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Responses to Reviewer 1

Provided below are responses to reviewer comments, which are highlighted using
bold text.

Summary

The work "Wavelet analysis for non-stationary, non-linear time series' by J.A.
Schulte is devoted to developing methods for wavelet bicoherence estimation
with testing for statistical significance and estimating confidence bands.
Correspondingly, the author claims five objectives of the work. As illustrative
examples, simple mathematical signals are used as well as geophysical data
(quasi-biennial oscillation time series). Overall, the manuscript is clearly
written. | regard it as quite correct. The field to which the work belongs (special
methods for nonlinear characterization of time series taking into account
statistical fluctuations of the estimates and controlling statistical significance of
the conclusions) is important in geophysics and interesting for a wider physical
audience. However, | think that the presented results are not sufficiently
original and novel to be published as a separate paper. They make an
impression of relevant, but secondary and quite evident technical peculiarities
which should be taken into account when applying the wavelet bicoherence
estimation technique to real-world data. In my opinion, the author should
either (i) show that these peculiarities are not so evident or (despite their
evidence) unexpectedly fruitful or (ii) obtain new useful knowledge about
realworld data with the aid of the methods considered. Both of these criteria
are not met. Moreover, | stress my impression that the author CONSIDERS
the estimation methods rather than SUGGESTS them. Below, | list more
concrete and detailed critical remarks considering the objectives claimed in the
Introduction one-by-one.

The author is thankful for the detailed comments provided by the reviewers. Both
reviewers found the paper to be well-written and without eroor but felt that it was
not orginal. No substantial changes have been made to the manuscript besides some
additional text to better highlight the research undertaken in the use of the new
methodologies. While not any one method presented in the manuscript is a
significant original contribution, the synthesis of methods together with small
improvements of existing methods represents an original contribution to higher-
order wavelet analysis. The literature regarding the subject has primarily focused on
its theoretical and geophysical applications and to a lesser extent on the statistical
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aspects of the subject. This paper represents the first synthesis and detailed
discussion of various statistical procedures that should be considered when applying
higher-order wavelet analysis. This paper largely follows the overall structure of the
well-known works of Grinsted (2004) and Torrence and Compo (1998), which
bridged gaps between the signal processing aspects of wavelet analysis and
statistical facets of the subject. Indeed, the manuscript has put higher-order wavelet
analysis in a statistical framework and bridges that same gap as the aforementioned
works. The author has also created the first higher-order wavelet analysis Matlab
software package corresponding to the paper, which will be of importance to a
broader geophysical community.

No substantial changes have been made to the manuscript besides some additional
text to better highlight the research undertaken in the use of the new methodologies.

Specific Points

1) Before other comments, | note that almost the same formalism was already
suggested and applied in several works. In particular, in Ref. [J.Jamsek et al //
PHYSICAL REVIEW E, v. 76, 046221 (2007)] the authors did the same things,
except that they did not estimate statistical significance. The latter was just not
very important for their problems due to the presence of clearly constant
biphase as compared to the periods of varying biphase.

The earlier work of Jamsek et al. (2003) focused on the signal processing
aspects of Fourier-based bispectral analysis. The present manuscript represents an
improvement from that earlier work in that the author has extended the formalism to
wavelet analysis and used statistical hypothesis testing. Also included in the present
manuscript are applications of new methods from traditional wavelet analysis to
higher-order wavelet analysis. To the author’s knowledge, no such up-to-date
synthesis currently exists.

2) Page 1709, lines 4-5. ... the first objective of this paper is to develop
significance testing methods for higher-order wavelet analysis to aid physical
interpretation of results".

In fact, the author just suggests to generate red-noise (AR(1)) surrogates,
estimate wavelet bispectrum from them and compare it with the estimates
obtained from the data at hand. This approach is widely used for many
significance testing problems, e.g. for the wavelet coherence estimation as the
author correctly points out (Jevereyeva et al, 2003; Grinsted et al, 2004). Thus,
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the author just reminds us here that it is relevant to perfom significance testing
when estimating the wavelet bicoherence too (this is evident but it is good to
remember about it in practice) and suggests to use a well-known approach for
that. Thus, the first objective is achieved before doing any research.

While the author agrees that Monte Carlo methods are widely used, their use in
higher-wavelet order analysis has received little attention. The author reminds the
reader of the use of such methods in wavelet analysis before proceding to more
specialized topics later in the manuscript. However, the author agrees that this part
of the paper should be not be listed as an objective and therefore the text on Page
1709 Line 4 has been deleted.

3) Page 1709, lines 9-10. "... second objective of this paper will be therefore to
apply statistical methods controlling false positive detection."

This is also correct that multiple testing should be taken into account. This is
relevant here since many values of the wavelet bispectrum are estimated. It is
well-known that Bonferroni correction or a bit elaborated Benjamini
corrections can be applied. The author just suggests to apply these techniques
during the wavelet bicoherence estimation (namely, he prefers Benjamini FDR
controlling scheme). No modification of the techniques is needed. Thus, the
second objective is also achieved before doing any research.

Controlling false positive detection represents an important and long-
established topic in statistics. Yet, its necessity in wavelet analysis was only first
realized years after the influential work of Torrence and Compo (1998) by Maraun
and Kurths (2004) and later by Maraun et al. (2007), Schulte et al. (2015), and
Schulte (2016). The inclusion of the Benjamini scheme in the manuscript represents
an original contribution in that it bridges the gap between higher-order wavelet
analysis and statistical hypothesis testing.

4) Page 1709, lines 11-14. ""The third objective of this paper will be to develop
a procedure for calculating confidence intervals corresponding to the sample
estimates, which represent a range of plausible values for the sample
estimates™.

