

Response to Reviewers

We would like to thank the reviewers for their comments. We proceeded to a revision of our manuscript according to the comments of the Reviewers. We have confronted all points raised by the Reviewers and hope that now our manuscript will be satisfactory to both the Reviewers and the Editor.

In the following we present a detailed report, containing all answers / actions taken and references to the manuscript changes. Each one of our replies is given in blue-colored fonts, following the corresponding Reviewer's comment (in black colored fonts). In the replies text, **bold fonts** indicate inserted / changed text. We also provide a "track-changes" version of the revised manuscript at the end of the report, so that the Reviewers and the Editor can easily identify the changes made on the originally submitted manuscript.

Referee #2: Dr. Reik Donner

"The authors have properly addressed my comments regarding their original draft. I can now recommend acceptance of this paper, provided that it undergoes careful proofreading and copy-editing to correct the still substantial number of typos and minor grammatical errors."

Reply:

We would like to thank the Reviewer for his efforts in revising our manuscript. We have performed a very careful proofreading of the manuscript and have corrected a number of (we believe all) the typos, as well some grammatical errors. We hope the manuscript is now acceptable for the Reviewer.

"Content-wise, I recommend that the authors should briefly address the following minor points in their final manuscript:

"Minor content-wise comments:"

"1. * Speaking of kHz and MHz emissions is quite unspecific. Regarding the data sets used in this work, please provide information on the specific frequency and (if applicable) polarization of the analyzed signals."

Reply:

We have provided specific information about the kHz and MHz emissions recorded by our telemetric network, as well as for the MHz signals analyzed in this paper. In the revised manuscript we revised as follows text at the beginning of the third paragraph of the **Introduction section**. The specific point was originally: "Two pairs of MHz EM signals were recorded, with a sampling rate of 1 sample/s, prior to each one of the above mentioned significant shallow EQs", while now reads: "Two pairs of MHz EM signals were recorded **at 41 MHz**, with a sampling rate of 1 sample/s, prior to each one of the above mentioned significant shallow EQs..."

Moreover, we added the following text at the end of the caption of Fig. 1: "...The electromagnetic variations monitored at Zante station are 3 kHz North-South, 3 kHz East-West, 3 kHz Vertical, 10 kHz North-South, 10 kHz East-West, 10 kHz Vertical, 41 MHz, 54 MHz and 135 MHz, while at the rest of the stations, including Cephalonia station, only the 3kHz North-South, 3kHz East-West, 10kHz North-South, 10kHz East-West, 41MHz and 46MHz are recorded. More details on the instrumentation of the telemetric network can be found in the supplementary downloadable material of (Potirakis et al., 2015)."

"2. * p.6, ll.2-3: This sentence is a literal repetition from p.3, ll.18-19. Please remove one of the two copies from the text."

Reply:

We removed the repetition from p.6. In the revised manuscript, the specific sentence appears only in p.3.

"3. * p.9, ll.15-16: Please explain the abbreviations DC and SES when using them for the first time in the manuscript.

"

Reply:

We have included the explanation of the abbreviations at first appearance. Specifically, the corresponding part of the manuscript now reads: "The natural time method was originally proposed for the analysis for a point process like DC (**Direct Current**) or ultra-low frequency (≤ 1 Hz) SES (**Seismic Electric Signals**) (Varotsos et al., 2002; Varotsos, 2005),..."

"4. * For the seismic activity, I was wondering if (and how) the authors distinguish the foreshock sequence of EQ2 from aftershocks of EQ1, or if both essentially fall together and a distinction (via catalog declustering?) is not meaningful/relevant in the present case."

Reply:

As we have already explained in the manuscript (Section 4, p. 18) and shown in Fig. 11a:

"Fig. 11a shows all the events that were recorded in the whole investigated area of the Ionian Islands region vs. time from just after EQ1 ($M_w = 6.0$) up to the time of EQ2 ($M_w = 5.9$), including EQ2. As it can be seen, if one considers that both significant EQs of interest were main events, it is quite difficult to separate the seismic activity of the specific time period into aftershocks of the first EQ and foreshocks of the second one. However, we observe that up to a specific time point, there is a rapid decrease of the running mean magnitude of the recorded EQs, while after that the long range (75 events) running mean value seems to be almost constant over time with the short range (25 events) one varying around it. We arbitrarily set the 29 January 00:00:00 UT as the time point after which the recorded seismicity is no longer dominated by the aftershocks of EQ1; this by no means implies that the aftershock sequence of the EQ1 stops after that date. It should also be underlined that changing this, arbitrarily selected, date within reasonable limits, does not significantly changes the results of our corresponding NT analysis which are presented next. On the other hand, a significant shift of this limit towards EQ1, i.e., to earlier dates, results to severe changes indicating the domination of the recorded seismicity by the aftershock sequence of EQ1. Accordingly, the considered as foreshock seismic activity before EQ2, i.e., from 29/01/2014 00:00 UT up to the time of occurrence of EQ2, is presented in the map of Fig. 11b for west Cephalonia and analyzed in the following."

"5. * p.20, l.10: "Cephalonia station is known..." - do you have any documented reference for this that could be cited at this point?"

Reply:

No, unfortunately there is no published article to support this sentence and specifically, the expression "The Cephalonia station is known for being insensitive to EQ preparation processes happening outside of the wider area of Cephalonia island, as well as to EQ preparation processes leading to low magnitude EQs within the area of Cephalonia island. Note that the only signal that has been previously recorded refers to the M=6 EQ that occurred on the specific island in 2007 (Contoyiannis et al., 2010)." Therefore we have revised the specific part of the manuscript as

follows in order to be more accurate: **“Although not previously reported, we have to note here that, as it has been observed, the Cephalonia station is insensitive to EQ preparation processes happening outside of the wider area of Cephalonia island, as well as to EQ preparation processes leading to low magnitude EQs within the area of Cephalonia island. Note that the only signal that has been previously recorded refers to the M=6 EQ that occurred on the specific island in 2007 (Contoyiannis et al., 2010).”**

Anonymous Referee #3

"The paper is very substantial and woth publishing in NPG. However, some language problems should be improved in a minor revision."

Reply:

We would like to thank the Reviewer for his efforts in revising our manuscript. We have performed a very careful language review of the manuscript and have corrected syntax and grammatical errors, as well some typos. We hope the manuscript is now acceptable for the Reviewer.

In the following, a “track-changes” version of our revised manuscript is appended

1 **Recent seismic activity at Cephalonia island (Greece): A
2 study through candidate electromagnetic precursors in
3 terms of nonlinear dynamics.**

4

5 **S. M. Potirakis¹, Y. Contoyiannis², N. S. Melis³, J. Kopanas⁴,
6 G. Antonopoulos⁴, G. Balasis⁵, C. Kontoes⁵, C. Nomicos⁶, K. Eftaxias²**

7

8 [1] {Department of Electronics Engineering, Piraeus University of Applied Sciences (TEI of
9 Piraeus), 250 Thivon and P. Ralli, Aigalao, Athens, GR-12244, Greece, spoti@teipir.gr }.

10 [2] {Department of Physics, Section of Solid State Physics, University of Athens,
11 Panepistimiopolis, GR-15784, Zografos, Athens, Greece, (Y. C: yconto@yahoo.gr ; K. E.:
12 ceftax@phys.uoa.gr)}

13 [3] {Institute of Geodynamics, National Observatory of Athens, Lofos Nimfon, Thissio,
14 Athens, GR-11810, Greece, nmelis@noa.gr}

15 [4] {Department of Environmental Technologists, Technological Education Institute (TEI) of
16 the Ionian islands, Zakynthos, GR-29100, Greece, (J. K.: jkopan@otenet.gr ; G. A.:
17 sv8rx@teiion.gr)}

18 [5] {Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National
19 Observatory of Athens, Metaxa and Vasileos Pavlou, Penteli, Athens, GR-15236, Greece, (G.
20 B.: gbalasis@noa.gr ; C. K.: kontoes@noa.gr)}

21 [6] {Department of Electronics Engineering, Technological Education Institute (TEI) of
22 Athens, Ag. Spyridonos, Aigaleo, Athens, GR-12210, Greece, cconomicos@teiath.gr}

23

24 Correspondence to: G. Balasis (gbalasis@noa.gr)

25

1 **Abstract**

2 The preparation process of two recent earthquakes (EQs) occurred in Cephalonia (Kefalonia)
 3 island, Greece, [(38.22° N, 20.53° E), 26 January 2014, $M_w = 6.0$, depth = 21 km], and
 4 [(38.25° N, 20.39° E), 3 February 2014, $M_w = 5.9$, depth = 10 km], respectively, is studied in
 5 terms of the critical dynamics revealed in observables of the involved non-linear processes.
 6 Specifically, we show, by means of the method of critical fluctuations (MCF), that signatures
 7 of critical, as well as tricritical, dynamics were embedded in the fracture-induced
 8 electromagnetic emissions (EME) recorded by two stations in locations near the epicenters of
 9 these two EQs. It is worth noting that both, the MHz EME recorded by the telemetric stations
 10 on the island of Cephalonia and the neighboring island of Zante (Zakynthos), reached
 11 simultaneously critical condition a few days before the occurrence of each earthquake. The
 12 critical characteristics embedded in the EME signals were further verified using the natural
 13 time (NT) method. Moreover, we show, in terms of the NT method, that the foreshock
 14 seismic activity also presented critical characteristics before each ~~one of these~~ events.
 15 Importantly, the revealed critical process seems to be focused on the area corresponding to the
 16 west Cephalonia zone, following the seismotectonic and hazard zoning of the Ionian Islands
 17 area near Cephalonia.

18

19 **Keywords:** Fracture-induced electromagnetic emissions; Earthquake dynamics; Criticality -
 20 Tricriticality; Method of Critical Fluctuations; Natural Time Analysis; Seismotectonic Zone
 21 Partitioning.

22

23 **1. Introduction**

24 The possible connection of the electromagnetic (EM) activity that is observed prior to
 25 significant earthquakes (EQs) with the corresponding EQ preparation processes, often referred
 26 to as seismo-electromagnetics, has been intensively investigated during the last years. Several
 27 possible EQ precursors have been suggested in the literature (Uyeda et al., 2009a; Cicerone et
 28 al., 2009; Hayakawa, 2013a, 2013b; Varotsos 2005; Varotsos et al., 2011b; Hayakawa et al.,
 29 2015a, 2015b; Contoyiannis et al., 2016; Potirakis et al., 2016). The possible relation of the
 30 field observed fracture-induced electromagnetic emissions (EME) in the frequency bands of

1 MHz and kHz, associated with shallow EQs with magnitude 6 or larger that occurred in land
 2 or near coast, has been examined in a series of publications in order to contribute to a better
 3 understanding of the underlying processes (e.g., Eftaxias et al., 2001, 2004, 2008, 2013;
 4 Kapiris et al., 2004; Karamanos et al., 2006; Papadimitriou et al., 2008; Contoyiannis et al.,
 5 2005, 2013, 2015; Eftaxias and Potirakis, 2013; Potirakis et al., 2011, 2012a, 2012b, 2012c,
 6 2013, 2015; Minadakis et al., 2012a, 2012b; Balasis et al., 2011, 2013; Donner et al., 2015;
 7 Kalimeris et al., 2016), while. Additionally, a four-stage model for the preparation of an EQ
 8 by means of its observable EM activity has been recently put forward (Eftaxias and Potirakis,
 9 2013, and references therein; Contoyiannis et al., 2015, and references therein). In summary,
 10 the proposed four stages of the last part of EQ preparation process and the ~~associated,~~
 11 ~~appropriately identified, corresponding~~ EM observables, ~~specifically EM time series excerpts~~
 12 ~~tions,~~ for which specific features have been identified using appropriate time series analysis
 13 methods, appear in the following order (Donner et al., 2015, and references therein): 1st stage:
 14 valid MHz anomaly; 2nd stage: kHz anomaly exhibiting tri-critical characteristics; 3rd stage:
 15 strong avalanche-like kHz anomaly; 4th stage: electromagnetic quiescence. It is noted that,
 16 according to the aforementioned ~~four~~-stage model, the pre-EQ MHz EME is considered to be
 17 emitted during the fracture of ~~the-a~~ part of the Earth's crust that is characterized by high
 18 heterogeneity. During this phase the fracture is non-directional and spans over a large area
 19 that surrounds the family of large high-strength entities distributed along the fault sustaining
 20 the system. Note that for an EQ of magnitude ~6 the corresponding fracture process extends
 21 to a radius of ~120km (Bowman et al., 1998).

22 Two strong shallow EQs occurred recently in western Greece (see Fig. 1). On 26 January
 23 2014 (13:55:43 UT) an $M_w = 6.0$ EQ, hereafter also referred to as “EQ1”, occurred on the
 24 island of Cephalonia (Kefalonia), with epicenter at (38.22° N, 20.53° E) and depth of ~16km.
 25 The second significant EQ, $M_w = 5.9$, hereafter also referred to as “EQ2”, occurred on the
 26 same island on 3 February 2014 (03:08:45 UT), with epicenter at (38.25° N, 20.40° E) and
 27 depth of ~11km. Various studies of the two earthquakes have already been published
 28 indicating their seismotectonic importance (Karastathis et al., 2014; Valkaniotis et al., 2014;
 29 Papadopoulos et al., 2014; Ganas et al., 2015; Sakkas and Lagios, 2015; Merryman Boncori et
 30 al., 2015) as they were located on two different active faults that belong to the same seismic
 31 source zone.

