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Abstract 10 

A local particle filter (LPF) is introduced that outperforms traditional ensemble Kalman filters 11 

in highly nonlinear/non-Gaussian scenarios, both in accuracy and computational cost. The 12 

standard Sampling Importance Resampling (SIR) particle filter is augmented with an 13 

observation-space localization approach, for which an independent analysis is computed 14 

locally at each gridpoint. The deterministic resampling approach of Kitagawa is adapted for 15 

application locally and combined with interpolation of the analysis weights to smooth the 16 

transition between neighboring points. Gaussian noise is applied with magnitude equal to the 17 

local analysis spread to prevent particle degeneracy while maintaining the estimate of the 18 

growing dynamical instabilities. The approach is validated against the Local Ensemble 19 

Transform Kalman Filter (LETKF) using the 40-variable Lorenz-96 model. The results show 20 

that: (1) the accuracy of LPF surpasses LETKF as the forecast length increases (thus 21 

increasing the degree of nonlinearity), (2) the cost of LPF is significantly lower than LETKF 22 

as the ensemble size increases, and (3) LPF prevents filter divergence experienced by LETKF 23 

in cases with non-Gaussian observation error distributions. 24 

 25 

26 
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1 Introduction 1 

The Particle Filter (PF) has been explored in the data assimilation community since the 2 

introduction of its Gaussian linear variant, the Ensemble Kalman Filter (EnKF) in the mid-3 

1990’s (Evensen, 1994). While general PFs have been intractable for high dimensional 4 

systems, the EnKF has experienced great success in numerical weather prediction (NWP) 5 

(e.g. Kleist 2012; Hamrud et al., 2014) and ocean data assimilation (e.g. Penny et al. 2015). 6 

However, at least two limitations are on the horizon for EnKFs. Perhaps counter-intuitively, 7 

these limitations arise due to increased computational resources, and have already become 8 

challenges at the RIKEN Advanced Institute for Computational Science (AICS, e.g., 9 

Miyamoto et al. 2013; Miyoshi et al. 2014; 2015). First, global models will be pushed to 10 

higher resolutions in which they begin to resolve highly nonlinear processes. To maintain the 11 

Gaussian linear assumption required for the EnKF, much smaller timesteps are needed. For 12 

example, the standard 6-hour analysis cycles used for the atmosphere may need to be 13 

decreased to 5 minutes or even 30 seconds. Second, large ensembles (e.g. with ensemble size 14 

k > 10,000 members) will become feasible for lower-resolution models. While at first this 15 

may seem an advantage rather than a limitation, the computational cost of the local ensemble 16 

transform Kalman filter (LETKF) (Hunt et al., 2007), for example, increases at a rate O(k3) 17 

with the ensemble size k. Thus as the ensemble size increases, the cost of computing the 18 

analysis increases at a much greater rate. Alternative EnKFs feasible for large geophysical 19 

systems scale in computational cost with the observation dimension, which is typically 20 

multiple orders of magnitude larger than the ensemble dimension. 21 

The PF is generally applicable to nonlinear non-Gaussian systems, including cases with multi-22 

modal distributions or nonlinear observation operators. With little difficulty, PFs can 23 

explicitly include representation of model error, nonlinear observation operators (Nakano 24 

2007; Lei and Bickel 2011), non-diagonal observation error covariance matrices, and non-25 

Gaussian likelihood functions. For example, observed variables such as precipitation are 26 

inherently non-Gaussian and cannot be effectively assimilated by standard EnKF techniques 27 

(e.g. Lien et al. 2013; 2015). In the expansion to sea-ice and land data assimilation 28 

applications, the non-Gaussian quantities such as ice concentration, ice thickness, snow cover, 29 

and soil moisture outnumber those that can be modeled with Gaussian error. Bocquet et al. 30 

(2010) further review the difficulties using observations with non-Gaussian error 31 

distributions. All of these problem-specific variations can create great difficulties for standard 32 
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methods, such as the EnKF or variational approaches (3D-Var/4D-Var), as used in current 1 

operational systems.  2 

Sampling Importance Resampling (SIR) (also known as the bootstrap filter, Gordon et al., 3 

1993) is a commonly used enhancement to the basic Sequential Importance Sampling (SIS) 4 

particle filter. However, even with resampling the number of ensemble members required by 5 

the SIR particle filter to capture the high probability region of the posterior in high-6 

dimensional geophysical applications is too large to make SIR usable (Ades and van Leeuwen 7 

2013). Snyder et al. (2008) found that the number of required ensemble members scales 8 

exponentially with the size of the system, giving the example that a 200 dimensional system 9 

would require 1011 members. However, Snyder et al. note that clever choices of the proposal 10 

distribution could overcome the need for these exponentially large ensemble sizes in high-11 

dimensional systems, which has been more recently explored by Synder et al. (2015). 12 

Applying such an approach, van Leeuwen (2003) considers a model for the Agulhas Current 13 

with dimension of roughly 2x105. Further, Beskos et al. (2012) discuss recursive methods for 14 

estimating the proposal densities, similar to the Running-in-Place algorithm (Yang et al. 15 

