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Responses to Reviewer 1 1 

Provided below are responses to reviewer comments, which are highlighted using 2 

bold text. 3 

Summary 4 

The work "Wavelet analysis for non-stationary, non-linear time series" by J.A. 5 

Schulte is devoted to developing methods for wavelet bicoherence estimation 6 

with testing for statistical significance and estimating confidence bands. 7 

Correspondingly, the author claims five objectives of the work. As illustrative 8 

examples, simple mathematical signals are used as well as geophysical data 9 

(quasi-biennial oscillation time series). Overall, the manuscript is clearly 10 

written. I regard it as quite correct. The field to which the work belongs (special 11 

methods for nonlinear characterization of time series taking into account 12 

statistical fluctuations of the estimates and controlling statistical significance of 13 

the conclusions) is important in geophysics and interesting for a wider physical 14 

audience. However, I think that the presented results are not sufficiently 15 

original and novel to be published as a separate paper. They make an 16 

impression of relevant, but secondary and quite evident technical peculiarities 17 

which should be taken into account when applying the wavelet bicoherence 18 

estimation technique to real-world data. In my opinion, the author should 19 

either (i) show that these peculiarities are not so evident or (despite their 20 

evidence) unexpectedly fruitful or (ii) obtain new useful knowledge about 21 

realworld data with the aid of the methods considered. Both of these criteria 22 

are not met. Moreover, I stress my impression that the author CONSIDERS 23 

the estimation methods rather than SUGGESTS them. Below, I list more 24 

concrete and detailed critical remarks considering the objectives claimed in the 25 

Introduction one-by-one. 26 

The author is thankful for the detailed comments provided by the reviewers. Both 27 

reviewers found the paper to be well-written and without eroor but felt that it was 28 

not orginal. No substantial changes have been made to the manuscript besides some 29 

additional text to better highlight the research undertaken in the use of the new 30 

methodologies.  While not any one method presented in the manuscript is a 31 

significant original contribution, the synthesis of methods together with small 32 

improvements of existing methods represents an original contribution to higher-33 

order wavelet analysis. The literature regarding the subject has primarily focused on 34 

its theoretical and geophysical applications and to a lesser extent on the statistical 35 
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aspects of the subject. This paper represents the first synthesis and detailed 1 

discussion of various statistical procedures that should be considered when applying 2 

higher-order wavelet analysis. This paper largely follows the overall structure of the 3 

well-known works of Grinsted (2004) and Torrence and Compo (1998), which 4 

bridged gaps between the signal processing aspects of wavelet analysis and 5 

statistical facets of the subject.  Indeed, the manuscript has put higher-order wavelet 6 

analysis in a statistical framework and bridges that same gap as the aforementioned 7 

works. The author has also created the first higher-order wavelet analysis Matlab 8 

software package corresponding to the paper, which will be of importance to a 9 

broader geophysical community.  10 

No substantial changes have been made to the manuscript besides some additional 11 

text to better highlight the research undertaken in the use of the new methodologies.   12 

Specific Points  13 

1) Before other comments, I note that almost the same formalism was already 14 

suggested and applied in several works. In particular, in Ref. [J.Jamsek et al // 15 

PHYSICAL REVIEW E, v. 76, 046221 (2007)] the authors did the same things, 16 

except that they did not estimate statistical significance. The latter was just not 17 

very important for their problems due to the presence of clearly constant 18 

biphase as compared to the periods of varying biphase. 19 

The earlier work of Jamsek et al. (2003) focused on the signal processing 20 

aspects of Fourier-based bispectral analysis. The present manuscript represents an 21 

improvement from that earlier work in that the author has extended the formalism to 22 

wavelet analysis and used statistical hypothesis testing. Also included in the present 23 

manuscript are applications of new methods from traditional wavelet analysis to 24 

higher-order wavelet analysis. To the author’s knowledge, no such up-to-date 25 

synthesis currently exists.  26 

2) Page 1709, lines 4-5. "... the first objective of this paper is to develop 27 

significance testing methods for higher-order wavelet analysis to aid physical 28 

interpretation of results". 29 

In fact, the author just suggests to generate red-noise (AR(1)) surrogates, 30 

estimate wavelet bispectrum from them and compare it with the estimates 31 

obtained from the data at hand. This approach is widely used for many 32 

significance testing problems, e.g. for the wavelet coherence estimation as the 33 

author correctly points out (Jevereyeva et al, 2003; Grinsted et al, 2004). Thus, 34 
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the author just reminds us here that it is relevant to perfom significance testing 1 

when estimating the wavelet bicoherence too (this is evident but it is good to 2 

remember about it in practice) and suggests to use a well-known approach for 3 

that. Thus, the first objective is achieved before doing any research. 4 

While the author agrees that Monte Carlo methods are widely used, their use in 5 

higher-wavelet order analysis has received little attention. The author reminds the 6 

reader of the use of such methods in wavelet analysis before proceding to more 7 

specialized topics later in the manuscript. However, the author agrees that this part 8 

of the paper should be not be listed as an objective and therefore the text on Page 9 

1709 Line 4 has been deleted.  10 

3) Page 1709, lines 9-10. "... second objective of this paper will be therefore to 11 

apply statistical methods controlling false positive detection." 12 

This is also correct that multiple testing should be taken into account. This is 13 

relevant here since many values of the wavelet bispectrum are estimated. It is 14 

well-known that Bonferroni correction or a bit elaborated Benjamini 15 

corrections can be applied. The author just suggests to apply these techniques 16 

during the wavelet bicoherence estimation (namely, he prefers Benjamini FDR 17 

controlling scheme). No modification of the techniques is needed. Thus, the 18 

second objective is also achieved before doing any research. 19 

Controlling false positive detection represents an important and long-20 

established topic in statistics. Yet, its necessity in wavelet analysis was only first 21 

realized years after the influential work of Torrence and Compo (1998) by Maraun 22 

and Kurths (2004) and later by Maraun et al. (2007), Schulte et al. (2015), and 23 

Schulte (2016). The inclusion of the Benjamini scheme in the manuscript represents 24 

an original contribution in that it bridges the gap between higher-order wavelet 25 

analysis and statistical hypothesis testing.  26 

4) Page 1709, lines 11-14. "The third objective of this paper will be to develop 27 

a procedure for calculating confidence intervals corresponding to the sample 28 

estimates, which represent a range of plausible values for the sample 29 

estimates". 30 

Here, the authors suggests to use a bootstrapping technique with replacement. 31 

Taking into account autocorrelations of subsequent wavelet coefficients, it 32 

becomes block bootstrapping. It is Ok, but also well-known. Thus, again the 33 

authors suggests to use previously known approach. 34 
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The author respectfully disagrees that the bootstrapping method is not novel. 1 

To the author’s knowledge, confidence interval estimation using the block 2 

bootstrapping method has never been applied to autobicoherence spectra. While the 3 

method is well known, its application in wavelet analysis is not straightforward. The 4 

difficulty of its application arises because the calculation of the autobicoherence 5 

spectrum uses wavelet coefficients at the three wavelet scales and the correlation 6 

structure of the wavelet coefficients differs at each of the scales. Therefore, a Monte 7 