Formatted: Superscript

Formatted: Superscript

Formatted: Superscript

Formatted: Superscript

1 ~~Two~~^A pairs of simultaneous MHz EM signals ~~were~~^{was} recorded ~~at~~^{at} 41 MHz, with a
 2 sampling rate of 1 sample/s, ~~by~~<sup>by two different stations prior to each one of the above
 3 mentioned significant shallow EQs; ~~one pair of simultaneous signals was recorded by two~~
 4 ~~different stations prior to each one of them~~. On 24 January 2014, two days before the
 5 $M_w = 6.0$ Cephalonia EQ (EQ1), two telemetric stations of our EM signal monitoring
 6 network (see Fig. 1), the station of Cephalonia, located on the same island (38.18° N, 20.59°
 7 E), and the station of Zante (Zakynthos), located on a neighboring island belonging to the
 8 same (Ionian) island complex (37.77° N, 20.74° E), simultaneously recorded the first pair of
 9 aforementioned signals. The same picture was repeated for the second significant Cephalonia
 10 EQ, $M_w = 5.9$ (EQ2). Specifically, both the Cephalonia and the Zante stations
 11 simultaneously recorded the second pair of aforementioned signals on 28 January 2014, six
 12 days prior to the specific EQ. Note that it has been repeatedly made clear that all the pre-EQ
 13 EME signals, which have been observed by our monitoring network, have been recorded only
 14 prior to strong shallow EQs, that have taken place on land (or near the coast-line); this fact, in
 15 combination to the recently proposed fractal geo-antenna model (Eftaxias et al., 2004;
 16 Eftaxias and Potirakis, 2013), ~~can~~^{explains} why ~~they~~^{these signals} succeed to be transmitted
 17 on air. This model ~~gives~~^{provides} a good reason for the increased possibility of detection of
 18 such EM radiation, since a fractal geo-antenna emits significantly increased power, compared
 19 to the power that would be radiated by the same source, if a dipole antenna model was
 20 considered. It should also be noted that, none of the recordings of the other monitoring
 21 stations of our network (except from the ones of Cephalonia and Zante) presented critical
 22 characteristics before these two specific EQs.</sup>

23

24 <Figure 1 should be placed around here>

25

26 The analysis of the specific EM time series, using the method of critical fluctuations (MCF)
 27 (Contoyiannis and Diakonos, 2000; Contoyiannis et al., 2002, 2013), revealed critical
 28 features, implying that the possibly related underlying geophysical process was at critical
 29 state before the occurrence of each one of the EQs of interest. The critical characteristics
 30 embedded in the specific time series were further verified by means of the natural time (NT)
 31 method (Varotsos et al., 2011a, 2011b, Potirakis et al., 2013, 2015). The presence of the

1 “critical point” during which any two active parts of the system are highly correlated,
2 theoretically even at arbitrarily long distances, in other words when “everything depends on
3 everything else”, is consistent with the view that the EQ preparation process during the period
4 that the MHz EME are emitted is a spatially extensive process. Note that this process
5 corresponds to the first stage of the aforementioned four-stage model.

6 Moreover, we analyzed the foreshock seismic activity using the NT method; the obtained
7 results indicate that seismicity also presented critical characteristics before each one of the
8 two important events. This result implies that the observed EM anomaly and the associated
9 foreshock seismic activity might be considered as “two sides of the same coin”. Last but not
10 least, one day before the occurrence of EQ2, and five days after the corresponding critical
11 EME signal, tricritical characteristics were revealed in the EME recorded by the Cephalonia
12 station.

13 The remainder of this manuscript is organized as follows: A brief introduction to the MCF
14 and the NT analysis methods is provided in Section 2. The analysis of the EME recordings
15 according to these two methods is presented in Section 3. Section 4 presents the results
16 obtained by the analysis of the foreshock seismic activity using the NT method, while Section
17 5 concludes the manuscript by summarizing and discussing the findings.

18

19 **2. Critical Dynamics Analysis Methods**

20 Criticality has early been suggested as an EQ precursory sign (Chelidze, 1982; Chelidze and
21 Kolesnikov, 1982; Chelidze et al., 2006; Rundle et al., 2012; Wanliss et al., 2015). Critical
22 phenomena have been proposed as the likely framework to study the origins of EQ related
23 EM fluctuations, suggesting that the theory of phase transitions and critical phenomena may
24 be useful in gaining insight to the mechanism of their complex dynamics (Bowman et al.,
25 1998; Contoyiannis et al., 2004a, 2005, 2015; Varotsos et al., 2011a, 2011b). One possible
26 reason for the appropriateness of this model may be the way in which correlations spread
27 thought a disordered medium/ system comprised of subunits. From a qualitative / intuitive
28 perspective, according to the specific approach, initially single isolated activated parts emerge
29 in the system which, then, progressively grow and proliferate, leading to cooperative effects.
30 Local interactions evolve to long-range correlations, eventually extending along the entire
31 system. A key point in the study of dynamical systems that develop critical phenomena is the

1 identification of the “critical epoch” during which the “short-range” correlations evolve into
2 “long-range” ones. Therefore, the theory of phase transitions and critical phenomena seem to
3 be appropriate for the study of dynamical complex systems in which local interactions evolve
4 to long-range correlations, such as the disordered Earth’s crust during the preparation of an
5 EQ. ~~Note that for an EQ of magnitude ~6 the corresponding fracture process extends to a~~
6 ~~radius of ~120km (Bowman et al., 1998).~~

7 It is worth noting that key characteristics of a critical point in a phase transition of the second
8 order are the existence of highly correlated fluctuations and scale invariance in the statistical
9 properties. By means of experiments on systems presenting this kind of criticality as well as
10 by appropriately designed numerical experiments, it has been confirmed that right at the
11 “critical point” the subunits are highly correlated even at arbitrarily large “distance”. At the
12 critical state self-similar structures appear both in time and space. This fact is quantitatively
13 manifested by power law expressions describing the distributions of spatial or temporal
14 quantities associated with the aforementioned self-similar structures (Stanley, 1987, 1999).

15 The time series analysis methods employed in this paper for the evaluation of the MHz EME
16 recordings and the seismicity around the Cephalonia island in terms of critical dynamics are
17 briefly presented in the following. Specifically, the method of critical fluctuations (MCF) is
18 described in Sub-Section 2.1, while the natural time (NT) method is described in Sub-Section
19 2.2.

20

21 **2.1 Method of critical fluctuations (MCF)**

22 In the direction of comprehending the dynamics of a system undergoing a continuous phase
23 transition at critical state, the method of critical fluctuations (MCF) has been proposed for the
24 analysis of critical fluctuations in the systems’ observables (Contoyiannis and Diakonos,
25 2000; Contoyiannis et al., 2002). The dynamics of various dynamical systems have been
26 successfully analyzed by MCF; ~~these examples~~ include thermal (e.g., 3D Ising) (Contoyiannis
27 et al., 2002), geophysical (Contoyiannis and Eftaxias 2008; Contoyiannis et al., 2004a, 2010,
28 2015, 2016), biological (electro-cardiac signals) (Contoyiannis et al., 2004b; Contoyiannis et
29 al., 2013) and economic systems (Ozun et al., 2014).

1 It has been shown ([Contoyiannis and Diakonos, 2000](#)) that the dynamics of the order
 2 parameter fluctuations ϕ at the critical state for a second-order phase transition can be
 3 theoretically formulated by the non-linear intermittent map:

4
$$\phi_{n+1} = \phi_n + u\phi_n^z, \quad (1)$$

5 where ϕ_n is the scaled order parameter value at the time interval n ; u denotes an effective
 6 positive coupling parameter describing the non-linear self-interaction of the order parameter;
 7 z stands for a characteristic exponent associated with the isothermal exponent δ for critical
 8 systems at thermal equilibrium ($z=\delta+1$). The marginal fixed-point of the above map is the
 9 zero point, as expected from critical phenomena theory.

10 However, it has been shown that in order to quantitatively study a real (or numerical)
 11 dynamical system one has to add an unavoidable “noise” term, ε_n , to Eq. (1), which is
 12 produced by all stochastic processes ([Contoyiannis and Diakonos, 2007](#)). Note that, from the
 13 intermittency mathematical framework point of view, the “noise” term denotes ergodicity in
 14 the available phase space. In this respect, the map of Eq. (1), for positive values of the order
 15 parameter, becomes:

16
$$\phi_{n+1} = \left| \phi_n + u\phi_n^z + \varepsilon_n \right|. \quad (2)$$

17 Based on the map of Eq. (2), MCF has been introduced as a method capable of identifying
 18 whether a system is in critical state of intermittent type by analyzing time-series
 19 corresponding to an observable of the specific system. In a few words, MCF is based on the
 20 property of maps of intermittent-type, like the ones of Eqs. (1) and (2), that the distribution of
 21 properly defined laminar lengths (waiting times) l follow a power-law $P(l) \sim l^{-p_l}$ ([Schuster,](#)
 22 [1998](#)), where the exponent p_l is $p_l = 1 + \frac{1}{\delta}$ ([Contoyiannis et al., 2002](#)). However, the
 23 distribution of waiting times for a real data time series which is not characterized by critical
 24 dynamics follows an exponential decay, rather than a power-law one ([Contoyiannis et al.,](#)
 25 [2004a](#)), due to stochastic noise and finite size effects. Therefore, the dynamics of a real time
 26 series can be estimated by fitting the distribution of waiting times (laminar lengths) to a
 27 function $\rho(l)$ combining both power-law and exponential decay ([Contoyiannis and Diakonos,](#)
 28 [2007](#)):

$$1 \quad \rho(l) \sim l^{-p_2} e^{-lp_3}. \quad (3)$$

2 The values of the two exponents p_2 and p_3 , which result after fitting laminar lengths
 3 distribution in a log-log scale diagram, reveal the underlying dynamics. Exact critical state
 4 calls for $p_3 = 0$; in such a case it is $p_2 = p_l > 1$. As a result, in order for a real system to be
 5 considered to be at critical state, *both criticality conditions $p_2 > 1$ and $p_3 \approx 0$ have to be*
 6 *satisfied.*

7 Note that the choice of the function $\rho(l)$ of Eq. (3), which combines both power-law and
 8 exponential decay, to model the distribution of waiting times was deliberately made in order
 9 to include both these fundamentally different behaviors, i.e., the critical dynamics
 10 (Contoyiannis et al., 2002) and the complete absence of specific dynamics (stochastic
 11 processes) (Contoyiannis et al., 2004b), respectively. ~~Of course~~In addition, the specific
 12 function also models intermediate behaviors (Contoyiannis and Diakonos, 2007).

13 In applying the MCF the corresponding factors of $\rho(l)$ appear to be competitive: any increase
 14 of the p_2 exponent value corresponds to a p_3 exponent value reduction and vice versa.
 15 However, this is expected because, for example, any increase of the value of p_3 exponent
 16 signifies the departure from critical dynamics and thus the reduction of p_2 exponent value.
 17 ~~What~~ Still, it is interesting ~~to us is~~ to apply MCF analysis to observe this competition in the
 18 case of pre-earthquake EME time-series and ~~see explore~~ whether the obtained exponent
 19 values are consistent with those of MCF analyzes performed on other time-series with large
 20 statistics which are considered as references for the application of our method. This
 21 competition can be observed even within the critical windows as shown in Figs. 2d and 3d.

22 Moreover, a special dynamics case is the one known as “tricritical crossover dynamics”. In
 23 statistical physics, a tricritical point is a point in the phase diagram of a system at which the
 24 two basic kinds of phase transition, that is the first order transition and the second order
 25 transition, meet (Huang, 1987). The co-existence of three phases, specifically, the high
 26 symmetry phase, the low symmetry phase, and an intermediate “mixing state”, is a
 27 A characteristic property of the area around this point ~~is the co-existence of three phases,~~
 28 ~~specifically, the high symmetry phase, the low symmetry phase, and an intermediate “mixing~~
 29 ~~state”~~. A passage through this area, around the tricritical point, from the second order phase

1 transition to the first order phase transition through the intermediate mixing state constitutes a
 2 tricritical crossover (Huang, 1987).

3 The specific dynamics is proved to be expressed by the map (Contoyiannis et al., 2015):

4

$$m_{n+1} = \left| m_n - um_n^{-z} + \varepsilon_n \right|, \quad (4)$$

5 where m stands for the order parameter. This map differs from the critical map of Eq. (2) in
 6 the sign of the parameter u and exponent z . Note that for reasons of unified formulation we
 7 use for these parameters the same notation as in the critical map of Eq. (2). At the level of
 8 MCF analysis this dynamics is expressed by the estimated values for the two characteristic
 9 exponents p_2, p_3 values, that satisfy the *tricriticality condition* $p_2 < 1, p_3 \approx 0$. These values
 10 have been characterized in (Contoyiannis and Diakonos, 2007) as a signature of tricritical
 11 behavior.

12 Note that MCF analysis is possible only in order for a time-series to be possible to be
 13 analyzed by the MCF, it shouldwhich at least present cumulative stationarity. Therefore, a
 14 cumulative stationarity test is always performed before applying the MCF method; examples
 15 can be found in already published articlesa number of publications (e.g., Contoyiannis et al.,
 16 2004a, 2005, 2010; Contoyiannis and Eftaxias, 2008; Potirakis et al., 2015). More details on
 17 the application of MCF can be found in several published articles (e.g., Contoyiannis et al.
 18 2002, 2013, 2015), as well as in Section 3 where its application on the MHz EM variations is
 19 presented.

