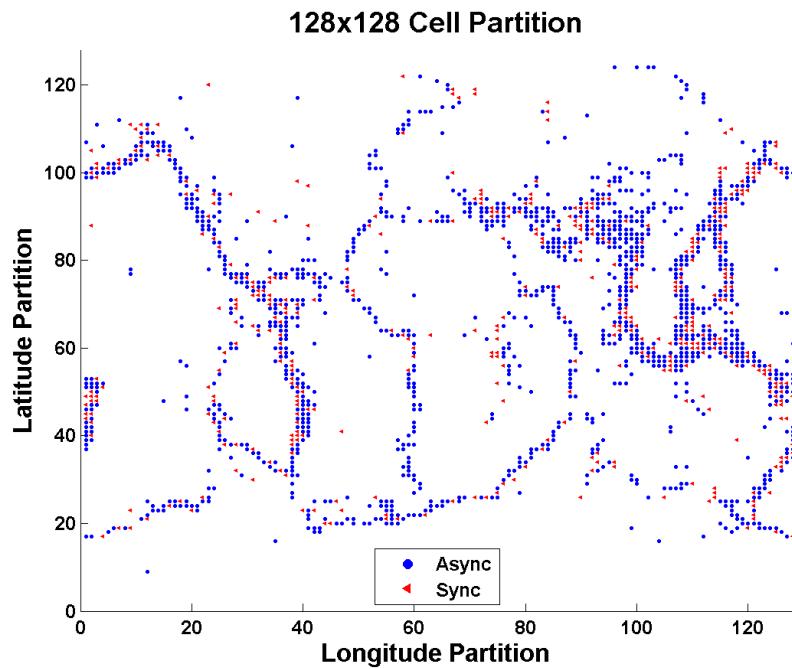


Figure 12. Old Figure Delete it



| Figure 1. [New Figure Include it](#)

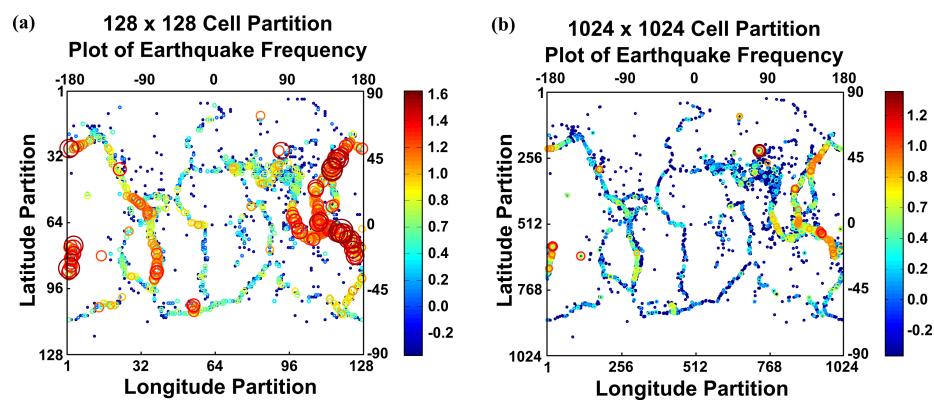
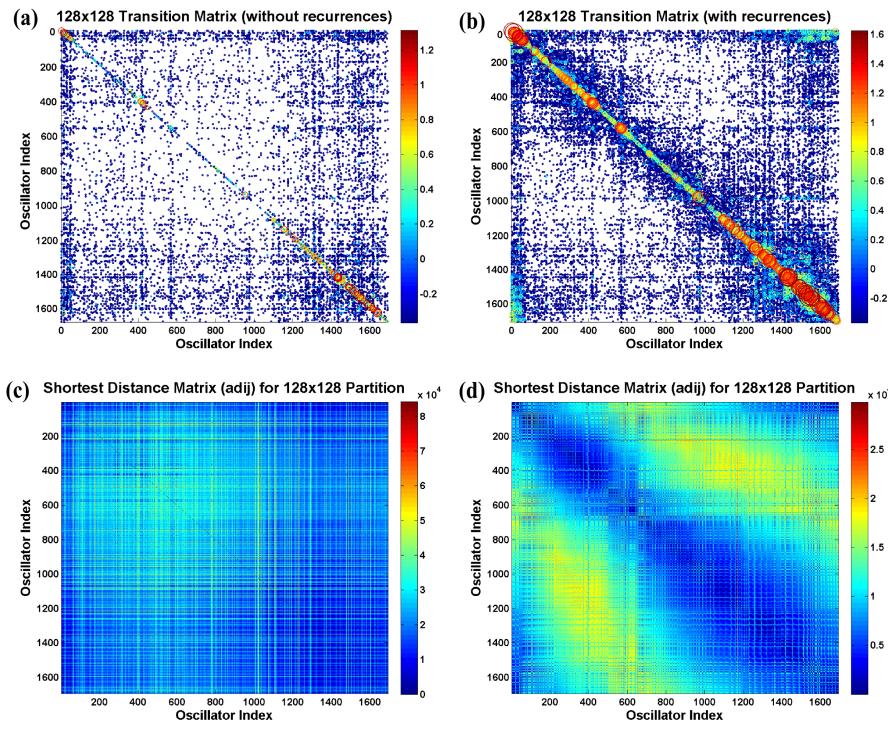