Carlo simulation was conducted to carefully determine the appropriate block length 8 

needed to accurately estimate confidence intervals. In the Monte Carlo simulation, 9 

autobiocherence spectra of red-noise processes were calculated and the 95% 10 

confidence intervals of the autobicoherence estimates were calculated. The width of 11 

the confidence interval was computed at each to scale to determine when the 12 

confidence interval widths generally are the widest. The block length at which 13 

confidence intervals were generally the widest was determined to be the best 14 

estimate of the appropriate block length. The Monte Carlo analysis was a lengthy 15 

process that required some research. Details of the procedure are now included in 16 

the manuscript and are inserted on Page 1723 Line 5.   17 

5) Page 1709, lines 18-20. "Objective four of this paper will address the time 18 

interval selection problem. Such an approach has already been adopted in 19 

wavelet coherence analysis (Grinsted et al., 2004)." 20 

Again, everything is correct and relevant, but the technique was suggested 21 

before for the cross-wavelet analysis. Here, the author just uses it for the 22 

wavelet bicoherence analysis. No special research is needed here and no spesial 23 

research is in fact performed by the autors concerning this point. 24 

The use of the smoothing operator to calculate local biphase and 25 

autobicoherence represents an improvement from the earlier work of Jamsek (2003) 26 

where the less efficient Fourier analysis was used. Moreover, its use links the earlier 27 

work of Grinsted (2004) with that of Jamsek et al. (2003), representing an original 28 

contribution in higher-order wavelet analysis. A researcher of higher-order wavelet 29 

analysis unaware of the work by Grinsted et al. (2004) would find the use of the 30 

smoothing operator in this work not so evident, again highlighting the importance of 31 

synthesis. The application of the smoothing operator to autobiocherence required 32 

some care because autobicoherence is calculated using wavelet coefficients at three 33 

different scales. Research was needed to determine precisely how the smoothing 34 

operators should be applied. Additionally, statistical significance of the local 35 
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autobicoherence was addressed in this paper, which was not considered by Jamsek 1 

et al. (2003), again representing an original contribution to the field. The theoretical 2 

example used in this paper demonstrates the use of the local autobicoherence 3 

spectrum and shows how it can measure non-stationary non-linear behavior.  4 

6) Page 1709, line 25. "objective five of this paper will be to introduce a local 5 

biphase spectrum". 6 

Time-varying biphase spectrum was already considered e.g. in Ref. [J. Jamsek, 7 

A. Stefanovska, P. V. E. McClintock, and I. A. Khovanov, Phys. Rev. E 68, 8 

016201 (2003)] where the authors used short-time Fourier transform. Thus, the 9 

idea itslef was already applied and the properties of the biphase were discussed 10 

with several examples. Here, the author implements the idea with wavelets but 11 

the modificati Time-varying biphase spectrum was already considered e.g. in 12 

Ref. [J. Jamsek, A. Stefanovska, P. V. E. McClintock, and I. A. Khovanov, Phys. 13 

Rev. E 68, 016201 (2003)] where the authors used short-time Fourier transform. 14 

Thus, the idea itslef was already applied and the properties of the biphase were 15 

discussed with several examples. Here, the author implements the idea with 16 

wavelets but the modification is quite obvious (even if it was not applied before). 17 

Probably, the author can insist here on that the adaptive smoothing with 18 

operators S_scale and S_time used by him (following the work of Grinsted et 19 

al, 2004) are very fruitful and make the method especially efficient. However, 20 

no investigations of this point are described. The author just describes the idea 21 

(quite correct and relevant, but quite evident) and does not show that it gives 22 

unexpected (in any way) or especially useful results. on is quite obvious (even if 23 

it was not applied before). Probably, the author can insist here on that the 24 

adaptive smoothing with operators S_scale and S_time used by him (following 25 

the work of Grinsted et al, 2004) are very fruitful and make the method 26 

especially efficient. However, no investigations of this point are described. The 27 

author just describes the idea (quite correct and relevant, but quite evident) 28 

and does not show that it gives unexpected (in any way) or especially useful 29 

results. 30 

Please see response to comment 5.  31 

7) The author illustrate the technique with QBO time series. However, the 32 

conclusions made are that the time series under study is skewed (negative 33 

phases are stronger than positive) and asymmetric (transition from easterlies 34 

to westerlies is more rapid than the opposite one). However, this can be seen by 35 
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eye directly from the time series as he author states himself. Thus, it is not clear 1 

what an especially useful knowledge is given by the suggested technique. That 2 

the technique works as expected is not a new knowledge. 3 

The application of higher-order wavelet analysis to QBO time series alone 4 

represents an original contribution in that it has never been applied to it. The purpose 5 

of using this geophysical example was that nonlinearities in the time series are 6 

readily visible, allowing the reader to better connect the methods to a real-world 7 

example. This physical example is an important bench mark for future uses of the 8 

methods. 9 

8) Throughout the paper, the author often uses such term as "interaction of the 10 

components". E.g. page 1718, lines 22-24: "The power at lambda = 14 months 11 

therefore partially resulted from the interaction between its primary frequency 12 

component and its harmonic". It is not clear what "interaction" is implied here. 13 

The use of such a term seems quite vague. I agree that there is a statistical 14 

dependency between the phases of the two spectral components. In particular, 15 

it can be a result of a static quadratic nonlinearity of the "system under study", 16 

i.e. possibly there is a signal with the period of 28 months at the input of "the 17 

system under study", then the signal is squared so that the second harmonic is 18 

generated. In this simple picture, no interaction takes place and no separate 19 

interacting modes are present. Certainly, other interpretations can be imagined. 20 

However, constancy of the biphase cannot be per se an unequivocal sign of 21 

"interaction" between something and something.  22 

The author largely agrees with the assessment. The word “interaction” we 23 

be replaced by “statistical dependence” or “statistically dependent” where 24 

appropriate.  25 

 26 

 27 

 28 

 29 

 30 

 31 
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Responses to Reviewer 2 21 

Provided below are responses to reviewer comments, which are highlighted using 22 

bold text. 23 

Summary  24 

This paper considers the problem of detecting and quantifying nonlinearities in 25 

nonstationary time series with wavelet-based approaches. The author aims to 26 

study abilities of the higher-order wavelet analysis in application to the Quasi-27 

biennial Oscillation time series. He considers five objectives, namely, to develop 28 

significance testing methods for higher-order wavelet analysis, to apply statistical 29 

methods controlling false positive detection, to develop a procedure for 30 

calculating confidence intervals corresponding to the sample estimates, to solve 31 
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the problem of selection of a time interval for calculations, and to introduce a 1 

local biphase spectrum.  2 

The paper is well written and contains a clear description of approaches for 3 

wavelet bicoherence estimation that could be interesting for researchers dealing 4 

with nonstationary and nonlinear time series. In my opinion, the description of 5 

the methods and their geophysical applications can be used as a part of a review 6 

paper or a monograph devoted to the higher-order wavelet analysis. However, I 7 

have doubts concerning publishing this manuscript as a research paper. Actually, 8 

earlier known approaches are applied to simple testing signals and geophysical 9 

data, and the originality and the novelty of the discussed approaches and the 10 

obtained results is unclear.  11 

The author is thankful for the detailed comments provided by the reviewers. Both 12 

reviewers found the paper to be well-written and without eroor but felt that it was 13 

not orginal. No substantial changes have been made to the manuscript besides some 14 

additional text to better highlight the research undertaken in the use of the new 15 

methodologies.  While not any one method presented in the manuscript is a 16 

significant original contribution, the synthesis of methods together with small 17 

improvements of existing methods represents an original contribution to higher-18 

order wavelet analysis. The literature regarding the subject has primarily focused on 19 

its theoretical and geophysical applications and to a lesser extent on the statistical 20 

aspects of the subject. This paper represents the first synthesis and detailed 21 

discussion of various statistical procedures that should be considered when applying 22 

higher-order wavelet analysis. This paper largely follows the overall structure of the 23 

well-known works of Grinsted (2004) and Torrence and Compo (1998), which 24 

bridged gaps between the signal processing aspects of wavelet analysis and 25 

statistical facets of the subject.  Indeed, the manuscript has put higher-order wavelet 26 

analysis in a statistical framework and bridges that same gap as the aforementioned 27 

works. The author has also created the first higher-order wavelet analysis Matlab 28 

software package corresponding to the paper, which will be of importance to a 29 

broader geophysical community.  30 

No substantial changes have been made to the manuscript besides some additional 31 

text to better highlight the research undertaken in the use of the new methodologies.   32 

