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Answer to report #2 of referee #1

Decadal prediction of heat periods based on regional climate model data – a

complex network approach

M. Weimer, S. Mieruch, G. Schädler and C. Kottmeier

Have you actually ever checked how well your network method is at identifying

heatwaves in the observational data? I do not find anything on this matter in the

manuscript. You should make a classic prediction skill analysis and state the rates

of false positives, false negatives and so on.

For us, it is not really clear what this comment raised by the referee is addressing at. In our

here presented analysis we quantify the prediction skill of a model in predicting heat waves.

Therefore we use model data (CCLM) and observational data (E-OBS) and compare the number

of heatwaves in the model with the number of heatwaves in the observational dataset. Additionally

we compare the number of heat waves in the observations with the new network quantity link

strength.

This is explained in Sect. 4.4: “To quantify the prediction skill of the model, we calculate the

absolute mean difference (see Eqs. 6 and 7) between the number of heat periods in E-OBS (o)

and CCLM (m) and the CCLM link strength.”

Furthermore, the main figures in the paper show exactly what the referee is addressing at. For

instance Fig. 6 shows on the left y-axis the number of heat periods in E-OBS (observations) and

on the right y-axis the CCLM link strength. How well these curves fit together shows how well

the new method can estimate heat waves in observational data.

Or is the comment more related to the exact method of calculating the skill? A classic skill

analysis, counting rates of false positives, false negatives and so on is not suitable for our analysis.

Since we are working with decadal predictions, we cannot predict a single event. Thus we used

the skill measure defined in Eqs. 6 and 7, which fits exactly to our needs and represents well the

prediction skill on decadal time scales.

Or is it, that it is not clear that E-OBS data are observations? To exclude such a misunderstanding,

we will better describe the E-OBS dataset in the new version.

So, what do you consider a "true" heatwave, then?? Is your whole approach based

on a new idea of how heatwaves should be defined? If yes, then please explain this

new idea.

We replace “true heat period occurs” with “heat period according to the definition at the very

beginning of this section occurs”

Concerning the second question: Yes it is. The whole idea is described in Sect. 4.3 and we will

refer to this section at this point.
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The way you write it here ("static threshold" and so on), I get the impression that

you do not intend to apply any bias correction method while, in fact, later you im-

plicitly apply one in your percentile-based "standard" heatwave detection method.

In the sentence after “static threshold” on page 6 we write that this problem also exists if the

threshold is adapted to the model.

This is what we do in our analysis: Of course, it right that we adapt our threshold to the model

data. However, the threshold is static for the whole time series. Therefore, the threshold problem

exists within each ensemble member of the decadal predictions.

We will add a subclause which points out that we do this adaption.

"[...] but also to consider complex long-term climate evolution in contrast to short-

term weather": I do not understand what you mean by that.

We wanted to say that climate predictions generally include higher uncertainties and different dy-

namics than short-term weather forecasts. Thus new methods are needed to quantify the prediction

skill of decadal model runs. We will rewrite this sentence.

Page 13, equations (6) and (7): This quantification of prediction skill is most prob-

ably useless. As far as I understand you want to predict the number of heatwaves a

given summer will be struck by. You should look at how well your network metric

actually reproduces the interannual variability of heatwave counts.

No, we don’t want to predict the heat waves occurring in a single summer, this is not possible

in our decadal prediction experiment. This is e.g. mentioned on page 11: “... since we are

interested in decadal variability, and since we do not expect the model to represent the year to

year fluctuations ...” Thus we cannot expect to reproduce interannual variability.

As can be seen from Eqs. 6 and 7 they measure how well model and observations fit within

a decade, they are perfectly suited for our experiment. Thus they show how well the model

reproduces the decadal variability of the observations.

The figures in the supplement tell a pretty different story than Fig. 4. You should

not choose your best example for the paper and hide your bad examples in the sup-

plement. If you want to objectively assess the prediction skill of a method, you will

have to talk about failures as openly as about successes.

The figures in the supplement do not “tell a pretty different story”. It is clear that the method

works better in some regions than in others. We see no problem to show the region, where the

method performs best to show the potential of the new method. There are other regions, where

the method performs equally well e.g. Prudence Region 4.

Concerning the referee’s comment on “hiding” the other figures in the supplement: In our opinion,

the supplement is easily accessible and an opportunity to show the different time series of all

regions.
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We discuss the strengths and weaknesses of our new method objectively and show all results

e.g. in Fig. 7 in the rank matrix.

However, we will smooth out any potential misconceptions and include three new figures in the

new version (now Fig. 7). They will show the “M” values of all decades and regions of Figs. 4 to

6. So, we show

1. how well the network method works with only observations (corresponding to the men-

tioned Fig. 4) for all regions and all decades.

2. how well the standard method (like Fig. 5) works for all regions and all decades.

3. and how well the network method (like Fig. 6) works for all regions and all decades.

Sorry to say this, but I think that this significance test is a good example for why

quite many statisticians these days are worried about flawed research being hidden

behind statistical significance. (See, e.g., http://amstat.tandfonline.com/doi/abs/10.1080/00031305.2016.1154108

or read Nate Silver’s The signal and the noise.) I wrote above that I do not consider

the metrics defined in equations (6) and (7) appropriate for any quantification of

the skill of you heatwave identification method. Consequently, I consider any sig-

nificance test based on any application of these methods useless in terms of telling

anything about whether your method is any good.

Since the referee apparently cannot specify what the problem with our test might be, we cannot

react on this comment. Regarding the ASA statement, we fully agree with this document and see

no conflict to our analysis. A similar interesting paper is “Testing ensembles of climate change

scenarios for "statistical significance"” by climate statistics experts Hans von Storch and Francis

Zwiers, which we cite in our paper and which is worth to read. The main point is that it is a

good idea to analyze results visually and against the backdrop of the underlying physics, models,

observations, hypotheses and so on to finally achieve a satisfying answer. Often significance tests

are difficult to design, often hypotheses are not well-posed or it is even not possible to capture

all uncertainties. In these cases a well-suited statistical test (as in our analysis) can support the

findings already made. In this sense, we see our test as an additional support to the found results,

which can be analyzed very well visually. We also explained this in our manuscript on page 15.

As explained above, Eqs. 6 and 7 perfectly fit to our experiment. The problem is the misconception

that the referee is thinking about year to year prediction, but instead we want to predict decades.

Thus Eqs. 6 and 7 only consider means over whole decades and that is exactly what we want.
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Answer to report #1 of referee #2

Decadal prediction of heat periods based on regional climate model data – a

complex network approach

M. Weimer, S. Mieruch, G. Schädler and C. Kottmeier

It is still not stated clearly that the authors do not propose a method to predict heat

periods, but rather propose a different way to define a skill for the prediction of

heat periods using a regional climate model: in the modified title, it says "prediction

of heat periods", and in the abstract the authors write "We show that the skill of

the network measure to predict the low frequency dynamics of heat periods is su-

perior to the typical approach". In the main text, it is claimed "that the network

method is clearly superior in three regions", and in the conclusion: "We found that

the network approach is superior (significance is 5%) to the standard approach in

predicting heat periods in Europe", and that the network approach is is "the more

robust estimator of heat periods" These sentences are, at least, misleading.

We apologize for not properly having understood this issue in the first review. We agree with the

referee that we cannot predict heat periods themselves with our new estimator and will adapt the

points of the referee and where else it is not formulated clearly.