Figure 2. [New Figure Include it](#)



| **Figure 3.** New Figure Include it

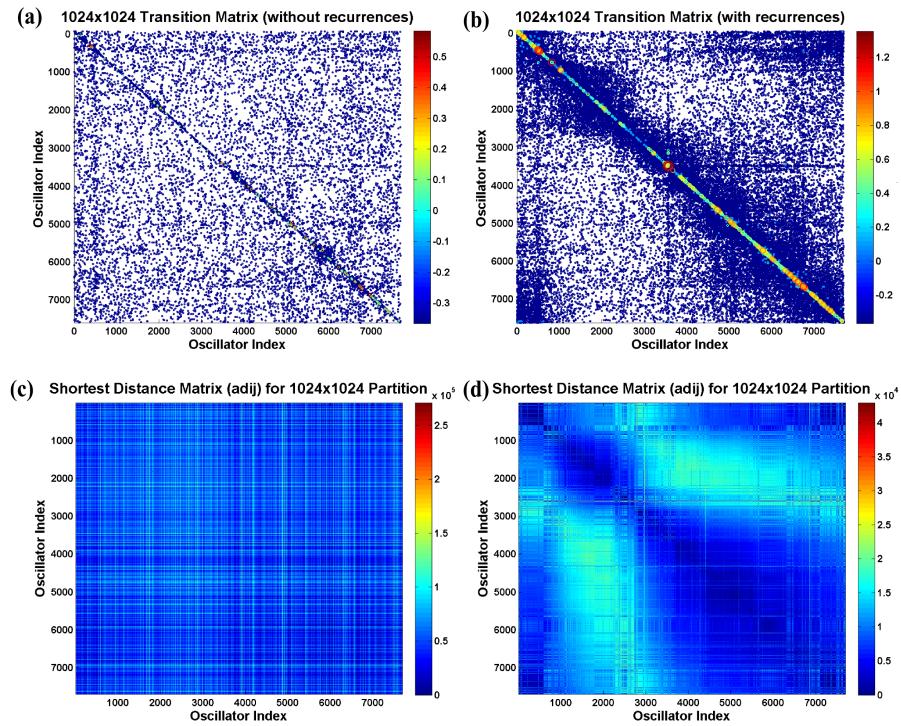


Figure 4. New Figure Include it

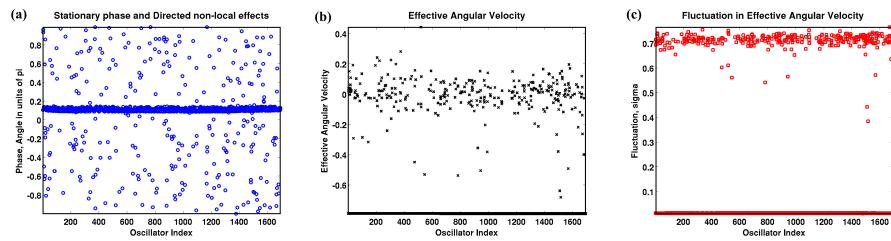


Figure 5. New Figure Include it

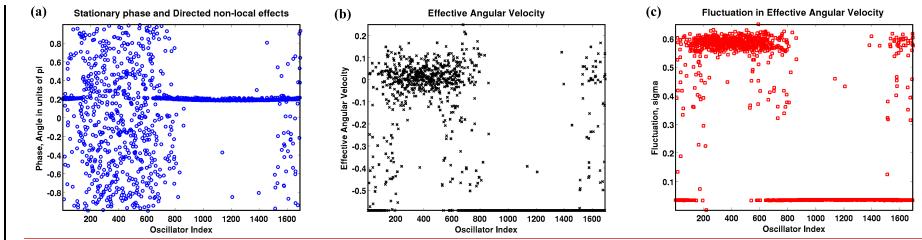


Figure 6. [New Figure Include it](#)