20

21 **2.2 Natural time method (NT)**

22 The natural time method was originally proposed for the analysis for a point process like DC
 23 (Direct Current) or ultra-low frequency (≤ 1 Hz) SES (Seismic Electric Signals) (Varotsos et
 24 al., 2002; Varotsos, 2005), and has been shown to be optimal for enhancing the signals in the
 25 time-frequency space (Abe et al., 2005). The transformation of a time-series of “events” from
 26 the conventional time domain to natural time domain is performed by ignoring the time-stamp
 27 of each event and retaining only their normalized order (index) of occurrence. Explicitly, in a
 28 time series of N successive events, the natural time, χ_k , of the k^{th} event is the index of
 29 occurrence of this event normalized, by dividing by the total number of the considered events,

1 $\chi_k = k/N$. On the other hand, the “energy”, Q_k , of each, k^{th} , event is preserved. We note
 2 that the quantity Q_k represents different physical quantities for various time series: for EQ
 3 time series it has been assigned to a seismic energy released (e.g., seismic moment) (Varotsos
 4 et al., 2005; Uyeda et al., 2009b), and for SES signals that are of dichotomous nature it
 5 corresponds to SES pulse duration (Varotsos, 2005), while for MHz electromagnetic emission
 6 signals that are of non-dichotomous nature, it has been attributed to the energy of fracto-
 7 electromagnetic emission events as defined in Potirakis et al. (2013). The transformed time
 8 series (χ_k, Q_k) is then studied through the normalized power spectrum

9 $\Pi(\varpi) = \left| \sum_{k=1}^N p_k \exp(j\varpi\chi_k) \right|^2$, where ϖ is the natural angular frequency, $\varpi = 2\pi\varphi$, with φ
 10 standing for the frequency in natural time, termed “natural frequency”, and $p_k = Q_k / \sum_{n=1}^N Q_n$
 11 corresponds to the k^{th} event’s normalized energy. Note that, the term “natural frequency”
 12 should not be confused with the rate at which a system oscillates when it is not driven by an
 13 external force; it defines an analysis domain dual to the natural time domain, in the
 14 framework of Fourier–Stieltjes transform (Varotsos et al., 2011b).

15 The study of $\Pi(\varpi)$ at $\varpi \rightarrow 0$ reveals the dynamic evolution of the time series under
 16 analysis. This is because all the moments of the distribution of p_k can be estimated from
 17 $\Pi(\varpi)$ at $\varpi \rightarrow 0$ (Varotsos et al., 2011a). Aiming to that, by the Taylor expansion
 18 $\Pi(\varpi) = 1 - \kappa_1 \varpi^2 + \kappa_2 \varpi^4 + \dots$, the quantity κ_1 is defined, where $\kappa_1 = \sum_{k=1}^N p_k \chi_k^2 - \left(\sum_{k=1}^N p_k \chi_k \right)^2$
 19 , i.e., the variance of χ_k weighted for p_k characterizing the dispersion of the most significant
 20 events within the “rescaled” interval $(0,1]$. Moreover, the entropy in natural time, S_{nt} , is
 21 defined (Varotsos et al., 2006) as $S_{nt} = \sum_{k=1}^N p_k \chi_k \ln \chi_k - \left(\sum_{k=1}^N p_k \chi_k \right) \ln \left(\sum_{k=1}^N p_k \chi_k \right)$ and
 22 corresponds (Varotsos et al., 2006, 2011b) to the value at $q=1$ of the derivative of the
 23 fluctuation function $F(q) = \langle \chi^q \rangle - \langle \chi \rangle^q$ with respect to q (while κ_1 corresponds to $F(q)$ for
 24 $q=2$). It is a dynamic entropy depending on the sequential order of events (Varotsos et al.,
 25 2006). The entropy, S_{nt-} , obtained upon considering (Varotsos et al., 2006) the time reversal
 26 T , i.e., $Tp_m = p_{N-m+1}$, is also considered.

1 A system is considered to approach criticality when the parameter κ_1 converges to the value
 2 $\kappa_1 = 0.070$ and at the same time both the entropy in natural time and the entropy under time
 3 reversal satisfy the condition $S_{nt}, S_{nt-} < S_u = (\ln 2/2) - 1/4$ (Sarlis et al., 2011), where S_u
 4 stands for the entropy of a “uniform” distribution in natural time (Varotsos et al., 2006).
 5 In the special case of natural time analysis of foreshock seismicity (Varotsos et al., 2001,
 6 2005, 2006; Sarlis et al., 2008), the seismicity is considered to be in a true critical state, a “true
 7 coincidence” is achieved, when three additional conditions are satisfied: (i) The “average”
 8 distance $\langle D \rangle$ between the curves of normalized power spectra $\Pi(\omega)$ of the evolving
 9 seismicity and the theoretical estimation of $\Pi(\omega)$,
 10 $\Pi_{critical}(\omega) = (18/5\omega^2) - (6\cos\omega/5\omega^2) - (12\sin\omega/5\omega^3)$, $\Pi_{critical}(\omega) \approx 1 - \kappa_1\omega^2$, for
 11 $\kappa_1 = 0.070$ should be smaller than 10^{-2} , i.e., $\langle D \rangle = \langle |\Pi(\omega) - \Pi_{critical}(\omega)| \rangle < 10^{-2}$; (ii) the
 12 parameter κ_1 should approach the value $\kappa_1 = 0.070$ “by descending from above” (Varotsos
 13 et al., 2001); (iii) Since the underlying process is expected to be self-similar, the time of the
 14 true coincidence should not vary upon changing (within reasonable limits) either the
 15 magnitude threshold, M_{thres} , or the area, used in the calculation.
 16 It should be finally clarified that in the case of seismicity analysis, the temporal evolution of
 17 the parameters κ_1 , S_{nt} , S_{nt-} , and $\langle D \rangle$ is studied as new events that exceed the magnitude
 18 threshold M_{thres} are progressively included in the analysis. Specifically, as soon as one more
 19 event is included, first the time series (χ_k, Q_k) is rescaled in the natural time domain, since
 20 each time the k^{th} event corresponds to a natural time $\chi_k = k/N$, where N is the
 21 progressively increasing (by each new event inclusion) total number of the considered
 22 successive events; then all the parameters involved in the natural time analysis are calculated
 23 for this new time series; this process continues until the time of occurrence of the main event.
 24 More details on the application of NT on MHz EME as well as on foreshock seismicity can be
 25 found in [already published articles](#) (Potirakis et al. 2013, 2015), as well as in Sections 3 and
 26 4, where its application on the MHz EM variations and foreshock seismicity is presented,
 27 respectively.

1 Note that in the case of NT analysis of foreshock seismicity, the introduction of magnitude
 2 threshold, M_{thres} , excludes some of the weaker EQ events (with magnitude below this
 3 threshold) from the NT analysis. On the one hand, this is necessary in order to exclude events
 4 for which the recorded magnitude is not considered reliable; depending on the installed
 5 seismographic network characteristics, a specific magnitude threshold is usually defined to
 6 assure data completeness. On the other hand, the use of various magnitude thresholds, M_{thres} ,
 7 offers a means of more accurate determination of the time when criticality is reached. In some
 8 cases, it happens that more than one time-points may satisfy the rest of NT critical state
 9 conditions, however the time of the true coincidence is finally selected by the last condition
 10 that “true coincidence should not vary upon changing (within reasonable limits) either the
 11 magnitude threshold, M_{thres} , or the area, used in the calculation.”

12 **3. Electromagnetic Emissions Analysis Results**

13 Part of the MHz recordings of the Cephalonia station associated with the $M_w = 6.0$ EQ (EQ1)
 14 is shown in Fig. 2a. This was recorded in day of year 24, that is ~2 days before the occurrence
 15 of EQ1. This stationary time series excerpt, having a total length of 2.8 h (10,000 samples)
 16 starting at 24 Jan. 2014 (12:46:40 UT), was analyzed by the MCF method and was identified
 17 to be a “critical window” (CW). CWs are time intervals of the MHz EME signals presenting
 18 features analogous to the critical point of a second order phase transition (Contoyiannis et al.,
 19 2005).

20 The main steps of the MCF analysis (e.g., Contoyiannis et al., 2013, 2015) on the specific
 21 time series are shown in Fig. 2b- Fig. 2d. First, a distribution of the amplitude values of the
 22 analyzed signal was obtained from which, using the method of turning points (Pingel et al.,
 23 1999), a fixed-point, that is the start of laminar regions, ϕ_o of about 700 mV was determined.
 24 Fig. 2c portrays the obtained distribution of laminar lengths for the end point $\phi_e = 655\text{mV}$,
 25 that is the distribution of waiting times, referred to as laminar lengths l , between the fixed-
 26 point ϕ_o and the end point ϕ_e , as well as the fitted function $f(l) \propto l^{-p_2} e^{-p_3 l}$ with the
 27 corresponding exponents $p_2 = 1.35$, $p_3 = 0.000$ with $R^2 = 0.999$. Note that the distribution
 28 of laminar lengths is directly fitted to the specific model using the Levenberg-Marquardt
 29 algorithm, while the fitting criterion is the chi-square minimization. The fitting is not done in

1 log-log space; the axes of Fig. 2c are logarithmic for the easier depiction of the distribution of
 2 laminar lengths. Finally, Fig. 2d shows the obtained plot of the p_2 , p_3 exponents vs. ϕ_i . From
 3 Fig. 2d it is apparent that the criticality conditions, $p_2 > 1$ and $p_3 \approx 0$, are satisfied for a wide
 4 range of end points ϕ_i , revealing the power-law decay feature of the time series that proves
 5 that the system is characterized by intermittent dynamics; in other words, the MHz time series
 6 excerpt of Fig. 2a is indeed a CW.

7

8 <Figure 2 should be placed around here>

9

10 Part of the MHz recordings of the Zante station associated with EQ1 is shown in Fig. 3a. This
 11 was also recorded in day of year 24, that is ~2 days before the occurrence of Cephalonia EQ1.
 12 This stationary time series excerpt, having a total length of 2.8 h (10,000 samples) starting at
 13 24 Jan. 2014 (12:46:40 UT), was also analyzed by the MCF method and was identified to be a
 14 “critical window” (CW).

15 The application of the MCF analysis on the specific time series (cf. Fig. 3), revealed that the
 16 criticality conditions, $p_2 > 1$ and $p_3 \approx 0$, are satisfied for a wide range of end points ϕ_i , for
 17 this signal too. In other words, this signal has also embedded the power-law decay feature that
 18 indicates intermittent dynamics, rendering it a CW..

19 <Figure 3 should be placed around here>

20

21 After the $M_w = 6.0$ (EQ1), ~ a week later, the second, $M_w = 5.9$ (EQ2), occurred on the same
 22 island with a focal area a few km ~~further than~~away from the first one. Six days earlier, both
 23 the Cephalonia and Zante stations simultaneously recorded MHz EME. Specifically, a
 24 stationary time series excerpt, having a total length of 3.3 h (12,000 samples) starting at 28
 25 Jan. 2014 (05:33:20 UT), from ~~Cephalonia~~Cephalonia station and a stationary time series
 26 excerpt, having a total length of 5 h (18,000 samples) starting at 28 Jan. 2014 (03:53:20 UT),
 27 from Zante station were analyzed by the MCF method and both of them were identified to be
 28 CWs. Note that the Cephalonia CW was emitted within the time frame in which the Zante
 29 CW was emitted. Figs 4 & 5 show the results of the corresponding analyses.

1

2 <Figure 4 should be placed around here>

3

4 <Figure 5 should be placed around here>

5

6 In summary, we conclude that, according to the MCF analysis method, both stations recorded
7 MHz signals that simultaneously presented critical state features two days before the first
8 main event and six days before the second main event. In order to verify this finding, we
9 proceeded to the analysis of all the corresponding MHz signals by means of the NT analysis
10 method, according to the way of application proposed in [Potirakis et al. \(2013\)](#). According to
11 the specific procedure for the application of the NT method on the MHz signals, we
12 performed an exhaustive search seeking for at least one amplitude threshold value (applied
13 over the total length of the analyzed signal), for which the corresponding fracto-EME events
14 satisfy the natural time method criticality conditions. The idea is that if the MCF gives valid
15 information, and as a consequence the analyzed time series excerpt is indeed in critical
16 condition, then there should be at least one threshold value for which the NT criticality
17 conditions (cf. Sec. 2.2) are satisfied. Indeed, as apparent from Fig. 6, all four signals satisfy
18 the criticality conditions according to the NT method for at least one of the considered
19 threshold values, therefore the results obtained by the MCF method are successfully verified.

20

21 <Figure 6 should be placed around here>

22

23 On 2 February 2014, i.e., one day before the occurrence of EQ2, MHz EME presenting
24 tricritical characteristics was recorded by the Cephalonia station. This signal emerged five
25 days after the CWs that were identified in the simultaneously recorded, by the Cephalonia and
26 Zante stations, MHz EME. The specific MHz time series excerpt from Cephalonia station,
27 having a total length of 7.5 h (27,000 samples) starting at 2 Feb. 2014 (07:46:40 UT), was
28 analyzed by means of the MCF method yielding the results shown in Fig. 7. As apparent from
29 the results, this signal satisfies the tricriticality conditions $p_2 < 1$, $p_3 \approx 0$ (cf. Sec. 2.1) for a

1 wide range of end points ϕ_i , revealing the intermediate “mixing state” between the second
 2 order phase transition to the first order phase transition. Unfortunately, during the time that
 3 the Cephalonia station recorded ~~tricritical~~_{tricritical} MHz signal, the Zante station was ~~out of~~
 4 ~~order~~_{not in operation}; actually, it was out of ~~order~~_{operation} for several hours during the
 5 specific day.

6

7 <Figure 7 should be placed around here>

8

9 It has been recently found (Contoyiannis et al., 2015) that such a behavior is identified in the
 10 kHz EME which usually emerge near the end of the MHz EME when the environment in
 11 which the EQ preparation process evolves changes from heterogeneous to less heterogeneous,
 12 and before the emergence of the strong avalanche-like kHz EME which have been attributed
 13 to the fracture of the asperities sustaining the fault. Actually, this has been proposed as the
 14 second stage of the four-stage model for the preparation of an EQ by means of its observable
 15 EM activity (Eftaxias and Potirakis, 2013, and references therein; Contoyiannis et al., 2015,
 16 and references therein; Donner et al., 2015). The identification of tricritical behavior in MHz
 17 EME is a quite important finding, indicating that the tricritical behavior, attributed to the
 18 second stage of the aforementioned four-stage model, can be identified either in kHz or in
 19 MHz EME, leading thus to a revision of the specific four-stage model in order to include this
 20 case too.