2012a/b, Penny et al. 2013) that has been used with LETKF in meteorological and 16 

oceanographic data assimilation. Xiong et al. (2006) presented techniques related to the ETKF 17 

that may provide an alternative approach to the common SIR method for generating particle 18 

estimates for the posterior distribution. 19 

Techniques such as localization and inflation are typically applied as modifications to make 20 

the EnKF operationally feasible. Inspired by this practice, we introduce a local particle filter 21 

(LPF) designed for geophysical systems that is scalable to high dimensions and has 22 

computational cost O(k). Spatial localization is typically justified by the fact that long 23 

distance correlations are either spurious or weak in comparison to nearby correlations, 24 

particularly when the ensemble is under-sampled. We use this same approach to reduce the 25 

required ensemble size for the LPF. The findings of Jardak et al. (2000) indicate that the 26 

EnKF with localization works well in the case of a linear observation operator but has 27 

difficulties with nonlinear observation operators. 28 

2 Methodology 29 

Localization is used in most operational NWP data assimilation systems, either through a 30 

direct scaling of the background error covariance matrix (e.g. Whitaker and Hamill, 2002) or 31 

by a scaling of the observation error covariance matrix (Hunt et al. 2007). Because the 32 



 4 

computation of a background error covariance matrix is not needed for the PF, the latter 1 

approach is applied here to develop an effective PF for high-dimensional geophysical 2 

systems. Localization reduces the dimensionality of the solution space, thus requiring fewer 3 

ensemble members to sample the phase space. Gaussian noise is applied as an additive 4 

inflation to prevent particle degeneracy. 5 

2.1 The Standard SIR Particle Filter 6 

There are many variations of the PF (Stewart and McCarty, 1992; Gordon et al., 1993; 7 

Kitagawa, 1996; Hurzeler and Kunsch, 1998; Liu and Chen, 1998). In essence it is simply a 8 

Monte Carlo estimation of Bayes Theorem, reformulated as a recursion (Doucet et al., 2001), 9 

 
p xt | y1:t( ) = p yt | xt( ) p xt | y1:t−1( )

p yt | y1:t−1( )  , (1) 10 

where p xt | y1:t( )  is the probability of the state x at time t, given all observations y up to time t. 11 

We consider the model domain to be described by vectors x with dimension m, the 12 

observation domain to be descried by vector y with dimension l, and an ensemble of size k. 13 

The term in the numerator can be expressed using the Chapman-Kolmogorov equation as, 14 

 
p xt | y1:t−1( ) = p xt | xt−1( ) p xt−1 | y1:t−1( )dxt−1∫  , (2) 15 

and similarly the term in the denominator can be expressed as, 16 

 
p yt | y1:t−1( ) = p yt | xt( ) p xt | y1:t−1( )dxt∫  . (3) 17 

The two factors in the numerator of Equation (1) are sampled using a numerical model f, 18 

 
p xt | y1:t−1( ) ≈ 1

k
δ xt − f xt−1

i( )( )
i=1

k

∑
 , (4) 19 

 p yt | xt( ) = g yt | xt( ) . (5) 20 

The term in eqn. (5) is typically called the likelihood, because the probability of y given x is 21 

equivalent to the likelihood of x given y, i.e.  p y | x( ) ≡ ℓ x | y( ) . The function g is general and 22 

can represent any distribution for the observations.  23 
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For the experiments here we generate two experiment cases, each with a different likelihood 1 

function. First we use a Gaussian likelihood function corresponding to that used for EnKFs, 2 

 

g yt | xt( ) = 1

2π( )m R
exp − 1

2
yt − h xt( )( )T R−1 yt − h xt( )( )⎡

⎣⎢
⎤
⎦⎥

 , (6) 3 

where the function h is a general, possibly nonlinear, observation operator mapping from the 4 

model state space to the observation space. For the LPF, it is straightforward to generalize to 5 

arbitrary non-Gaussian likelihood functions. As an example, we also apply a multivariate 6 

Gaussian mixture model (GM2) following Fowler and van Leeuwen (2013) with pdf, 7 

      

p y x( )∝ νw exp y +ν11−h x( )( )T
R−1 y +ν11−h x( )( )⎡

⎣
⎢⎢

⎤
⎦
⎥⎥

               + 1−νw( )exp y +ν21−h x( )( )T
R−1 y +ν21−h x( )( )⎡

⎣
⎢⎢

⎤
⎦
⎥⎥ . (7) 8 

Let each ensemble member be identified with an index, i. Normalized weights are evaluated 9 

for each member,  10 

 wt
i =

p yt | xt
i( )

p yt | xt
j( )

j=1

k

∑
. (8) 11 

Then the posterior is, 12 

 
p xt | y1:t( ) ≈ wt

iδ xt − f xt−1
i( )( )

i=1

k

∑
. (9) 13 

Based on Liouville’s theorem, the evolution of a probability measure in a dynamical system 14 

satisfies the property that “the probability of finding trajectories inside the time-variant 15 

volume W(t) is constant during the evolution of the dynamical system.” (Property 2, 16 

http://www.ulb.ac.be/di/map/gbonte/ftp/bontempi_fpde.pdf). If the solution manifold expands 17 

in some directions, so will the pdf represented by the particles. Thus, the fidelity of the 18 

distribution will quickly become insufficient to sample a solution manifold around the true 19 

trajectory. A resampling procedure is used to refocus the particles on the densest areas of the 20 

distribution at each analysis step. For the experiments here, we use a resampling procedure 21 

that resembles resampling with replacement. After resampling we have, 22 
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p xt | y1:t( ) ≈ 1

k
δ xt − xt

i( )
i=1

k

∑
.  (10) 1 

2.2 The Transform Interpretation 2 

The PF can be interpreted similarly to the Ensemble Transform Kalman Filter (ETKF) of 3 

