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Letter to the Editor and the Referees

Predicting climate extremes - a complex network approach

M. Weimer, S. Mieruch, G. Schädler and C. Kottmeier

Dear Dr. Kurths, dear Referees,

We herewith submit the revised version of our manuscript, now entitled “Decadal prediction of
heat periods based on regional climate model data – a complex network approach”.

We have considered all points raised by the referees and we think that the paper has been clearly

improved now.

We rearranged the “Methods” section with the motivation of our approach as an extra section in

the paper and by introducing new subsections for pre-processing of the data, standard approach,

new approach and introduction of the prediction skill. In addition, we included a new subsection

to demonstrate how to predict the number of heat periods for real forecasts with our new approach.

Due to the very helpful comments regarding the fact that our network approach could detect also

undesired cold periods, we expanded our algorithm and removed cold data points prior to the anal-

ysis. Accordingly, the results have been improved clearly. Now, the network method is superior

in 5 out of 8 regions in Europe. Due to this, we simplified the significance test and just answered

the question “What is the probability to be superior with one method in 5 out of 8 regions by

chance?”. Based on a surrogate test we found that this result is significant.

Regarding the comment by referee #1:

p1492l5-7: It would be interesting to see where the error of the network approach
to heat wave detection comes from in the different (r; d) cases. There are two possi-
bilities, as far as I can see:

1. the network approach to heat wave detection does simply not work

2. the network approach to heat wave detection does work but the CCLM simulations are bad

You can check which possibility applies to which case by comparing mr
d(W ) with Wτ based on

CCLM data (let me call this MCCLM ) to mr
d(W ) with Wτ based on E-OBS data (as in Fig.

4; let me call this MEOBS ). If MCCLM is similar to MEOBS we have possibility 1 while if

MCCLM � MEOBS we have possibility 2, right?! Please do this analysis and discuss your

findings.

As mentioned in the review answers, we have already shown that the network approach works

well, by applying the method to observational data shown in Fig. 4. We included now in the
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supplementary material the corresponding plots E-OBS number of heat periods vs. E-OBS link

strength, where it can be clearly seen that the method works well in most regions and decades.

However, it is clear that the link strength, as we used it, is not equivalent to counting heat periods.

It is an alternative estimator with advantages and disadvantages. Additionally, our assumption is

that the standard approach is the “error-free” truth in detecting the number of heat periods. But

there is of course also uncertainty in estimating the number of heat periods in E-OBS data.

We know that the prediction skill of the ensemble is rather weak, which is of course a problem.

Nevertheless, we tested the suggestion of referee #1, but we think it is not neccessary to include

this analysis in the paper. We investigated the reasons for the discrepancies between E-OBS

number of heat periods and the CCLM link strength (Fig. 6). Particularly, it is the question if

our approach does not work or if it is a result of the low prediction skill of decadal predictions.

Exactly as suggested by the referee, we calculated:

MEOBS =

∣∣∣∣∣ 1

10

10∑
τ=1

(
Ωr
d,τ − ξrd,τ

)∣∣∣∣∣ = |Ωr
d − ξ

r
d| , (1)

and

MCCLM =

∣∣∣∣∣ 1

10

10∑
τ=1

(
Ωr
d,τ − ψrd,τ

)∣∣∣∣∣ = |Ωr
d − ψ

r
d| , (2)

where Ω, ξ and ψ denote the rescaled values of EOBS number of heat periods, EOBS link strength

and CCLM link strength, respectively.

The corresponding rank matrix is shown in the figure below. We found that in 26 of the 40 (r,d)

boxes the differences MCCLM −MEOBS are greater than or near zero (colored red and white), or

the red/white boxes dominate in 6 regions, respectively. Therefore, the differences in the temporal

evolution between E-OBS and CCLM time series are rather a result of the uncertain decadal

predictions, which supports the usefulness of the network method.
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Figure 1: Rank matrix of differences between the absolute mean differences according to Eqs. (2)
and (1).
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Dear Dr. Kurths,

we have already answered the referee comments point by point during the interactive
discussion. You can find our answers in the discussion’s part of http://www.nonlin-
processes-geophys-discuss.net/npg-2015-52/.