Here, the authors suggests to use a bootstrapping technique with replacement.
Taking into account autocorrelations of subsequent wavelet coefficients, it
becomes block bootstrapping. It is Ok, but also well-known. Thus, again the
authors suggests to use previously known approach.
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The author respectfully disagrees that the bootstrapping method is not novel.
To the author’s knowledge, confidence interval estimation using the block
bootstrapping method has never been applied to autobicoherence spectra. While the
method is well known, its application in wavelet analysis is not straightforward. The
difficulty of its application arises because the calculation of the autobicoherence
spectrum uses wavelet coefficients at the three wavelet scales and the correlation
structure of the wavelet coefficients differs at each of the scales. Therefore, a Monte
Carlo simulation was conducted to carefully determine the appropriate block length
needed to accurately estimate confidence intervals. In the Monte Carlo simulation,
autobiocherence spectra of red-noise processes were calculated and the 95%
confidence intervals of the autobicoherence estimates were calculated. The width of
the confidence interval was computed at each to scale to determine when the
confidence interval widths generally are the widest. The block length at which
confidence intervals were generally the widest was determined to be the best
estimate of the appropriate block length. The Monte Carlo analysis was a lengthy
process that required some research. Details of the procedure are now included in
the manuscript and are inserted on Page 1723 Line 5.

5) Page 1709, lines 18-20. ""Objective four of this paper will address the time
interval selection problem. Such an approach has already been adopted in
wavelet coherence analysis (Grinsted et al., 2004).""

Again, everything is correct and relevant, but the technique was suggested
before for the cross-wavelet analysis. Here, the author just uses it for the
wavelet bicoherence analysis. No special research is needed here and no spesial
research is in fact performed by the autors concerning this point.

The use of the smoothing operator to calculate local biphase and
autobicoherence represents an improvement from the earlier work of Jamsek (2003)
where the less efficient Fourier analysis was used. Moreover, its use links the earlier
work of Grinsted (2004) with that of Jamsek et al. (2003), representing an original
contribution in higher-order wavelet analysis. A researcher of higher-order wavelet
analysis unaware of the work by Grinsted et al. (2004) would find the use of the
smoothing operator in this work not so evident, again highlighting the importance of
synthesis. The application of the smoothing operator to autobiocherence required
some care because autobicoherence is calculated using wavelet coefficients at three
different scales. Research was needed to determine precisely how the smoothing
operators should be applied. Additionally, statistical significance of the local
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autobicoherence was addressed in this paper, which was not considered by Jamsek
et al. (2003), again representing an original contribution to the field. The theoretical
example used in this paper demonstrates the use of the local autobicoherence
spectrum and shows how it can measure non-stationary non-linear behavior.

6) Page 1709, line 25. ""objective five of this paper will be to introduce a local
biphase spectrum®.

Time-varying biphase spectrum was already considered e.g. in Ref. [J. Jamsek,
A. Stefanovska, P. V. E. McClintock, and I. A. Khovanov, Phys. Rev. E 68,
016201 (2003)] where the authors used short-time Fourier transform. Thus, the
idea itslef was already applied and the properties of the biphase were discussed
with several examples. Here, the author implements the idea with wavelets but
the modificati Time-varying biphase spectrum was already considered e.g. in
Ref. [J. Jamsek, A. Stefanovska, P. V. E. McClintock, and 1. A. Khovanov, Phys.
Rev. E 68, 016201 (2003)] where the authors used short-time Fourier transform.
Thus, the idea itslef was already applied and the properties of the biphase were
discussed with several examples. Here, the author implements the idea with
wavelets but the modification is quite obvious (even if it was not applied before).
Probably, the author can insist here on that the adaptive smoothing with
operators S _scale and S_time used by him (following the work of Grinsted et
al, 2004) are very fruitful and make the method especially efficient. However,
no investigations of this point are described. The author just describes the idea
(quite correct and relevant, but quite evident) and does not show that it gives
unexpected (in any way) or especially useful results. on is quite obvious (even if
it was not applied before). Probably, the author can insist here on that the
adaptive smoothing with operators S_scale and S_time used by him (following
the work of Grinsted et al, 2004) are very fruitful and make the method
especially efficient. However, no investigations of this point are described. The
author just describes the idea (quite correct and relevant, but quite evident)
and does not show that it gives unexpected (in any way) or especially useful
results.

Please see response to comment 5.

7) The author illustrate the technique with QBO time series. However, the
conclusions made are that the time series under study is skewed (negative
phases are stronger than positive) and asymmetric (transition from easterlies
to westerlies is more rapid than the opposite one). However, this can be seen by
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eye directly from the time series as he author states himself. Thus, it is not clear
what an especially useful knowledge is given by the suggested technique. That
the technique works as expected is not a new knowledge.

The application of higher-order wavelet analysis to QBO time series alone
represents an original contribution in that it has never been applied to it. The purpose
of using this geophysical example was that nonlinearities in the time series are
readily visible, allowing the reader to better connect the methods to a real-world
example. This physical example is an important bench mark for future uses of the
methods.

8) Throughout the paper, the author often uses such term as "interaction of the
components”. E.g. page 1718, lines 22-24: "The power at lambda = 14 months
therefore partially resulted from the interaction between its primary frequency
component and its harmonic". It is not clear what "interaction" is implied here.
The use of such a term seems quite vague. | agree that there is a statistical
dependency between the phases of the two spectral components. In particular,
it can be a result of a static quadratic nonlinearity of the "system under study”,
i.e. possibly there is a signal with the period of 28 months at the input of "the
system under study", then the signal is squared so that the second harmonic is
generated. In this simple picture, no interaction takes place and no separate
interacting modes are present. Certainly, other interpretations can be imagined.
However, constancy of the biphase cannot be per se an unequivocal sign of
"interaction" between something and something.

The author largely agrees with the assessment. The word “interaction” we
be replaced by “statistical dependence” or “statistically dependent” where
appropriate.
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Responses to Reviewer 2

Provided below are responses to reviewer comments, which are highlighted using
bold text.

Summary

This paper considers the problem of detecting and quantifying nonlinearities in
nonstationary time series with wavelet-based approaches. The author aims to
study abilities of the higher-order wavelet analysis in application to the Quasi-
biennial Oscillation time series. He considers five objectives, namely, to develop
significance testing methods for higher-order wavelet analysis, to apply statistical
methods controlling false positive detection, to develop a procedure for
calculating confidence intervals corresponding to the sample estimates, to solve
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the problem of selection of a time interval for calculations, and to introduce a
local biphase spectrum.

The paper is well written and contains a clear description of approaches for
wavelet bicoherence estimation that could be interesting for researchers dealing
with nonstationary and nonlinear time series. In my opinion, the description of
the methods and their geophysical applications can be used as a part of a review
paper or a monograph devoted to the higher-order wavelet analysis. However, |
have doubts concerning publishing this manuscript as a research paper. Actually,
earlier known approaches are applied to simple testing signals and geophysical
data, and the originality and the novelty of the discussed approaches and the
obtained results is unclear.