21 As a conclusion, after the first stage of the EQ preparation process where MHz EME with
 22 critical features are emitted, a second stage follows where MHz or kHz or both MHz and kHz
 23 EME with ~~tricritical~~_{tricritical} features are emitted. As already mentioned (cf. Sec. 2.1), in
 24 terms of statistical physics the ~~tricritical~~_{tricritical} behavior is an intermediate dynamical state
 25 which is developed in the region of the phase diagram of a system around the
 26 ~~tricritical~~_{tricritical} point, which can be approached either from the edge of the first order
 27 phase transition (characterizing the strong avalanche-like kHz EME attributed to the third
 28 stage of the four-stage model) or from the edge of the second order phase transition
 29 (characterizing the critical MHz EME attributed to the first stage of the four-stage model).
 30 Therefore, although it is expected that the ~~tricritical~~_{tricritical} behavior will be rarely observed,

1 as it has already been discussed in (Contoyiannis et al., 2015), it can be found either in MHz
2 time series, following the emission of a critical MHz EME, or in kHz time series preceding
3 the emission of avalanche-like kHz EME.

4

5 **4. Foreshock Seismic Activity Analysis Results**

6 As already mentioned in Potirakis et al. (2013, 2015): “seismicity and pre-fracture EMEs
7 should be two sides of the same coin concerning the EQ generation process. If the MHz
8 EMEs and the corresponding foreshock seismic sequence are observable manifestations of the
9 same complex system at critical state, both should be possible to be described as a critical
10 phenomenon by means of the natural time method.” Therefore, we also proceeded to the
11 examination of the corresponding foreshock seismic activity around Cephalonia before each
12 one of the significant EQs of interest in order to verify this suggestion. However, we did not
13 apply the NT method on concentric circles around the epicenter of each EQ, as in Potirakis et
14 al. (2013, 2015), but instead we decided to study seismicity within areas determined
15 according to seismotectonic and earthquake hazard criteria.

16 Following the detailed study presented in Vamvakaris et al. (2016), we incorporated the
17 seismic zones proposed there for our area of study. Thus, as it is presented in Fig. 8, we
18 defined five separate seismic zones, based on the criteria explored in Vamvakaris et al. (2016)
19 and the seismic zonation proposed by them. Since the study area, comprises the most
20 seismically active zone in Greece, assigned also the highest value on the Earthquake Building
21 Code for the country, a large number of source, stress and strain studies have been used in
22 their study to establish such definition of zoning. Hence, it was found well justified to follow
23 their zone definition. In Fig. 8, from east to west and north to south, one can identify the
24 zones of Akarnania (area no. 1), Lefkada island (area no. 2), east Cephalonia island (area no.
25 3), west Cephalonia island (area no. 4), and Zante island (area no. 5), respectively, covering
26 the area of the Ionian Sea near Cephalonia island.

27

28 <Figure 8 should be placed around here>

29

1 Before we proceed to the NT analysis of seismicity, the seismic activity prior to EQ1, as well
 2 as between EQ1 and EQ2 is briefly discussed in relation to the above mentioned seismic
 3 zones. Earthquake parametric data have been retrieved from the National Observatory of
 4 Athens on-line catalogue (<http://www.gein.noa.gr/en/seismicity/earthquake-catalogs>), while
 5 for all the presented maps and calculations the local magnitude (M_L), as provided by the
 6 specific earthquake catalog, is used. The foreshock seismic activity before EQ1 for the whole
 7 investigated area of the Ionian Sea region from 13 December 2013 up to the time of
 8 occurrence of the main event is shown in the map of Fig. 9a. As it can be easily observed
 9 from this map, there was a high seismic activity mainly focused on two specific zones: west
 10 Cephalonia and Zante. Notably, an EQ of $M_L = 4.7$ occurred in Zante on 11/01/2014
 11 04:12:58, indicated by the black arrow in Fig. 9a. No EQs were recorded in Akarnania, while
 12 very few events were recorded in Lefkada and east Cephalonia. The events which occurred in
 13 west Cephalonia are also shown in a separate map in Fig. 9b for later reference.

14

15 <Figure 9 should be placed around here>

16

17 Applying the natural time analysis on seismic data (cf. Sec. 2.2), the evolution of the time
 18 series (χ_k, Q_k) was studied for the foreshock seismicity prior to EQ1, where Q_k is in this
 19 case the seismic energy released during the k^{th} event. The seismic moment, M_0 , as
 20 proportional to the seismic energy, is usually considered (Varotsos et al., 2005; Uyeda et al.,
 21 2009b; Potirakis et al., 2013, 2015). Our calculations were based on the seismic moment M_0
 22 (in dyn.cm) resulting from the corresponding M_L as (Varotsos et al., 2005; Potirakis et al.,
 23 2013, 2015), $M_0 = 10^{0.99M_L + 11.8}$. First, we performed an NT analysis on the seismicity activity
 24 of the whole investigated Ionian Sea region during the period from 13/12/2013 00:00:00 to
 25 26/01/2014 13:55:44 UT, i.e., just after the occurrence of EQ1, for different magnitude
 26 thresholds, M_{thres} , for which all earthquakes having $M_L > M_{\text{thres}}$ were included in the analysis.
 27 Note that, only $M_{\text{thres}} \geq 2$ was considered in order to assure data completeness (Chouliaras et
 28 al., 2013a, 2013b).

1 For all the considered threshold values, the result was the same: no indication of criticality
2 was identified (see for example Fig. 10a). Since, as we have already mentioned, the whole
3 investigated area was mainly dominated by the seismic activity in west Cephalonia and the
4 seismic activity in Zante, while an EQ of $M_L = 4.7$ occurred in Zante, we decided to start the
5 NT analysis after the occurrence of the specific Zante EQ, in order to exclude from our
6 analysis possible foreshock activity related to the specific event. As a result, we performed
7 NT analysis for the time period 11/01/2014 04:13:00 (just after the $M_L = 4.7$ Zante EQ) to
8 26/01/2014 13:55:44 UT, for different magnitude thresholds in three successively enclosed
9 areas: namely, the whole investigated area of Ionian Islands region, both Cephalonia (east and
10 west) zones combined, and the zone of west Cephalonia. Representative examples of these
11 analyses are depicted in Fig. 10b – Fig. 10d. The analysis over the whole investigated area of
12 the Ionian Islands region indicates that seismicity reaches criticality on 19 and 20 of January,
13 while the two other progressively narrower areas indicate that the criticality conditions
14 according to NT method are satisfied on 19 and 22 of January. These results imply that
15 seismicity was also in critical condition a few days prior to the occurrence of the first studied
16 significant Cephalonia EQ (EQ1). Actually, in the specific case, the critical condition of
17 seismicity was reached before, but quite close, to the emission of the corresponding MHz
18 signals for which critical behavior was identified (cf. Sec. 3). Note that a very recent analysis
19 on the foreshock seismic activity before EQ1, in terms of a combination of multiresolution
20 wavelets and NT analysis, which was performed on concentric areas of 50 km and 30 km
21 radii around the epicenter of EQ1, also found that NT analysis criticality requirements are met
22 a few days before EQ1 (at approximately 20 January) (Vallianatos et al., 2015).

23

24 <Figure 10 should be placed around here>

25

26 Before the application of the NT method to the seismic activity prior to EQ2, one should first
27 study the time evolution of the activity between the two significant events of interest, in order
28 to minimize if possible the influence of the first EQ aftershock sequence on the NT analysis.
29 Our first observation about the EQs which occurred during the specific time period was that,

1 all but one had epicenters in west Cephalonia. Only one $M_L = 2.3$ EQ occurred in Zante, at
 2 (37.79° N, 21.00° E) on 28 January 2014 02:08:27 UT.

3 Fig. 11a shows all the events that were recorded in the whole investigated area of the Ionian
 4 Islands region vs. time from just after EQ1 ($M_w = 6.0$) up to the time of EQ2 ($M_w = 5.9$),
 5 including EQ2. As it can be seen, if one considers that both significant EQs of interest were
 6 main events, it is quite difficult to separate the seismic activity of the specific time period into
 7 aftershocks of the first EQ and foreshocks of the second one. However, we observe that up to
 8 a specific time point, there is a rapid decrease of the running mean magnitude of the recorded
 9 EQs, while after that the long range (75 events) running mean value seems to be almost
 10 constant over time with the short range (25 events) one varying around it. We arbitrarily set
 11 the 29 January 00:00:00 UT as the time point after which the recorded seismicity is no longer
 12 dominated by the aftershocks of EQ1; this by no means implies that the aftershock sequence
 13 of the EQ1 stops after that date. It should also be underlined that changing this, arbitrarily
 14 selected, date within reasonable limits, does not significantly changes the results of our
 15 corresponding NT analysis which are presented next. On the other hand, a significant shift of
 16 this limit towards EQ1, i.e., to earlier dates, results to severe changes indicating the
 17 domination of the recorded seismicity by the aftershock sequence of EQ1. Accordingly, the
 18 considered as foreshock seismic activity before EQ2, i.e., from 29/01/2014 00:00 UT up to
 19 the time of occurrence of EQ2, is presented in the map of Fig. 11b for west Cephalonia and
 20 analyzed in the following.

21

22 <Figure 11 should be placed around here>

23

24 Next, we applied the NT method on the seismicity of west Cephalonia for the time period
 25 from 29/01/2014 00:00:00 to 03/02/2014 03:08:47 UT. Note that we also applied the NT
 26 method on the whole investigated area of the Ionian Islands region, obtaining practically the
 27 same results. As we have already mentioned, only one $M_L = 2.3$ EQ occurred outside the
 28 west Cephalonia zone, so, on the one hand for magnitude threshold values $M_{thres} \geq 2.3$ this
 29 event was excluded, while, on the other hand, even for lower threshold values (
 30 $2 \leq M_{thres} < 2.3$) its inclusion does not change the results significantly. Fig. 12 shows the NT

1 analysis results for some threshold values proving that seismicity reaches criticality on 1 or 2
2 February 2014, that is one or two days before the occurrence of the second significant EQ of
3 interest ($M_w = 5.9$). Actually, in the specific case, the critical condition of seismicity was
4 reached after, but quite close, to the emission of the corresponding MHz signals for which
5 critical behavior was identified (cf. Sec. 3).

6

7 <Figure 12 should be placed around here>

8

9 **5. Discussion - Conclusions**

10 Based on the methods of critical fluctuations and natural time, we have shown that the
11 fracture-induced MHz EME recorded by two stations in our network prior to two recent
12 significant EQs occurred in Cephalonia present criticality characteristics, implying that they
13 emerge from a system in critical state.

14 There are two key points that render these observations unique in the up to now research on
15 the pre-EQ EME:

16 (i) Although not previously reported, we have to note here that, as it has been observed, the
17 Cephalonia station is known for being insensitive to EQ preparation processes happening
18 outside of the wider area of Cephalonia island, as well as to EQ preparation processes leading
19 to low magnitude EQs within the area of Cephalonia island. Note that the only signal that has
20 been previously recorded refers to the $M=6$ EQ that occurred on the specific island in 2007
21 (Contoyiannis et al., 2010).

22 (ii) Prior to each one of the studied significant EQs, two MHz EME time series presenting
23 critical characteristics were recorded simultaneously in two different stations very close to the
24 focal areas, while no other station of our network (cf. Fig. 1) recorded such signals prior to the
25 specific EQs. This indicates that the revealed criticality was not associated with a global
26 phenomenon, such as critical variations in the Ionosphere, but was rather local to the area of
27 the Ionian Islands region, enhancing the hypothesis that these EME were associated with the
28 EQ preparation process taking place prior to the two significant EQs. This feature, combined
29 with the above mentioned sensitivity of the Cephalonia station only to significant EQs

1 occurring on the specific island, could have been considered as an indication of the location of
2 the impending EQs.

3 Electromagnetic emissions~~ME~~, as a phenomenon rooted in the damage process, should be an
4 indicator of memory effects. Laboratory studies verify that: during cyclic loading, the level of
5 EME increases significantly when the stress exceeds the maximum previously reached stress
6 level (Kaizer effect). The existence of Kaizer effect predicts the EM silence during the
7 aftershock period (Eftaxias et al., 2013; Eftaxias and Potirakis, 2013, and references therein).
8 Thus, the appearance of the second EM anomaly may reveal that the corresponding
9 preparation of fracture process has been organized in a new barrier.

10 We note that, according to the view that seismicity and pre-EQ EM emissions should be “two
11 sides of the same coin” concerning the earthquake generation process, the corresponding
12 foreshock seismic activity, as another manifestation of the same complex system, should be at
13 critical state as well, before the occurrence of a main event. We have shown that this really
14 happens for both the significant EQs we studied. Importantly, the revealed critical process
15 seems to be focused on an area corresponding to the west Cephalonia zone, one of the parts
16 according to the seismotectonic and hazard zone partitioning of the wider area of the Ionian
17 Islands.

18 To be more detailed, the foreshock seismicity associated with the first ($M_w = 6.0$) EQ
19 reached critical condition a few days before the occurrence of the main event. Specifically, it
20 came to critical condition before, but quite close, to the emission of the corresponding MHz
21 signals for which critical behavior was identified. The seismicity that was considered as
22 foreshock of the second ($M_w = 5.9$) EQ also reached criticality a few days before the
23 occurrence of the main event. In contrary to the first EQ case, it ~~came to reached~~ criticality
24 after, but quite close, to the emission of the corresponding MHz signals for which critical
25 behavior was identified.