Bishop et al. (2001). The transform interpretation has been explored by Reich 2013 and 4 

Metref et al. 2014. Namely we define the PF solution as a transformation of the background 5 

ensemble to the analysis ensemble, 6 

    Xa = XbT .  (11) 7 

where each column of Xb is a background ensemble member, and each column of Xa is an 8 

analysis ensemble member. The transform function T in (11) is used to generically refer to 9 

either E in (16), or E(j) in (19) in the text below.  10 

Let b be the vector of background particle indices and a be the vector of analysis 11 

particle indices, 12 

 
 
b∈ z ∈!k z = 1,2,3,...,k( )T{ } ,  (12) 13 

 
 
a∈ z ∈!k z = a1,a2,a3,...,ak( )T ,ai ∈[1,k]{ } .  (13) 14 

Here, b is simply vector composed of an ordered set of indices ranging from 1 to k, while a is 15 

a vector composed of a subset of elements of the vector b, with no particular ordering and 16 

possible repetitions. We also extend the definition of a to allow the vector to vary by grid 17 

point. For example, for any grid point p, the vector ap may represent the resampling index at 18 

point p so that, 19 

 
    
Xa p,i( )= Xb p,ap,i( ),  (14) 20 

where the arguments indicate the row and column of the matrix X. 21 

 We further define the vector ei, for which only the ith element is nonzero, 22 

 
 
ei ∈ z ∈!2

k z = 0,...,0,1i ,0,...,0( )T{ }  . (15) 23 

If ei are the canonical basis vectors then we can define, 24 
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Ek×k = ea1 ea2 ! eak

⎡
⎣⎢

⎤
⎦⎥ . (16) 1 

For the standard PF, the indicator matrix E is made up of k (not necessarily unique) standard 2 

basis vectors ei, with entries 0 and 1 that we will interpret as weights. Thus the analysis 3 

ensemble for the PF is defined simply by the transform, 4 

 Xm×k
a = Xm×k

b Ek×k . (17) 5 

We note that by using this approach, each new analysis member, with index i, maintains the 6 

continuity properties of its associated background member, ai. 7 

 For reference in the next section, the components of the analysis matrix Xa will have 8 

the form, 9 

      

Xa =

x1,iei,1 x1,iei,2 ! x1,iei,k

x2,iei,1 x2,iei,2 ! x2,iei,k

" " # "
xm,iei,1 xm,iei,2 ! xm,iei,k

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥ . (18) 10 

Here we have used the Einstein tensor notation for the elements, in which   
x1,iei,1  represents a 11 

summation over the index i (i.e. the inner product of row 1 of Xb and column 1 of E). While 12 

the summation index could be represented generically by any symbol, we reuse the symbol ‘i' 13 

due to its correspondence with the background particle indices as defined above. 14 

2.3 The Localization Approach 15 

Snyder et al. (2008) note that when either the model dimension or observation count is large, 16 

the PF requires significantly more particles to give an adequate representation of the system. 17 

Localization, as introduced by Houtekamer and Mitchell (1998), reduces both the model and 18 

observation dimensions by dividing the problem into a series of sub-domains, thus reducing 19 

the required number of particles for accurate filtering. Bengtsson et al. (2003) were among the 20 

first to point to spatially local updating, using a local subset of observations, as a solution to 21 

difficulties of high-dimensional non-Gaussian filtering. Lei and Bickel (2011) introduced the 22 

notion of computing local weights in a non-Gaussian filter. The LPF follows Hunt et al. 23 

(2007) to select nearby observations for independent analysis at each grid point. Nearby grid 24 

points thus assimilate nearly identical sets of observations to derive their analyses. 25 
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We use the deterministic resampling of Kitagawa (1996), with complexity O(k), 1 

adapted for local use as described next. A uniform partition of [0,1] with width 1/k is first 2 

generated globally, with an offset applied from a uniform distribution over [0,1/k]. The same 3 

partition is used locally for resampling at each grid point. Cumulative sums of the normalized 4 

weights (eqn. 8), 5 

 
 

⌣wt
j = wt

i

i=1

j

∑ , (19) 6 

are compared with the elements of the partition. Traversing j=1,…,k all unassigned particles 7 

with index j having a corresponding cumulative sum with index j that surpasses the next 8 

element of the partition (ordered monotonically increasing) are assigned as particles of the 9 

resampled (analysis) ensemble.  10 

For a given grid point, when the cumulative sums of the particle weights are near one 11 

of the partition values, there may be sensitivity in neighboring grid points that lead to 12 

discontinuities between local analyses. The analysis ensemble at this grid point consists of a 13 

subset of background particle indices (1 through k) with repetitions. To eliminate the 14 

discontinuities with neighboring grid points we associate weights of a local transform 15 

function T with the particle indices, nominally either 1.0 (full weight) or 0.0 (no weight). This 16 

is partially inspired by the “weight interpolation” of Bowler (2006), applied to LETKF by 17 