Relevant changes in the current version of the manuscript are:

1. changed title: “Decadal prediction of heat periods based on regional climate model
data – a complex network approach”

2. new section for the motivation of our approach

3. rearranged structure of the Method’s section including a subsection for prediction of
the number of heat periods

4. adapted method to minimize the effect of cold periods

5. Results’ section enlarged by a significance test concluding that our method is
significant on the 5% level

This is, of course, only an overview of the relevant changes. Please find below the marked-
up version of all changes in the new manuscript with respect to the latest version.
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Manuscript prepared for Nonlin. Processes Geophys. Discuss.
with version 2014/09/16 7.15 Copernicus papers of the LATEX class copernicus.cls.
Date: 1 February 2016

Predicting
:::::::::::::::
Decadal

:::::::::::::::::::::
prediction

::::
of

::::::::::
heat

::::::::::::::
periods

:::::::::::::
based

::::::
on

::::::::::::::::
regional

:
climate extremes

::::::::::::
model

:::::::::
data

:
– a complex network approach

M. Weimer, S. Mieruch, G. Schädler, and C. Kottmeier

Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology,
Karlsruhe, Germany

Correspondence to: M. Weimer (michael.weimer@kit.edu)
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Abstract

Regional decadal predictions have emerged in the past few years as a research field with
high application potential, especially for extremes like heat and drought periods. However,
up to now the prediction skill of decadal hindcasts, as evaluated with standard methods is
moderate, and for extreme values even rarely investigated. In this study, we use hindcast
data from a regional climate model (CCLM) for 8

::::
eight

:
regions in Europe to construct

:::
and

:::::::
quantify

::::
the

::::
skill

::
of

::::
the

::::::
model

::::::::::::
alternatively

:::
by

::::::::::::
constructing

:
time evolving climate networks

and use the network correlation threshold (link strength) as a predictor for heat periods.
We show that the skill of the network measure to predict the low frequency dynamics of
heat periods is similar to the one of the standard approach , with the potential of being
even better in some regions

::::::::
superior

::
to

::::
the

:::::::
typical

:::::::::
approach

::
of

::::::
using

::
a
:::::
fixed

::::::::::::
temperature

:::::::::
threshold

:::
for

::::::::::
estimating

:::
the

::::::::
number

::
of

:::::
heat

:::::::
periods

::
in

:::::::
Europe.

1 Introduction

Decadal prediction is a relatively new field in climate research. Skillful prediction of climate
from years up to a decade would be beneficial for our society, economy and for a better
adaption to a changing climate. Within the large international CMIP5 project (Coupled
Model Intercomparison Project Phase 5 , Taylor et al., 2012

::::::::::::::::::::::::
(CMIP5 Taylor et al., 2012 )

global decadal predictions of climate key variables like temperature and precipitation
have been performed with state-of-the-art Earth system models. In order to validate the
prediction skill of the models so called hindcast experiments are conducted. That means,
the models are initialized with observations e.g. in 1961 and then run freely for 10 years and
stop at the end of 1970. In 1971, the models are again initialized and start to run for another
10 years and so on. More advanced approaches of initializing every year have been also
followed

::::::::
followed

:::
as

::::
well. These hindcasts can be evaluated against observational data to

quantify the prediction skill of the models depending on the lead time, which is the time
range between the initialization and the forecast datum of interest. In recent years, several

2
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studies on decadal predictions have shown the potential of these initialized (global) model
runs (e.g. Keenlyside et al., 2008; Müller et al., 2012; Matei et al., 2012; van Oldenborgh
et al., 2012; Corti et al., 2012; Doblas-Reyes et al., 2013; García-Serrano et al., 2013; Smith
et al., 2013; Meehl et al., 2014; Chikamoto et al., 2015). However most studies concentrate
on regions like the Tropical Pacific or North Atlantic and on slowly evolving variables
like sea-surface temperature. These regions receive their predictability from large scale
processes like the AMOC (Atlantic Meridional Overturning Circulation ) or PDO (

::::::::
(AMOC)

::
or Pacific Decadal Oscillation

::::::
(PDO) and thus allow to extract predictable signals out of the

noise. To be useful for society, and climate change adaption, regional climate predictions
are required which should provide skillful forecasts on smaller regions, shorter periods,
and include climate extreme events on populated land areas like the European continent.
The European climate is more connected to short term processes like NAO (

:::
the

:
North

Atlantic Oscillation
:::::
(NAO), which is to a certain extent predictable on seasonal scales,

whereas the decadal predictable signal is weak (Scaife et al., 2014), which has been
shown also for temperature and precipitation in large projects like ENSEMBLES (MacLeod
et al., 2012). Further, the complex orography with the Alps in the center contribute

::::::::::
contributes

:
to a manifold of general weather situations and hence to a complex climate

(e.g. CORDEX-EU, Jacob et al., 2013; Giorgi et al., 2009)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. World Climate Research Program Coordinated Regional Downscaling Experiment for Europe (CORDEX-EU), Jacob et al., 2013; Giorgi et al., 2009) .