Especially, we will change the title to: “A new estimator for heat periods in decadal climate

predictions – a complex network approach”

As explained in my previous review, the authors use P70 as a proxy for heat waves,

and quantify the skill of heat wave prediction by CCLM by comparing the develop-

ment of P70 in the CCLM data with observed heat waves, instead of comparing the

observed number of heat waves with the modelled number of heat waves (the latter

would be the standard approach)

Actually, we do both in our analysis, see Figures 5 and 6 where we compare the number of heat

periods of E-OBS with that of CCLM and the link strength in CCLM, respectively.
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However, P70 is only an indicator of coherent behavior of the time series. More

heat waves trivially lead to more coherent behavior of the time series, but so do,

as I already mentioned, more cold episodes, or any other periods of joint behavior.

This is the reason why I agree that P70 is correlated to the number of heat waves,

but still question the suitability of P70 as a predictor for heat waves (which the

authors found contradictory). The standard way of assessing the forecast skill is to

compare the number of observed and simulated heat waves. Instead, the authors

propose to compare the number of observed heat waves with a characteristic of the

simulated data (P70) which is not in one-to-one correspondence with the number of

heat waves, but may instead react to many other climatic features as well (given that

it only measures coherent behavior of the time series, no matter if daily maximum

temperature are employed).

As described in Sect. 4.2, we restrict ourselves to daily summer maximum temperature time

series and diminish the influence of cold periods by excluding the lower 10 %-quantile from the

analysis. Thus most probably the dominating coherent phenomena are heat periods.

The essential question raised by the referee’s comment is: Which other meteorological circum-

stances apart from heat periods influence the surface temperature on synoptic scale (i.e. essentially

the scale in the order of the whole considered network area) and on time scales of several days?

Heat periods in the sense defined in Sect. 3 always occur in situations where a controlling (i.e.

vertically covering the whole troposphere) high-pressure system on the one hand leads to large-

scale subsidence and evaporation of clouds. On the other hand, warm air masses are transported

from the south to the European continent due to the high-pressure system. We conclude that heat

periods are combined with controlling high-pressure systems.

Another dominant influence on the temperature of synoptic scale are fronts which usually are

combined with low-pressure systems. However, warm and cold fronts by definition separate air

masses of different temperature (and moisture). This means that the time series in the considered

area will include non-coherent behavior since temperature does not change for all time series at

the same time. Therefore, the link strength should be actually decreased by fronts.

A third reason for a change in temperature on synoptic scale is due to large-scale rain where low

temperatures of the droplets and evaporation both lead to a decrease in the surface temperature.

However, as in the previous example it is most unlikely that rain occurs on the whole Prudence

region at the same time.

Therefore, we can conclude that the link strength applied to daily maximum surface temperature

time series is a suitable measure for heat periods in the way we implemented it.
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2. I don’t think that the significance test proposed by the authors is appropriate.

[...] With this model, I get a probability of [about] 0.2 that I have 5 or more regions

with more blue than red entries, indicating that the author’s result would only be

significant at a confidence level of 0.2 [...] Alternatively, one could simply ask for

the probability of having at least 18 blue entries (the observed number) in total

(regardless of how they are distributed in the single rows) in the same setting as

above (note that the expectation value for this is 16!), for which I get [about] 0.2

again.

First, we want to point to the discussion on significance, which we have included in the revised

version, including the von Storch, Zwiers reference. Again, we think that in this study it is more

important to visually inspect the results, e.g. Figs. 4,5,6,7, and while including the knowledge

about decadal predictions, the model, the observations, the physical mechanisms and so on, de-

riving satisfying answers or solutions. We see the statistical test as a supporting instrument to the

analysis, quite conscious about the difficulties in e.g. defining a null hypothesis.

The crucial point here is that many tests can be developed for our analysis, e.g. these suggested

by the referee. Another test could be using only blue and red entries without any “undecidables”

and so on. Further tests are thinkable e.g. in a Baysian framework. All these tests have their

eligibility under certain assumptions and hypotheses. There is no perfect test, but there are tests,

which fit better and tests which fit worse to our study. Thus, we developed a test, which is as

close as possible to our results, and this test is to use 16 blue, 16 red and 8 white entries, as it

has been observed. The suggestion by the referee to use 40% of entries red, 40% blue and 20%

white is on the mean the same, namely 16 entries red, 16 blue and 8 white, but can crucially vary

for single realizations. Thus the referee’s test can yield an outcome of e.g. 25 red, 12 blue and 3

white. Such an outcome and all others with white not equal 8 is not possible in our test. Hence,

the referee’s test has more degrees of freedom than our test, thus more possibilities to achieve 5

or more regions being colored blue and so a larger probability of 0.2. Concluding, we think our

test, which is as close as possible to the observed outcome, is more suitable than any other test,

which includes additional assumptions (i.e. more or less than 8 whites), which cannot be proven.

[...] For example, there might be a period of intermediate (i.e., neither very high or

very low) temperature anomalies that are coherent over a region of interest in the

CCLM data, which is detected as a high P70 and according to the authors "trans-

lated" to the occurrence of a heat period when compared to the number of actually

observed heat periods in that decade, ultimately resulting in a high skill value al-

though something completely different was actually going on.

The referee here constructs a special situation to show that our method fails for such a situation.

So, let’s have a look at this situation although Figures 4 and 7 indicate that our method works and

that our method is superior to the standard method. Unfortunately the situation constructed by the

referee is not very well explained and we hope to understand it correctly. The gedankenexperiment
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focuses on a decade. Within this decade, there is a period of intermediate temperature anomalies

that are coherent. Let’s summarize some facts:

• to dominate the link strength during this decade, the mentioned period of intermediate tem-

peratures must be relatively long, otherwise it would have no effect

• if this is the case, the referee is right, the link strength would be high

• since it is a period with intermediate temperatures, no real heat waves occur in the observa-

tions during this period

• as said, the period must be relatively long, so it can be expected that only few heat periods

have been detected in the observations in this decade

Concluding, we have a decade with high link strength in the model and few heat periods in the

observations. Thus, the difference between link strength and number of heat periods would be

large and thus the skill low (Eq. 7). That means, the conclusions from the referee of observing

high skill in this situation is wrong. We would observe low skill indicating that the method does

not work.

In contrast, in our paper, we have seen that the skill is good and the method works, thus it is quite

unlikely that a situation as constructed by the referee occurs in reality. From a meteorological

point of view it is the question why the temperature time series should be coherent in this situation.

If there is no significant synoptic influence on the temperature it is dominated by local effects

such as local rain, wind, cloudiness and sunshine duration. Therefore, the time series should not

be highly correlated in this situation. This would yield a low link strength.

That means, in reality, a decade with a long period of intermediate temperatures would yield few

heat periods in the observations and a low link strength, yielding a small difference (Eq. 7) and

thus large skill, which shows that the method works.
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Abstract

Regional decadal predictions have emerged in the past few years as a research field with

high application potential, especially for extremes like heat and drought periods. However,

up to now the prediction skill of decadal hindcasts, as evaluated with standard methods is

moderate, and for extreme values even rarely investigated. In this study, we use hindcast

data from a regional climate model (CCLM) for eight regions in Europe and quantify the

skill of the model alternatively by constructing time evolving climate networks and use the

network correlation threshold (link strength) as a predictor for heat periods. We show that

the skill of the network measure to predict
✿✿✿✿✿✿✿✿

estimate the low frequency dynamics of heat

periods is superior
✿✿

for
✿✿✿✿✿✿✿✿✿

decadal
✿✿✿✿✿✿✿✿✿✿

predctions
✿✿✿✿

with
✿✿✿✿✿✿✿✿

respect
✿

to the typical approach of using a

fixed temperature threshold for estimating the number of heat periods in Europe.