Specific Points  33 
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Thus, in particular, the significance testing method used the author has only 1 

minor distinctions from those discussed in other papers (e.g., Grinsted et al, 2 

2004). Also, I did not found novelty in the used statistical methods controlling 3 

false positive detection and in calculating confidence intervals corresponding to 4 

the sample estimates. The author did a good work in application of known 5 

techniques and their description with pointing out many important things, 6 

however, the claimed objectives are different from the presented results. In 7 

conclusion, I think that the considered topic may be interesting for a broad 8 

physical community, but I do not recommend publication of this work in its 9 

present form. 10 

Please see responses to comments 2 through 5 of Reviewer 1  11 

 12 

Wavelet Analysis for Non-stationary, Non-linear Time Series 13 

Justin A. Schulte 14 

The Pennsylvania State University, University Park, 15 

Pennsylvania 16802 16 

Abstract 17 

Methods for detecting and quantifying nonlinearities in nonstationary time series are introduced 18 

and developed. In particular, higher-order wavelet analysis was applied to an ideal time series and 19 

the Quasi-biennial Oscillation (QBO) time series. Multiple-testing problems inherent in wavelet 20 

analysis were addressed by controlling the false discovery rate. A new local autobicoherence 21 

spectrum facilitated the detection of local nonlinearities and the quantification of cycle geometry. 22 

The local autobicoherence spectrum of the QBO time series showed that the QBO time series 23 

contained a mode with a period of 28 months that was phase-coupled to a harmonic with a period 24 

of 14 months. An additional nonlinearly interacting triad was found among modes with periods of 25 

10, 16, 26 months. Local biphase spectra determined that the nonlinear interactions were not 26 

quadratic and that the effect of the nonlinearities was to produce non-smoothly varying 27 

oscillations. The oscillations were found to be skewed so that negative QBO regimes were 28 
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preferred, and also asymmetric in the sense that phase transitions between the easterly and westerly 1 

phases occurred more rapidly than those from westerly to easterly regimes.  2 

1. Introduction 3 

Spectral analysis is a tool for extracting embedded structures in a time series. In particular, 4 

Fourier analysis has been used extensively by researchers for extracting deterministic structures 5 

from time series but is incapable of detecting nonstationary features often present in geophysical 6 

time series. Wavelet analysis can extract transient features embedded in time series, with a wavelet 7 

power spectrum representing variance (power) of a time series as a function of time and period. 8 

Since the seminal work of Torrence and Compo (1998), wavelet analysis has been applied 9 

extensively to geophysical time series such as the indices for the North Atlantic Oscillation (Olsen 10 

et al., 2012), Arctic Oscillation (Jevrejeva et al., 2003), Pacific Decadal Oscillation (Macdonald 11 

and Case, 2005; Newmann et al., 2003), El-Niño/Southern Oscillation (ENSO; Torrence and 12 

Webster, 1999),  Pacific-North American Pattern, and West Pacific pattern (Gan et al., 2007). The 13 

application of wavelet coherence and cross-wavelet analyses (Grinsted et al., 2004), moreover, has 14 

proven useful in relating geophysical time series to other time series (Jevrejeva et al., 2003; Gan 15 

et al., 2007; Labat, 2010; Lee and Lwiza, 2008).  16 

Many statistical methods, including power and cross-spectral analyses, rely on the assumption 17 

that the variable in question is Gaussian distributed (King, 1996). For a linear system in which the 18 

output is proportional to the input, the first- and second-order moments, the mean and variance, 19 

can fully describe the distribution of a process. In the frequency domain, by analogy, the variable 20 

can be fully described by the power spectrum, the decomposition of variance as a function of 21 

frequency. Suppose, however, that the distribution is non-Gaussian so that higher-order moments 22 

such as skewness and kurtosis exist. In this case, the mean and variance, while useful, are unable 23 

to fully describe the distribution in question. In a time series context, non-Gaussian distributions 24 

can arise from nonlinear systems, systems for which the output is no longer simply proportional 25 

to the input. For a nonlinear system, if the input is the sum of two sinusoids with different 26 

frequency components the output will contain additional frequency components representing the 27 

sum and difference of the input frequencies (King, 1996). In such cases, it is necessary to examine 28 

the decomposition of higher-order moments in frequency space.   29 
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The frequency decomposition of the third-order moment, for example, results in a bispectrum 1 

or skewness function that measure deviations from Gaussianity (Nikias and Raghuveer, 1987; 2 

King, 1996). In fact, Hinich (1985) developed a bispectral test to determine if a time series is non-3 

Gaussian and nonlinear. In some situations, higher-order nonlinearities such as cubic nonlinearities 4 

may exist, in which case the trispectrum or other polyspectra would have to be used (Collis et al., 5 

1998).  6 

 Another advantage of higher-order spectral analysis is that the cycle geometry of oscillations, 7 

such as asymmetry with respect to a horizontal axis (skewed oscillation) or with respect to a 8 

vertical axis (asymmetric oscillation) can be quantified using the biphase. A pure sine wave, for 9 

example, is neither skewed nor asymmetric, whereas a time series resembling a saw-tooth is 10 

asymmetric. Skewed and asymmetric cycle geometry can identify, for example, abrupt climatic 11 

shifts, sudden shifts in the climate system that exceed the magnitude of the background variability 12 

(King, 1996). Abrupt climate shifts have occurred numerous times in the past and have dire 13 

impacts on ecological and economic systems (Alley et al., 2005). An understanding of past abrupt 14 

climate shifts is essential to understanding future climate change and so there is a need to quantify 15 

nonlinearities present in climatic oscillations.  16 

The Quasi-biennial Oscillation (QBO), as another example, has been shown to behave 17 

nonlinearly, transitioning from easterly phases to westerly phases more rapidly than from westerly 18 

to easterly phases (Lu et al., 2009). Another source of asymmetry in the QBO time series arises 19 

from the westerly shear zone descending more regularly than the easterly shear zone. Asymmetries 20 

in the QBO time series are not well-captured by linear methods such as linear principal component 21 

and singular spectrum analyses (Lu et al., 2009) but are better captured using, for example, 22 

nonlinear principal component analysis (Hamilton and Hsieh, 2002). Another example of a 23 

nonlinear time series is the sunspot cycle. Solar activity undergoes an 11-year oscillation 24 

characterized by asymmetric cycle geometry, with solar maxima generally rising faster than they 25 

fall, indicating the presence of nonlinearities (Moussas et al., 2005; Rusu, 2007).  ENSO, a climate 26 

phenomenon with regional- to global-scale impacts, has also been shown to exhibit nonlinearities 27 

(Timmermann, 2003). The presence of nonlinearities and possible nonstationarities in the QBO, 28 