Nevertheless, the European continent is influenced by the AMOC and thus this process may
yield to a certain predictability, although the signal to noise ratio is most probably small. Up
to now, the prediction skill for Europe is weaker than for such regions as the South Pacific
or North Atlantic. Mieruch et al. (2014) have used a regional decadal hindcast ensemble
for Europe and detected moderate prediction skill for summer and winter temperature and
summer precipitation anomalies in the order

:::::
within

::::
the

::::
lead

:::::
time of five years. Eade et al.

(2012) analyzed the predictability of temperature and precipitation extremes in a global
model and found a moderate but significant skill (correlation) for seasonal extremes.
They also find

::::::
found skill beyond the first year, but this skill arises

:::::
arose

:
from external

forcing. Thus, Eade et al. (2012) compared initialized climate predictions with uninitialized

3
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projections to evaluate the skill gained by initializing and excluding the external forcing.
They found that the “... impact of initialization is disappointing”.

On the other hand an innovative approach
:::::::
Another

:::::::::
relatively

::::
new

::::
field

:
in climate research

has been establishedin the recent years, namely the complex climate network approach.
The general idea of climate networks is to consider climate time series e.g. at the grid

points of a climate model as nodes of the network and the statistical connection between the
time series as links of the network. A link between two arbitrary time series (geolocations)
exists, if the correlation measure between the time series exceeds a certain threshold.

The climate network community has been very active in recent years. Tsonis et al. (2007)
proposed “A new dynamical mechanism for major climate shifts” and explained e.g. decadal
shifts in global mean temperature (Tsonis and Swanson, 2012). Radebach et al. (2013)
discriminate

::::::::::::
discriminated

:
different El Niño types using the network approach, Ludescher

et al. (2013) developed a network method to improve El Niño forecasting and Donges
et al. (2011) revealed a connection between (paleo-) climate variability and human evolution
using recurrence-networks, which are similar to the complex climate networks. Generally, it
has been shown that climate networks contain useful information for climate applications,
e.g. the relation between climate and topography found by Peron et al. (2014), dynamics of
the sun activity using visibility graphs (Zou et al., 2014) and the prediction of extreme floods
Boers et al. (2014).

Extremes like heat periods are defined as events which coherently exceed a threshold
over a certain time-space domain. From a complex network perspective the node degree
describes correlation (above a threshold) of data also on a time-space domain. Therefore,
the area averaged node degree and thus the link strength could be an indicator for extreme
events like heat periods. In this paper, we exploit this idea

:::
the

:::::
idea

:::
to

::::
use

:::
an

::::::::::
alternative

::::
heat

::::::
period

::::::::::
estimator,

::::::
based

:::
on

::::::::
complex

::::::::
climate

:::::::::
networks,

:
and show that its skill is similar

to the skill of the standard approach and has the potential to improve the
::::::::
superior

::
to

::::
the

::::::
typical

:::::::::
approach

:::
of

::::::
using

::
a

:::::
fixed

::::::::::::
temperature

:::::::::
threshold

:::
for

:
prediction of heat periods on

time scales up to a decade.

4
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In Sect. 2 we introduce the daily maximum temperature data used in this study
:::
and

::::::::
motivate

::::
our

:::::::::
approach

:::
in

:::::
Sect.

::
3. Section 4 describes our approach, which includes the

preparation of the data, the definition of heat periods and the construction of time evolving
climate networks. The results ,

::
for

::::::::
applying

::::
the

:::::
new

:::::::::
approach

:::
to

:::::::::
hindcasts

::::
are

:
shown in

Sect. 5, indicate that the network measure is equally skillful as the standard approach and
in some regions in Europe can be the better estimator of heat periods. Finally, we give the
conclusions and an outlook in Sect. 6.

2 Data

We apply the climate network approach to a decadal prediction ensemble generated
within the German research project MiKlip . The regional climate model

::::::::::::
(Mittelfristige

::::::::::::::::
Klimaprognosen,

::::::::
Decadal

::::::::
Climate

:::::::::::
Prediction,

::::
e.g.