1 Introduction

Decadal prediction is a relatively new field in climate research. Skillful prediction of

climate from years up to a decade would be beneficial for our society, economy and for

a better adaption to a changing climate. Within the large international Coupled Model

Intercomparison Project Phase 5 (CMIP5 Taylor et al., 2012) global decadal predictions

of climate key variables like temperature and precipitation have been performed with state-

of-the-art Earth system models. In order to validate the prediction skill of the models so

called hindcast experiments are conducted. That means, the models are initialized with

observations e.g. in 1961 and then run freely for 10 years and stop at the end of 1970.

In 1971, the models are again initialized and start to run for another 10 years and so

on. More advanced approaches of initializing every year have followed as well. These

hindcasts can be evaluated against observational data to quantify the prediction skill of

the models depending on the lead time, which is the time range between the initialization

and the forecast datum of interest. In recent years, several studies on decadal predictions

have shown the potential of these initialized (global) model runs (e.g. Keenlyside et al.,

2
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2008; Müller et al., 2012; Matei et al., 2012; van Oldenborgh et al., 2012; Corti et al.,

2012; Doblas-Reyes et al., 2013; García-Serrano et al., 2013; Smith et al., 2013; Meehl

et al., 2014; Chikamoto et al., 2015). However most studies concentrate on regions like

the Tropical Pacific or North Atlantic and on slowly evolving variables like sea-surface

temperature. These regions receive their predictability from large scale processes like the

Atlantic Meridional Overturning Circulation (AMOC) or Pacific Decadal Oscillation (PDO)

and thus allow to extract predictable signals out of the noise. To be useful for society, and

climate change adaption, regional climate predictions are required which should provide

skillful forecasts on smaller regions, shorter periods, and include climate extreme events on

populated land areas like the European continent. The European climate is more connected

to short term processes like the North Atlantic Oscillation (NAO), which is to a certain

extent predictable on seasonal scales, whereas the decadal predictable signal is weak

(Scaife et al., 2014), which has been shown also for temperature and precipitation in

large projects like ENSEMBLES (MacLeod et al., 2012). Further, the complex orography

with the Alps in the center contributes to a manifold of general weather situations and

hence to a complex climate (e.g. World Climate Research Program Coordinated Regional

Downscaling Experiment for Europe (CORDEX-EU), Jacob et al., 2013; Giorgi et al., 2009).

Nevertheless, the European continent is influenced by the AMOC and thus this process may

yield to a certain predictability, although the signal to noise ratio is most probably small. Up

to now, the prediction skill for Europe is weaker than for such regions as the South Pacific

or North Atlantic. Mieruch et al. (2014) have used a regional decadal hindcast ensemble

for Europe and detected moderate prediction skill for summer and winter temperature

and summer precipitation anomalies within the lead time of five years. Eade et al. (2012)

analyzed the predictability of temperature and precipitation extremes in a global model and

found a moderate but significant skill (correlation) for seasonal extremes. They also found

skill beyond the first year, but this skill arose from external forcing. Thus, Eade et al. (2012)

compared initialized climate predictions with uninitialized projections to evaluate the skill

gained by initializing and excluding the external forcing. They found that the “... impact of

initialization is disappointing”.

3



❉
✐
"
❝
✉
"
"
✐
♦
♥
'
❛
♣
❡
+

⑤
❉
✐
"
❝
✉
"
"
✐
♦
♥
'
❛
♣
❡
+

⑤
❉
✐
"
❝
✉
"
"
✐
♦
♥
'
❛
♣
❡
+

⑤
❉
✐
"
❝
✉
"
"
✐
♦
♥
'
❛
♣
❡
+

⑤

Another relatively new field in climate research has been established, namely the

complex climate network approach. The general idea of climate networks is to consider

climate time series e.g. at the grid points of a climate model as nodes of the network and

the statistical connection between the time series as links of the network. A link between

two arbitrary time series (geolocations) exists, if the correlation measure between the time

series exceeds a certain threshold.

The climate network community has been very active in recent years. Tsonis et al.

(2007) proposed “A new dynamical mechanism for major climate shifts” and explained

e.g. decadal shifts in global mean temperature (Tsonis and Swanson, 2012). Radebach

et al. (2013) discriminated different El Niño types using the network approach, Ludescher

et al. (2013) developed a network method to improve El Niño forecasting and Donges

et al. (2011) revealed a connection between (paleo-) climate variability and human evolution

using recurrence-networks, which are similar to the complex climate networks. Generally, it

has been shown that climate networks contain useful information for climate applications,

e.g. the relation between climate and topography found by Peron et al. (2014), dynamics of

the sun activity using visibility graphs (Zou et al., 2014) and the prediction of extreme floods

Boers et al. (2014).

In this paper, we exploit the idea to use an alternative heat period estimator, based on

complex climate networks, and show that its skill is superior to the typical approach of using

a fixed temperature threshold for prediction of heat periods on time scales up to a decade.

In Sect. 2 we introduce the daily maximum temperature data used in this study and

motivate our approach in Sect. 3. Section 4 describes our approach, which includes the

preparation of the data, the definition of heat periods and the construction of time evolving

climate networks. The results for applying the new approach to hindcasts are shown in

Sect. 5. Finally, we give the conclusions and an outlook in Sect. 6.
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2 Data

We apply the climate network approach to a decadal prediction ensemble generated

within the German research project MiKlip (Mittelfristige Klimaprognosen, Decadal Climate

Prediction, e.g. Kadow et al. (2015)) by the regional COSMO model in CLimate Mode

(COSMO-CLM or CCLM) Doms and Schättler (2002). CCLM has been used in numerous

studies recently e.g. in Kothe et al. (2014); Dosio et al. (2015), a comprehensive overview

can be found here: http://www.clm-community.eu. CCLM has been used to downscale

global decadal predictions from the Earth System Model of the Max Planck Institute for

Meteorology (MPI-ESM, Stevens et al., 2013). From a suite of different decadal prediction

experiments we have selected the so-called regional baseline 0 ensemble. This ensemble

consists of 10 members, each covering the period 1961–2010 for the European region

(according to CORDEX-EU Jacob et al., 2013; Giorgi et al., 2009) on a 0.22◦ grid. This

ensemble has already been used by Mieruch et al. (2014).

The regional baseline 0 ensemble (based on the global MPI-ESM model) has been

initialized every 10 years (1961, 1971, 1981, 1991, 2001). Within a decade the CCLM model

runs freely, except for the prescription of the atmospheric boundary conditions by the global

MPI-ESM model.

More details on the development of the ensemble and the initialization can be found in

Matei et al. (2012), Müller et al. (2012), Mieruch et al. (2014).

In the study presented here we use daily maximum near-surface temperatures from the

CCLM model and from the E-OBS v8.0 gridded climatology (Haylock et al., 2008) for the

European continent.
✿✿✿✿

The
✿✿✿✿✿✿✿

E-OBS
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿

basically
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿✿✿✿✿✿✿✿✿✿

interpolated
✿✿

to
✿✿

a
✿✿✿✿✿✿✿

regular

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

latitude-longitude
✿✿✿✿

grid.
✿

For our comparison, we use the so-called Prudence regions http://prudence.dmi.dk/,

namely British Isles, Iberian Peninsula, France, Central Europe, Scandinavia, Alps,

Mediterranean and Eastern Europe shown in Fig. 1.