26 One more outcome of our study was the identification of tricritical crossover dynamics in the
27 MHz emissions recorded just before the occurrence of the second significant EQ of interest (–
28 $M_w = 5.9$) at the Cephalonia station. Note that, unfortunately, the Zante station was out of
29 order for several hours during the specific day, including the time window during which the
30 tricritical features were identified in the Cephalonia recordings. As a result, we could not

1 cross check whether tricritical signals simultaneously also reached Zante. This is considered a
 2 quite important finding, since it verifies a theoretically expected situation, namely the
 3 approach of the intermediate dynamical state of tricritical crossover, either from the first or
 4 from the second order phase transition state. In terms of pre-EQ EME, this leads to a revision
 5 of the four-stage model for the preparation of an EQ by means of its observable EM activity.
 6 Namely, after the first stage of the EQ preparation process where MHz EME with critical
 7 features are emitted, a second stage follows where MHz or kHz or both MHz and kHz EME
 8 with ~~tricritical~~ tricritical features are emitted. Specifically, the ~~tricritical~~ tricritical crossover
 9 dynamics can be identified either in MHz time series, following the emission of a critical
 10 MHz EME, or in kHz time series preceding the emission of avalanche-like kHz EME. In
 11 summary, the proposed four stages of the last part of EQ preparation process and the
 12 associated, appropriately identified, EM observables appear in the following order: 1st stage:
 13 valid MHz anomaly; 2nd stage: MHz or kHz or MHz and kHz anomaly exhibiting tri-critical
 14 characteristics; 3rd stage: strong avalanche-like kHz anomaly; 4th stage: electromagnetic
 15 quiescence. Note that the specific four-stage model is a suggestion that seems to be verified
 16 by the up to now available MHz-kHz observation data and corresponding time-series
 17 analyzes, while a rebuttal has not ~~yet~~ appeared in the literature. However, the understanding
 18 of the physical processes involved in the preparation of an EQ and their relation to various
 19 available observables is an open scientific issue. ~~Much~~ A lot of efforts still remains to be ~~paid~~
 20 undertaken before one can claim clear understanding of EQ preparation processes and their
 21 associated possible precursors.

22 As it has been repeatedly pointed out in previous works (e.g., Eftaxias et al., 2013; Eftaxias
 23 and Potirakis, 2013, and references therein), our view is that such observations and the
 24 associated analyses offer valuable information ~~for the comprehension~~ towards understanding
 25 of processes in the Earth system ~~processes that take~~ taking place prior to the occurrence of a
 26 significant EQ. As it is known, a large number of other precursory phenomena are also
 27 observed, both by ground and satellite stations, prior to significant EQs. Only a combined
 28 evaluation of our observations with other well documented precursory phenomena could
 29 possibly render our observations useful for a reliable short-term forecast solution.
 30 Unfortunately, in the cases of the Cephalonia EQs under study this requirement was not
 31 fulfilled. To the best of our knowledge, only one paper reporting the emergence of VLF
 32 seismic-ionospheric disturbances four days before the first Cephalonia EQ (Skeberis et al.,

Formatted: Superscript

Formatted: Superscript

Formatted: Superscript

Formatted: Superscript

1 2015) has been published up to now. It is very important that the specific disturbances, which
 2 also correspond to a spatially extensive process as happens with the MHz EME, were
 3 recorded during the same time window with the herein presented MHz critical signals.
 4 However, more precursory phenomena could have been investigated if appropriate
 5 observation data were available. For example, if ground-based magnetic observatories in the
 6 area of Greece had available magnetometer data for the time period of interest, EQ-related
 7 ULF magnetic field variations, could also be investigated. Such ULF variations, either of
 8 lithospheric or ionospheric origin, which are also a result of spatially extensive processes and
 9 in other cases have been shown to present critical characteristics prior to significant EQ
 10 occurrence (Hayakawa et al., 2015a, 2015b; Contoyiannis et al., 2016; Potirakis et al., 2016);
 11 could also be investigated.

12

13 Acknowledgements

14 The authors S. M. P., Y. C., N. S. M., J. K., G. A., C. N. and K. E. would like to acknowledge
 15 that this research was co-funded by the EU (European Social Fund) and national funds, action
 16 “Archimedes III—Funding of research groups in T.E.I.”, under the Operational Programme
 17 “Education and Lifelong Learning 2007-2013”. The authors G. B. and C. K. would like to
 18 acknowledge support from the European Union Seventh Framework Programme (FP7-
 19 REGPOT-2012-2013-1) under grant agreement no. 316210 (BEYOND – Building Capacity
 20 for a Centre of Excellence for EO-based monitoring of Natural Disasters).

21

22 REFERENCES

23 Abe, S., Sarlis, N. V., Skordas, E. S., Tanaka, H. K., Varotsos, P. A.: Origin of the usefulness
 24 of the natural-time representation of complex time series, Phys. Rev. Lett., 94, doi:
 25 10.1103/PhysRevLett.94.170601, 2005.

26 Balasis, G., Daglis, I. A., Anastasiadis, A., Papadimitriou, C., Mandea, M., Eftaxias, K.;
 27 Universality in solar flare, magnetic storm and earthquake dynamics using Tsallis
 28 statistical mechanics, Physica A, doi:10.1016/j.physa.2010.09.029, 390, 341–346, 2011.

29 Balasis, G., Donner, R. V., Potirakis, S. M., Runge, J., Papadimitriou, C., Daglis, I. A.,
 30 Eftaxias, K., Kurths, J. : Statistical mechanics and information-theoretic perspectives on
 31 complexity in the Earth System, Entropy, 15(11), 4844-4888; doi:10.3390/e15114844,
 32 2013.

1 Bowman, D., Ouillon, G., Sammis, C., Sornette, A., Sornette, D.: An observational test of the
2 critical earthquake concept, *J. Geophys. Res.*, 103, 24359-24372, doi:
3 10.1029/98JB00792, 1998.

4 Chelidze, T.: Percolation and fracture, *Phys. Earth Planet. In.*, 28, 93-101, 1982.

5 Chelidze, T., Kolesnikov, Yu. M.: Percolation modell des bruchprozesses, *Gerlands Beitr.
6 Geophysik. Leipzig*, 91, 35-44, 1982.

7 Chelidze, T., Kolesnikov, Yu., Matcharashvili, T.: Seismological criticality concept and
8 percolation model of fracture, *Geophys. J. Int.*, 164, 125-136, 2006.

9 Chouliaras, G., Melis, N. S., Drakatos, G., Makropoulos, K.: Operational network
10 improvements and increased reporting in the NOA (Greece) seismicity catalog,
11 *Geophysical Research Abstracts*, 15, EGU2013-12634-6., 2013a.

12 Chouliaras, G., Melis, N. S., Drakatos, G., Makropoulos, K.: Operational network
13 improvements and increased reporting in the NOA (Greece) seismicity catalog, *Adv.
14 Geosci.*, 36, 7-9, doi: 10.5194/adgeo-36-7-2013, 2013b.

15 Cicerone, R. D., Ebel, J. E., Britton, J.: A systematic compilation of earthquake precursors,
16 *Tectonophysics*, 476, 371-396, doi: 10.1016/j.tecto.2009.06.008, 2009.

17 Contoyiannis, Y., Diakonos, F.: Criticality and intermittency in the order parameter space,
18 *Phys. Lett. A*, 268, 286 -292, doi: 10.1016/S0375-9601(00)00180-8, 2000.

19 Contoyiannis, Y., Diakonos, F., Malakis, A.: Intermittent dynamics of critical fluctuations,
20 *Phys. Rev. Lett.*, 89, 035701, doi: 10.1103/PhysRevLett.89.035701, 2002.

21 Contoyiannis, Y. F., Diakonos, F. K., Kapiris, P. G., Peratzakis, A. S., Eftaxias, K. A.:
22 Intermittent dynamics of critical pre-seismic electromagnetic fluctuations, *Phys.
23 Chem. Earth*, 29, 397-408, doi: 10.1016/j.pce.2003.11.012, 2004a.

24 Contoyiannis, Y. F., Diakonos, F. K., Papaefthimiou, C., Theophilidis, G.: Criticality in the
25 relaxation phase of a spontaneously contracting atria isolated from a Frog's Heart,
26 *Phys. Rev. Lett.*, 93, 098101, doi: 10.1103/PhysRevLett.93.098101, 2004b.

27 Contoyiannis, Y. F., Kapiris, P. G., Eftaxias, K. A.: A Monitoring of a pre-seismic phase from
28 its electromagnetic precursors, *Phys. Rev. E*, 71, 066123, 066123/1-14, doi:
29 10.1103/PhysRevE.71.066123, 2005.

30 Contoyiannis, Y. F., Diakonos, F. K.: Unimodal maps and order parameter fluctuations in the
31 critical region, *Phys. Rev. E*, 76, 031138, 2007.

32 Contoyiannis, Y. F., Eftaxias, K.: Tsallis and Levy statistics in the preparation of an
33 earthquake, *Nonlin. Processes Geophys.*, 15, 379-388, doi:10.5194/npg-15-379-
34 2008, 2008.

35 Contoyiannis, Y. F., Nomicos, C., Kopanas, J., Antonopoulos, G., Contoyianni, L., Eftaxias,
36 K.: Critical features in electromagnetic anomalies detected prior to the L'Aquila
37 earthquake, *Physica A*, 389, 499-508, doi: 10.1016/j.physa.2009.09.046, 2010.

1 Contoyiannis, Y. F., Potirakis, S. M., Eftaxias, K.: The Earth as a living planet: human-type
2 diseases in the earthquake preparation process, *Nat. Hazards Earth Syst. Sci.*, 13,
3 125–139, doi: 10.5194/nhess-13-125-2013, 2013.

4 Contoyiannis, Y., Potirakis, S. M., Eftaxias, K., Contoyianni, L.: Tricritical crossover in
5 earthquake preparation by analyzing preseismic electromagnetic emissions, *J.
6 Geodynamics*, 84, 40-54, doi: 10.1016/j.jog.2014.09.015, 2015.

7 Contoyiannis, Y., Potirakis, S. M., Eftaxias, K., Hayakawa, M., Schekotov, A.: Intermittent
8 criticality revealed in ULF magnetic fields prior to the 11 March 2011 Tohoku
9 earthquake (Mw=9), *Physica A*, 452, 19–28, doi:10.1016/j.physa.2016.01.065, 2016.

10 Donner, R. V., Potirakis, S. M., Balasis, G., Eftaxias, K., Kurths, J.: Temporal correlation
11 patterns in pre-seismic electromagnetic emissions reveal distinct complexity profiles
12 prior to major earthquakes, *Phys. Chem. Earth*, 85–86, 44–55, ~~In Press (on line
13 available)~~, doi: 10.1016/j.pce.2015.03.008, 2015.

14 Eftaxias, K., Kapiris, P., Polygiannakis, J., Bogris, N., Kopanas, J., Antonopoulos, G.,
15 Peratzakis, A., Hadjicontis, V.: Signatures of pending earthquake from electromagnetic
16 anomalies, *Geophys. Res. Lett.*, 28, 3321-3324, doi: 10.1029/2001GL013124, 2001.

17 Eftaxias, K., Frangos, P., Kapiris, P., Polygiannakis, J., Kopanas, J., Peratzakis, A.,
18 Skountzos, P., Jaggard, D.: Review and a model of pre-seismic electromagnetic
19 emissions in terms of fractal electrodynamics, *Fractals*, 12, 243–273, doi:
20 10.1142/S0218348X04002501, 2004.

21 Eftaxias, K., Contoyiannis, Y., Balasis, G., Karamanos, K., Kopanas, J., Antonopoulos, G.,
22 Koulouras, G., Nomicos, C.: Evidence of fractional-Brownian-motion-type asperity
23 model for earthquake generation in candidate pre-seismic electromagnetic emissions,
24 *Nat. Hazards Earth Syst. Sci.*, 8, 657–669, doi:10.5194/nhess-8-657-2008, 2008.

25 Eftaxias, K., Potirakis, S. M., Chelidze, T.: On the puzzling feature of the silence of
26 precursory electromagnetic emissions, *Nat. Hazards Earth Syst. Sci.*, 13, 2381-2397,
27 doi: 10.5194/nhess-13-2381-2013, 2013.

28 Eftaxias, K., Potirakis, S. M.: Current challenges for pre-earthquake electromagnetic
29 emissions: shedding light from micro-scale plastic flow, granular packings, phase
30 transitions and self-affinity notion of fracture process, *Nonlin. Processes Geophys.*, 20,
31 771–792, doi:10.5194/npg-20-771-2013, 2013.

32 Ganas, A., Cannavo, F., Chousianitis, K., Kassaras, I., Drakatos, G.: Displacements recorded
33 on continuous GPS stations following the 2014 M6 Cephalonia (Greece) earthquakes:
34 Dynamic characteristics and kinematic implications, *Acta Geodyn. Geomater.*, 12(1), 5–
35 27, doi: 10.13168/AGG.2015.0005, 2015.

36 Hayakawa, M. (ed.): *The Frontier of Earthquake Prediction Studies*, Nihon-Senmontoshō-
37 Shuppan, Tokyo, 2013a.

38 Hayakawa, M. (ed.): *Earthquake Prediction Studies: Seismo Electromagnetics*, Terrapub,
39 Tokyo, 2013b.

1 Hayakawa, M., Schekotov, A., Potirakis, S., and Eftaxias, K.: Criticality features in ULF
 2 magnetic fields prior to the 2011 Tohoku earthquake, Proc. Japan Acad., Ser. B, 91,
 3 25-30, doi: 10.2183/pjab.91.25, 2015a.

4 [Hayakawa, M., Schekotov, A., Potirakis, S. M., Eftaxias, K., Li, Q., Asano, T., An Integrated](#)
 5 [Study of ULF Magnetic Field Variations in Association with the 2008 Sichuan](#)
 6 [Earthquake, on the Basis of Statistical and Critical Analyses”, Open J. Earthq. Res.,](#)
 7 [4, 85-93, doi: 10.4236/ojer.2015.43008, 2015b.](#)

8 Huang, K.: *Statistical Mechanics*, 2nd Ed. John Wiley and sons, New York, 1987.

9 Kapiris, P., Eftaxias, K., Chelidze, T.: Electromagnetic signature of prefraction criticality in
 10 heterogeneous media, Phys. Rev. Lett., 92(6), 065702/1-4, doi:
 11 10.1103/PhysRevLett.92.065702, 2004.