The author is thankful for the detailed comments provided by the reviewers. Both
reviewers found the paper to be well-written and without eroor but felt that it was
not orginal. No substantial changes have been made to the manuscript besides some
additional text to better highlight the research undertaken in the use of the new
methodologies. While not any one method presented in the manuscript is a
significant original contribution, the synthesis of methods together with small
improvements of existing methods represents an original contribution to higher-
order wavelet analysis. The literature regarding the subject has primarily focused on
its theoretical and geophysical applications and to a lesser extent on the statistical
aspects of the subject. This paper represents the first synthesis and detailed
discussion of various statistical procedures that should be considered when applying
higher-order wavelet analysis. This paper largely follows the overall structure of the
well-known works of Grinsted (2004) and Torrence and Compo (1998), which
bridged gaps between the signal processing aspects of wavelet analysis and
statistical facets of the subject. Indeed, the manuscript has put higher-order wavelet
analysis in a statistical framework and bridges that same gap as the aforementioned
works. The author has also created the first higher-order wavelet analysis Matlab
software package corresponding to the paper, which will be of importance to a
broader geophysical community.

No substantial changes have been made to the manuscript besides some additional
text to better highlight the research undertaken in the use of the new methodologies.

Specific Points
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Thus, in particular, the significance testing method used the author has only
minor distinctions from those discussed in other papers (e.g., Grinsted et al,
2004). Also, | did not found novelty in the used statistical methods controlling
false positive detection and in calculating confidence intervals corresponding to
the sample estimates. The author did a good work in application of known
techniques and their description with pointing out many important things,
however, the claimed objectives are different from the presented results. In
conclusion, | think that the considered topic may be interesting for a broad
physical community, but | do not recommend publication of this work in its
present form.

Please see responses to comments 2 through 5 of Reviewer 1

Wavelet Analysis for Non-stationary, Non-linear Time Series
Justin A. Schulte

The Pennsylvania State University, University Park,
Pennsylvania 16802

Abstract

Methods for detecting and quantifying nonlinearities in nonstationary time series are introduced
and developed. In particular, higher-order wavelet analysis was applied to an ideal time series and
the Quasi-biennial Oscillation (QBO) time series. Multiple-testing problems inherent in wavelet
analysis were addressed by controlling the false discovery rate. A new local autobicoherence
spectrum facilitated the detection of local nonlinearities and the quantification of cycle geometry.
The local autobicoherence spectrum of the QBO time series showed that the QBO time series
contained a mode with a period of 28 months that was phase-coupled to a harmonic with a period
of 14 months. An additional nonlinearly interacting triad was found among modes with periods of
10, 16, 26 months. Local biphase spectra determined that the nonlinear interactions were not
quadratic and that the effect of the nonlinearities was to produce non-smoothly varying

oscillations. The oscillations were found to be skewed so that negative QBO regimes were
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preferred, and also asymmetric in the sense that phase transitions between the easterly and westerly

phases occurred more rapidly than those from westerly to easterly regimes.

1. Introduction

Spectral analysis is a tool for extracting embedded structures in a time series. In particular,
Fourier analysis has been used extensively by researchers for extracting deterministic structures
from time series but is incapable of detecting nonstationary features often present in geophysical
time series. Wavelet analysis can extract transient features embedded in time series, with a wavelet
power spectrum representing variance (power) of a time series as a function of time and period.
Since the seminal work of Torrence and Compo (1998), wavelet analysis has been applied
extensively to geophysical time series such as the indices for the North Atlantic Oscillation (Olsen
et al., 2012), Arctic Oscillation (Jevrejeva et al., 2003), Pacific Decadal Oscillation (Macdonald
and Case, 2005; Newmann et al., 2003), EI-Nifio/Southern Oscillation (ENSO; Torrence and
Webster, 1999), Pacific-North American Pattern, and West Pacific pattern (Gan et al., 2007). The
application of wavelet coherence and cross-wavelet analyses (Grinsted et al., 2004), moreover, has
proven useful in relating geophysical time series to other time series (Jevrejeva et al., 2003; Gan
et al., 2007; Labat, 2010; Lee and Lwiza, 2008).

Many statistical methods, including power and cross-spectral analyses, rely on the assumption
that the variable in question is Gaussian distributed (King, 1996). For a linear system in which the
output is proportional to the input, the first- and second-order moments, the mean and variance,
can fully describe the distribution of a process. In the frequency domain, by analogy, the variable
can be fully described by the power spectrum, the decomposition of variance as a function of
frequency. Suppose, however, that the distribution is non-Gaussian so that higher-order moments
such as skewness and kurtosis exist. In this case, the mean and variance, while useful, are unable
to fully describe the distribution in question. In a time series context, non-Gaussian distributions
can arise from nonlinear systems, systems for which the output is no longer simply proportional
to the input. For a nonlinear system, if the input is the sum of two sinusoids with different
frequency components the output will contain additional frequency components representing the
sum and difference of the input frequencies (King, 1996). In such cases, it is necessary to examine

the decomposition of higher-order moments in frequency space.
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The frequency decomposition of the third-order moment, for example, results in a bispectrum
or skewness function that measure deviations from Gaussianity (Nikias and Raghuveer, 1987;
King, 1996). In fact, Hinich (1985) developed a bispectral test to determine if a time series is non-
Gaussian and nonlinear. In some situations, higher-order nonlinearities such as cubic nonlinearities
may exist, in which case the trispectrum or other polyspectra would have to be used (Collis et al.,
1998).

Another advantage of higher-order spectral analysis is that the cycle geometry of oscillations,
such as asymmetry with respect to a horizontal axis (skewed oscillation) or with respect to a
vertical axis (asymmetric oscillation) can be quantified using the biphase. A pure sine wave, for
example, is neither skewed nor asymmetric, whereas a time series resembling a saw-tooth is
asymmetric. Skewed and asymmetric cycle geometry can identify, for example, abrupt climatic
shifts, sudden shifts in the climate system that exceed the magnitude of the background variability
(King, 1996). Abrupt climate shifts have occurred numerous times in the past and have dire
impacts on ecological and economic systems (Alley et al., 2005). An understanding of past abrupt
climate shifts is essential to understanding future climate change and so there is a need to quantify

nonlinearities present in climatic oscillations.