:::::::::::::::::::::
Kadow et al. (2015) )

:::
by

::::
the

::::::::
regional

::::::::
COSMO

::::::
model

:::
in

::::::::
CLimate

::::::
Mode

:
(COSMO-CLM (Consortium for small scale modeling in

climate mode), called CCLMhereafter is described in
::
or

:::::::
CCLM)

:
Doms and Schättler (2002).

CCLM has been used in numerous studies recently e.g. in Kothe et al. (2014); Dosio
et al. (2015), a comprehensive overview can be found here: http://www.clm-community.
eu. CCLM has been used to downscale global decadal predictions from the MPI-ESM
(Stevens et al., 2013) global model

:::::
Earth

::::::::
System

::::::
Model

:::
of

::::
the

:::::
Max

:::::::
Planck

:::::::::
Institute

:::
for

:::::::::::
Meteorology

:::::::::::::::::::::::::::::::
(MPI-ESM, Stevens et al., 2013) . From a suite of different decadal prediction

experiments we have selected the so-called regional baseline 0 ensemble. This ensemble
consists of 10 memberseach,

:
,
:::::
each

:
covering the period 1961–2010 for the European

region (according to CORDEX-EU Jacob et al., 2013; Giorgi et al., 2009) on a 0.22◦ grid.
This ensemble has already been used by Mieruch et al. (2014).

The regional baseline 0 ensemble (based on the global MPI-ESM model) has been
initialized every 10 years (1961, 1971, 1981, 1991, 2001). Within a decade the CCLM model
runs freely, except for the prescription of the atmospheric boundary conditions by the global
MPI-ESM model.

5
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More details on the development of the ensemble and the initialization can be found in
Matei et al. (2012), Müller et al. (2012), Mieruch et al. (2014).

In the study presented here we use daily maximum near-surface temperatures from the
CCLM model and from the E-OBS v8.0 gridded climatology (Haylock et al., 2008) for the
European continent.

For our comparison, we use the so-called Prudence regions http://prudence.dmi.dk/,
namely British Isles, Iberian Peninsula, France, Central Europe, Scandinavia, Alps,
Mediterranean and Eastern Europe shown in Fig. 1.

3 Method
::::::::::
Motivation

Our hypothesis is that complex network measures may be complementary or even
better estimators for climate extremes than standard measures like absolute threshold
exceedances.

::::::::::
Generally,

:::::
heat

::::::::
periods

:::::
are

::::::::::
maximum

:::::::::::::
temperature

::::::::
values

::::::::::
persisting

::
for

:::::::::
several

::::::
days

:::::
and

::::::::::
occurring

::::
on

:::::::::
spatially

:::::::::::
expanded

:::::::::
regions.

:::::
This

::::::::
means

:::::
that

:::::
many

:::::::::::::
temperature

:::::
time

:::::::
series

::::::
(grid

:::::::
points)

:::::::::
behave

:::
in

::
a
:::::::::::::

“cooperative
::::::::

mode”
:::::
(see

:::
e.g.

::::::::::::::::::::::::
Ludescher et al. (2013) ).

:::::
This

:::::::::::
cooperative

:::::
state

::::
can

:::
be

::::::::::
described

::
by

::::
the

:::
link

:::::::::
strength,

:::
i.e.

::::::::::
essentially

::::
the

:::::::::::
correlation

::::::::
between

:::::
time

:::::::
series,

:::
of

::
a
:::::::
climate

:::::::::
network.

::::::
Thus,

::::
the

::::
link

::::::::
strength

::
of

:
a
::::::::
climate

:::::::
network

::::::
could

::::
turn

::::
out

::
to

:::
be

:::
the

::::::
better

:::::
heat

::::::
period

:::::::::
estimator

:::
for

::::::
model

:::::
data,

::::::::
because

::
it

::
is

::::::::::::
independent

::
of

::::
the

::::::::
typically

::::::
critical

::::::::::
thresholds

:::::
used

:::
in

::::::::
classical

::::::::
extreme

:::::
value

::::::::::
detection.