Yang et al. (2009), who found that interpolation of weights was more robust than interpolation 18 

of state values. At a single grid point, there are k pieces of background information about the 19 

possible system state at that point. In the standard PF, only 1 out of these k pieces of 20 

information is retained for each analysis ensemble member, based on the overall agreement 21 

with observations. In the LPF we use anywhere from 1 to k members to construct each 22 

analysis member based on the agreement with observations within a local radius. 23 

 Thus the modified local analysis at a given model grid point p is given as a linear 24 

combination of ensemble members at that point. For point p, ensemble member i, a set of N 25 

neighbor points Np, and vector ap acting as a resampling index as in (13) but given as a 26 

function of the model grid point, we have, 27 

 
    
X{ p,i}

LPF =
1
2

X{ p,i}
a +

1
2N

X{ p,a n,i( )}
b

n∈N p

∑ . (20) 28 

The subscript indices indicate the row and column of the matrix.  29 
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A new transform can then be defined for the LPF at each point in the model domain to 1 

generate a set of m indicator matrices,Ek×k
( j )

, so that for each point (xp, for p=1,…,m), 2 

 Xm×k
a( )p = Xm×k

b Ek×k
( p) . (21) 3 

Using the summation tensor notation described in the previous section, the analysis ensemble 4 

can be written, 5 

      

Xa =

x1,iei,1
(1) x1,iei,2

(1) ! x1,iei,k
(1)

x2,iei,1
(2) x2,iei,2

(2) ! x2,iei,k
(2)

" " # "
xm,iei,1

(m) xm,iei,2
(m) ! xm,iei,k

(m)

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
. (22) 6 

The transform matrix may have any degree of sophistication. We apply a smoothing operator 7 

to the ensemble subspace by modifying the weights eai  associated with each analysis particle 8 

index a(i) from a binary value to a continuous value between 0 and 1, while maintaining all 9 

column sums of equal to one, and call this new transform matrix W. 10 

We define the concept of a ‘neighbor point’ abstractly as a point near the analyzed grid 11 

point based on a specified distance metric. Through examination of (20), it is clear that the 12 

choice of neighbor points simply informs the weighting of indices, and that the values at these 13 

neighbor points otherwise have no impact on the analysis. If there are N neighbor points, then 14 

there will be at most min(N+1,k) collocated pieces of background information that can be 15 

utilized to construct each analysis ensemble member at this point. An example is given in 16 

Figure 1. With a sufficiently large set of observations the indices for these neighbor points 17 

are calculated from nearly identical observational innovations. Therefore, when there is a 18 

sufficiently large ensemble size (k) the difference between the states associated with different 19 

particle indices will be small. The transform function T is applied across all background 20 

indices (i.e. for particles 1,…,k) at this grid point to compute the analysis. 21 

We summarize that the total smoothing in the resulting analysis is achieved 22 

independently at each grid point due to a combination of localization in observation space and 23 

the formation of a convex combination of analysis weights in the ensemble space. There is no 24 

explicit smoothing in the physical model space such as might occur using a Gaussian 25 

smoother applied via a stencil of function values from neighboring grid points. Instead, the 26 
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neighbor points simply inform the choice of weights to apply to particle indices at a single 1 

grid point. There is an implicit smoothing achieved by applying the same procedure to many 2 

contiguous model grid points, each generating a different set of weights that vary only 3 

slightly. This is similar to the effect of observation-space localization. However, as with most 4 

localization techniques, the more distant information suffers from the poor sampling size of 5 

the ensemble. Thus if holding the ensemble size k fixed, a larger radius of neighbor points 6 

may lead to noisier results rather than increased smoothing. 7 

2.4 Particle Degeneracy 8 

The particle selection process of the PF reduces the rank of the ensemble. For a linear 9 

deterministic system this leads to a rapid collapse of the ensemble and divergence of the filter. 10 

For a sufficiently stochastic nonlinear system the members are made distinct after a single 11 

forecast step. If the nonlinear system is not sufficiently stochastic, then we must address the 12 

ensemble initialization problem at every analysis cycle. Pazo et al. (2010) discuss the 13 

desirable properties in an initial ensemble, namely the members: (1) should be well-embedded 14 

in the attractor, (2) should be statistically equivalent but have enough diversity to represent a 15 

significant portion of the phase space, (3) should adequately represent the error between the 16 

analysis and true state, and (4) should sample the fastest growing directions in phase space. 17 

We wish to avoid particle degeneracy while also engendering some of these qualities. 18 