The Quasi-biennial Oscillation (QBO), as another example, has been shown to behave
nonlinearly, transitioning from easterly phases to westerly phases more rapidly than from westerly
to easterly phases (Lu et al., 2009). Another source of asymmetry in the QBO time series arises
from the westerly shear zone descending more regularly than the easterly shear zone. Asymmetries
in the QBO time series are not well-captured by linear methods such as linear principal component
and singular spectrum analyses (Lu et al., 2009) but are better captured using, for example,
nonlinear principal component analysis (Hamilton and Hsieh, 2002). Another example of a
nonlinear time series is the sunspot cycle. Solar activity undergoes an 11-year oscillation
characterized by asymmetric cycle geometry, with solar maxima generally rising faster than they
fall, indicating the presence of nonlinearities (Moussas et al., 2005; Rusu, 2007). ENSO, a climate
phenomenon with regional- to global-scale impacts, has also been shown to exhibit nonlinearities
(Timmermann, 2003). The presence of nonlinearities and possible nonstationarities in the QBO,

ENSO, and sunspot time series makes traditional Fourier and wavelet analysis inadequate for
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feature extraction, underscoring the need to develop methods for quantifying nonlinearities in a

nonstationary geophysical setting.

The application of higher-order wavelet analysis has been rather limited compared to
traditional wavelet analysis (van Millagan et al., 1995; Elsayed, 2006). One geophysical
application of higher-order wavelet analysis is to oceanic waves (Elsayed, 2006), which was found
to be capable of identifying nonlinearities in wind-wave interactions. However, the study lacked
rigorous statistical significance testing, which is problematic because even a Gaussian process of
finite length can produce nonzero bicoherence. Therefore, the first aspect ebjective of this paper
is to apply develop significance testing methods for higher-order wavelet analysis to aid physical
interpretation of results.

The number of bicoherence estimates to which the statistical test is applied will be large and
multiple artifacts will result. The multiple-testing problem was already identified for traditional
wavelet analysis (Maraun et al., 2007; Schulte et al., 2015, Schulte, 2016). The first second

objective of this paper will be therefore to apply statistical methods controlling false positive

detection. It is also noted that the bicoherence spectra calculated are only sample estimates of the
true bicoherence spectra. The second third objective of this paper will be to develop a procedure
for calculating confidence intervals corresponding to the sample estimates, which represent a range

of plausible values for the sample estimates.

Another problem with the application of higher-order wavelet analysis is selection of a time
interval on which to calculate the high-order wavelet quantities. Such an approach is subjective
and the result of the analysis may depend on the time interval chosen. Objective three four of this
paper will address the time interval selection problem. Such an approach has already been adopted

in wavelet coherence analysis (Grinsted et al., 2004).

Additionally, properties of the biphase have only been examined for Fourier-based bispectral
analysis (Elgar and Sebert, 1989; Maccarone, 2013) and its usefulness in higher-order wavelet
analysis has yet to be examined. For nonstationary time series, the biphase and cycle geometry
corresponding to the time series may change with time and thus objective four five of this paper

will be to introduce a local wavelet-based biphase spectrum.
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In this paper, higher-order wavelet analysis is put in a statistical framework and applied to the
QBO time series to demonstrate the insights afforded by the methods. Before describing higher-
wavelet analysis, a brief overview of wavelet analysis is first presented in Sect. 2. Higher-order
wavelet analysis is described in Sect. 3 and a new local autobicoherence spectrum is introduced,
eliminating the selection of a time interval on which to calculate nonlinear properties of time series.
The new and existing methods are applied to an ideal time series and the QBO index. In Section
4, a new procedure for estimating confidence intervals of global autobicoherence quantities is
developed to estimate uncertainties in the sample autobicoherence spectra. The application of the
new procedure to the sample autobicoherence spectrum of the QBO time series is then used to

further assess confidence in results.
2. Wavelet Analysis

The idea behind wavelet analysis is to convolve a time series with a function satisfying certain
conditions. Such functions are called wavelets, of which the most widely used is the Morlet

wavelet, a sinusoid damped by a Gaussian envelope:

i 1
Wo(n) = m~V4eiwong ™", (1)

where v, is the Morlet wavelet, w, is the dimensionless frequency, and 7 is the dimensionless
time (Torrence and Compo, 1998; Grinsted et al., 2004). In practical applications, the convolution

of the wavelet function with a time series X = (x,; n =1, ..., N) is calculated discretely using

W) = (S5 ol =) @

where &t is a uniform time step, s is scale, n = s - t, and W,X(s) is the wavelet transform. The
wavelet power is given by |[W,X (s)|? (Torrence and Compo, 1998; Grinsted et al., 2004). For the
Morlet wavelet with w, = 6, the wavelet scale and the Fourier period A are approximately equal
(A = 1.03s). A more detailed discussion of wavelet analysis can be found in Torrence and Compo
(1998).

Shown in Fig. la is the time series of the QBO index and shown in Fig. 1b is the
corresponding wavelet power spectrum. The QBO data from 1950-2013 were obtained from the

Climate Prediction Center. The QBO index is defined as the zonal average of the 30 hPa zonal
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wind at the equator. As such, a positive index indicates westerly winds and a negative index
indicates easterly winds. The most salient feature of the time series is the rather regular periodicity
of approximately 28 months. Also note the asymmetry between the negative and positive phase,
with the negative phases generally being stronger. The periodic behavior of the QBO was
corroborated by examining the wavelet power spectrum. A well-defined 28-month periodicity is

evident, with the associated wavelet power changing little throughout the study period.

There are also secondary features located at a period of approximately 14 months, primarily
from 1985 to 2013. The appearance of significant power at a period of 14 months also coincides
with most of the largest negative phases of the QBO. Such a correspondence may not have been a
coincidence; the 14-month mode and the 28-month mode may have interacted constructively to
generate large negative events but interacted destructively to create smaller positive events.
However, additional tools are needed to confirm if the periodicities are interacting and to

understand how the interactions were related to the behavior of the QBO.