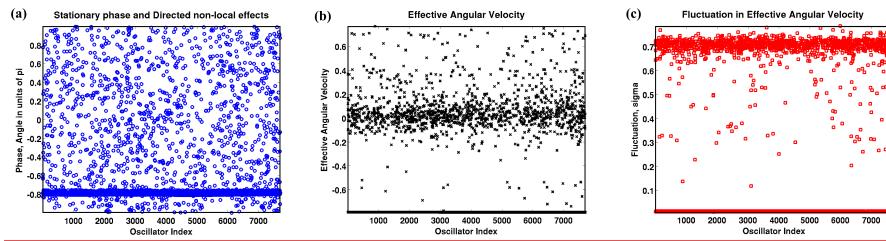


Figure 7. New Figure Include it

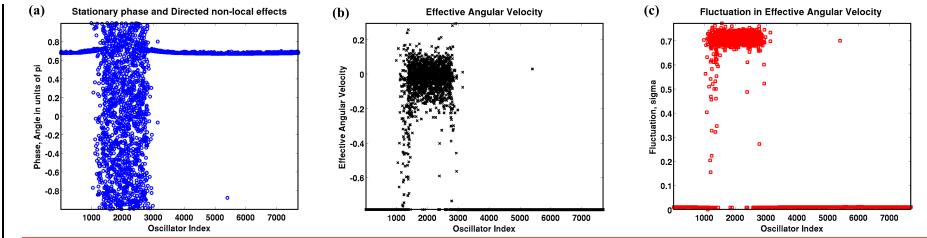


Figure 8. [New Figure Include it](#)

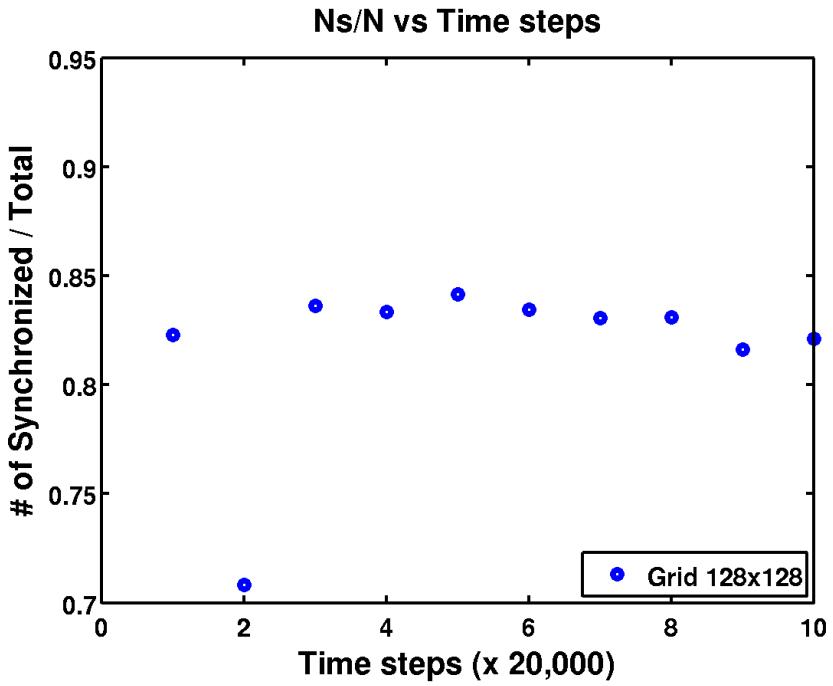


Figure 9. [New Figure Include it](#)