12 [Kalimeris, A., Potirakis, S. M., Eftaxias, K., Antonopoulos, G., Kopanas, J., Nomikos, C.;](#)
 13 [Multi-spectral detection of statistically significant components in pre-seismic](#)
 14 [electromagnetic emissions related with Athens 1999, M = 5.9 earthquake, J. App.](#)
 15 [Geophys., 128, 41–57, doi:10.1016/j.jappgeo.2016.03.002, 2016.](#)

16 Karamanos, K., Dakopoulos, D., Aloupis, K., Peratzakis, A., Athanasopoulou, L.,
 17 Nikolopoulos, S., Kapiris, P., Eftaxias, K.: Study of pre-seismic electromagnetic signals
 18 in terms of complexity, Phys. Rev. E, 74, 016104/1-21, doi:
 19 10.1103/PhysRevE.74.016104, 2006.

20 Karastathis, V. K., Mouzakiotis, E., Ganas, A., Papadopoulos, G. A.: High-precision
 21 relocation of seismic sequences above a dipping Moho: The case of the January-
 22 February 2014 seismic sequence in Cephalonia Isl. (Greece), Solid Earth Discuss., 6,
 23 2699-2733, doi: 10.5194/sed-6-2699-2014, 2014.

24 Merryman Boncori, J. P., Papoutsis, I., Pezzo, G., Tolomei, C., Atzori, S., Ganas, A.,
 25 Karastathis, V., Salvi, S., Kontoes, C., Antonioli, A.: The February 2014 Cephalonia
 26 earthquake (Greece): 3D deformation field and source modeling from multiple SAR
 27 techniques, Seismol. Res. Lett. 86(1), 1-14, doi: 10.1785/0220140126, 2015.

28 Minadakis, G., Potirakis, S. M., Nomicos, C., Eftaxias, K.: Linking electromagnetic
 29 precursors with earthquake dynamics: an approach based on nonextensive fragment and
 30 self-affine asperity models, Physica A, 391, 2232-2244, doi:
 31 10.1016/j.physa.2011.11.049, 2012a.

32 Minadakis, G., Potirakis, S. M., Stonham, J., Nomicos, C., Eftaxias, K.: The role of
 33 propagating stress waves in geophysical scale: Evidence in terms of nonextensivity,
 34 Physica A, 391(22), 5648-5657, doi:10.1016/j.physa.2012.04.030, 2012b.

35 Ozun, A., Contoyiannis, Y. F., Diakonos, F. K., Hanias, M., Magafas, L.: Intermittency in
 36 stock market dynamic, J. Trading 9(3), 26-33, 2014.

37 Papadimitriou, K., Kalimeri, M., Eftaxias, K.: Nonextensivity and universality in the
 38 earthquake preparation process, Phys. Rev. E, 77, 036101/1-14, doi:
 39 10.1103/PhysRevE.77.036101, 2008.

40 Papadopoulos, G. A., Karastathis, V. K., Koukouvelas, I., Sachpazi, M., Baskoutas, I.,
 41 Chouliaras, G., Agalos, A., Daskalaki, E., Minadakis, G., Moshou, A., Mouzakiotis, A.,
 42 Orfanogiannaki, K., Papageorgiou, A., Spanos, D., Triantafyllou, I.: The Cephalonia,

1 Ionian Sea (Greece), sequence of strong earthquakes of January-February 2014: a first
2 report, *Res. Geophys.*, 4:5441, 19-30, doi:10.4081/rg.2014.5441, 2014.

3 Pingel, D., Schmelcher, P., Diakonos, F. K.: Theory and examples of the inverse Frobenius-
4 Perron problem for complete chaotic maps, *Chaos*, 9, 357-366, doi: 10.1063/1.166413,
5 1999.

6 Potirakis, S. M., Minadakis, G., Nomicos, C., Eftaxias, K.: A multidisciplinary analysis for
7 traces of the last state of earthquake generation in preseismic electromagnetic
8 emissions, *Nat. Hazards and Earth Syst. Sci.*, 11, 2859-2879, doi:10.5194/nhess-11-
9 2859-2011, 2011.

10 Potirakis, S. M., Minadakis, G., Eftaxias, K.: Analysis of electromagnetic pre-seismic
11 emissions using Fisher information and Tsallis entropy, *Physica A*, 391, 300-306,
12 doi:10.1016/j.physa.2011.08.003, 2012a.

13 Potirakis, S. M., Minadakis, G., Eftaxias, K.: Sudden drop of fractal dimension of
14 electromagnetic emissions recorded prior to significant earthquake, *Nat. Hazards*, 64,
15 641-650, doi:10.1007/s11069-012-0262-x, 2012b.

16 Potirakis, S. M., Minadakis, G., Eftaxias, K.: Relation between seismicity and pre-earthquake
17 electromagnetic emissions in terms of energy, information and entropy content, *Nat.*
18 *Hazards Earth Syst. Sci.*, 12, 1179-1183, doi:10.5194/nhess-12-1179-2012, 2012c.

19 Potirakis, S.M., Karadimitrakis, A. and Eftaxias, K.: Natural time analysis of critical
20 phenomena: the case of pre-fracture electromagnetic emissions, *Chaos*, 23, 2, 023117.
21 doi:10.1063/1.4807908, 2013.

22 Potirakis, S. M., Contoyiannis, Y., Eftaxias, K., Koulouras, G., and Nomicos, C.: Recent field
23 observations indicating an earth system in critical condition before the occurrence of a
24 significant earthquake, *IEEE Geosc. Remote Sens. Lett.*, 12(3), 631-635, doi:
25 10.1109/LGRS.2014.2354374, 2015.

26 Potirakis, S. M., Eftaxias, K., Schekotov, A., Yamaguchi, H., Hayakawa, M.: Criticality
27 features in ULF magnetic fields prior to the 2013 M6.3 Kobe earthquake, *Ann.*
28 *Geophys.*, 2016 (in press).

29 Rundle, J. B., Holliday, J. R., Graves, W. R., Turcotte, D. L., Tiampo, K. F., Klein, W.:
30 Probabilities for large events in driven threshold systems, *Phys. Rev. E*, 86, 021106,
31 2012.

32 Sakkas, V., Lagios, E.: Fault modelling of the early-2014 ~ M6 Earthquakes in Cephalonia
33 Island (W. Greece) based on GPS measurements, *Tectonophysics*, 644-645, 184-196,
34 doi: 10.1016/j.tecto.2015.01.010, 2015.

35 Sarlis, N. V., Skordas, E. S., Varotsos, P. A.: Similarity of fluctuations in systems exhibiting
36 self-organized criticality, *Europhys. Lett.*, 96, 2, doi:10.1209/0295-5075/96/28006,
37 2011.

38 Sarlis, N. V., Skordas, E. S., Lazaridou, M. S., Varotsos, P. A.: Investigation of seismicity
39 after the initiation of a Seismic Electric Signal activity until the main shock, *Proc. Japan*
40 *Acad.*, Ser. B., 84, 331-343, 2008.

41 Schuster, H.: *Deterministic Chaos*, VCH, Weinheim, 1998.

1 Skeberis, C., Zaharis, Z.D., Xenos, T.D., Spatalas, S., Arabelos, D.N., Contadakis, M.E.:
2 Time-frequency analysis of VLF for seismic-ionospheric precursor detection:
3 Evaluation of Zhao-Atlas-Marks and Hilbert-Huang Transforms, *Phys. Chem. Earth*,
4 85-86, 174–184, doi:10.1016/j.pce.2015.02.006, 2015.

5 Stanley, H. E.: *Introduction to Phase Transitions and Critical Phenomena*, Oxford University
6 Press, New York, 1987.

7 Stanley, H. E.: Scaling, universality, and renormalization: Three pillars of modern critical
8 phenomena, *Rev. Modern Phys.*, 71, S358-S366, 1999.

9 Uyeda, S., Nagao, T., Kamogawa, M.: Short-term EQ prediction: Current status of seismo-
10 electromagnetics, *Tectonophysics*, 470, 205–213, 2009a.

11 Uyeda, S., Kamogawa, M., Tanaka, H.: Analysis of electrical activity and seismicity in the
12 natural time domain for the volcanic-seismic swarm activity in 2000 in the Izu Island
13 region, *J. Geophys Res.*, 114(B2), B02310, doi:10.1029/2007JB005332, 2009b.

14 Valkaniotis, S., Ganas, A., Papathanassiou, G., Papanikolau, M.: Field observations of
15 geological effects triggered by the January-February 2014 Cephalonia (Ionian Sea,
16 Greece) earthquakes, *Tectonophysics*, 630, 150-157, doi: 10.1016/j.tecto.2014.05.012,
17 2014.

18 Vallianatos, F., Michas, G., Hloupis, G.: Multiresolution wavelets and natural time analysis
19 before the January-February 2014 Cephalonia (Mw6.1 & 6.0) sequence of strong
20 earthquake events, *Phys. Chem. Earth*, 85-86, 201–209, 2015.

21 Vamvakaris, D. A., Papazachos, C. B., Papaioannou, Ch. A., Scordilis, E. M., and Karakasis,
22 G. F.: A detailed seismic zonation model for shallow earthquakes in the broader Aegean
23 area, *Nat. Hazards Earth Syst. Sci.*, 16, 55-84, doi:10.5194/nhess-16-55-2016, 2016.

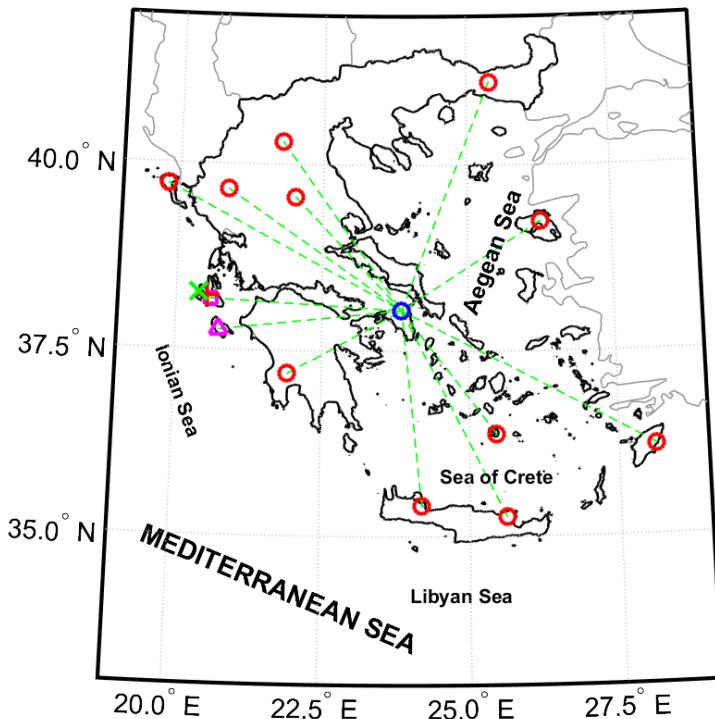
24 Varotsos, P. A.: *The Physics of Seismic Electric Signals*, TERRAPUB, Tokyo, 2005.

25 Varotsos, P. A., Sarlis, N. V., Skordas, E. S.: Spatio-temporal complexity aspects on the
26 interrelation between seismic electric signals and seismicity., *Pract. Athens Acad.*, 76,
27 294-321, 2001.

28 Varotsos, P. A., Sarlis, N. V., Skordas, E. S.: Long-range correlations in the electric signals
29 that precede rupture, *Phys. Rev. E*, 66, 011902.doi:10.1103/ PhysRevE.66.011902,
30 2002.

31 Varotsos, P. A., Sarlis, N. V., Tanaka, H. K., Skordas, E. S.: Similarity of fluctuations in
32 correlated systems: The case of seismicity, *Phys. Rev. E*, 72, 041103. doi:
33 10.1103/PhysRevE.72.041103, 2005.

34 Varotsos, P. A., Sarlis, N. V., Skordas, E. S., Tanaka, H. K., Lazaridou, M. S.: Entropy of
35 seismic electric signals: Analysis in the natural time under time reversal, *Phys. Rev. E*,
36 73, 031114. doi:10.1103/PhysRevE.73.031114, 2006.

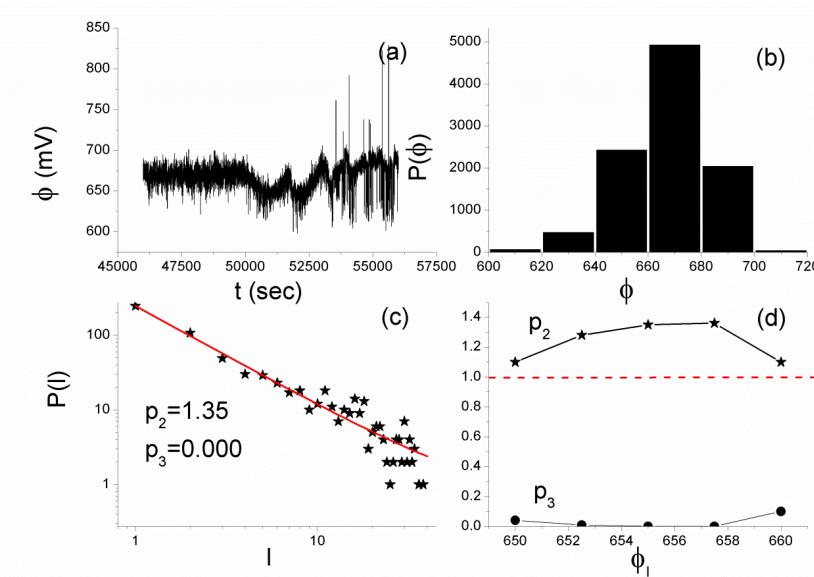

37 Varotsos, P., Sarlis, N., Skordas, E., Uyeda, S., Kamogawa, M.: Natural time analysis of
38 critical phenomena, *Proc. Natl. Acad. Sci. USA*, 108, 11361–11364, 2011a.