ENSO, and sunspot time series makes traditional Fourier and wavelet analysis inadequate for 29 
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feature extraction, underscoring the need to develop methods for quantifying nonlinearities in a 1 

nonstationary geophysical setting. 2 

The application of higher-order wavelet analysis has been rather limited compared to 3 

traditional wavelet analysis (van Millagan et al., 1995; Elsayed, 2006). One geophysical 4 

application of higher-order wavelet analysis is to oceanic waves (Elsayed, 2006), which was found 5 

to be capable of identifying nonlinearities in wind-wave interactions. However, the study lacked 6 

rigorous statistical significance testing, which is problematic because even a Gaussian process of 7 

finite length can produce nonzero bicoherence. Therefore, the first aspect objective of this paper 8 

is to apply develop significance testing methods for higher-order wavelet analysis to aid physical 9 

interpretation of results.  10 

The number of bicoherence estimates to which the statistical test is applied will be large and 11 

multiple artifacts will result. The multiple-testing problem was already identified for traditional 12 

wavelet analysis (Maraun et al., 2007; Schulte et al., 2015, Schulte, 2016). The first second 13 

objective of this paper will be therefore to apply statistical methods controlling false positive 14 

detection. It is also noted that the bicoherence spectra calculated are only sample estimates of the 15 

true bicoherence spectra. The second third objective of this paper will be to develop a procedure 16 

for calculating confidence intervals corresponding to the sample estimates, which represent a range 17 

of plausible values for the sample estimates.  18 

Another problem with the application of higher-order wavelet analysis is selection of a time 19 

interval on which to calculate the high-order wavelet quantities. Such an approach is subjective 20 

and the result of the analysis may depend on the time interval chosen. Objective three four of this 21 

paper will address the time interval selection problem. Such an approach has already been adopted 22 

in wavelet coherence analysis (Grinsted et al., 2004).  23 

Additionally, properties of the biphase have only been examined for Fourier-based bispectral 24 

analysis (Elgar and Sebert, 1989; Maccarone, 2013) and its usefulness in higher-order wavelet 25 

analysis has yet to be examined. For nonstationary time series, the biphase and cycle geometry 26 

corresponding to the time series may change with time and thus objective four five of this paper 27 

will be to introduce a local wavelet-based biphase spectrum.  28 
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In this paper, higher-order wavelet analysis is put in a statistical framework and applied to the 1 

QBO time series to demonstrate the insights afforded by the methods. Before describing higher-2 

wavelet analysis, a brief overview of wavelet analysis is first presented in Sect. 2. Higher-order 3 

wavelet analysis is described in Sect. 3 and a new local autobicoherence spectrum is introduced, 4 

eliminating the selection of a time interval on which to calculate nonlinear properties of time series. 5 

The new and existing methods are applied to an ideal time series and the QBO index. In Section 6 

4, a new procedure for estimating confidence intervals of global autobicoherence quantities is 7 

developed to estimate uncertainties in the sample autobicoherence spectra. The application of the 8 

new procedure to the sample autobicoherence spectrum of the QBO time series is then used to 9 

further assess confidence in results.  10 

2. Wavelet Analysis  11 

The idea behind wavelet analysis is to convolve a time series with a function satisfying certain 12 

conditions. Such functions are called wavelets, of which the most widely used is the Morlet 13 

wavelet, a sinusoid damped by a Gaussian envelope:  14 

𝜓0(𝜂) =  𝜋−1/4𝑒𝑖𝜔0𝜂𝑒−
1

2
𝜂2

,                                             (1) 15 

where 𝜓0 is the Morlet wavelet, 𝜔0 is the dimensionless frequency, and η is the dimensionless 16 

time (Torrence and Compo, 1998; Grinsted et al., 2004). In practical applications, the convolution 17 

of the wavelet function with a time series X = (𝑥𝑛; n = 1, ... , N) is calculated discretely using  18 

 𝑊𝑛
𝑋(𝑠) =  √

𝛿𝑡

𝑠
∑ 𝑥𝑛′𝜓0[(𝑛′ − 𝑛)

𝛿𝑡

𝑠
]𝑁

𝑛′=1 ,                                     (2)     19 

where 𝛿𝑡 is a uniform time step, s is scale, 𝜂 = 𝑠 ⋅ 𝑡, and 𝑊𝑛
𝑋(𝑠) is the wavelet transform. The 20 

wavelet power is given by |𝑊𝑛
𝑋(𝑠)|2  (Torrence and Compo, 1998; Grinsted et al., 2004). For the 21 

Morlet wavelet with 𝜔0 = 6, the wavelet scale and the Fourier period 𝜆 are approximately equal 22 

(𝜆 = 1.03𝑠). A more detailed discussion of wavelet analysis can be found in Torrence and Compo 23 

(1998).  24 

Shown in Fig. 1a is the time series of the QBO index and shown in Fig. 1b is the 25 

corresponding wavelet power spectrum. The QBO data from 1950-2013 were obtained from the 26 

Climate Prediction Center. The QBO index is defined as the zonal average of the 30 hPa zonal 27 
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wind at the equator. As such, a positive index indicates westerly winds and a negative index 1 

indicates easterly winds. The most salient feature of the time series is the rather regular periodicity 2 

of approximately 28 months. Also note the asymmetry between the negative and positive phase, 3 

with the negative phases generally being stronger. The periodic behavior of the QBO was 4 

corroborated by examining the wavelet power spectrum. A well-defined 28-month periodicity is 5 

evident, with the associated wavelet power changing little throughout the study period.  6 

There are also secondary features located at a period of approximately 14 months, primarily 7 

from 1985 to 2013. The appearance of significant power at a period of 14 months also coincides 8 

with most of the largest negative phases of the QBO. Such a correspondence may not have been a 9 

coincidence; the 14-month mode and the 28-month mode may have interacted constructively to 10 

generate large negative events but interacted destructively to create smaller positive events. 11 

However, additional tools are needed to confirm if the periodicities are interacting and to 12 

understand how the interactions were related to the behavior of the QBO.  13 

3. Higher-order Wavelet Analysis 14 

3.1 Wavelet-based Autobicoherence 15 

Higher-order spectral analysis provides the opportunity to quantify nonlinearities and allows 16 

the detection of interacting oscillatory modes within a time series. More specifically, nonlinearities 17 

are quantified using bicoherence, a tool for measuring quadratic nonlinearities, where quadratic 18 

nonlinearities imply that for frequencies 𝑓1, 𝑓2, and 𝑓3 and corresponding phases 𝜙1, 𝜙2, and 𝜙3 19 

the sum rules 20 

𝑓1 + 𝑓2 = 𝑓3                                                         (3) 21 

and 22 

𝜙1 + 𝜙2 = 𝜙3                                                        (4) 23 

are satisfied. Whereas Eq. (3) implies frequency coupling, Eq. (4) implies phase coupling. To see 24 

from where Eqs. (3) and (4) originate, let  25 

X(t) = sin(2π𝑓1t + 𝜙1) + sin(2π𝑓2t + 𝜙2)                                   (5) 26 

be the input into a system whose output is related to the input by 27 
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𝑌(𝑡) =  𝑋(𝑡) +  𝜀𝑋(𝑡)2 + 𝑤(𝑡).                                         (6) 1 

The multiplicative factor 𝜀 is used to represent the contribution of the nonlinear component of the 2 

signal and w(t) is Gaussian white noise. Note that if 𝜀 = 0, then the system is linear because the 3 

output contains the same frequency components as the input.  The substitution of Eq. (5) into Eq. 4 

(6) results in  5 

Y(t) = sin(2π𝑓1t + 𝜙1) + sin(2π𝑓2t + 𝜙2) + 
𝜀

2
[1 − cos(2(2π𝑓1t +𝜙1)) 6 

                   −  cos(2(2π𝑓2t + 𝜙2)) + cos(2π(𝑓2 − 𝑓1)t + 𝜙2 − 𝜙1) 7 

                   −  cos(2π(𝑓1 + 𝑓2 )t + 𝜙1+ 𝜙2)] + w(t)                                             (7) 8 

and thus the output has sinusoids with additional frequency components 2𝑓1, 2𝑓2, 𝑓2  − 𝑓1, and 𝑓2 9 