5



❉
✐
"
❝
✉
"
"
✐
♦
♥
'
❛
♣
❡
+

⑤
❉
✐
"
❝
✉
"
"
✐
♦
♥
'
❛
♣
❡
+

⑤
❉
✐
"
❝
✉
"
"
✐
♦
♥
'
❛
♣
❡
+

⑤
❉
✐
"
❝
✉
"
"
✐
♦
♥
'
❛
♣
❡
+

⑤

3 Motivation

Generally, heat periods are maximum temperature values persisting for several days and

occurring on spatially expanded regions. This means that many temperature time series

(grid points) behave in a “cooperative mode” (see e.g. Ludescher et al. (2013)). This

cooperative state can be described by the link strength, i.e. essentially the correlation

between time series, of a climate network. Thus, the link strength of a climate network could

turn out to be the better heat period estimator for model data, because it is independent of

the typically critical thresholds used in classical extreme value detection.

The standard estimator for heat periods according to the World Meteorological

Organization (WMO) is that the daily maximum temperature is 5K above the 1961–1990

mean maximum temperature at five consecutive days at least (Frich et al., 2002). Thus, the

standard method to compare the prediction skill of heat periods between observations and

model would be to count the heat periods e.g. for each year in an observational reference

data set and similarly in the model data, both according to the WMO definition (cf. Fig. 2).

A crucial problem of the standard estimator for model predictions is the inherent static

threshold used to detect heat periods. Although this threshold can be adapted to the model

climatology
✿✿✿

(as
✿✿✿

we
✿✿✿

do
✿

it
✿✿✿

in
✿✿✿✿✿

Sect.
✿✿✿✿

4.2) the problem is that it is still likely that the model slightly

undershoots or otherwise slightly misses the threshold if a true heat period
✿✿✿✿

heat
✿✿✿✿✿✿✿

period

✿✿✿✿✿✿✿✿✿

according
✿✿

to
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

definition
✿✿

at
✿✿✿

the
✿✿✿✿✿

very
✿✿✿✿✿✿✿✿✿

beginning
✿✿✿

of
✿✿✿

this
✿✿✿✿✿✿✿✿

Section occurs, assuming the model

exhibits at least some predictive skill.

To account for this situation in decadal predictions we propose a new method, based

on complex climate networks, to detect heat periods, which is independent of a fixed

temperature threshold .
✿✿✿✿

(see
✿✿✿✿✿✿

Sect.
✿✿✿✿✿

4.3). Again we want to emphasize that no new method

for the detection of heat periods is needed, if past observational data is
✿✿

or
✿✿✿✿✿✿✿✿✿✿

short-term

✿✿✿✿✿✿✿✿

forecasts
✿✿✿✿

are
✿

used. The WMO based definition works well. However, for detecting heat

periods in 10-yearly initialized forecast/hindcast data, new methods are needed. Not only to

overcome the threshold problem, but also to consider complex long-term climate evolution

6
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in contrast to short-term weather.
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

increased
✿✿✿✿✿✿✿✿✿✿

uncertainty
✿✿✿

in
✿✿✿✿✿✿✿

decadal
✿✿✿✿✿✿✿✿✿✿✿

predictions
✿✿✿✿✿✿✿✿

requires

✿✿✿✿

new
✿✿✿✿✿✿✿✿

methods
✿✿✿

to
✿✿✿✿✿✿

handle
✿✿✿✿✿✿✿✿

climate
✿✿✿✿✿✿✿✿✿

extremes
✿✿✿

like
✿✿✿✿✿

heat
✿✿✿✿✿✿✿✿

periods.
✿

The following schematic examples in Figs. 2a-c and Fig. 3 illustrate why the complex

network approach is able to detect heat periods without using a temperature threshold.

The black curves represent (artificially generated) daily maximum temperature model data.

Further we assume that one heat period has actually occurred in Figs. 2a-c persisting for

15days from day 11 to day 25. Accordingly the black curves show different possible model

results if the model exhibits predictive skill to detect a signal out of the noise.

Figure 2a depicts that using the standard approach the model correctly detects one heat

period above the threshold. In Fig. 2b the model detects a signal, but this signal is too

weak to cross the threshold, thus no heat period would have been detected and the model

underestimates the number of heat periods. Overestimation of the number of heat periods

happens in Fig. 2c, where the model detects two heat periods (5 days above the threshold

at the edges and below the threshold in between). Now, the key point for our motivation is

that a heat period constitutes an event in space and time, thus in a certain region, many

time series would look like the ones in Fig. 2. The link strength of a network would be given

by the correlation between these coherent time series. Since the signals in Figs. 2a–c look

quite similar, the link strength of the network would thus be very similar in all three cases.

Whereas the standard approach would correctly predict
✿✿✿✿✿✿✿✿

estimate the heat period in only one

case (Fig. 2a), the networks’ link strength would correctly predict the heat period
✿✿✿✿✿✿✿✿

estimate

✿

it
✿

in all three cases, given a proper relation between link strength and heat periods.

To test the relation in principle, we created 100 artificial time series (Gaussian noise)

and included successively 0–9 heat periods. Figure 3a shows such a time series with three

artificial heat periods indicated by the dashed lines. In a following step, we calculated the

mean correlation (link strength) between these 100 coherent time series dependent on the

number of included heat periods depicted in Fig. 3b. As can be seen, more heat periods

are connected with a larger link strength. This simplified test shows that a proper relation

between link strength and heat periods could exist. Note that Fig. 3b is not a calibration

curve for real data, because we simply used Gaussian noise to create the time series.

7



❉
✐
"
❝
✉
"
"
✐
♦
♥
'
❛
♣
❡
+

⑤
❉
✐
"
❝
✉
"
"
✐
♦
♥
'
❛
♣
❡
+

⑤
❉
✐
"
❝
✉
"
"
✐
♦
♥
'
❛
♣
❡
+

⑤
❉
✐
"
❝
✉
"
"
✐
♦
♥
'
❛
♣
❡
+

⑤

It is clear that the argumentation above concerning the link strength as a heat period

estimator is quite simplistic, but it elucidates our approach and the main idea.

4 Method

Our hypothesis is that complex network measures may be better estimators for climate

extremes than standard measures like absolute threshold exceedances.

4.1 Data pre-processing

Before using the complex networks in general it is necessary to remove stationary biases

and long-term variabilities from the climate time series (Donges et al., 2009).

We remove bias, trend and the average annual cycle by subtracting a standard linear

regression including a Fourier series from the time series according to:

yi(t) = δi+ωit+

2
∑

j=1

αi,j sin

(

2πj · t

365.25

)

+βi,j cos

(

2πj · t

365.25

)

, (1)

where yi(t) represents daily maximum temperature from 1961 to 2010, δi is the intercept,

ωi is the linear trend and αi,j and βi,j represent the Fourier coefficients. Equation (1) is

evaluated individually at each grid point i= 1, . . . ,N .

In order to minimize the influence of cold periods on the network approach (details below

in Sect. 4.3), we remove the data lower than the 10% quantile. This filtering has no influence

on the standard estimator of heat periods. Then, the months from June to September are

selected because we are interested in summer heat periods.

These summer anomalies are used for both the standard approach, defined in Sect. 4.2,

and the new approach illustrated in Sect. 4.3. We introduce a skill measure to compare

the number of heat periods with values of the link strength (Sect. 4.4). Finally we present

a simple calibration formula to predict heat periods with the link strength, which can be

applied
✿✿✿✿✿✿✿✿✿

approach
✿✿

to
✿✿✿✿✿✿

apply
✿✿✿

the
✿✿✿✿✿

new
✿✿✿✿✿✿✿✿✿

estimator to real forecasts in Sect. 4.5.
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4.2 The standard approach for determining the number of heat periods

In this study, we define a heat period for E-OBS observational data as a time range when

the anomaly maximum temperature (according to Eq. 1) exceeds a fixed threshold of 3K at

five consecutive days at least, and additionally includes not less than 20% of the grid points

in the area of interest. This choice has been made to observe events frequently enough for

reliable statistics while simultaneously ensuring important impacts.