As mentioned before, we use the case of heat periods to illustrate the method.
The standard estimator for heat periods according to the WMO

:::::
World

:::::::::::::::
Meteorological

::::::::::::
Organization

:::::::
(WMO)

:
is that the daily maximum temperature is 5K above the 1961–1990

mean maximum temperature at five consecutive days at least (Frich et al., 2002). Thus,
the standard approach

:::::::
method

:::
to

:::::::::
compare

::::
the

::::::::::
prediction

::::
skill

:::
of

:::::
heat

:::::::
periods

:::::::::
between

::::::::::::
observations

::::
and

:::::::
model

:
would be to count the heat periods e.g. for each year in an

observational reference data set and similarly in the model data, both according to the
WMO definition

:::
(cf.

::::
Fig.

::
2).

6
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As an alternative heat period estimator, we propose to use the time varying link strength
Wτ (τ represents the years) of a network

::
A

:::::::
crucial

::::::::
problem

::
of

::::
the

:::::::::
standard

:::::::::
estimator

:::
for

::::::
model

::::::::::
predictions

::
is
::::
the

::::::::
inherent

:::::
static

:::::::::
threshold

:::::
used

:::
to

::::::
detect

:::::
heat

::::::::
periods.

::::::::
Although

::::
this

:::::::::
threshold

:::
can

:::
be

::::::::
adapted

:::
to

:::
the

::::::
model

:::::::::::
climatology

:::
the

::::::::
problem

::
is
::::
that

::
it
::
is

::::
still

:::::
likely

::::
that

:::
the

::::::
model

:::::::
slightly

::::::::::::
undershoots

::
or

::::::::::
otherwise

:::::::
slightly

:::::::
misses

::::
the

:::::::::
threshold

::
if

::
a

::::
true

:::::
heat

::::::
period

:::::::
occurs,

:::::::::
assuming

::::
the

::::::
model

:::::::
exhibits

:::
at

:::::
least

:::::
some

::::::::::
predictive

::::
skill.

:

::
To

:::::::::
account

::::
for

::::
this

::::::::::
situation

:::
in

::::::::
decadal

::::::::::::
predictions

::::
we

:::::::::
propose

::
a
:::::

new
:::::::::

method,
based on modeled daily maximum temperature time series. The link strength Wτ is
the correlation threshold between time series

::::::::
complex

::::::::
climate

::::::::::
networks,

::
to

:::::::
detect

:::::
heat

:::::::
periods, which is needed to construct a network of a given edge density (more details
below). Accordingly

:::::::::::
independent

:::
of

:
a
:::::
fixed

::::::::::::
temperature

::::::::::
threshold.

::::::
Again

:
we want to show

that Wτ has the potential to be at least as good as, or even a better estimator for
observational heat periods than the standard estimator. This approach is similar to that
used by Ludescher et al. (2013) , who forecasted El Niño events using the link strength
of a network and showed the superiority to standard sea surface temperature predictions
by state-of-the-art climate models

::::::::::
emphasize

::::
that

:::
no

:::::
new

:::::::
method

:::
for

::::
the

:::::::::
detection

::
of

:::::
heat

:::::::
periods

::
is

:::::::::
needed,

:
if
:::::

past
:::::::::::::
observational

:::::
data

:::
is

::::::
used.

::::
The

::::::
WMO

:::::::
based

:::::::::
definition

::::::
works

::::
well.

:::::::::
However,

:::
for

:::::::::
detecting

:::::
heat

:::::::
periods

::
in

:::::::::
10-yearly

:::::::::
initialized

:::::::::::::::::
forecast/hindcast

:::::
data,

::::
new

::::::::
methods

::::
are

::::::::
needed.

::::
Not

:::::
only

:::
to

:::::::::
overcome

::::
the

::::::::::
threshold

::::::::
problem,

::::
but

:::::
also

::
to

:::::::::
consider

::::::::
complex

:::::::::
long-term

:::::::
climate

:::::::::
evolution

::
in

::::::::
contrast

:::
to

::::::::::
short-term

::::::::
weather.

Figure 2illustrates the motivation schematically, assuming
:::
The

:::::::::
following

:::::::::::
schematic

:::::::::
examples

::
in

::::::
Figs.

:::::
2a-c

::::
and

::::
Fig.

:::
3

::::::::
illustrate

:::::
why

::::
the

::::::::
complex

::::::::
network

::::::::::
approach

::
is

:::::
able

::
to

::::::
detect

:::::
heat

:::::::
periods

::::::::
without

:::::
using

::
a
::::::::::::
temperature

::::::::::
threshold.

::::
The

::::::
black

:::::::
curves

:::::::::
represent

:::::::::
(artificially

:::::::::::
generated)

:::::
daily

:::::::::
maximum

::::::::::::
temperature

::::::
model

:::::
data.