Applying noise to the PF at the sampling step is a common empirical technique. Therefore we 19 

employ a simple approach: at each cycle we add Gaussian noise with variance scaled locally 20 

to a magnitude matching the analysis error variance and apply this to each analysis member 21 

prior to the subsequent ensemble forecast. The amplitude of the additive noise was chosen to 22 

conform to the dynamics of the growing error subspace, as estimated by the analysis 23 

ensemble spread. We note that this amplitude varies spatially and temporally. The results 24 

degraded when departing from this approach. The practice of applying noise to the PF 25 

sampling step is a standard technique. 26 

We caution that EnKFs have fundamentally different behavior than the general PF, in 27 

that the former maintain a forcing term that drives the DA system toward the observations 28 

even when the forecast may start far from the true state. The general PF with resampling 29 

essentially requires random chance to generate a state with high enough probability to be 30 

propagated through the resampling step. As the system size increases and the number of 31 

particles is held fixed, the probability of such an event declines. This is connected with the 32 
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divergence of the PF when there are insufficient particles, which has been explored in detail 1 

by Snyder et al. (2008). 2 

2.5 Computational Complexity 3 

A data assimilation system is comprised of many components. We simplify the cost analysis 4 

in order to gain an approximate relative measure of the algorithms presented here. Let m be 5 

the model dimension, l be the observation dimension, and li  be the average local observation 6 

dimension. The total cost (CT) of an analysis cycle is equal to the overhead (CH) of the 7 

assimilation system plus m times the average local cost (CL) of the assimilation method plus k 8 

times the cost of one model forecast (CM) of duration t, 9 

 CT k,l,m( ) = CH k,l,m( ) +m ⋅CL k, li( ) + k ⋅CM τ ,m( )   (23) 10 

We will assume that between the two methods the overhead and model costs are 11 

approximately equal. The primary difference in cost between the two systems is then the 12 

average local cost,   13 

 CL
LPF =O kli( )  , (24) 14 

 
CL

LETKF =O k2li + k
3( ) .  (25) 15 

If as is typically the case, the system size m is large and the ensemble size k is small, then  16 

 CT k,l,m( ) ≈CH k,l,m( ) +O m( ) , (26) 17 

and the difference in cost between LETKF and LPF is small. However for large k, we see that 18 

the average local cost of LETKF,  19 

 
CT

LETKF k,l,m( ) = CH k,l,m( ) +O mk 3( ) , (27) 20 

exceeds that of the LPF, 21 

 CT
LPF k,l,m( ) = CH k,l,m( ) +O mk( ) . (28) 22 

Subtracting the overhead costs, in this case the LPF is a factor of k2 cheaper than LETKF. 23 
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2.6 Data Assimilation Methods 1 

We enumerate the benefits of the LPF versus the benchmark LETKF, an ensemble square root 2 

filter that performs its analysis in the ensemble space at each grid point using a geospatially 3 

local selection of observations. The LETKF approach is very efficient as long as the ensemble 4 

size is small relative to the number of observations and the model dimension. 5 

We use LETKF as a proxy for a general EnKF. Nerger (2015) gives a comparison between 6 

LETKF and the Ensemble Square Root Filter (ESRF) of Whitaker and Hamill (2002), while 7 

Tippett et al. (2003) indicate that the ESRF is identical to the Ensemble Adjustment Kalman 8 

Filter (EAKF) of Anderson (2001) when using serial single observation processing.  9 

2.7 Experiment Design 10 

We demonstrate the algorithms on the Lorenz-96 system (Lorenz 1996), composed of m=40 11 

grid points, using Lorenz’s original forcing, F=8.0. The Lorenz-96 system has frequently been 12 

used to demonstrate PF and other data assimilation algorithms for the geosciences (Nakano et 13 

al, 2007; van Leeuwen, 2010; Lei and Bickel, 2011; Penny 2014). Observations are sampled 14 

from a nature run of Lorenz-96 after running the model for 14,400 timesteps to allow the 15 

model to settle on the attractor. Gaussian noise is added to each observation with a standard 16 

deviation of 0.5. For various experiments, the Lorenz-96 system is observed either at every 17 

0.05 or 0.5 timesteps, reflective of a 6-hour and 60-hour forecast, respectively, based on 18 

Lorenz’s original description of the system. Observations are sampled randomly on the 19 

interval [0,m], and a linear interpolation is used for the observation operator. The last 20 

experiment case uses a bimodal Gaussian mixture distribution to represent observational 21 

error. 22 

3 Results 23 

The standard SIR PF performs poorly with any ensemble size O(m). For example, using 1500 24 

particles and 20 randomly chosen observations per analysis cycle leads to rapid filter 25 

divergence for the L96 system, even in a relatively linear regime (dt=0.05) of the system 26 

(Figure 2). On the contrary, LETKF performs well even with few ensemble members and few 27 

observations per cycle (k=20, l=10). Localization is consistent between each method, using 28 

r=2 gridpoints. For a given ensemble size, increasing the localization radius degraded the 29 

accuracy of both methods. Penny (2014) addressed the impact of varying localization radius 30 

on LETKF for this L96 system. It was shown that for a fixed ensemble size, the analysis 31 
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errors reduce when the localization radius decreases, and for a fixed localization radius, the 1 

analysis errors reduce when the ensemble size increases. The LPF showed similar behavior to 2 