3. Higher-order Wavelet Analysis
3.1 Wavelet-based Autobicoherence

Higher-order spectral analysis provides the opportunity to quantify nonlinearities and allows
the detection of interacting oscillatory modes within a time series. More specifically, nonlinearities
are quantified using bicoherence, a tool for measuring quadratic nonlinearities, where quadratic
nonlinearities imply that for frequencies f;, f,, and f5 and corresponding phases ¢,, ¢, and ¢

the sum rules

Lt+f=fs 3)

and

b1+ P, = P 4)

are satisfied. Whereas Eq. (3) implies frequency coupling, Eq. (4) implies phase coupling. To see
from where Egs. (3) and (4) originate, let

X(V) = sin(2nfit + ¢q) + sin2nfot + ¢3) ®)

be the input into a system whose output is related to the input by
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Y(t) = X(t) + X(t)* + w(d). (6)

The multiplicative factor ¢ is used to represent the contribution of the nonlinear component of the
signal and w(t) is Gaussian white noise. Note that if € = 0, then the system is linear because the
output contains the same frequency components as the input. The substitution of Eq. (5) into Eq.

(6) results in
V() = sin2mfyt+ ¢y) + sin2ufy e+ ¢y) +>[1 — cos(2(21f; £ +¢1))

— cos(2(2nfyt+ ¢3)) + cos(2n(f, — fi)t+ ¢ — ¢y)
— cos2n(fy + f2 ) t+ 1+ P2)] + w(D) 7

and thus the output has sinusoids with additional frequency components 2f;, 2f5, f, — f1, and f;

+f1, which arise from the second term in right-hand side of Eq. (6).

Unlike the power spectrum, which is the Fourier transform of the second-order moment of
a time series, the bispectrum is defined as the double Fourier transform of the third-order moment,

or, more generally, the third-order cumulant, i.e.,

Doxx (fi, f2) = f_°°oo f_°°oo C(ty, t,)e 2mhtit fotayge qdt,, (8)
where C is the third-order cumulant, defined as
C(ty, t3) = M3(ty, t5) + My [My(ty) + My(t,) + My(ty — t5)] + 2M; 9)

and the t; are lags. If X(t) is zero-mean, then in Eq. (9), M; = E[X(t)] = 0 denotes the first-order
moment (mean), M, = E[X(t)X(t + t;)] denotes the second-order moment (autocorrelation),
and M3 (t,,t,) = E[X(t)X(t + t;)X(t + t,)] denotes the third-order moment (Nidal and Malik,
2013). Also note that for a zero-mean process, the third-order cumulant reduces to the third-order
moment (Collis et al., 1998). A more useful quantity is the normalized version of the bispectrum,
the autobicoherence spectrum (Collis et al., 1998), which can be computed using the following:

bZ(f f) — |bxxx(f1:f2)|2 (10)
VI lxrox s G JE X+ £)12]

where b?(fi, f>) is bounded by 0 and 1 by the Schwarz inequality and X, denotes the Fourier

transform of X. b%(f, f>) can be interpreted as the fraction of power at f; + f, due to quadratic
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phase coupling among f;, f2, and f; + f, such that the sum rule f; + f, = f5 is satisfied (Elgar
and Chandran, 1993). For a more in-depth discussion of higher-order spectral analysis the reader
is referred to Nikias and Raghuveer (1987).

Phase information and cycle geometry can be obtained from the biphase, which is given

by

Y= tan (20) = ¢+, — . (11)

Re(bxxx)

It was noted by Maccarone (2013), however, that the biphase should be defined on the full 27
interval and thus in this paper the four-quadrant inverse tangent is computed and not the inverse
tangent as shown above. By doing so, statistically significant autobicoherence detected together
with the biphase can be used to quantify cycle geometry. A biphase of 0° indicates positive
skewness and a biphase of 180° indicates negative skewness (Maccarone, 2013). An example of a
skewed oscillation time series with biphase close to 0° is shown in Fig. 2a. Mathematically, the

time series is written as
X(t) = Zﬁgﬁcos[o.ljt +a(j—1)], (12)

where a = 0 (Maccarone, 2013). The time series is skewed because the positive spikes are not
accompanied by negative spikes of equivalent magnitude and therefore the distribution of the time

series would be positively skewed, with the right tail being larger than the left tail.

For asymmetric waveforms, a biphase of 90° indicates that the time series is linearly rising
but rapidly falling as shown in Fig. 3, whereas a biphase of -90° indicates that the time series rises
rapidly and falls linearly. A purely asymmetric time series will have a biphase of 90° or -90°, as

shown in Fig. 3, where the saw-toothed time series obtained by setting a = 7T/Z in Eq. (12) rises

more slowly than it falls. In a physical setting, asymmetric cycle geometry implies that phase

transitions occur at different rates, as observed in the QBO time series.
According to Elsayed (2006), the wavelet-based autobicoherence is defined as

|BJ‘CASC.X(51'SZ)|2 (13)
(W (s1,0) Wy (s2,6)12dt) ([ oW (s,t)|2dt)’

bYex(S1,82) =
where
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BYex(51,52) = [ Wy (5,8) Wa(s1, )We (s, t)dt (14)

Lyi=2 (15)

S1 Sy S

T is a time interval, W, (s, t) is the wavelet transform of a time series X at scale s and time t, and
Wy (s, t) denotes the complex conjugate of W, (s, t). The wavelet-based autobicoherence measures
the degree of quadratic phase coupling, where a peak at (s;, s,) indicates an rentinearinteraction

statistical dependence among the scale components s, s,, and s.

In practice, the autobicoherence is computed discretely so that Eq. (13) can be written as

W(S S ) — |BYex (51,52)1 (16)
PRI (3, W (WX (s (2R2, WX G

where

nz
Bln(s1,52) = ) WKW ()W (52)

n=nq

= Yo, Bn (51,52, (17)

n, =1, and n, < N. Note that if n; =1 and n, = N, then Eqg. (16) represents the global

autobicoherence spectrum.