To account for the inherent model bias it is essential to adjust the temperature threshold

to the model climate. Thus, we estimate the percentile P3K corresponding to the 3K E-OBS

threshold for the complete time from 1961 to 2010 and the area of interest. Accordingly, we

use this percentile as the threshold for heat periods for the model data which is nevertheless

fixed for the whole area and time range and the argumentation of Sect. 3 still holds for the

model data. Table 1 shows this threshold in K for the eight Prudence regions, estimated

from the CCLM ensemble means. In the following, we will refer to this definition as standard

approach.

4.3 The new approach

As an alternative heat period estimator, we propose to use the time varying link strength

Wτ (τ represents the years) of a network, based on modeled daily maximum temperature

time series. The link strength Wτ is the correlation threshold between time series, which is

needed to construct a network of a given edge density. Accordingly we want to show thatWτ

has the potential to be a better estimator for observational heat periods than the standard

estimator. This approach is similar to that used by Ludescher et al. (2013), who forecasted

El Niño events using the link strength of a network and showed the superiority to standard

sea surface temperature predictions by state-of-the-art climate models. By contrast to

Ludescher et al. (2013), however, we use the predicted 2m maximum temperature of CCLM

to create the networks and to forecast the number of heat periods.

To apply the method we proceed as follows. Suppose we have initialized our climate

model in the year 2001 with the ocean, soil, ice and atmospheric state at that time.

9
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Accordingly the climate model runs freely for 10 years, i.e. a retrospective decadal climate

prediction. Now we are interested in the capability of the model to represent heat periods

in summer. Based on the standard approach of counting heat periods (see Sect. 4.2) we

could determine the prediction skill of the model in forecasting (hindcasting) the number of

heat periods. Our approach, in contrast, is to create a time-evolving complex network with

fixed edge density (Berezin et al., 2012; Radebach et al., 2013; Ludescher et al., 2013;

Hlinka et al., 2014) from the modeled daily maximum temperature time series and use, as

mentioned, the dynamics of the link strength Wτ as a heat period estimator.

Following our aim to use a network measure as a heat period estimator we construct

a complex network from the daily maximum temperature model data. Here we use an

undirected and unweighted simple graph. Thus, the network consists of vertices V , which

are the spatial grid points of our temperature data, and edges (connections) E, which are

added between vertices and represent the statistical interdependence between the anomaly

daily maximum temperature time series. This complex climate network can be represented

by the symmetric adjacency matrix A with:

Aij =

{

0 if ij not connected

1 if ij connected
, (2)

where i and j represent the vertices, i.e. time series at grid points i, j = 1, . . . ,N . Two

grid points are connected if the correlation between their time series exceeds a predefined

threshold. The statistical interdependence between pairs {ij} (self-loops {ii} are not

allowed) of time series is measured using the Pearson (standard) correlation coefficient

(Donges et al., 2009). From sensitivity studies we found that correlations between time

series in the order of 0.7–0.9 yield patterns with not too few and not too many connections.

This is important in order to resolve temporal dynamics of the network. Correlations in this

order of magnitude are significant on the 5% level for the here used summer time series with

length of about 120 days. However, since we want to analyze different regions in Europe

and to generate comparable results we decided to alternatively create our networks with

a constant edge density (ratio of number of actual connections to maximum number of

10
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connections) of

ρ= E
/

(

N
2

)

= 〈ki〉/(N − 1) = 0.3 , (3)

where E is the number of edges and 〈ki〉 is the mean node degree with

ki =
N
∑

j=1

Aij , (4)

which gives the number of connections of a vertex i.
As mentioned above we removed the data lower than the 10% quantile, to avoid that

the link strength Wτ is influenced by possible cold periods in the data. We tested smaller

quantiles (5%) and larger quantiles (20%) and found that the results are robust, i.e. they

changed only slightly. The above used parameters (like the density of 0.3) and the 10%
filtering turned out to be optimal for our data. For other data, these parameters most

probably have to be adjusted. Additionally, by removing the data lower than the 10%
quantile, gaps in the time series are generated. To ensure significance, we take into account

only correlation coefficients where the two underlying time series exhibit 60 common data

points (days). An effective way to estimate the link strength of a network with an edge

density of 0.3 is to calculate the 70% quantile of all correlation coefficients involved in the

network.

In a similar way as Berezin et al. (2012) we analyze the temporal variation of the link

strength Wτ , i.e the correlation threshold between time series (grid points) for a single year

τ (summer) from 1961 to 2010. Thus, instead of using the node degree as an estimator of

heat periods we use the link strength Wτ .

Using the definitions above, we finally construct a network for the summer months of each

year based on anomaly maximum temperature model data. The quantity whose year-to-

year variation we are interested in is the link strength Wτ ; however, since we are interested

in decadal variability, and since we do not expect the model to represent the year to year

11
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fluctuations, we applied a 10 year moving average filter to both link strength and number

of heat periods, subsequently. Since the CCLM model has been initialized every decade

(1961, 1971,..., 2001) we apply the filter only within a decade in order to avoid transferring

information between decades. At the boundaries of the decades, the time range for the

running average is shortened: For instance at the beginning of the decade, we use only the

six years’ mean (e.g. from 2001 to 2005), in the second year seven, and so on.

4.4 Comparison of the different quantities

To quantify the prediction skill of the model, we calculate the absolute mean difference (see

Eqs. 6 and 7) between the number of heat periods in E-OBS (o) and CCLM (m) and the

CCLM link strength (Wτ ). To be comparable we normalized the time series to the range

{0,1} by a subtraction of the minimum of the time series and accordingly a division by the

maximum for the whole time span, e.g. for the number of heat periods in CCLM:

µrd,τ =

(

mr
d,τ −

50

min
τ=1

(

mr
d,τ

)

)

/

50
max
τ=1

(

mr
d,τ −

50

min
τ=1

(

mr
d,τ

)

)

, (5)

where r denotes the European region, d stands for the decade and τ represents the years.

The similarly rescaled E-OBS number of heat periods will be denoted as Ω and the rescaled

CCLM link strength as ψ.
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Thus the absolute mean difference (based on normalized data) between observation and

model heat periods for a region r and a decade d is given by

M r
d (µ) =

∣

∣

∣

∣

∣

1

10

10
∑

τ=1

(

Ωr
d,τ −µrd,τ

)

∣

∣

∣

∣

∣

= |Ω
r

d−µrd| , (6)

and the mean difference between observation heat periods and model link strength is

M r
d (ψ) =

∣

∣

∣

∣

∣

1

10

10
∑

τ=1

(

Ωr
d,τ −ψr

d,τ

)

∣

∣

∣

∣

∣

= |Ω
r

d−ψ
r

d| , (7)

where the bars in the above equations denote temporal averages. Therefore, if the absolute

mean difference is about 0, observations and model agree well, whereas a difference of

about 1 denotes the maximum discrepancy.