LETKF in this regard. To explore the relative advantages of each approach, we will describe a 3 

series of cases in which the LETKF outperforms the LPF, and in which the LPF outperforms 4 

LETKF. 5 

3.1 Case 1: typical forecast lengths (dt=0.05, or 6-hr) 6 

Lorenz (1996) introduced the dt=0.05 timescale as being comparable to the error doubling 7 

taking place over 6 hours in the operational forecasting systems of the early 1990’s. In this 8 

relatively linear timescale of the L96 system, LETKF clearly outperforms the LPF at a given 9 

ensemble size. This is expected as EnKFs take advantage of the Gaussian/linear assumption. 10 

When the experiment parameters match such assumptions (even loosely), LETKF performs 11 

quite well. However, using localization, the LPF can perform adequately (i.e. avoid filter 12 

divergence) in a similar parameter regime (Figure 3). Thus for this case, we find that LETKF 13 

attains higher accuracy than the LPF, but the LPF improves upon the accuracy and stability of 14 

the standard SIR PF for a given ensemble size. 15 

3.2 Case 2: long forecast lengths (dt=0.50, or 60-hr) 16 

To increase the degree of nonlinearity in a data assimilation system using L96, it is typical to 17 

increase the analysis cycle length (e.g. Lei and Bickel, 2011). The LPF has superior 18 

performance for more nonlinear regimes of the L96 system (e.g. dt=0.5) provided there are 19 

many ensemble members, e.g. O(100). Using 80 observations per cycle and 100 ensemble 20 

members, for example, LETKF produces occasional errors that propagate eastward (along the 21 

positive x-direction). The LPF does not produce such effects, and the errors are generally 22 

lower than with LETKF (Figure 4). We consider this a relevant scenario because the majority 23 

of observations in operational weather forecasting are discarded (Ochatta et al., 2005). 24 

 Exploring a more complete parameter space, we examine the forecast error for LETKF 25 

over a range of observation coverage (l=2,…,80 per analysis cycle) and ensemble sizes 26 

(k=10,…,400), and compare the relative difference to LPF. Figure 5 shows the average 27 

absolute error over 600 analysis cycles of length dt=0,5 for 1600 different parameter 28 

combinations of observation coverage (l) and ensemble size (k). The LPF is more accurate 29 
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than LETKF when using many observations (e.g. l > 20) and large ensemble sizes  (e.g. k > 1 

100-200).  2 

When using fewer than 20 observations per cycle in this case, both LETKF and LPF 3 

experience filter divergence. Due to the unconstrained nature of the LPF as described in 4 

section 2.4, large errors occur more frequently than for LETKF in this parameter regime. 5 

Control theory concepts regarding observability indicate that with too few observations any 6 

filter will diverge. In the linear theory for autonomous systems the conditions are 7 

straightforward. For chaotic systems, the observability of a system is difficult to identify 8 

analytically. For the particular experiment parameters given here, these results indicate that 9 

the minimum number of required observations is approximately 20 observations per model 10 

equivalent of 60-hour update intervals. Abarbanel et al. (2009) have made analogous 11 

conclusions regarding observability using synchronization methods for L96, and Whartenby 12 

et al. (2013) for shallow water flows. 13 

When examining the computational cost of the LPF versus LETKF, the relative costs 14 

reflect the analytical assessment given above in section 2.5. Namely, the elapsed time of the 15 

LETKF experiments grows with the cube of the ensemble size, while the elapsed time of the 16 

LPF is significantly lower at large ensemble sizes (Figure 6). 17 

3.3 Case 3: Non-Gaussian observation error. 18 

The previous section examined the impacts of nonlinearity and non-Gaussianity on the 19 

forecast. We now examine the impacts of non-Gaussian observation error. Using a 20 

multivariate Gaussian mixture model (GM2) following Fowler and van Leeuwen (2013), we 21 

apply a corresponding random error to the observation and compare the impacts on LETKF 22 

and LPF. We use the LETKF without modification, but modify the likelihood function of LPF 23 

to the definition of GM2 as in section 2.1, Eqn. (7). Using nw=0.1, n1=-1, n2=1, we create a 24 

bimodal distribution biased toward the second Gaussian mode. The analysis cycle is dt=0.05 25 

(6 hr) as in experiment case 1, section 3.1. Figure 7, compares LETKF and LPF using k=100 26 

ensemble members and l=80 observations. An additional results is given for LPF with l=20 27 

observations. The introduction of a strong non-Gaussianity in the observation error 28 

distribution disrupts LETKF and eventually creates errors that propagate throughout the entire 29 

domain. Using the same ensemble size and observation count, the LPF gains significant 30 
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advantage in its ability to explicitly account for the non-Gaussian error structure of the 1 

observations. Even reducing the observation count by 75%, the LPF maintains its advantage. 2 

3.4 Case 4: Examining the impact of spatial smoothing. 3 

We consider the example of LPF applied to L96 with the analysis cycle dt=0.5 (producing a 4 

relatively non-linear error growth), a localization radius of 2 grid points, k=100 ensemble 5 

members, l=40 observations per cycle, and observation error of 0.5. By applying ensemble 6 

smoothing of the weights, we find that the mean absolute forecast error (averaged over the 7 

model domain) is reduced versus a non-smoothed analysis (Figure 8). Increasing the search 8 

radius to 2 gridpoints for the same example case does not produce any clear benefits. 9 