39 Varotsos, P., Sarlis, N., Skordas, E. S.: *Natural Time Analysis: The New View of Time*,
40 Springer, Berlin, 2011b.

1 Wanliss, J., Muñoz, V., Pastén, D., Toledo, B., Valdivia, J. A.: Critical behavior in earthquake
2 energy dissipation, *Nonlin. Processes Geophys. Discuss.*, 2, 619–645, 2015.
3

1 **Figures**

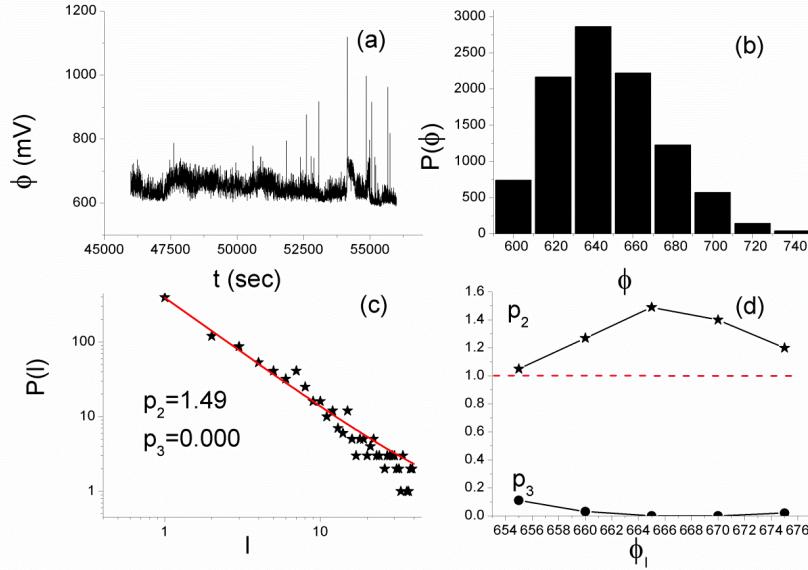
2



3

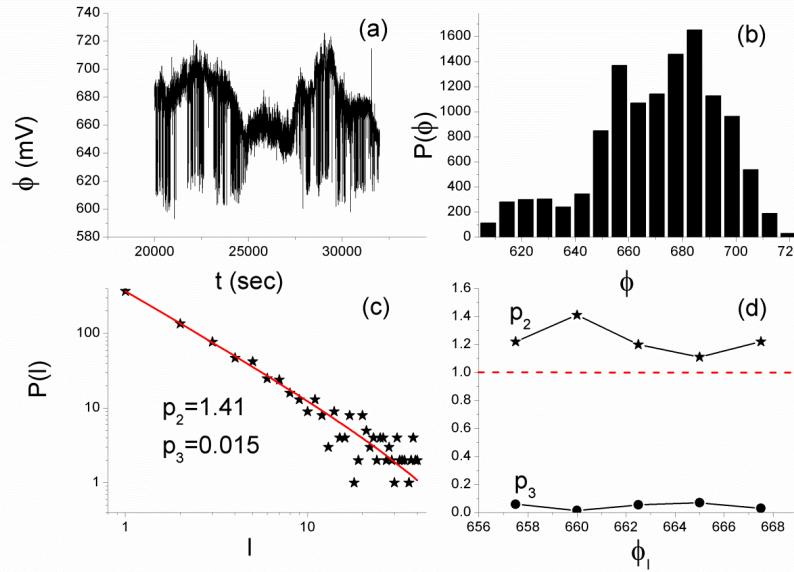
4 **Figure 1.** Map with distribution of stations of the telemetric network that monitors
 5 electromagnetic variations in the MHz and kHz bands in Greece, which were operating during
 6 the time period of interest. The locations of the Cephalonia and Zante stations are marked by
 7 the magenta square and triangle, respectively, while the rest of the remote stations are denoted
 8 by red circles and the central data recording server by a blue circle. The epicenters of the two
 9 significant EQs of interest are also marked, the first (EQ1, $M_w = 6.0$) by a red cross and the
 10 second (EQ2, $M_w = 5.9$) by a green X mark. The electromagnetic variations monitored at
 11 Zante station are 3 kHz North-South, 3 kHz East-West, 3 kHz Vertical, 10 kHz North-South,
 12 10 kHz East-West, 10 kHz Vertical, 41 MHz, 54 MHz and 135 MHz, while at the rest of the

1 stations, including Cephalonia station, only the 3kHz North-South, 3kHz East-West, 10kHz
 2 North-South, 10kHz East-West, 41MHz and 46MHz are recorded. More details on the
 3 instrumentation of the telemetric network can be found in the supplementary downloadable
 4 material of (Potirakis et al., 2015). (For interpretation of the references to colors, the reader is
 5 referred to the online version of this paper.)


6

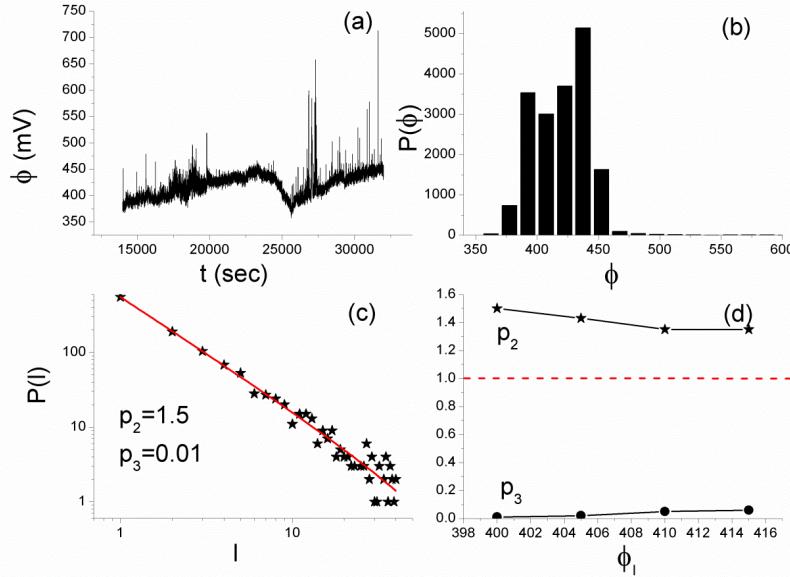
7

8 **Figure 2.** (a) The 10,000 samples long critical window of the MHz EME that was recorded
 9 before the Cephalonia $M_w = 6.0$ EQ at the Cephalonia station. (b) Amplitude distribution of
 10 the signal of Fig. 2a. (c) Distribution of laminar lengths for the end point $\phi_l = 655\text{mV}$, as a
 11 representative example of the involved fitting. The solid line corresponds to the fitted function
 12 (cf. to text in Sec. 2.1) with the values of the corresponding exponents p_2 , p_3 also noted. (d)
 13 The obtained exponents p_2 , p_3 vs. different values of the end of laminar region ϕ_l . The
 14 horizontal dashed line indicates the critical limit ($p_2 = 1$).


15

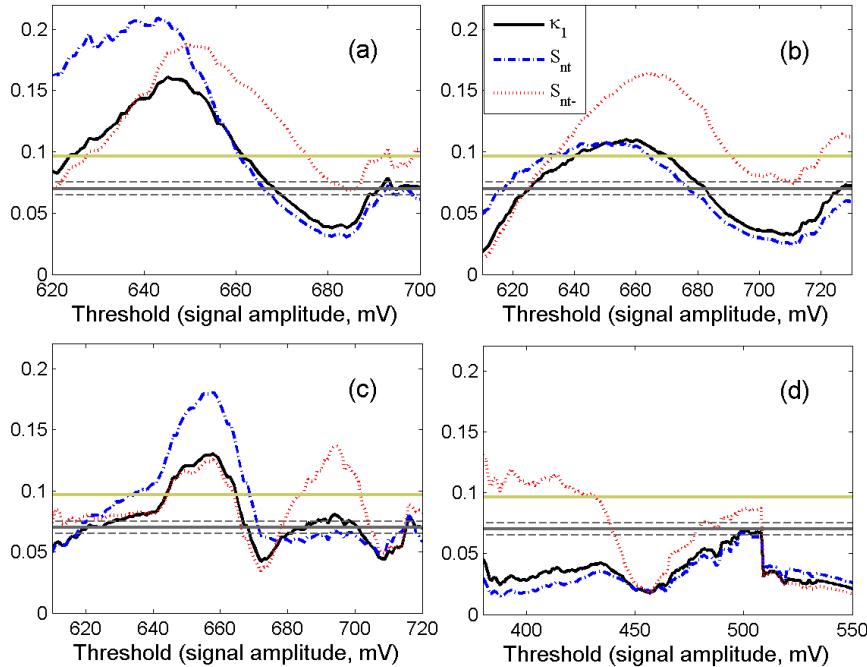
1

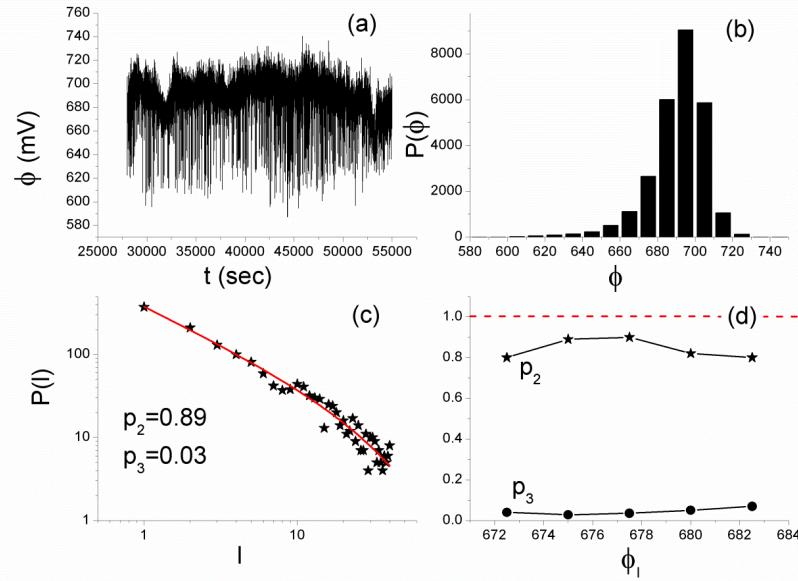
2 **Figure 3.** (a) The 10,000 samples long critical window of the MHz EME that was recorded
 3 prior to the Cephalonia $M_w = 6.0$ EQ at the Zante station, while (b), (c), and (d) are similar to
 4 the corresponding parts of Fig. 2. From 3b, a fixed-point (start of laminar regions), ϕ_o of
 5 about 600 mV results, while in Fig. 3c, the distribution of laminar lengths is given for the end
 6 point $\phi_l = 665mV$ for which the exponents $p_2 = 1.49$, $p_3 = 0.000$ with $R^2 = 0.999$ were
 7 obtained.


8

1

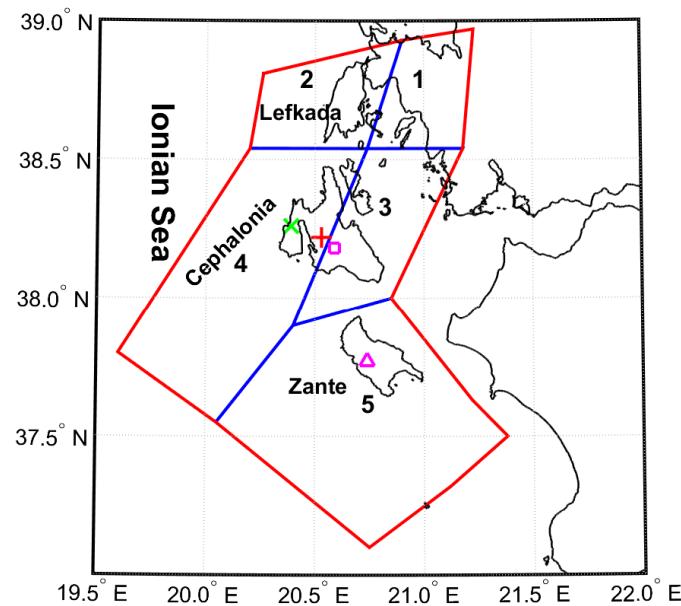
2 **Figure 4.** (a) The 12,000 samples long critical window of the MHz EME that was recorded
 3 before the Cephalonia $M_w = 5.9$ EQ at the Cephalonia station, while (b), (c), and (d) are
 4 similar to the corresponding parts of Fig. 2. In Fig. 4c, the distribution of laminar lengths is
 5 given for the end point $\phi_l = 660mV$.


6


1

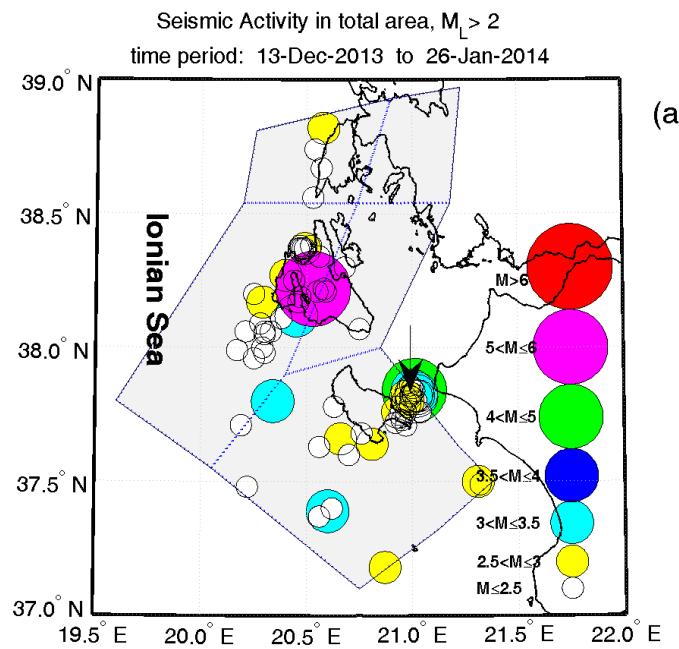
2 **Figure 5.** (a) The 18,000 samples long critical window of the MHz EME that was recorded
 3 before the Cephalonia $M_w = 5.9$ EQ at the Zante station; (b), (c), and (d) are similar to the
 4 corresponding parts of Fig. 2. In Fig. 5c, the distribution of laminar lengths corresponds to the
 5 end point $\phi_l = 400\text{mV}$.