The Monte Carlo approach to pointwise significance testing is adopted in this paper and is
similar to that used in wavelet coherence (Grinsted et al., 2014). To estimate the significance of
wavelet-based autobicoherence at each point (sy,s;), Monte Carlo methods are used to (1)
generate a large ensemble of red-noise processes with the same lengths and lag-1 autocorrelation
coefficients as the input time series and (2) compute for each randomly generated red-noise process
the autobicoherence spectrum. From the ensemble of autobicoherence spectra, the p = 100(1- a,,)
percentile of the autobicoherence estimates is computed for every point (sq,s;), where p

corresponds to the critical level of the test and a, is the pointwise significance level of the test.

17



10
11
12
13
14
15
16
17
18
19

20
21
22
23

24

25

26
27
28

Given the symmetry of the autobicoherence spectrum, the critical level of the test can be computed

using only half of the autobicoherence estimates, reducing computational costs.
3.2 Multiple Testing

Let a,, be the significance level of the pointwise significance test as described above and
let K denote the number of autobicoherence estimates being tested, then there will be on average
a, K false positive results. A similar problem occurs in traditional wavelet analysis (Maraun et al.,

2007; Schulte et al., 2015; Schulte, 2016). In the case of simultaneously testing multiple

hypotheses, the number of false positive results can be reduced by applying, for example, the
Bonoferonni correction (Lehmann, 1986). However, this simple correction often results in many
true positives being rejected and is especially permissive in the case of autocorrelated data (Maraun
et al., 2004). Other procedures also exist, including the Walker p-value adjustment procedure,
which has more statistical power than the Bonferonni correction. An even more powerful method
is the Benjamini and Hochberg (1995) procedure, which controls the false discovery rate (FDR),
where the FDR is the expected proportion of the false rejections that are actually true. An
advantage of this method, in addition to its statistical power, is that it takes into account the
confidence with which local hypotheses are rejected and is robust even in the case of autocorrelated
data (Wilks, 2002). Benjamini and Yekutieli (2001) developed a modified version of the Benjmini
and Hochberg (1995) procedure that works for any dependency structure among the local test

statistics and thus this procedure will be used in this paper to control the FDR.

The procedure can be described as follows: Suppose that K local hypotheses were tested.

Let p(;) denote the smallest of the K local p-values, then, under the assumption that the K local

tests are independent, the FDR can be controlled at the g-level by rejecting those local tests for

which p;y is no greater than
PrDR= jfzqa}?_(k[P(j): PG = q(i/K)]

=j£q§f<k[P(j)! Py < Ugiobat G/K)] (18)

so that the FDR level is equivalent to the global test level. For a local p-value to be deemed
significant using this procedure, it must be less than or equal to the largest p-value for which Eq.
(18) is satisfied. If no such local p-values exist, then none are deemed insignificant, and, therefore,
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the global test hypothesis cannot be rejected. If the test statistics have an unknown dependency
structure, g can be replaced with g/ Z{illi, though this substitution makes the procedure less

powerful (Reiner et al., 2002). This modified method will be applied to autobicoherence spectra

at the 0.05 level throughout this paper.
3.3 Wavelet-based Autobicoherence of an Idealized Time Series

To demonstrate the features of a time series that can be extracted using higher-order
wavelet analysis, an idealized nonstationary time series will first be considered. Consider the

quadratically nonlinear time series
X(t) = cos(2nft + ¢) + y(t)cos(4mft + 2¢) + w(t), (19)

where f is frequency, w(t) is Gaussian white noise, and y(t) is a time-dependent nonlinear

coefficient given by
y(t) = 0.001t. (20)

Note that Egs. (3) and (4) are satisfied because f; + f, = 2f; = 2f, and similarly for ¢. The
sinusoid with frequency 2f; is said to be the harmonic of the primary frequency component with
frequency f,, where the amplitude of the harmonic depends on y(t), the strength of the quadratic
nonlinearity. X(t) and the corresponding wavelet power spectrum for the case when f; = 0.03 is
shown in Fig. 4. The signal-to-noise ratio of the Gaussian white noise was set to 1 decibels. The
primary frequency component results in a large region of 5% pointwise significance at 4 = 30,
whereas its harmonic only results in a few small significance regions located fromt=700to t =
1000. It also noted that the appearance of the significance power at A = 15 fromt=700tot =
1000 is accompanied by large positive spikes in the time series that result in the time series
favoring positive values. Prior to the emergence of the significant power at A = 15, the time series
varied smoothly in the sense that negative phases were accompanied by positive phases of similar

amplitude.

To determine if the oscillations are quadratically interacting, the autobicoherence of X (t)
was computed (Fig. 5). The significant peak centered at (30, 30) indicates that an oscillation with
period 30 is phase-coupled to an oscillation with A = 15. The result implies that the variability at
A =15 is partially related to the statistical dependence due-to-the-interaction between the two
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modes. The fraction of variability is determined by the autobicoherence value corresponding to
the significant peak. In the present case, W, (s;,s,) = 0.5 so about half of the variability at 2 =

15 is due to the nonlinear interaction. Note that no other peaks were found to be significant.

3.4 Wavelet-based Autobicoherence of Geophysical Time Series

Shown in Fig. 6 is the wavelet-based autobicoherence spectrum for the QBO time series.
A large region of significance was identified, which contained the local maximum at (28, 28)
months. The peak represents the phase coupling of the primary frequency component with its
harmonic with a period of 14 months. The power at A = 14 months therefore is partially related to
the statistical dependence resulted-from-the-interaction-between its primary frequency component

and its harmonic. The significance and magnitude of the autobicoherence in the QBO spectrum is
consistent with how the QBO does not vary smoothly, shifting to the easterly phase more quickly
than to the westerly phase and with the westerly phase tending to be stronger than the easterly
phase. The asymmetry in both phase transition and magnitude are suggestive of nonlinearities.