 To evaluate the impact on ensemble quality, we consider the mean effective ensemble 10 

size Neff,  11 

 
Neff = wt

i( )2
i=1

j

∑⎡
⎣
⎢

⎤

⎦
⎥

−1

, (29) 12 

with wt
i
defined as in (8). This quantity is calculated at each gridpoint and then averaged over 13 

all points for each analysis cycle. We find that the effective ensemble size is increased when 14 

using the smoothed versus the non-smoothed approach (Figure 9). 15 

4 Conclusions 16 

The Local Particle Filter (LPF) has been shown to outperform a state of the art ensemble 17 

Kalman filter (i.e. LETKF) in scenarios that violate the Gaussian/linear assumptions of the 18 

Kalman filter. We showed the advantage of the LPF when forecast is more non-linear (via 19 

longer analysis cycles, or less frequent observations), and when observation error is non-20 

Gaussian (using a bimodal error distribution). Further, upon transitioning to large ensembles 21 

the LPF has a significant cost savings relative to LETKF. 22 

The LPF maintains many of the attractive qualities that give Particle Filters (PFs) 23 

advantages over standard EnKFs. While the PF provides a means of assimilating observations 24 

with non-Gaussian errors (e.g. precipitation, sea-ice concentration), we caution that the 25 

covariances utilized by the EnKF play a critical role in constraining the unobserved variables. 26 

Thus while the LPF is not optimal for all possible data assimilation scenarios, there is great 27 

potential for the LPF to be combined with more traditional approaches to create adaptive 28 
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hybrid systems that can avoid catastrophic filter divergence and manage multi-modal forecast 1 

distributions, nonlinear observation operators, non-Gaussian observations. 2 

We found that a large number of ensemble members (or particles) and observations 3 

are sufficient for the LPF to match or surpass the accuracy of LETKF. We found large 4 

ensemble sizes a relevant scenario for realistic systems running on large supercomputers such 5 

as the K computer at RIKEN. The use of large observation sets is relevant in operational 6 

weather forecasting as much of the dense satellite data is currently discarding in a thinning 7 

process. Further, in this parameter regime the LPF has significantly lower computational cost 8 

than LETKF.  9 

In a realistic system, some mechanism is needed to drive the ensemble toward the 10 

observations in the event of the ensemble drifting away from the true state. The PF itself has 11 

no inherent mechanism to do this other than the brute force generation of more particles. 12 

There are many techniques in the PF literature for managing filter divergence, but none of 13 

them are foolproof. Atkins et al. (2013) presented a promising extension of the use of an 14 

importance density that may connects effectively with the existing infrastructure of 15 

variational solvers used by most operational centers. Another popular mechanism to achieve 16 

this is regularization, which uses a kernel to sample from a continuous distribution at the 17 

resampling stage. 18 

Finally, while the inflation mechanism used here was effective for the Lorenz-96 19 

system, it is not adequate for more realistic atmospheric or oceanic models. For such systems, 20 

either geospatially correlated noise or stochastic physics parameterizations may be capable of 21 

performing the same function. Stochastic physics parameterizations are an active area of 22 

research, and are under development for a number of operational center models, including 23 

NCEP (Hou et al., 2006; Hou et al, 2010; Kolczynski et al., 2015), ECMWF (Berner et al., 24 

2009; Weisheimer et al., 2014; Watson et al., 2015), and the Met Office (Tennant et al., 2011; 25 

Sanchez et al., 2014; Shutts and Paleres, 2014; Shutts 2015). 26 
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We provide pseudo-code for the LPF: 1 