4.5 Prediction
✿✿✿✿✿✿

Usage
✿

of heat periods
✿✿✿✿

the
✿✿✿✿

new
✿✿✿✿✿✿✿✿✿✿

estimator
✿✿✿

in
✿✿✿✿✿✿✿✿✿✿✿

predictions

For a real application of our method to predict
✿✿✿✿✿✿✿

estimate
✿

the number of heat periods in

a forecasting sense
✿✿✿✿✿✿✿✿

forecasts, a calibration step using observational data o is needed to

convert the link strength of the model to the number of heat periods my (the index y stands

for year in the future). Therefore long hindcast data are needed. Based on our analysis we

suggest as a first attempt to apply a linear conversion from link strength Wy to the number

of heat periods my, which is also supported by our tests shown in Fig. 3:

mr
y,W =

W r
y −min50τ=1(W

r
τ )

max50τ=1
(W r

τ )−min50τ=1(W
r
τ )

·

(

50
max
τ=1

(orτ )−
50

min
τ=1

(orτ )

)

+
50

min
τ=1

(orτ ) (8)

This linear approach corresponds to our skill analysis, where a linear connection between

the link strength and the number of heat periods is assumed as well. Again we note that this

study presents only the skill analysis of hindcast data and Eq. 8 is actually not used now.
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5 Results

Figure 4 depicts the number of observed heat periods (solid line) and the corresponding

link strength (dashed line) retrieved from the complex evolving network, both from E-OBS

data for France (Prudence region 3), and shows that the link strength Wτ is a suitable

estimator of heat periods. It shows that the network contains climate information in the

sense that the dynamics of the link strength Wτ is similar to the dynamics of heat periods,

both based on the same data. So, the link strength can here be considered as an estimator

for heat periods which is comparable to the standard heat period estimator. Jumps between

the decades occur as the running mean filter is only applied within the decades (see

Sect. 4.3). The corresponding figures for the seven other Prudence regions can be found in

the supplementary material.

As an example, Prudence region 8 (Eastern Europe) is a region where the network

method performs better than the standard approach (Figs. 5 and 6). Figure 5 shows the

E-OBS number of heat periods o (black) and the CCLM ensemble mean number of heat

periods m (blue) for Eastern Europe together with the interquartile range (25th and 75th

percentiles), and Fig. 6 shows again the E-OBS number of heat periods now compared to

the CCLM link strength. Comparing the absolute mean differences, denoted as M in the

two figures reveals that our network approach enhances the skill in four decades, namely

1970, 1980, 1990, 2000. Especially the 1970s, 1980s, 1990s show a clear improvement

and our network approach better reflects the low frequency dynamics of the heat periods.

The 2000s seem to be off in both model cases, the number of heat periods and the link

strength, which indicates a failed model initialization.

In order to see how the prediction skill of the standard as well as the network heat period

estimators vary with the considered region, we performed the same analysis as above

for the eight Prudence regions in Europe and for the 1960s, 1970s, 1980s, 1990s and

2000s. The corresponding figures for the other regions can be found in the supplement. To

summarize our
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✿✿

To
✿✿✿✿✿✿✿✿✿✿✿✿

summarize
✿✿✿✿

the
✿

results we calculated as the prediction skillthe
✿✿✿✿✿✿✿✿

absolute
✿✿✿✿✿✿

mean

✿✿✿✿✿✿✿✿✿✿

differences
✿✿✿✿✿

(Eqs.
✿✿

6
✿✿✿✿

and
✿✿✿

7)
✿✿

for
✿✿✿

all
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

Prudence
✿✿✿✿✿✿✿✿

regions,
✿✿✿✿

see
✿✿✿✿

Fig.
✿✿

7.
✿✿✿✿✿

Blue
✿✿✿✿✿✿

colors
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

panels

✿✿✿✿✿

stand
✿✿✿

for
✿✿✿✿

low
✿✿✿✿✿✿✿

values
✿✿✿✿✿✿

(high
✿✿✿✿✿

skill)
✿✿✿✿✿✿✿✿✿

whereas
✿✿✿

red
✿✿✿✿✿✿✿

colors
✿✿✿✿✿✿

depict
✿✿✿✿✿

high
✿✿✿✿✿✿✿

values
✿✿✿✿✿

(low
✿✿✿✿✿

skill)
✿✿

in
✿✿✿✿

the

absolute mean differencewithin a decade between .
✿

✿✿✿✿

The
✿✿✿

left
✿✿✿✿✿✿

panel
✿✿

of
✿✿✿✿

Fig.
✿✿

7
✿✿✿✿✿✿

shows
✿✿✿✿✿

how
✿✿✿

the
✿✿✿✿✿✿✿✿

network
✿✿✿✿✿✿✿✿

method
✿✿✿✿✿✿✿✿

performs
✿✿✿✿✿✿

using
✿✿✿✿

only
✿

E-OBS heat

periods and CCLM heat periods (
✿✿✿✿

data
✿✿✿✿✿✿

similar
✿✿

to
✿✿✿✿

Fig.
✿✿✿

4.
✿✿✿✿✿✿✿✿✿

Therefore
✿✿✿

we
✿✿✿✿✿✿✿✿✿✿

estimated
✿✿✿

the
✿✿✿✿✿✿✿✿

number

✿✿

of
✿✿✿✿✿

heat
✿✿✿✿✿✿✿

periods
✿✿✿

in
✿✿✿✿

the
✿✿✿✿✿✿✿

E-OBS
✿✿✿✿✿

data
✿✿✿✿

and
✿✿✿✿

the
✿✿✿✿

link
✿✿✿✿✿✿✿✿✿

strength
✿✿✿✿✿

(from
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

complex
✿✿✿✿✿✿✿✿

network)
✿✿✿

of

✿✿✿

the
✿✿✿✿✿✿✿

E-OBS
✿✿✿✿✿

data
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

accordingly
✿✿✿✿✿✿✿✿✿✿

calculated
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

differences
✿✿✿✿✿

(after
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

normalization,
✿✿✿

cf. Eq. 6)