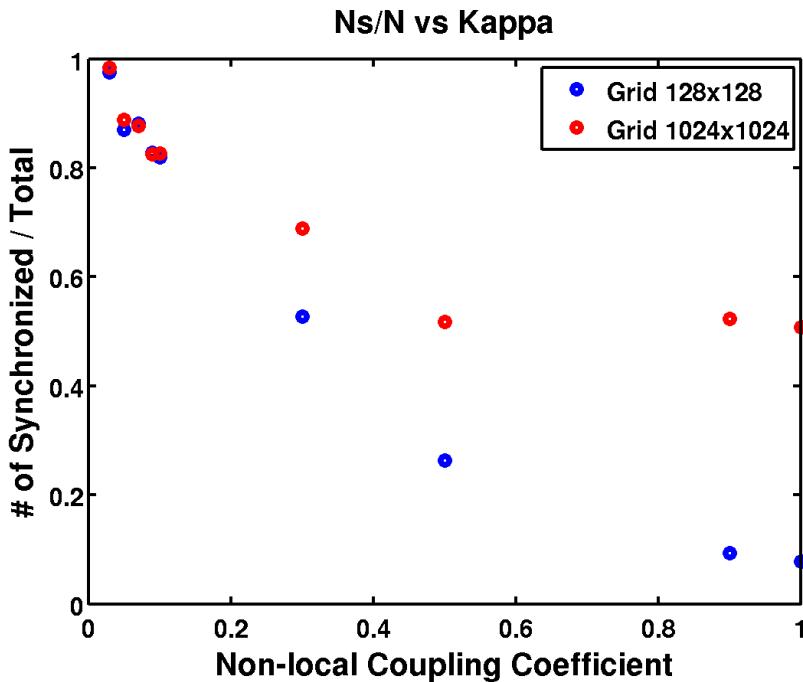
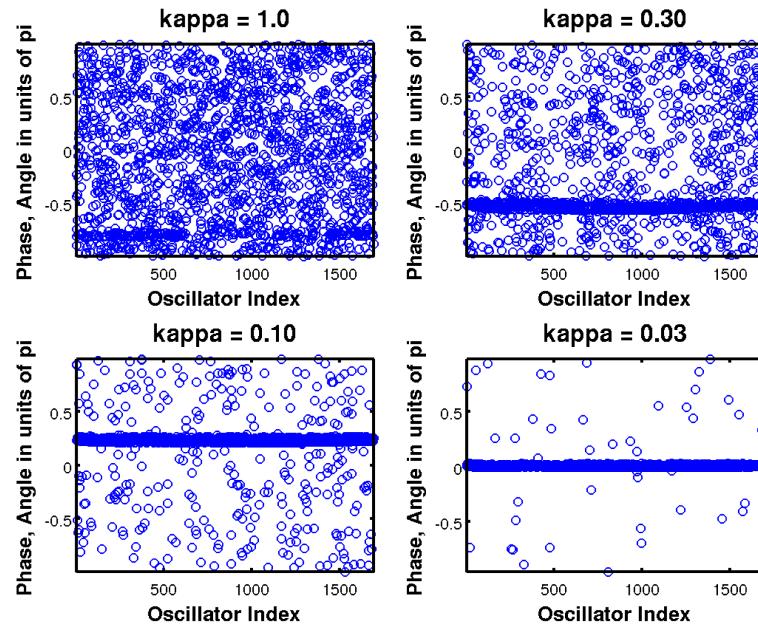


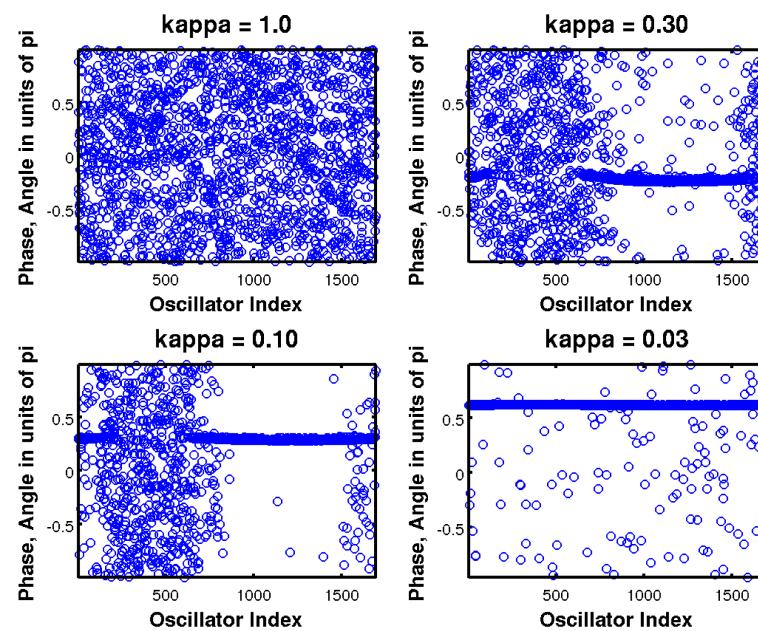
Figure 10. [New Figure Include it](#)