:::::::
Further

:::
we

::::::::
assume

:
that one

heat period has actually occurred , and assuming that the model has a certain prediction
::
in

::::
Figs.

:::::
2a-c

::::::::::
persisting

:::
for

:::::::
15days

:::::
from

::::
day

:::
11

::
to

::::
day

:::
25.

::::::::::::
Accordingly

:::
the

::::::
black

:::::::
curves

:::::
show

:::::::
different

:::::::::
possible

::::::
model

:::::::
results

::
if
::::
the

::::::
model

::::::::
exhibits

:::::::::
predictive

:
skill to detect the

:
a

:
signal

out of the noise.

7
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Figure 2a depicts that using the standard approach the model correctly detects one heat
period above the threshold. In Fig. 2b the model detects a signal, but this signal is too
weak to cross the threshold, thus no heat period would have been detected and the model
underestimates the number of heat periods. Overestimation of the number of heat periods
happens in Fig. 2c, where the model detects two heat periods (5 days above the threshold
). A

::
at

:::
the

:::::::
edges

::::
and

::::::
below

:::
the

:::::::::
threshold

::
in
::::::::::
between).

:::::
Now,

::::
the

:::
key

::::::
point

:::
for

:::
our

::::::::::
motivation

::
is

::::
that

:
a heat period constitutes an event in space and time, thus in a certain region, many

time series would look like the ones in Fig. 2. Now, the
::::
The link strength of a network would

be given by the correlation between these coherent time series. Generally,
:::::
Since the signals

in Fig
::::
Figs. 2a–c look quite similarand

:
, the link strength of the network would thus be very

similar in all three cases. Whereas the standard approach would correctly predict the heat
period in only one case (Fig. 2a), the networks

:
’ link strength would correctly predict the heat

period in all three cases, given a proper relation between link strength and heat periods.
To test the relation in principle, we created 100 artificial time series (Gaussian noise)

and included successively 0–9 heat periods. Figure 3a shows such a time series with three
artificial heat periods indicated by the dashed lines. In a following step, we calculated the
mean correlation (link strength) between these 100 coherent time series dependent on the
number of included heat periods depicted in Fig. 3b. As can be seen, the relation is nearly
linear, thus more heat periods are connected with a larger link strength.

::::
This

:::::::::
simplified

::::
test

::::::
shows

::::
that

::
a

::::::
proper

::::::::
relation

::::::::
between

::::
link

::::::::
strength

:::::
and

::::
heat

::::::::
periods

:::::
could

::::::
exist.

:
Note that

Fig. 3b is not a calibration curve for real data, because we simply used Gaussian noise to
create the time series.

It is clear that the argumentation above concerning the link strength as a heat period
estimator is quite simplistic, but it elucidates our approach and the main idea.

To apply the method we proceed as follows. Suppose we have initialized our
climate model in the year 2001 with the ocean, soil, ice and atmospheric state at
that time. Accordingly the climate model runs freely for 10 years, i.e. a retrospective
decadal climate prediction. Now we are interested in the capability of the model to
represent heat periods in summer. Based on the standard approach of counting heat

8
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periods, according to the WMO definition, we could determine the prediction skill of
the model in forecasting (hindcasting) the number of heat periods. Our approach,
in contrast, is to create a time-evolving complex network with fixed edge density
(Berezin et al., 2012; Radebach et al., 2013; Ludescher et al., 2013; Hlinka et al., 2014) from
the modeled daily maximum temperature time series and use, as mentioned, the dynamics
of the link strength Wτ as a heat period estimator

4
::::::::
Method

:::
Our

:::::::::::
hypothesis

:::
is

::::
that

:::::::::
complex

::::::::
network

::::::::::
measures

::::
may

::::
be

::::::
better

::::::::::
estimators

::::
for

:::::::
climate

::::::::
extremes

:::::
than

:::::::::
standard

::::::::::
measures

:::
like

:::::::::
absolute

:::::::::
threshold

:::::::::::::
exceedances.