+𝑓1, which arise from the second term in right-hand side of Eq. (6).  10 

Unlike the power spectrum, which is the Fourier transform of the second-order moment of 11 

a time series, the bispectrum is defined as the double Fourier transform of the third-order moment, 12 

or, more generally, the third-order cumulant, i.e., 13 

𝑏𝑥𝑥𝑥(𝑓1, 𝑓2) =  ∫ ∫ 𝐶(𝑡1, 𝑡2
∞

−∞

∞

−∞
)𝑒−𝑖2𝜋(𝑓1𝑡1+ 𝑓2𝑡2)𝑑𝑡1𝑑𝑡2,                        (8) 14 

where C is the third-order cumulant, defined as 15 

𝐶(𝑡1, 𝑡2) = 𝑀3(𝑡1, 𝑡2) +  𝑀1[𝑀2(𝑡1) + 𝑀2(𝑡2) +  𝑀2(𝑡1 − 𝑡2)] + 2𝑀1
3            (9) 16 

and the 𝑡𝑖 are lags. If X(t) is zero-mean, then in Eq. (9), 𝑀1 = 𝐸[𝑋(𝑡)] = 0 denotes the first-order 17 

moment (mean), 𝑀2 = 𝐸[𝑋(𝑡)𝑋(𝑡 + 𝑡1)]   denotes the second-order moment (autocorrelation), 18 

and 𝑀3(𝑡1, 𝑡2) = 𝐸[𝑋(𝑡)𝑋(𝑡 + 𝑡1)𝑋(𝑡 + 𝑡2)]  denotes the third-order moment (Nidal and Malik, 19 

2013). Also note that for a zero-mean process, the third-order cumulant reduces to the third-order 20 

moment (Collis et al., 1998). A more useful quantity is the normalized version of the bispectrum, 21 

the autobicoherence spectrum (Collis et al., 1998), which can be computed using the following: 22 

𝑏2(𝑓1, 𝑓2) =  
|𝑏𝑥𝑥𝑥(𝑓1,𝑓2)|2

𝐸[|𝑋𝑓(𝑓1)𝑋𝑓(𝑓2)|
2

]𝐸[𝑋𝑓|(𝑓1+ 𝑓2)|2]
 ,                                        (10) 23 

where 𝑏2(𝑓1, 𝑓2) is bounded by 0 and 1 by the Schwarz inequality and 𝑋𝑓 denotes the Fourier 24 

transform of X. 𝑏2(𝑓1, 𝑓2) can be interpreted as the fraction of power at 𝑓1 + 𝑓2 due to quadratic 25 



16 
 

phase coupling among 𝑓1, 𝑓2, and 𝑓1 + 𝑓2 such that the sum rule 𝑓1 + 𝑓2 =  𝑓3 is satisfied (Elgar 1 

and Chandran, 1993). For a more in-depth discussion of higher-order spectral analysis the reader 2 

is referred to Nikias and Raghuveer (1987).  3 

Phase information and cycle geometry can be obtained from the biphase, which is given 4 

by  5 

𝜓 =  𝑡𝑎𝑛−1 (
𝐼𝑚(𝑏𝑥𝑥𝑥)

𝑅𝑒(𝑏𝑥𝑥𝑥)
) =  𝜙1 + 𝜙2 −  𝜙3.                                       (11) 6 

It was noted by Maccarone (2013), however, that the biphase should be defined on the full 2𝜋 7 

interval and thus in this paper the four-quadrant inverse tangent is computed and not the inverse 8 

tangent as shown above. By doing so, statistically significant autobicoherence detected together 9 

with the biphase can be used to quantify cycle geometry. A biphase of 0° indicates positive 10 

skewness and a biphase of 180° indicates negative skewness (Maccarone, 2013). An example of a 11 

skewed oscillation time series with biphase close to 0° is shown in Fig. 2a. Mathematically, the 12 

time series is written as  13 

X(t) = ∑
1

𝑗
cos[0.1𝑗𝑡 + 𝑎(𝑗 − 1)]40

𝑗=1 ,                                         (12) 14 

where a = 0 (Maccarone, 2013). The time series is skewed because the positive spikes are not 15 

accompanied by negative spikes of equivalent magnitude and therefore the distribution of the time 16 

series would be positively skewed, with the right tail being larger than the left tail. 17 

 For asymmetric waveforms, a biphase of 90° indicates that the time series is linearly rising 18 

but rapidly falling as shown in Fig. 3, whereas a biphase of -90° indicates that the time series rises 19 

rapidly and falls linearly. A purely asymmetric time series will have a biphase of 90° or -90°, as 20 

shown in Fig. 3, where the saw-toothed time series obtained by setting a = 𝜋 2⁄  in Eq. (12) rises 21 

more slowly than it falls. In a physical setting, asymmetric cycle geometry implies that phase 22 

transitions occur at different rates, as observed in the QBO time series.    23 

According to Elsayed (2006), the wavelet-based autobicoherence is defined as  24 

𝑏𝑥𝑥𝑥
𝑤 (𝑠1, 𝑠2) =   

|𝐵𝑥𝑥𝑥
𝑤 (𝑠1,𝑠2)|2

(∫𝑇
|𝑊𝑥(𝑠1,𝑡)𝑊𝑥(𝑠2,𝑡)|2𝑑𝑡)(∫𝑇

|𝑊𝑥(𝑠,𝑡)|2𝑑𝑡)
,                              (13) 25 

where  26 
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𝐵𝑥𝑥𝑥
𝑤 (𝑠1, 𝑠2) =  ∫

𝑇
𝑊𝑥

∗(𝑠, 𝑡) 𝑊𝑥(𝑠1, 𝑡)𝑊𝑥(𝑠2, 𝑡)𝑑𝑡 ,                               (14) 1 

1

𝑠1
+  

1

𝑠2
=  

1

𝑠
,                                                              (15) 2 

                                                                                                                                3 

T is a time interval, 𝑊𝑥(𝑠, 𝑡) is the wavelet transform of a time series X at scale s and time 𝑡, and 4 

𝑊𝑥
∗(𝑠, 𝑡) denotes the complex conjugate of 𝑊𝑥(𝑠, 𝑡). The wavelet-based autobicoherence measures 5 

the degree of quadratic phase coupling, where a peak at (𝑠1, 𝑠2) indicates an nonlinear interaction 6 

statistical dependence among  the scale components 𝑠1, 𝑠2, and s.  7 

 In practice, the autobicoherence is computed discretely so that Eq. (13) can be written as  8 

𝑊𝑏
̅̅ ̅̅ (𝑠1, 𝑠2) =   

|𝐵𝑥𝑥𝑥
𝑤 (𝑠1,𝑠2)|2

(∑ |𝑊𝑛
𝑋(𝑠1)𝑊𝑛

𝑋(𝑠2)|
2𝑛2

𝑛=𝑛1
)(∑ |𝑊𝑛

𝑋(𝑠)|
2𝑛2

𝑛=𝑛1
)
,                               (16)  9 

where  10 

𝐵𝑥𝑥𝑥
𝑤 (𝑠1, 𝑠2) = ∑ 𝑊𝑛

∗𝑋(𝑠)𝑊𝑛
𝑋(𝑠1)𝑊𝑛

𝑋(𝑠2)

𝑛2

𝑛=𝑛1

 11 

= ∑ 𝐵𝑛
𝑤

(𝑠1, 𝑠2)𝑛2
𝑛=𝑛1

,                                                     (17) 12 

 13 

𝑛1 ≥ 1, and 𝑛2 ≤ 𝑁. Note that if 𝑛1 = 1 and 𝑛2 =  𝑁, then Eq. (16) represents the global 14 

autobicoherence spectrum.  15 

The Monte Carlo approach to pointwise significance testing is adopted in this paper and is 16 

similar to that used in wavelet coherence (Grinsted et al., 2014). To estimate the significance of 17 

wavelet-based autobicoherence at each point (𝑠1, 𝑠2), Monte Carlo methods are used to (1) 18 

generate a large ensemble of red-noise processes with the same lengths and lag-1 autocorrelation 19 

coefficients as the input time series and (2) compute for each randomly generated red-noise process 20 

the autobicoherence spectrum. From the ensemble of autobicoherence spectra, the p = 100(1- 𝛼𝑝) 21 

percentile of the autobicoherence estimates is computed for every point (𝑠1, 𝑠2), where p 22 

corresponds to the critical level of the test and 𝛼𝑝 is the pointwise significance level of the test. 23 
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Given the symmetry of the autobicoherence spectrum, the critical level of the test can be computed 1 

using only half of the autobicoherence estimates, reducing computational costs.  2 