Kris Vasudevan 2015-5-30 5:20 PM
Comment [29]: Figure 10. text refers to the following figure.

(a)



(b)



| Figure 11

Kris Vasudevan 2015-5-30 5:52 PM

Comment [30]: New Figure Include it

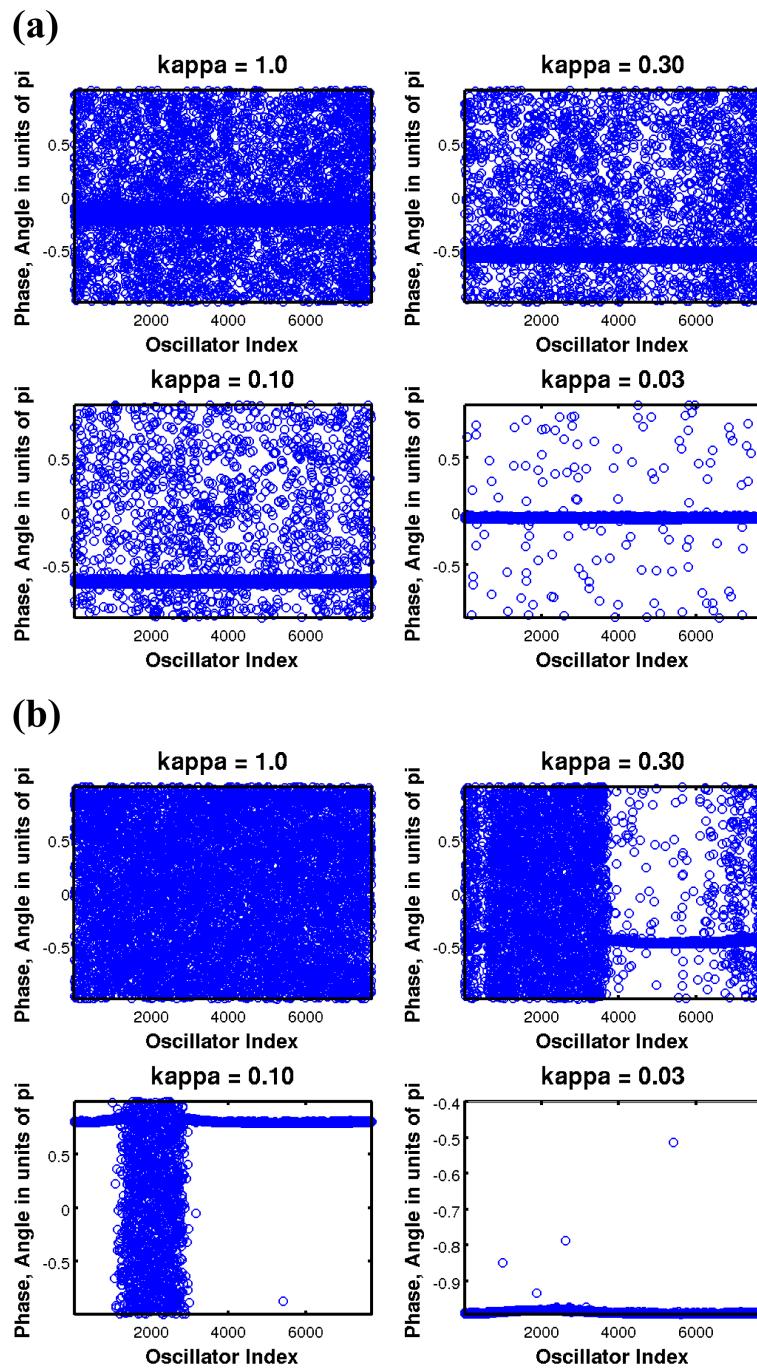


Figure 12. New Figure Include it