✿✿

5)
✿✿✿✿✿✿✿✿

between
✿✿✿✿✿✿

these
✿✿✿✿

two
✿✿✿✿✿✿✿✿✿✿✿

estimators.
✿✿✿

As
✿✿✿✿✿

can
✿✿✿

be
✿✿✿✿✿

seen
✿✿✿✿✿

blue
✿✿✿✿✿✿

colors
✿✿✿✿✿✿✿✿✿

dominate
✿✿✿✿

the
✿✿✿✿✿

plot,
✿✿✿

i.e.
✿✿✿✿

low

✿✿✿✿✿✿✿✿✿✿

differences
✿✿✿✿

and
✿✿✿✿✿✿✿

hence
✿✿✿✿✿

high
✿✿✿✿

skill.
✿✿✿✿✿✿

Thus,
✿✿✿✿

this
✿✿✿✿✿✿✿✿✿✿

reference
✿✿✿✿

test
✿✿✿✿✿✿✿

shows
✿✿✿✿

that
✿✿✿✿

the
✿✿✿

link
✿✿✿✿✿✿✿✿✿

strength
✿✿

is

✿✿✿✿✿✿✿

coupled
✿✿✿

to
✿✿✿✿

the
✿✿✿✿✿✿✿

number
✿✿✿

of
✿✿✿✿✿

heat
✿✿✿✿✿✿✿

periods
✿✿✿

in
✿✿✿✿✿✿✿✿✿✿

maximum
✿✿✿✿✿

daily
✿✿✿✿✿✿✿✿

summer
✿✿✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿

data
✿✿✿✿

and

✿✿

so
✿✿✿✿

can
✿✿✿

be
✿✿✿✿✿

used
✿✿✿

as
✿✿✿

an
✿✿✿✿✿✿✿✿✿✿✿

alternative,
✿✿✿✿✿✿✿✿

possibly
✿✿✿✿✿✿✿

better,
✿✿✿✿

heat
✿✿✿✿✿✿✿✿

periods
✿✿✿✿✿✿✿✿✿✿

estimator.
✿✿✿✿✿✿

There
✿✿✿

are
✿✿✿✿✿✿

some

✿✿✿✿✿✿✿✿✿✿

exceptions
✿✿✿✿

like
✿✿✿✿

the
✿✿✿✿✿✿

1990s
✿

and
✿✿✿✿✿✿

2000s
✿✿

of
✿✿✿✿✿✿✿✿✿✿

Prudence
✿✿✿✿✿✿✿

region
✿✿

6.
✿✿✿✿✿✿✿✿

Further
✿✿✿✿✿✿✿✿✿✿✿✿

investigation
✿✿✿

on
✿✿✿✿

the

✿✿✿✿✿✿✿

reasons
✿✿✿

of
✿✿✿✿✿

these
✿✿✿✿✿✿

cases
✿✿✿✿

has
✿✿✿

to
✿✿✿

be
✿✿✿✿✿✿✿✿✿✿

performed.
✿

✿✿✿✿

The
✿✿✿✿✿✿✿

middle
✿✿✿✿✿

panel
✿✿✿

of
✿✿✿✿

Fig.
✿✿

7
✿✿✿✿✿✿

shows
✿✿✿✿✿

how
✿✿✿✿

well
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿

method
✿✿✿✿✿✿✿✿✿

performs
✿✿

in
✿✿✿✿✿✿✿✿✿✿

predicting

✿✿✿✿

heat
✿✿✿✿✿✿✿✿

periods
✿✿✿✿✿✿

using
✿

E-OBS heat periods
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿✿

and
✿✿✿✿✿✿✿

CCLM
✿✿✿✿✿✿

model
✿✿✿✿✿✿

data.
✿✿✿✿

The
✿✿✿✿✿

right

✿✿✿✿✿

panel
✿✿✿✿✿✿✿✿✿

indicates
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

performance
✿✿

of
✿✿✿✿

the
✿✿✿✿✿

new
✿✿✿✿✿✿✿✿

network
✿✿✿✿✿✿✿✿

method
✿✿

in
✿✿✿✿✿✿✿✿✿✿

estimating
✿✿✿✿✿

heat
✿✿✿✿✿✿✿✿

periods

✿✿✿✿✿

using
✿✿✿✿✿✿✿

E-OBS
✿✿✿✿

and
✿✿✿✿✿✿✿

CCLM
✿✿✿✿✿

data.
✿✿✿

In
✿✿✿✿✿✿✿✿

contrast
✿✿

to
✿✿✿✿

the
✿✿✿✿✿✿✿✿

relatively
✿✿✿✿

low
✿✿✿✿✿✿✿

values
✿✿

in
✿✿✿✿

the
✿✿✿

left
✿✿✿✿✿✿✿

panel,
✿✿✿

the

✿✿✿✿✿✿

values
✿✿

in
✿✿✿✿

the
✿✿✿✿✿✿✿

middle
✿✿✿✿

and
✿✿✿✿✿

right
✿✿✿✿✿✿✿

panels
✿✿✿

on
✿✿✿

the
✿✿✿✿✿

one
✿✿✿✿✿

hand
✿✿✿✿

are
✿✿✿✿✿✿

higher
✿✿✿

for
✿✿✿✿✿✿

many
✿✿✿✿✿✿✿✿✿

decades
✿✿✿✿

and

✿✿✿✿✿✿✿✿✿

Prudence
✿✿✿✿✿✿✿✿

regions.
✿✿✿

On
✿✿✿✿

the
✿✿✿✿✿

other
✿✿✿✿✿✿

hand,
✿✿✿

the
✿✿✿✿✿✿

visual
✿✿✿✿✿✿✿✿✿✿✿

impression
✿✿

is
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿

absolute
✿✿✿✿✿✿✿✿✿✿✿

differences

✿✿

of
✿✿✿

the
✿✿✿✿✿

right
✿✿✿✿✿✿

panel
✿✿✿

are
✿✿✿✿✿✿✿

slightly
✿✿✿✿✿✿✿✿

smaller
✿✿✿✿

than
✿✿✿✿✿✿

those
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

middle
✿✿✿✿✿✿

panel,
✿✿✿✿✿✿✿✿✿✿

especially
✿✿✿✿✿✿✿

during
✿✿✿

the

✿✿✿✿✿✿

1990s and CCLM link strength (Eq. 7). Figure 8
✿✿✿✿✿✿

2000s.
✿

✿✿✿✿✿

Thus,
✿✿✿✿

we
✿✿✿✿

can
✿✿✿✿✿✿✿✿✿✿

conclude
✿✿✿✿✿

with
✿✿✿✿

Fig.
✿✿

7
✿✿✿✿✿

that
✿✿✿✿

the
✿✿✿✿✿✿✿✿

method
✿✿✿✿✿✿

works
✿✿✿

in
✿✿✿✿✿✿✿✿✿

principle
✿✿✿✿

but
✿✿✿✿

that
✿✿✿✿

the

✿✿✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿

in
✿✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿✿

lead
✿✿✿

to
✿✿✿✿✿✿✿✿✿

increased
✿✿✿✿✿✿✿✿✿✿✿

differences
✿✿✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿✿✿✿✿

observations

✿✿✿

and
✿✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿✿

simulations.
✿✿

In
✿✿✿✿✿✿✿✿✿

addition,
✿✿✿

the
✿✿✿✿

link
✿✿✿✿✿✿✿✿

strength
✿✿✿✿✿✿

seems
✿✿✿

to
✿✿✿✿✿

work
✿✿✿✿✿

better
✿✿✿✿✿

than
✿✿✿

the
✿✿✿✿✿✿✿✿✿

standard

✿✿✿✿✿✿✿✿✿

approach
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿✿✿

with
✿✿✿✿✿✿✿

respect
✿✿

to
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

observations.

✿✿

To
✿✿✿✿✿✿✿✿

quantify
✿✿✿✿

this
✿✿✿✿

last
✿✿✿✿✿✿✿✿✿✿

statement,
✿✿✿

we
✿✿✿✿✿✿✿✿✿✿

calculated
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

difference
✿✿✿✿✿✿✿✿

between
✿✿✿✿

the
✿✿✿✿✿✿

middle
✿✿✿✿

and
✿✿✿✿✿

right

✿✿✿✿✿✿

panels
✿✿✿

of
✿✿✿✿

Fig.
✿✿

7,
✿✿✿✿

see
✿✿✿✿

Fig.
✿✿✿

8.
✿✿✿✿

This
✿✿✿✿✿✿✿✿✿

basically shows which method performs better regarding

the eight regions (columns) and five decades (rows). Blue color in Fig. 8 indicates that
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the network approach performs better (M r
d (ψ)<M r

d (µ)) and red color stands for a better

performance of the standard approach (M r
d (ψ)>M r

d (µ)). White boxes in Fig. 8 denote

a tie between the methods in the case of too small differences (|M r
d (ψ)−M r

d (µ)| ≤ 0.05).

The matrix of Fig. 8 shows that the network method is clearly superior in three regions

(5,7,8) and slightly superior in two regions (4,6), the standard approach is superior in two

regions (1 and 3) and in region 2 we observed a tie, i.e. no clear result.

The crucial question is if this result indicates that the network method performs

significantly better than the standard approach or not. However, testing for statistical

significance bears serious problems. There are so many factors involved in the analysis,

i.e. the models themselves, the downscaling, the ensemble, the initialization, the different

regions, the filtering, etc. that any nullhypothesis
✿✿✿

null
✿✿✿✿✿✿✿✿✿✿✿

hypothesis would be not well-posed

and any test would be questionable. This issue is discussed in detail in a 2013 paper

entitled “Testing ensembles of climate change scenarios for "statistical significance"” by

climate statistics instances Hans von Storch and Francis Zwiers (von Storch and Zwiers,

2013), who claim that “... a statistical nullhypothesis may not be a well-posed problem ...”

and “Even if statistical testing were completely appropriate, the dependency of the power

of statistical tests on the sample size n remains a limitation on interpretation.” and finally “...

propose to employ instead a simple descriptive approach for characterising the information

in an ensemble ...”. Although we totally agree with the argumentation by (von Storch and

Zwiers, 2013) that a “classical” significance test would most probably fail in our analysis,

we think that alternative significance tests, based on bootstrapping or surrogate data, could

definitely help for a better interpretation of the results. Thus, we construct the following

significance test based on surrogate data to answer the question: “What is the probability

of getting a rank matrix like the one in Fig. 8 by chance?”.