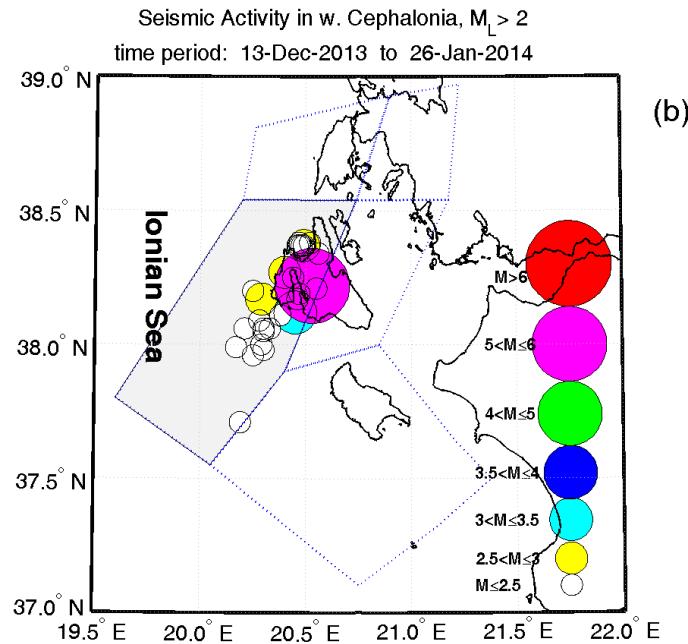
6


11

1

2 **Figure 7.** (a) The 27,000 samples long tricritical excerpt of the MHz EME that was recorded
 3 before the Cephalonia $M_w = 5.9$ EQ at the Cephalonia station; (b), (c), and (d) are similar to
 4 the corresponding parts of Fig. 2. In Fig. 7c, the distribution of laminar lengths corresponds to
 5 the end point $\phi_l = 675\text{mV}$.

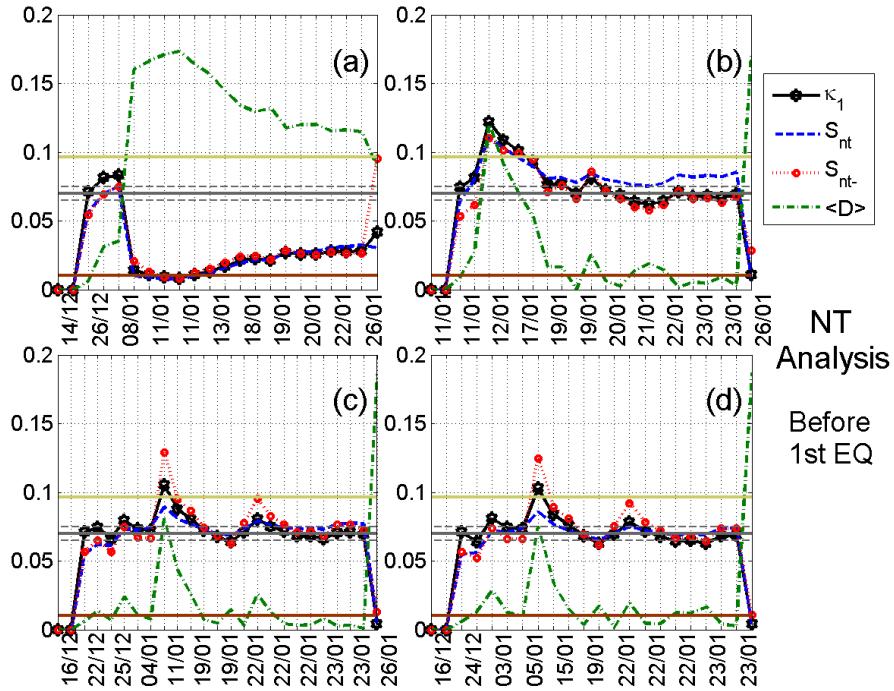

6



1

2 **Figure 8.** Seismic zonation in the Ionian Islands area. The locations of the Cephalonia and
3 Zante stations, as well as the epicenters of the two significant EQs of interest are marked,
4 using the same signs presented in Fig. 1.

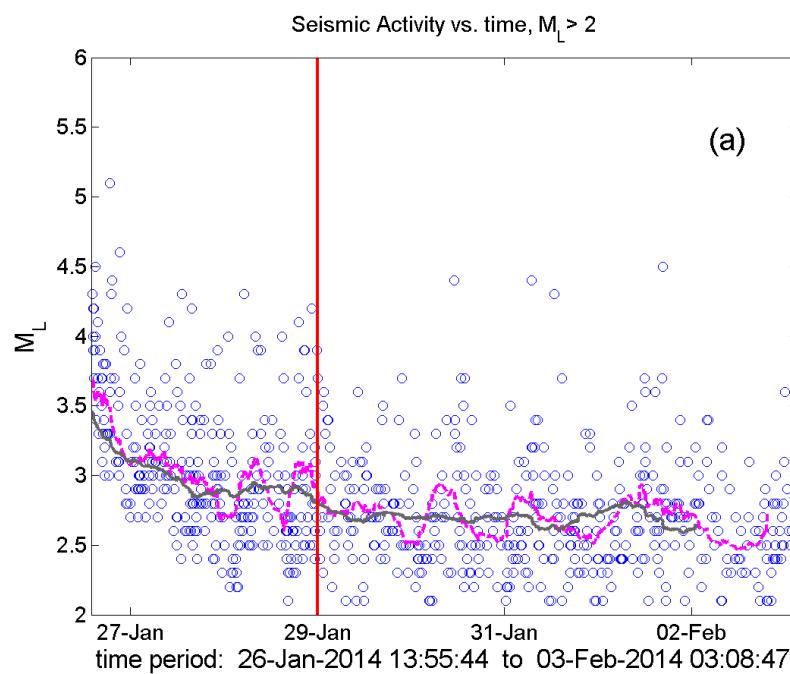
5



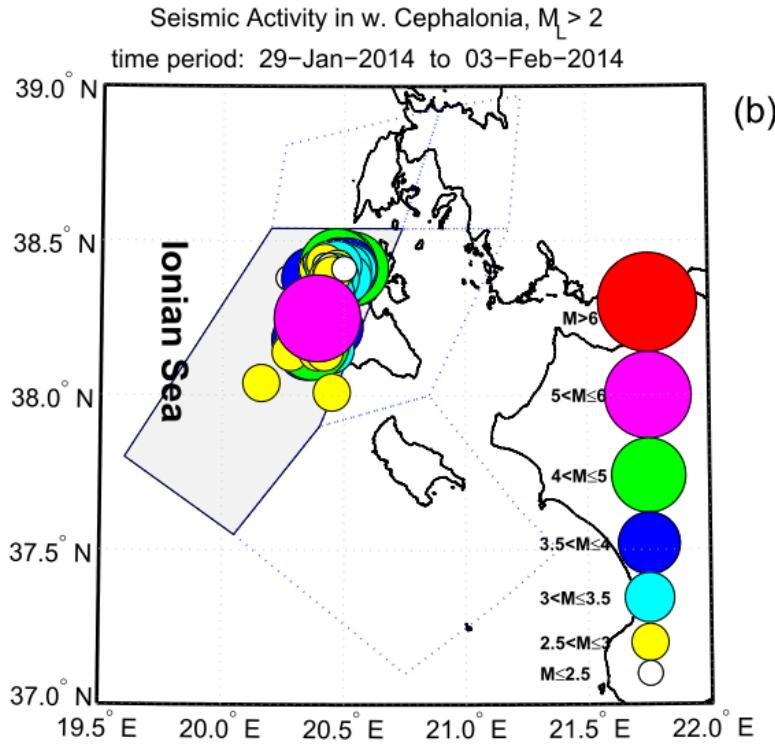
1

2 **Figure 9.** Foreshock seismic activity (M_L) before EQ1: (a) for the whole investigated area of
3 the Ionian Sea region; (b) for west Cephalonia. (For interpretation of the references to colors,
4 the reader is referred to the online version of this paper.)

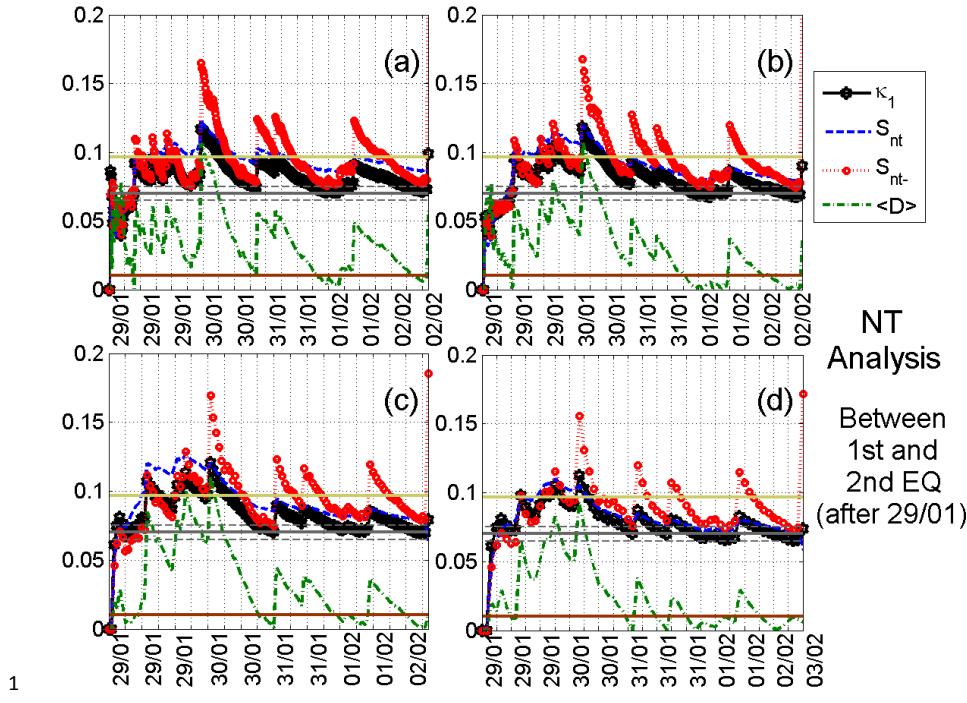
5


NT
Analysis
Before
1st EQ

2 **Figure 10.** Temporal evolutions of the four natural time (NT) analysis parameters (κ_1 , S_{nt} ,
3 S_{nt-} , and $\langle D \rangle$) for the foreshock seismic activity recorded prior to EQ1: (a) for the activity of
4 the whole investigated area of the Ionian Sea for M_L threshold 2.5, during the period from
5 13/12/2013 00:00:00 to 26/01/2014 13:55:44 UT (just after the occurrence of EQ1); (b) for
6 the activity of the whole investigated area of the Ionian Sea for M_L threshold 2.3, during the
7 period from 11/01/2014 04:13:00 (just after the $M_L = 4.7$ occurred in Zante) to 26/01/2014
8 13:55:44 UT; (c) for the activity of both Cephalonia (east and west) zones combined for M_L
9 threshold 2.1, during the period from 13/12/2013 00:00:00 to 26/01/2014 13:55:44 UT; (d)
10 for the activity of the west Cephalonia for M_L threshold 2.1, during the period from
11 13/12/2013 00:00:00 to 26/01/2014 13:55:44 UT. Note that the events employed depend on
12 the considered threshold. Moreover, the time (x-) axis is not linear in terms of the
13 conventional date of occurrence of the events, since the employed events appear equally
14 spaced relative to x-axis, as the natural time representation demands, although they are not


1 equally spaced in conventional time. The horizontal solid light green, solid grey and the grey
2 dashed lines, denote the same quantities as in Fig. 6, while the horizontal solid brown line
3 denotes the 10^{-2} limit for $\langle D \rangle$. (For interpretation of the references to colors, the reader is
4 referred to the online version of this paper.)

5


1

2

1
2 **Figure 11.** (a) Seismic activity from the time immediately after EQ1 ($M_w = 6.0$) up to the
3 time of EQ2 ($M_w = 5.9$) for the whole investigated area of the Ionian Sea. The moving
4 averages of the recorded earthquake local magnitudes vs. time for calculation windows of 25
5 and 75 successive events are shown by the dashed magenta and solid grey curve, respectively.
6 The vertical solid red line denotes the time point 29 January 00:00:00 UT. (b) The considered
7 as foreshock seismic activity before EQ2 (from 29/01/2014 00:00 UT up to the time of
8 occurrence of EQ2) for west Cephalonia. All presented magnitudes are local magnitudes (M_L
9).(For interpretation of the references to colors, the reader is referred to the online version of
10 this paper.)

1 **Figure 12.** Natural time (NT) analysis results for the seismicity in the partition of west
2 Cephalonia during the time period from 29/01/2014 00:00:00 to 03/02/2014 03:08:47 UT
3 (between EQ1, $M_w = 6.0$, and EQ2, $M_w = 5.9$): (a)-(d) Temporal evolutions of the four
4 natural time analysis parameters (κ_1 , S_{nt} , S_{nt^-} , and $\langle D \rangle$) for the different M_L thresholds 2.2,
5 2.6, 2.8, and 3.0, respectively. Note that the events employed depend on the considered
6 threshold. Moreover, the time (x-) axis is not linear in terms of the conventional date of
7 occurrence of the events, since the employed events appear equally spaced relative to x-axis,
8 as the natural time representation demands, although they are not equally spaced in
9 conventional time. The horizontal solid light green, solid grey and the grey dashed lines,
10 denote the same quantities as in Fig. 6, while the horizontal solid brown line denotes the 10^{-2}
11 limit for $\langle D \rangle$. (For interpretation of the references to colors, the reader is referred to the
12 online version of this paper.)