3.5 Local Wavelet Autobicoherence

It may also be desirable to see how autobicoherence along slices of the full autobicoherence

spectrum changes with time. To compute local autobicoherence, apply a smoothing operator S(W)
= Sccale (Stime (WnX (s))) (Grinsted et al., 2004) to each term in Eq. (13) instead of summing in

time, i.e.,

|5(51_1Brvlv(51'52))|2

w —
br'(s1:52) = G SmGomie S TIOD (20)
The smoothing operator for the Morlet wavelet is given by
ﬁ
Stime(W)|s = (an(s) * C1252> |s (21)
and
Sscale(W)In = (WnX(S) * CZH(- 65))'111 (22)

where c¢; and c, are normalization constants determined numerically and IT is the rectangular

function.
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It is important to mention that the numerator of Eqg. (20) contains a term with wavelet
coefficients at two different scales so that the choice of smoothing is not as straightforward as for
wavelet coherence. Smoothing autobicoherence estimates with respect to s,,,;;, = min(sy, s,) was
found to result in larger autobicoherence estimates, whereas smoothing the autobicoherence with
respect to s,,,, = max(s;,s,) resulted in smaller autobicoherence estimates. Given that the
autobicoherence estimates are influenced by the choice of smoothing, it is inevitable that the
significance of the autobicoherence estimates is also impacted. In particular, smoothing the
autobicoherence spectrum with respect to s,,,, allowed extrema to be smoothed out, eliminating
spuriously large autobicoherence. For this reason, all local autobicoherence spectra in this paper

will be computed by smoothing with respect to s,,,,-

The advantage of using Eq. (20) is that transient quadratic nonlinearities can now be
detected and the need for choosing an integration time interval has been eliminated. If s; = s,, then
(t,s1,51) = (t,5,,5,) = (t,s) and thus, in the case of this diagonal slice, the local wavelet-based
bicoherence spectrum is a two-dimensional representation of the degree of local quadratic
nonlinearity. The vertical axis corresponds to the primary frequency and the horizontal axis
corresponds to time. As a concrete example, a peak at (64, 64) would indicate that at time index t =
50 the oscillation with a fundamental period A1 = 1.03s = 64 is locally coupled to an oscillation
with period 4 = 32.

One can also compute a local biphase from the smoothed bispectrum by taking the four
quadrant inverse tangent of the smoothed imaginary part divided by the smoothed real part. The
local biphase, for example, was computed for the skewed time series shown in Fig. 2a. As
expected, the biphase fluctuates regularly around 0° and the mean is 2°. The local biphase for the
saw-toothed time series is shown in Fig. 3b. The biphase fluctuates about 90° and the mean biphase

is 90 as expected.

The procedure for the estimation of the statistical significance of local autobicoherence is
the following: generate red-noise time series with the same lag-1 autocorrelation coefficients as

the input time series and use the local autobicoherence estimates outside the COI to generate a null
distribution of b} (s4, s,). Note that the calculation only needs to be performed at a fixed time

outside of the COI because red-noise is a stationary process, which produces a stationary
background spectrum.
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3.6 Local Wavelet-based Autobicoherence of an Idealized Time Series

The local autobicoherence spectrum of X (t) for (30, 30) is shown in Fig. 6b. Initially, there
is no local autobicoherence that exceeds the 5% significance level. At t = 250 and t = 500, on the
other hand, small regions of 5% significant autobicoherence emerge, indicating a transient
nonlinear interaction. At t = 500 the nonlinearity is strong and results in a large region of significant

local autobicoherence extending from t = 500 to the edge of the wavelet domain

In order to determine if the peaks in autobicoherence are associated with a quadratic
nonlinearity, it is important to compute the biphase, which is shown in Fig. 7b. Fromt=0tot=
400 there is an unstable phase relationships between the phase of the primary frequency component
and its harmonic. Such a lack of phase coherence indicates a weak nonlinear interaction, which is
consistent with how the autobicoherence is lower before t = 400. In contrast, after t = 400, the
biphase becomes stable, changing little with time, indicating a consistent phase relationship
between the primary frequency mode and its harmonic. It also noted that the biphase during this
time fluctuates near 0°, which implies that the phase relationships arise from a quadratic
nonlinearity. The near zero biphase is consistent with how X(t) was constructed from the sum of
two cosines with zero phase and also suggests that the interaction results in skewed cycle geometry,
where positive values of the time series are preferred. Indeed, by inspection of Fig. 4a the
oscillations initially appear to be sinusoidal, varying smoothly, whereas after t = 400 spikes begin

to appear and X (t) favors positive values.
3.7 Local Wavelet-based Autobicoherence of the QBO Time Series

The local autobicoherence spectrum of the QBO index at the point (28, 28) in the full
autobicoherence spectrum is shown in Fig. 8. From 1950 to 1970 the magnitude of the
autobicoherence fluctuated and consisted of one local significant peak at 1965. Significant
autobicoherence was also found from 1975 to 1998, contrasting with the autobicoherence after

1998, which was not found to be significant until 2010.

To determine if the peaks indicated in the autobicoherence are associated with a quadratic
nonlinearity, the local biphase was computed. Fig. 8a shows the local biphase for the
autobicoherence peak at (28, 28). For most of the study period, the biphase was found to vary
considerably, particularly during the 1950-1970 and 1995-2013 periods. On the other hand, the
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biphase varied smoothly from 1970 to 1995, consistent with how the autobicoherence during that
period was large and stable (Fig. 8a). Also, during that period the biphase was nonzero; in fact, the
mean biphase during the period was -100°, suggesting that the phase coupling is not the result of
a quadratic interaction. A biphase of -100° indicated asymmetric geometry, which physically
represents how phase transitions of the QBO occurred at different rates. Recall that it has already
been discussed in the introduction that the QBO transitions from easterly phases to westerly phases
more rapidly than from westerly to easterly phases (Lu et al., 2009). Another interesting feature is
the general increase in the biphase from 1970 to 1995. In the beginning of the time period, the
biphase was -180° and after 1980 the biphase switched to -90°.

The local autobicoherence and biphase corresponding to the peak (16, 26) was also
computed (Fig. 9). The mean of the absolute value of the biphase for the period 1950-2013 was

130°, indicating a statistical dependency among thatthe-interaction-among-the modes with periods
of 10, 16, 26 months resulted in skewed waveforms. In fact, because the biphases were close to

180" the waveforms should have been skewed to negative values (Maccarone, 2013) and such
skewness is evident by inspecting Fig. 1. Also note that some of the largest negative phases of the
QBO occurred from 1995 to 2010, which coincided with the period of most significant
autobicoherence as shown in Fig. 9a.