4.1
::::
Data

::::::::::::::::
pre-processing

Before using the complex network approach
:::::::::
networks

::
in

:::::::
general

:
it is necessary to remove

the stationary biases and
::::::::
long-term

:
variabilities from the climate time series (Donges et al.,

2009).
We remove the bias, trend and the average annual cycle by subtracting a standard linear

regression including a Fourier series from the time series :
:::::::::
according

:::
to:

:

yi(t) = µδ:i +ωit+
2∑
j=1

αi,j sin

(
2πj · t
365.25

)
+βi,j cos

(
2πj · t
365.25

)
, (1)

where yi(t) represents daily maximum temperature from 1961 to 2010, µi ::
δi is the intercept,

ωi is the linear trend and αi,j and βi,j represent the Fourier coefficients. Equation (1) is
evaluated individually at each grid point i= 1, . . . ,N .

::
In

:::::
order

:::
to

::::::::
minimize

::::
the

:::::::::
influence

::
of

::::
cold

::::::::
periods

::
on

::::
the

::::::::
network

:::::::::
approach

:::::::
(details

::::::
below

::
in

:::::
Sect.

::::
4.3),

::::
we

:::::::
remove

:::
the

:::::
data

:::::
lower

:::::
than

:::
the

:::::
10%

::::::::
quantile.

::::
This

::::::::
filtering

::::
has

::
no

:::::::::
influence

::
on

::::
the

:::::::::
standard

:::::::::
estimator

::
of

:::::
heat

::::::::
periods.

:
Then, the months from June to September are

selected because we are interested in summer heat periods.
9
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::::::
These

::::::::
summer

::::::::::
anomalies

::::
are

:::::
used

:::
for

::::
both

::::
the

::::::::
standard

::::::::::
approach,

::::::::
defined

::
in

:::::
Sect.

::::
4.2,

:::
and

::::
the

:::::
new

:::::::::
approach

::::::::::
illustrated

::
in

::::::
Sect.

::::
4.3.

::::
We

:::::::::
introduce

::
a
:::::

skill
:::::::::
measure

::
to

:::::::::
compare

:::
the

::::::::
number

::
of

:::::
heat

:::::::
periods

:::::
with

::::::
values

:::
of

:::
the

::::
link

::::::::
strength

:::::::
(Sect.

::::
4.4).

:::::::
Finally

:::
we

::::::::
present

:
a
:::::::
simple

::::::::::
calibration

::::::::
formula

:::
to

:::::::
predict

:::::
heat

:::::::
periods

:::::
with

::::
the

::::
link

:::::::::
strength,

::::::
which

::::
can

:::
be

:::::::
applied

::
to

::::
real

:::::::::
forecasts

::
in

::::::
Sect.

::::
4.1.

4.2
::::
The

:::::::::
standard

::::::::::
approach

:::
for

:::::::::::::
determining

:::
the

:::::::::
number

::
of

:::::
heat

::::::::
periods

In this study, we define a heat period for E-OBS observational data as a time range when
the anomaly maximum temperature

::::::::::
(according

::
to

::::
Eq.

::
1)

:
exceeds a

::::
fixed

:
threshold of 3K at

five consecutive days at least, and additionally includes not less than 20% of the grid points
in the area of interest. This choice has been made to observe events frequently enough for
reliable statistics while simultaneously ensuring important impacts.

To account for the inherent model bias it is essential to adjust the temperature threshold
to the model climate. Thus, we estimate the percentile P3K corresponding to the 3K E-OBS
threshold for the complete time from 1961 to 2010 and the area of interest. Accordingly, we
use this percentile as the threshold for heat periods for the model data

:::::
which

::
is

::::::::::::
nevertheless

::::
fixed

:::
for

::::
the

::::::
whole

:::::
area

::::
and

::::
time

::::::
range

::::
and

::::
the

::::::::::::::
argumentation

::
of

::::::
Sect.

:
3
::::
still

::::::
holds

:::
for

:::
the

::::::
model

::::
data. Table 1 shows this threshold in K for the 8

:::::
eight Prudence regions, estimated

from the CCLM ensemble means. As could be expected, the threshold is higher for low
latitudes

:
In

::::
the

:::::::::
following,

:::
we

::::
will

:::::
refer

::
to

::::
this

:::::::::
definition

::
as

:::::::::
standard

:::::::::
approach

:
.

4.3
::::
The

::::
new

::::::::::
approach

::
As

:::
an

:::::::::::
alternative

:::::
heat

::::::
period

::::::::::
estimator,

:::
we

:::::::::
propose

::
to

::::
use

::::
the

::::
time

::::::::
varying

::::
link

::::::::
strength

:::
Wτ:::

(τ
::::::::::
represents

::::
the

::::::
years)

::
of

::
a
:::::::::
network,

::::::
based

:::
on

:::::::::
modeled

:::::
daily

:::::::::
maximum

::::::::::::
temperature

::::
time

:::::::
series.