3.2 Multiple Testing 3 

Let 𝛼𝑝 be the significance level of the pointwise significance test as described above and 4 

let K denote the number of autobicoherence estimates being tested, then there will be on average 5 

𝛼𝑝𝐾 false positive results. A similar problem occurs in traditional wavelet analysis (Maraun et al., 6 

2007; Schulte et al., 2015; Schulte, 2016). In the case of simultaneously testing multiple 7 

hypotheses, the number of false positive results can be reduced by applying, for example, the 8 

Bonoferonni correction (Lehmann, 1986). However, this simple correction often results in many 9 

true positives being rejected and is especially permissive in the case of autocorrelated data (Maraun 10 

et al., 2004). Other procedures also exist, including the Walker p-value adjustment procedure, 11 

which has more statistical power than the Bonferonni correction. An even more powerful method 12 

is the Benjamini and Hochberg (1995) procedure, which controls the false discovery rate (FDR), 13 

where the FDR is the expected proportion of the false rejections that are actually true. An 14 

advantage of this method, in addition to its statistical power, is that it takes into account the 15 

confidence with which local hypotheses are rejected and is robust even in the case of autocorrelated 16 

data (Wilks, 2002). Benjamini and Yekutieli (2001) developed a modified version of the Benjmini 17 

and Hochberg (1995) procedure that works for any dependency structure among the local test 18 

statistics and thus this procedure will be used in this paper to control the FDR.  19 

The procedure can be described as follows: Suppose that K local hypotheses were tested. 20 

Let 𝑝(𝑖) denote the smallest of the K local p-values, then, under the assumption that the K local 21 

tests are independent, the FDR can be controlled at the q-level by rejecting those local tests for 22 

which 𝑝(𝑖) is no greater than 23 

𝑝𝐹𝐷𝑅= max
𝑗=1,…,𝑘

[𝑝(𝑗): 𝑝(𝑗) ≤ 𝑞(𝑗 𝐾⁄ )] 24 

= max
𝑗=1,…,𝑘

[𝑝(𝑗): 𝑝(𝑗) ≤ 𝛼𝑔𝑙𝑜𝑏𝑎𝑙(𝑗 𝐾⁄ )]                                     (18) 25 

so that the FDR level is equivalent to the global test level. For a local p-value to be deemed 26 

significant using this procedure, it must be less than or equal to the largest p-value for which Eq. 27 

(18) is satisfied. If no such local p-values exist, then none are deemed insignificant, and, therefore, 28 
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the global test hypothesis cannot be rejected. If the test statistics have an unknown dependency 1 

structure, q can be replaced with 𝑞/ ∑
1

𝑖

𝐾
𝑖=1 , though this substitution makes the procedure less 2 

powerful (Reiner et al., 2002). This modified method will be applied to autobicoherence spectra 3 

at the 0.05 level throughout this paper.  4 

3.3 Wavelet-based Autobicoherence of an Idealized Time Series 5 

To demonstrate the features of a time series that can be extracted using higher-order 6 

wavelet analysis, an idealized nonstationary time series will first be considered. Consider the 7 

quadratically nonlinear time series 8 

𝑋(𝑡) = cos(2𝜋𝑓𝑡 + 𝜙) + γ(t)cos(4𝜋𝑓𝑡 + 2𝜙) + 𝑤(𝑡),                         (19) 9 

where f is frequency, 𝑤(𝑡) is Gaussian white noise, and γ(𝑡) is a time-dependent nonlinear 10 

coefficient given by 11 

𝛾(𝑡) = 0.001𝑡.                                                          (20) 12 

Note that Eqs. (3) and (4) are satisfied because 𝑓1 +  𝑓2 = 2𝑓1 = 2𝑓2 and similarly for 𝜙. The 13 

sinusoid with frequency 2𝑓1 is said to be the harmonic of the primary frequency component with 14 

frequency 𝑓2, where the amplitude of the harmonic depends on γ(𝑡), the strength of the quadratic 15 

nonlinearity. X(t) and the corresponding wavelet power spectrum for the case when 𝑓1 =  0.03 is 16 

shown in Fig. 4. The signal-to-noise ratio of the Gaussian white noise was set to 1 decibels. The 17 

primary frequency component results in a large region of 5% pointwise significance at 𝜆 = 30, 18 

whereas its harmonic only results in a few small significance regions located from t = 700 to t = 19 

1000. It also noted that the appearance of the significance power at 𝜆 = 15 from t = 700 to t = 20 

1000 is accompanied by large positive spikes in the time series that result in the time series 21 

favoring positive values. Prior to the emergence of the significant power at 𝜆 = 15, the time series 22 

varied smoothly in the sense that negative phases were accompanied by positive phases of similar 23 

amplitude.  24 

To determine if the oscillations are quadratically interacting, the autobicoherence of 𝑋(𝑡) 25 

was computed (Fig. 5). The significant peak centered at (30, 30) indicates that an oscillation with 26 

period 30 is phase-coupled to an oscillation with 𝜆 = 15. The result implies that the variability at 27 

𝜆 = 15 is partially related to the statistical dependence due to the interaction between the two 28 
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modes. The fraction of variability is determined by the autobicoherence value corresponding to 1 

the significant peak. In the present case, 𝑊𝑏
̅̅ ̅̅ (𝑠1, 𝑠2) = 0.5 so about half of the variability at 𝜆 =2 

15 is due to the nonlinear interaction. Note that no other peaks were found to be significant.  3 

3.4 Wavelet-based Autobicoherence of Geophysical Time Series 4 

Shown in Fig. 6 is the wavelet-based autobicoherence spectrum for the QBO time series. 5 

A large region of significance was identified, which contained the local maximum at (28, 28) 6 

months. The peak represents the phase coupling of the primary frequency component with its 7 

harmonic with a period of 14 months. The power at 𝜆 = 14 months therefore is partially related to 8 

the statistical dependence resulted from the interaction between its primary frequency component 9 

and its harmonic. The significance and magnitude of the autobicoherence in the QBO spectrum is 10 

consistent with how the QBO does not vary smoothly, shifting to the easterly phase more quickly 11 

than to the westerly phase and with the westerly phase tending to be stronger than the easterly 12 

phase. The asymmetry in both phase transition and magnitude are suggestive of nonlinearities.   13 

3.5 Local Wavelet Autobicoherence 14 

It may also be desirable to see how autobicoherence along slices of the full autobicoherence 15 

spectrum changes with time. To compute local autobicoherence, apply a smoothing operator S(W) 16 