4. Block Bootstrapping Methods
4.1 Block Bootstrapping Autobicoherence

Bootstrapping is a widely used technique to estimate the variance or uncertainty of a
sample estimate. For independent data one samples with replacement individual data points (Efron,
1979); for dependent data one must sample with replacement blocks of data to preserve the
autocorrelation structure of the data (Kunsch, 1989). The latter technique is called block
bootstrapping and should be used for variance estimation of global wavelet quantities, as wavelet
coefficients are known to be autocorrelated in both time and scale. The use of traditional
bootstrapping techniques would result in confidence intervals that are too narrow. It is expected,
however, that the choice of the bootstrapping technique is more critical at larger scales, as the

decorrelation length of the mother wavelet increases with scale.
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A brief overview of the procedure is provided below but a more detailed discussion can be
found in Schulte et al. (2015). To find the approximate 100(1 — )% confidence interval of an
autobicoherence estimate, divide the set of wavelet coefficients at each scale into overlapping
blocks. The lengths of the blocks at each scale should be the same and the randomly resampled
blocks chosen should be the same at each scale to avoid randomizing the data. The concatenation
of the blocks then results in a synthetic set of wavelet coefficients at each scale. The synthetic set
of wavelet coefficients can then be used to calculate a bootstrap replicate of the autobicoherence.
The iteration of the procedure 1000 times results in a distribution of bootstrap replicates from
which a 95% confidence interval can be obtained.

As noted by Schulte et al. (2015), the appropriate block length to use can be determined by
Monte Carlo methods. In that study, it was determined from a Monte Carlo experiment that a block

length of N2 was found to produce accurate confidence bounds for wavelet coherence while also

producing the widest confidence intervals at all scales. The Monte Carlo experiment was repeated

for 95% confidence in this study because bicoherence estimation requires the use of wavelet

coefficients at three wavelet scales, with the wavelet coefficients at each scale having a different

correlation structure. For wavelet coherence, the block length selection procedure is simpler

because a single wavelet scale is used so that correlaton structure of wavelet coeffients is similiar.

The Monte Carlo experiement was performed by generating red-noise proceses of length 1000

with differnent lag-1 autocorrelation coefficients and computing 95% confidence intervals around

the estimated autobicoherence. Remarkably, the Monte Carlo experiment found that a block length

of N2 is also optimal for bicoherence confidence interval estimation. For block lengths exceeding

N6 confidence intervals were found to be too narrow, with in some instances the estimated

bicoherence falling outside the 95% confidence interval. It is also noted that the results were

insensitive to the chosen lag-1 autocorrelation coefficient.

4.4.2 Application to Ideal and Climatic Time Series

Figure 5b shows the application of the block bootstrap procedure to the diagonal slice s; =
s, = s of the autobicoherence for the ideal case. The 95% confidence intervals were also obtained
using the ordinary bootstrap. A pronounced peak at s = 30 was identified and represents the
interaction between the primary frequency and its harmonic. By inspection of Fig. 5b, there is a

clear difference between the widths of the confidence intervals obtained from the two
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bootstrapping procedures. For the ordinary bootstrap, the confidence intervals are narrow and the
widths of the confidence intervals appear to be only weakly dependent on scale. On the other hand,
the confidence intervals obtained using the block bootstrap procedure are wide, especially at large
scales, and the width of the confidence intervals depends strongly on scale, increasing from small
scales to large scales. It is also noted that, whereas the block bootstrap procedure has deemed no
spurious peaks as significant, the ordinary bootstrap procedure deemed two the spurious peaks at
s = 14 and s = 100 as significant. The implementation of the block bootstrap procedure can
therefore enhance confidence in results, facilitating the investigation of a deeper physical

understanding.

The application of the block bootstrap procedure to the diagonal slice s; = s, = s of the
full autobicoherence spectrum of the QBO index is shown in Fig 10. The 95% confidence intervals
corresponding to the peaks (14, 14) and (28, 28) do not cross the 5% significance bound and thus
one has more confidence that those peaks are significant. All other peaks have been deemed

insignificant.
5. Summary

Higher-order wavelet analysis together with significance testing procedures were used to
detect nonlinearities embedded in an ideal time series and the QBO time series. The
autobicoherence spectrum of the QBO index revealed phase coupling of the 28 month mode with
a higher frequency mode with period 14 months. A local autobicoherence spectrum of the QBO
index showed that the strength of the nonlinearities varied temporally. Furthermore, the local
biphase spectrum indicated that a statistical dependence among frequency components the
nonlinearinteraction-resulted in waveforms that were both skewed and asymmetric, indicating that

the strength of negative QBO events were stronger than positive events, and that transitions

between events occurred at different rates.
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Figure 1. (a) The QBO index and (b) the corresponding wavelet power spectrum. Contours enclose
regions of 5% statistical pointwise significance (Torrence and Compo, 1998). Light shading
represents the cone of influence, the region in which edge effects cannot be ignored.

27



u b WN -

)]

a)

6!

UL

-2

time series
N

ANNANNANNN)

0 300

Time

Figure 2. (a) a skewed time series and (b) its corresponding local biphase. The biphase close to

zero indicates a nonlinear interaction resulting in a skewed oscillation. The biphase was calculated

from the first three cosines in the summation described in the text. The large deviations from zero
at the edges are the result of edge effects.

i (degrees)

0

28



[ I O8]

N

NNAANNANAN S
VYV VTV VY

time series
o

120 T T T

g 100 |-

o

(7]

< 80 1

60 1 | 1 | 1
0 100 200 300 400 500 600
Time

Figure 3. (a) A saw-toothed time series and (b) its corresponding local biphase. The biphase close
to 90° indicates a nonlinear interaction resulting in an asymmetric waveform. The biphase was
calculated from the first three cosines in the summation.
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Figure 5. (a) Wavelet-based autobicoherence spectrum of the ideal time series. Thick contours
enclose regions of 5% pointwise significance after controling the FDR. The diagonal line separates
the spectrum into two symmetric regions. (b) The diagonal slice of the autobicoherence spectrum
at s; = s, = s. The critical level for the test represented by the dotted line was calculated using

Monte Carlo methods.
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Figure 6. The wavelet-based autobicoherence spectrum of the QBO index for the period 1950-
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Figure 7. (a) The local autobicoherence and (b) local biphase corresponding to (30, 30) in the full
autobicoherence spectrum shown in Figure 5a. Biphases differing from 90° indicate that the
nonlinear interaction resulted in a waveform with skewness.
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Biphases differing from 90° indicate that the nonlinear interaction resulted in a waveform with
skewness.
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