% INPUTS: 2 
% k   :: ensemble size 3 
% m   :: model dimension 4 
% Yo  :: vector of global observations 5 
% yo  :: vector of local observations  6 
% Xb  :: background ensemble arranged as a matrix 7 
% R   :: observation error covariance matrix 8 
% HXb :: Xb mapped from model space to observation space 9 
% 10 
% FUNCTIONS: 11 
% obsloc :: finds observations local to a grid point 12 
% cumsum :: cumulative sum of array 13 
% sort   :: sorting of array in descending order 14 
% repmat :: repeat array to form a matrix 15 
% 16 
% OUTPUTS: 17 
% Neff :: effective ensemble sample size 18 
% Xa   :: analysis ensemble arranged as a matrix 19 
 20 
% 21 
% Specify minimum of distribution tails 22 
% 23 
mintail = epsilon 24 
 25 
% 26 
% Setup global comb for resampling with replacement 27 
% 28 
interval = 1/k 29 
start = interval * random_number 30 
selection_points = [start : interval : start+(k-1)*interval] 31 
 32 
% 33 
% Loop over each grid point 34 
% 35 
for mi=1:m 36 
    % Find the observation points within range of focal grid point: 37 
    yo = obsloc(mi,Yo,local_radius) 38 
     39 
    % Update (calculate particle weights) using desired distribution 40 
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    % (e.g. Gaussian shown here) 1 
    for ki=1:k 2 
       likelihood(ki) =  3 
               exp( -0.5* (yo-HXb(:,ki))' * R^{-1} * (yo-HXb(:,ki)) ) 4 
    end 5 
 6 
    % Protect against numerical representation problems in the tails 7 
    likelihood = likelihood + mintail 8 
     9 
    % 10 
    % Normalize the weights 11 
    % 12 
 13 
    % Compute the weights 14 
    weights = likelihood/sum(likelihood) 15 
 16 
    % Calculate effective ensemble sample size 17 
    Neff(mi) = 1/sum(weights.^2) 18 
 19 
    % Form cumulative distribution 20 
    [wts, wi] = sort(weights) 21 
    weight  = cumsum(wts) 22 
 23 
    %      24 
    % Apply the comb to resample analysis members 25 
    % 26 
    j=1 27 
    for i=1:k 28 
        while selection_points(i) >= weight(j) 29 
            j=j+1 30 
        end 31 
         32 
        % Specify the resampling index rs 33 
        rs(mi,i)=wi(j) 34 
 35 
        % Assign background value as global analysis 36 
        Xa(mi,i) = Xb(mi,rs(mi,i)) 37 
    end 38 
 39 
end % loop over model grid points 40 
 41 
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%      1 
% Apply smoothing by weights in ensemble space. 2 
%      3 
X = 0     4 
for ki=1:k 5 
    for mi=1:m 6 
        for ni={“set of all Np neighbor points”} 7 
            X(mi,ki) = X(mi,ki) + Xa(mi,ki) + Xb(mi,rs(ni,ki)) 8 
        end 9 
        Xa(mi,ki) = X(mi,ki)/(2*Np); 10 
    end 11 
end 12 
 13 
%      14 
% Apply additive inflation 15 
% 16 
 17 
% Compute the analysis ensemble spread to 18 
% determine amplitude of inflation needed 19 
if (mean(Neff) > k/2) 20 
    Xstd=std(Xa,2) 21 
else 22 
    % add a little more noise to protect  23 
    % against ensemble collapse 24 
    Xstd=max(std(Xa,2),maximum_obs_error) 25 
end 26 
 27 
% Compute Gaussian random values with standard  28 
% deviation equal to analysis ensemble spread 29 
rmat=randn(m,k).*repmat(Xstd,1,k) 30 
 31 
% Apply additive inflation (and remove sample mean) 32 
Xa = Xa + rmat-repmat(mean(rmat,2),1,k) 33 
 34 
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Figure 1. A hypothetical example depicting the construction of a single analysis member. 18 

Each level represents a different background ensemble member (particle), with a model space 19 

composed of a 3x3 grid. The nodes of the grid are circled if the member is chosen for the 20 

construction of analysis member 1 by the LPF. The numerals indicate the ids for the 21 

background members that will be averaged at the corresponding node, in this case based on 22 

the immediately adjacent neighbor points of that node. 23 
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 1 

 2 

Figure 2. Analysis error using an analysis cycle window length dt=0.05 (6-hr) for (a) the 3 

standard SIR PF using k=1500 particles with l=20 observations per analysis cycle, and (b) 4 

LETKF with localization radius r=2, k=20 ensemble members, and l=10 observations per 5 

analysis cycle, sampled randomly on the domain. 6 
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Figure 3. Analysis error for (a) LETKF and (b) LPF, using an analysis cycle window length 1 

dt=0.05 (6-hr), localization radius r=2 grid points, k=40 ensemble members, and l=20 2 

observations sampled randomly on the domain (prescribed observation locations and errors 3 

are identical for both methods). 4 

 5 

Figure 4. Forecast error for (a) LETKF and (b) LPF, using an analysis cycle window length 6 

dt=0.5 (60-hr), localization radius r=2 grid points, k=100 ensemble members, and l=80 7 

observations sampled randomly on the domain (observation locations and errors are identical 8 

for both methods). 9 

 10 

Figure 5. Forecast error for (a) LETKF and (b) LPF minus LETKF. LPF reduces error in 11 

highly sampled cases with larger observation coverage. The LPF increases error in poorly 12 
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sampled cases and with low observation coverage. Each cell represents one experiment case; 1 

absolute errors are averaged over the entire domain for 600 analysis cycles for each case. 2 

 3 

Figure 6. Elapsed time in seconds for (a) LETKF and (b) LPF minus LETKF.  4 

 5 

Figure 7. Analysis error for (a) LETKF and (b) LPF, using l=80 observations and k=100 6 

ensemble members. The observations used between (a) and (b) are identical. In (c), the 7 

number of observations for LPF is reduced to l=20, but improvement in accuracy versus 8 

LETKF remains. 9 
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 1 

Figure 8. 40-cycle moving average of the mean absolute forecast error, comparing the Non-2 

smoothed (dashed red) and Smoothed (solid blue) LPF analyses. The ensemble space 3 

smoothing improves the forecast accuracy. 4 

 5 

 6 

Figure 9. Illustrating the impact of ensemble space smoothing on the effective ensemble size 7 

Neff. Here we show the 40-cycle moving average of Neff for the Smoothed (solid blue) and 8 

Non-smoothed (dashed red) cases. 9 
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