= 𝑆𝑠𝑐𝑎𝑙𝑒 (𝑆𝑡𝑖𝑚𝑒(𝑊𝑛
𝑋(𝑠))) (Grinsted et al., 2004) to each term in Eq. (13) instead of summing in 17 

time, i.e.,  18 

 𝑏𝑛
𝑤(𝑠1, 𝑠2)  =   

|𝑆(𝑠1
−1𝐵𝑛

𝑤(𝑠1,𝑠2))|
2

𝑆(𝑠1
−1|𝑊𝑛

𝑋(𝑠1)𝑊𝑛
𝑋(𝑠2)|2)∙𝑆(𝑠−1|𝑊𝑛

𝑋(𝑠)|2)
 .                      (20) 19 

The smoothing operator for the Morlet wavelet is given by  20 

𝑆𝑡𝑖𝑚𝑒(𝑊)|𝑠 =  (𝑊𝑛
𝑋(𝑠) ∗ 𝑐1

−𝑡2

2𝑠2 ) |𝑠                                           (21) 21 

and 22 

𝑆𝑠𝑐𝑎𝑙𝑒(𝑊)|𝑛 =  (𝑊𝑛
𝑋(𝑠) ∗ 𝑐2Π(. 6𝑠))|𝑛,                                       (22) 23 

where 𝑐1 and 𝑐2 are normalization constants determined numerically and Π is the rectangular 24 

function.  25 
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It is important to mention that the numerator of Eq. (20) contains a term with wavelet 1 

coefficients at two different scales so that the choice of smoothing is not as straightforward as for 2 

wavelet coherence. Smoothing autobicoherence estimates with respect to 𝑠𝑚𝑖𝑛 = min (𝑠1, 𝑠2) was 3 

found to result in larger autobicoherence estimates, whereas smoothing the autobicoherence with 4 

respect to 𝑠𝑚𝑎𝑥 = max (𝑠1, 𝑠2) resulted in smaller autobicoherence estimates. Given that the 5 

autobicoherence estimates are influenced by the choice of smoothing, it is inevitable that the 6 

significance of the autobicoherence estimates is also impacted. In particular, smoothing the 7 

autobicoherence spectrum with respect to 𝑠𝑚𝑎𝑥 allowed extrema to be smoothed out, eliminating 8 

spuriously large autobicoherence. For this reason, all local autobicoherence spectra in this paper 9 

will be computed by smoothing with respect to 𝑠𝑚𝑎𝑥.  10 

The advantage of using Eq. (20) is that transient quadratic nonlinearities can now be 11 

detected and the need for choosing an integration time interval has been eliminated. If 𝑠1 = 𝑠2, then 12 

(𝑡, 𝑠1, 𝑠1) = (𝑡, 𝑠2, 𝑠2) = (𝑡, 𝑠) and thus, in the case of this diagonal slice, the local wavelet-based 13 

bicoherence spectrum is a two-dimensional representation of the degree of local quadratic 14 

nonlinearity. The vertical axis corresponds to the primary frequency and the horizontal axis 15 

corresponds to time. As a concrete example, a peak at (64, 64) would indicate that at time index 𝑡 = 16 

50 the oscillation with a fundamental period  𝜆 = 1.03𝑠 ≈ 64 is locally coupled to an oscillation 17 

with period 𝜆 ≈ 32.   18 

One can also compute a local biphase from the smoothed bispectrum by taking the four 19 

quadrant inverse tangent of the smoothed imaginary part divided by the smoothed real part. The 20 

local biphase, for example, was computed for the skewed time series shown in Fig. 2a. As 21 

expected, the biphase fluctuates regularly around 0° and the mean is 2°. The local biphase for the 22 

saw-toothed time series is shown in Fig. 3b. The biphase fluctuates about 90° and the mean biphase 23 

is 90° as expected.  24 

The procedure for the estimation of the statistical significance of local autobicoherence is 25 

the following: generate red-noise time series with the same lag-1 autocorrelation coefficients as 26 

the input time series and use the local autobicoherence estimates outside the COI to generate a null 27 

distribution of 𝑏𝑛
𝑤(𝑠1, 𝑠2). Note that the calculation only needs to be performed at a fixed time 28 

outside of the COI because red-noise is a stationary process, which produces a stationary 29 

background spectrum.  30 



22 
 

3.6 Local Wavelet-based Autobicoherence of an Idealized Time Series 1 

The local autobicoherence spectrum of 𝑋(𝑡) for (30, 30) is shown in Fig. 6b. Initially, there 2 

is no local autobicoherence that exceeds the 5% significance level. At t = 250 and t = 500, on the 3 

other hand, small regions of 5% significant autobicoherence emerge, indicating a transient 4 

nonlinear interaction. At t = 500 the nonlinearity is strong and results in a large region of significant 5 

local autobicoherence extending from t = 500 to the edge of the wavelet domain  6 

In order to determine if the peaks in autobicoherence are associated with a quadratic 7 

nonlinearity, it is important to compute the biphase, which is shown in Fig. 7b.  From t = 0 to t = 8 

400 there is an unstable phase relationships between the phase of the primary frequency component 9 

and its harmonic. Such a lack of phase coherence indicates a weak nonlinear interaction, which is 10 

consistent with how the autobicoherence is lower before t = 400. In contrast, after t = 400, the 11 

biphase becomes stable, changing little with time, indicating a consistent phase relationship 12 

between the primary frequency mode and its harmonic. It also noted that the biphase during this 13 

time fluctuates near 0°, which implies that the phase relationships arise from a quadratic 14 

nonlinearity. The near zero biphase is consistent with how X(t) was constructed from the sum of 15 

two cosines with zero phase and also suggests that the interaction results in skewed cycle geometry, 16 

where positive values of the time series are preferred. Indeed, by inspection of Fig. 4a the 17 

oscillations initially appear to be sinusoidal, varying smoothly, whereas after t = 400 spikes begin 18 

to appear and 𝑋(𝑡) favors positive values.  19 

3.7 Local Wavelet-based Autobicoherence of the QBO Time Series 20 

The local autobicoherence spectrum of the QBO index at the point (28, 28) in the full 21 

autobicoherence spectrum is shown in Fig. 8. From 1950 to 1970 the magnitude of the 22 

autobicoherence fluctuated and consisted of one local significant peak at 1965. Significant 23 

autobicoherence was also found from 1975 to 1998, contrasting with the autobicoherence after 24 

1998, which was not found to be significant until 2010.  25 

To determine if the peaks indicated in the autobicoherence are associated with a quadratic 26 

nonlinearity, the local biphase was computed. Fig. 8a shows the local biphase for the 27 

autobicoherence peak at (28, 28). For most of the study period, the biphase was found to vary 28 

considerably, particularly during the 1950-1970 and 1995-2013 periods. On the other hand, the 29 
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biphase varied smoothly from 1970 to 1995, consistent with how the autobicoherence during that 1 

period was large and stable (Fig. 8a). Also, during that period the biphase was nonzero; in fact, the 2 

mean biphase during the period was -100°, suggesting that the phase coupling is not the result of 3 

a quadratic interaction. A biphase of -100° indicated asymmetric geometry, which physically 4 

represents how phase transitions of the QBO occurred at different rates. Recall that it has already 5 

been discussed in the introduction that the QBO transitions from easterly phases to westerly phases 6 

more rapidly than from westerly to easterly phases (Lu et al., 2009). Another interesting feature is 7 

the general increase in the biphase from 1970 to 1995. In the beginning of the time period, the 8 

biphase was -180° and after 1980 the biphase switched to -90°.   9 

The local autobicoherence and biphase corresponding to the peak (16, 26) was also 10 

computed (Fig. 9). The mean of the absolute value of the biphase for the period 1950-2013 was 11 

130°, indicating a statistical dependency among that the interaction among the modes with periods 12 

of 10, 16, 26 months resulted in skewed waveforms. In fact, because the biphases were close to 13 

180° the waveforms should have been skewed to negative values (Maccarone, 2013) and such 14 

skewness is evident by inspecting Fig. 1. Also note that some of the largest negative phases of the 15 