First, we have to define what is the possibly “significant” characteristic of the matrix in

Fig. 8. It is, as we concluded above, that the network method is superior in five regions.

Thus the question is: “What is the probability to observe at least five regions, where we have

in each at least one blue matrix element more than a red one by chance?”. Accordingly we

constructed matrices like in Fig. 8 by randomly coloring 20 matrix elements blue and 20
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red. Afterwards we colored 8 matrix elements white as in Fig. 8. Finally, we repeated this

surrogate procedure 1000 times and counted the cases (regions) where the blue matrix

elements dominate. Table 2 shows the probabilities that blue matrix elements dominate in

n regions. Since we have 16 blue elements and 16 red, it is sure that blue dominates in

n= 1 region and impossible to dominate in n= 7 and n= 8 regions. As can be seen from

Tab. 2 the probability of dominating in n= 5 regions by chance is only about 5%, thus the

results of our network approach have to be stated significant. Due to the symmetry of the

test, the same argumentation is valid for red matrix elements. Dominating in n= 2 regions,

as achieved by the standard approach (Fig. 8), can be realized easily by chance with a

probability of approx. 99%. Page 1 in the supplementary material shows an example of 12

of these randomly generated matrices, where one matrix, depicted by a black frame, fulfills

the “significance” criterion.

6 Conclusions and outlook

We presented a novel approach examining heat periods using a complex network analysis.

We have investigated the predictability of the slow dynamics of the occurrence of heat

periods in Europe based on daily maximum near-surface temperature data.

We found that the network approach is superior (significance is ≈ 5%) to the standard

approach in predicting
✿✿✿✿✿✿✿✿✿

estimating
✿

heat periods in Europe, hence highlighting the potential of

network methods to improve the skill estimation in decadal prediction experiments. Picking

up our hypothesis and simplified argumentation from Sect. 3, the crucial point why we detect

heat periods with the network link strength is that heat periods are cooperative events in

space and time. Thus, the link strength can be used as an estimator of heat periods. The

drawback of the standard approach is most probably the inflexible threshold for the detection

of heat periods (cf. Fig. 2). If the climate model contains the signal of a heat period, but

with a slightly too small amplitude, the threshold will not be crossed and no heat period

will be detected. In contrast, the complex climate network does not depend on such fixed
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thresholds, and can use this information, which makes it the more robust estimator of heat

periods.

The general prediction skill of climate in Europe using standard measures is still

moderate. In this sense our work adds new aspects to our previous study (Mieruch et al.,

2014) and also the work of Eade et al. (2012) who found a strong variation of skill with

region and decade. In essence, we found regions and decades in Europe where our

climate model output, or more specifically the used network estimator, follows the slowly

evolving dynamics of observed heat periods. We also found regions and decades, where

the network estimator is not able to represent the observational reference. Understanding

of this variability in prediction skill is one of the future challenges of decadal predictions.

Concluding, our approach shows that the complex climate networks approach yields

meaningful climate information and has the potential to improve skill measures within the

framework of climate prediction. It is the first time that such network techniques have been

used in climate predictions. Since climate or decadal predictions aim to predict natural

variability in the order of years, suitable statistics are needed. Natural variability in the

order of years evolves highly dynamical and often nonlinear. Thus, the complex climate

networks could bear the potential to be very useful in climate predictions. Our approach,

which is even based on the most simple network measure, the node degree (or as we used

it the link strength) yields optimistic results. So, we think that our analysis could be the

starting point for using the complex networks in climate predictions, using other measures

and/or multivariate data could turn out to be the better way of analyzing predictions of

natural variability years ahead than using methods from short- or medium range forecasting.

Further, from the network perspective it would be interesting to analyze other network

measures like clustering, similarities or path lengths and how they are connected to

climate evolution. The incorporation of other relevant variables like precipitation, wind or soil

moisture into the network is an appealing aspect. From a physical or climatological point of

view it is important to understand why the network measures are able to represent climate

dynamics, which could also contribute to a better understanding of the sources of decadal

predictability. Thus, the incorporation and investigation of processes like the AMOC, PDO
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or NAO together with complex networks and climate prediction might be an option for the

future.
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Table 1. Ensemble mean variation of the temperature threshold calculated for heat periods with the

standard approach in CCLM data (see Sect. 4.2).

Prudence region 1 2 3 4 5 6 7 8

Temperature threshold (in K) 3.16 3.38 2.81 2.52 2.66 2.85 3.46 2.79
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Table 2. Probability that blue matrix elements in Fig. 8 dominate in n regions by chance. Half of

the elements are colored blue and red, respectively, and eight white elements are randomly added

subsequently.

Number of regions n 1 2 3 4 5 6 7 8

Probability in % 100 99 82 35 5 0.1 0 0
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Figure 1. The 8 Prudence regions. (Topography: ETOPO1, Amante and Eakins, 2009.)
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Figure 2. Schematical illustration of our approach (temperature anomaly on the y axis): (a) model

detects correctly one heat period above the threshold, (b) model underestimates the number of heat

periods, (c) model overestimates the number of heat periods (details see text).

26



❉
✐
"
❝
✉
"
"
✐
♦
♥
'
❛
♣
❡
+

⑤
❉
✐
"
❝
✉
"
"
✐
♦
♥
'
❛
♣
❡
+

⑤
❉
✐
"
❝
✉
"
"
✐
♦
♥
'
❛
♣
❡
+

⑤
❉
✐
"
❝
✉
"
"
✐
♦
♥
'
❛
♣
❡
+

⑤

350 400 450 500 550 600 650

time

−
2

0
2

4 a)

0
.0

0
0

.1
5

0
.3

0

number of heat periods

lin
k
 s

tr
e

n
g

th

b)

0 1 2 3 4 5 6 7 8 9

Figure 3. (a) Artificial time series including 3 heat periods (dashed lines). (b) Relation between the

network link strength and the number of heat periods, based on 100 artificial time series.
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Figure 4. Number of heat periods (1961–2010) in France (Prudence 3) in summer from E-OBS o
(solid line) and corresponding E-OBS link strength W (dashed line). The “M’s” denote the absolute

mean difference within a decade between E-OBS
✿✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

approach and the CCLM ensemble mean

✿✿✿✿✿✿

E-OBS
✿✿✿

link
✿✿✿✿✿✿✿✿

strength after normalization, see
✿

cf.
✿

Eq. 7.
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Figure 5. Number of heat periods (1961-2010) in Eastern Europe (Prudence 8) in summer from

E-OBS o (black) and CCLM number of heat periods (blue: ensemble mean and interquartile range).

The “M’s” denote the absolute mean difference within a decade between E-OBS and the CCLM

ensemble mean after normalization, see Eq. 6.
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Figure 6. Number of heat periods (1961-2010) in Eastern Europe (Prudence 8) in summer from

E-OBS o (black) and CCLM link strength or correlation threshold W (red: ensemble mean and

interquartile range). The “M’s” denote the absolute mean difference within a decade between E-

OBS and the CCLM ensemble mean after normalization, see Eq. 7.
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