QBO occurred from 1995 to 2010, which coincided with the period of most significant 16 

autobicoherence as shown in Fig. 9a.  17 

4. Block Bootstrapping Methods 18 

4.1 Block Bootstrapping Autobicoherence 19 

Bootstrapping is a widely used technique to estimate the variance or uncertainty of a 20 

sample estimate. For independent data one samples with replacement individual data points (Efron, 21 

1979); for dependent data one must sample with replacement blocks of data to preserve the 22 

autocorrelation structure of the data (Kunsch, 1989). The latter technique is called block 23 

bootstrapping and should be used for variance estimation of global wavelet quantities, as wavelet 24 

coefficients are known to be autocorrelated in both time and scale. The use of traditional 25 

bootstrapping techniques would result in confidence intervals that are too narrow. It is expected, 26 

however, that the choice of the bootstrapping technique is more critical at larger scales, as the 27 

decorrelation length of the mother wavelet increases with scale.     28 
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A brief overview of the procedure is provided below but a more detailed discussion can be 1 

found in Schulte et al. (2015). To find the approximate 100(1 − 𝛽)% confidence interval of an 2 

autobicoherence estimate, divide the set of wavelet coefficients at each scale into overlapping 3 

blocks. The lengths of the blocks at each scale should be the same and the randomly resampled 4 

blocks chosen should be the same at each scale to avoid randomizing the data. The concatenation 5 

of the blocks then results in a synthetic set of wavelet coefficients at each scale. The synthetic set 6 

of wavelet coefficients can then be used to calculate a bootstrap replicate of the autobicoherence. 7 

The iteration of the procedure 1000 times results in a distribution of bootstrap replicates from 8 

which a 95% confidence interval can be obtained.  9 

As noted by Schulte et al. (2015), the appropriate block length to use can be determined by 10 

Monte Carlo methods. In that study, it was determined from a Monte Carlo experiment that a block 11 

length of 𝑁0.6 was found to produce accurate confidence bounds for wavelet coherence while also 12 

producing the widest confidence intervals at all scales. The Monte Carlo experiment was repeated 13 

for 95% confidence in this study because bicoherence estimation requires the use of wavelet 14 

coefficients at three wavelet scales, with the wavelet coefficients at each scale having a different 15 

correlation structure. For wavelet coherence, the block length selection procedure is simpler 16 

because a single wavelet scale is used so that correlaton structure  of wavelet coeffients is similiar. 17 

The Monte Carlo experiement was performed by generating red-noise proceses of length 1000 18 

with differnent lag-1 autocorrelation coefficients and computing 95% confidence intervals around 19 

the estimated autobicoherence. Remarkably, the Monte Carlo experiment found that a block length 20 

of 𝑁0.6 is also optimal for bicoherence confidence interval estimation. For block lengths exceeding 21 

𝑁0.6, confidence intervals were found to be too narrow, with in some instances the estimated 22 

bicoherence falling outside the 95% confidence interval. It is also noted that the results were 23 

insensitive to the chosen lag-1 autocorrelation coefficient.  24 

4.4.2 Application to Ideal and Climatic Time Series 25 

Figure 5b shows the application of the block bootstrap procedure to the diagonal slice 𝑠1 =26 

 𝑠2 = 𝑠 of the autobicoherence for the ideal case. The 95% confidence intervals were also obtained 27 

using the ordinary bootstrap. A pronounced peak at 𝑠 =  30 was identified and represents the 28 

interaction between the primary frequency and its harmonic. By inspection of Fig. 5b, there is a 29 

clear difference between the widths of the confidence intervals obtained from the two 30 
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bootstrapping procedures. For the ordinary bootstrap, the confidence intervals are narrow and the 1 

widths of the confidence intervals appear to be only weakly dependent on scale. On the other hand, 2 

the confidence intervals obtained using the block bootstrap procedure are wide, especially at large 3 

scales, and the width of the confidence intervals depends strongly on scale, increasing from small 4 

scales to large scales. It is also noted that, whereas the block bootstrap procedure has deemed no 5 

spurious peaks as significant, the ordinary bootstrap procedure deemed two the spurious peaks at 6 

s = 14 and s = 100 as significant. The implementation of the block bootstrap procedure can 7 

therefore enhance confidence in results, facilitating the investigation of a deeper physical 8 

understanding.   9 

The application of the block bootstrap procedure to the diagonal slice 𝑠1 =  𝑠2 = 𝑠 of the 10 

full autobicoherence spectrum of the QBO index is shown in Fig 10. The 95% confidence intervals 11 

corresponding to the peaks (14, 14) and (28, 28) do not cross the 5% significance bound and thus 12 

one has more confidence that those peaks are significant. All other peaks have been deemed 13 

insignificant.  14 

5. Summary 15 

 Higher-order wavelet analysis together with significance testing procedures were used to 16 

detect nonlinearities embedded in an ideal time series and the QBO time series. The 17 

autobicoherence spectrum of the QBO index revealed phase coupling of the 28 month mode with 18 

a higher frequency mode with period 14 months. A local autobicoherence spectrum of the QBO 19 

index showed that the strength of the nonlinearities varied temporally. Furthermore, the local 20 

biphase spectrum indicated that a statistical dependence among  frequency components the 21 

nonlinear interaction resulted in waveforms that were both skewed and asymmetric, indicating that 22 

the strength of negative QBO events were stronger than positive events, and that transitions 23 

between events occurred at different rates.   24 

25 
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 1 

 2 

Figure 1. (a) The QBO index and (b) the corresponding wavelet power spectrum. Contours enclose 3 

regions of 5% statistical pointwise significance (Torrence and Compo, 1998). Light shading 4 

represents the cone of influence, the region in which edge effects cannot be ignored. 5 

 6 

 7 

8 
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 1 

Figure 2. (a) a skewed time series and (b) its corresponding local biphase. The biphase close to 2 
zero indicates a nonlinear interaction resulting in a skewed oscillation. The biphase was calculated 3 

from the first three cosines in the summation described in the text. The large deviations from zero 4 
at the edges are the result of edge effects.  5 

  6 
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 2 

Figure 3. (a) A saw-toothed time series and (b) its corresponding local biphase. The biphase close 3 

to 90° indicates a nonlinear interaction resulting in an asymmetric waveform. The biphase was 4 
calculated from the first three cosines in the summation. 5 

 6 

7 
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 1 

Figure 4. (a) Time series corresponding to Eq. (19). (b) Corresponding wavelet power spectrum.  2 

3 
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 1 

Figure 5. (a) Wavelet-based autobicoherence spectrum of the ideal time series. Thick contours 2 

enclose regions of 5% pointwise significance after controling the FDR. The diagonal line separates 3 

the spectrum into two symmetric regions. (b) The diagonal slice of the autobicoherence spectrum 4 

at 𝑠1 =  𝑠2 = 𝑠. The critical level for the test represented by the dotted line was calculated using 5 

Monte Carlo methods.  6 
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 2 

 3 

 4 

Figure 6. The wavelet-based autobicoherence spectrum of the QBO index for the period 1950-5 

2013. Thick contours enclose regions of 5% pointwise significance.  6 

 7 
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 1 

Figure 7. (a) The local autobicoherence and (b) local biphase corresponding to (30, 30) in the full 2 

autobicoherence spectrum shown in Figure 5a. Biphases differing from 90° indicate that the 3 

nonlinear interaction resulted in a waveform with skewness.  4 

 5 

6 
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 1 

Figure 8. Same as Fig. 7 except at (28, 28) in the autobicoherence spectrum of the QBO index 2 

Biphases differing from 90° indicate that the nonlinear interaction resulted in a waveform with 3 

skewness. 4 
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 2 

Figure 9. Same as Fig. 8 except at the point (16, 26).   3 

 4 
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 1 

Figure 10. Same as Fig. 5b except for the QBO index for the period 1950-2013. 2 

 3 
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