::::
The

::::
link

::::::::
strength

:::
Wτ::

is
::::
the

::::::::::
correlation

:::::::::
threshold

:::::::::
between

::::
time

:::::::
series,

::::::
which

::
is

:::::::
needed

::
to

:::::::::
construct

::
a

:::::::
network

:::
of

:
a
::::::
given

:::::
edge

:::::::
density.

:::::::::::
Accordingly

:::
we

:::::
want

::
to

::::::
show

::::
that

:::
Wτ

:::
has

::::
the

::::::::
potential

:::
to

:::
be

::
a

::::::
better

:::::::::
estimator

:::
for

:::::::::::::
observational

:::::
heat

:::::::
periods

:::::
than

:::
the

:::::::::
standard

:::::::::
estimator.

:::::
This

:::::::::
approach

::
is

::::::
similar

:::
to

::::
that

:::::
used

::
by

::::::::::::::::::::::::
Ludescher et al. (2013) ,

::::
who

::::::::::
forecasted

10
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::
El

:::::
Niño

::::::
events

::::::
using

:::
the

::::
link

::::::::
strength

:::
of

:
a
::::::::
network

::::
and

::::::::
showed

::::
the

::::::::::
superiority

::
to

:::::::::
standard

:::
sea

::::::::
surface

::::::::::::
temperature

::::::::::::
predictions

:::
by

::::::::::::::
state-of-the-art

::::::::
climate

::::::::
models.

::::
By

::::::::
contrast

:::
to

:::::::::::::::::::::::
Ludescher et al. (2013) ,

:::::::::
however,

::::
we

::::
use

::::
the

::::::::::
predicted

::::
2m

::::::::::
maximum

::::::::::::
temperature

:::
of

::::::
CCLM

::
to

:::::::
create

:::
the

:::::::::
networks

::::
and

::
to

::::::::
forecast

::::
the

:::::::
number

:::
of

::::
heat

::::::::
periods.

:

::
To

:::::::
apply

::::
the

:::::::::
method

::::
we

:::::::::
proceed

:::
as

:::::::::
follows.

::::::::::
Suppose

::::
we

::::::
have

::::::::::
initialized

::::
our

:::::::
climate

::::::
model

:::
in

::::
the

::::::
year

::::::
2001

:::::
with

::::
the

:::::::
ocean,

:::::
soil,

::::
ice

:::::
and

::::::::::::
atmospheric

::::::
state

:::
at

:::
that

::::::
time.

::::::::::::
Accordingly

::::
the

::::::::
climate

::::::
model

:::::
runs

:::::::
freely

:::
for

:::
10

:::::::
years,

::::
i.e.

::
a
:::::::::::::

retrospective

:::::::
decadal

::::::::
climate

:::::::::::
prediction.

::::::
Now

::::
we

::::
are

:::::::::::
interested

:::
in

::::
the

::::::::::
capability

::::
of

::::
the

:::::::
model

::
to

::::::::::
represent

:::::
heat

::::::::
periods

:::
in

:::::::::
summer.

:::::::
Based

::::
on

::::
the

:::::::::
standard

::::::::::
approach

:::
of

:::::::::
counting

::::
heat

:::::::::
periods

::::::
(see

::::::
Sect.

::::::
4.2)

::::
we

:::::::
could

::::::::::::
determine

::::
the

:::::::::::
prediction

::::::
skill

:::
of

:::::
the

::::::
model

:::
in

::::::::::::
forecasting

::::::::::::::
(hindcasting)

::::
the

:::::::::
number

::::
of

::::::
heat

:::::::::
periods.

:::::
Our

:::::::::::
approach,

::
in

:::::::::
contrast,

:::
is

:::
to

:::::::
create

:::
a

:::::::::::::
time-evolving

:::::::::
complex

:::::::::
network

:::::
with

::::::
fixed

::::::
edge

::::::::
density

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Berezin et al., 2012; Radebach et al., 2013; Ludescher et al., 2013; Hlinka et al., 2014) from

:::
the

::::::::
modeled

:::::
daily

::::::::::
maximum

::::::::::::
temperature

::::
time

::::::
series

::::
and

:::::
use,

::
as

:::::::::::
mentioned,

::::
the

:::::::::
dynamics

::
of

:::
the

::::
link

::::::::
strength

::::
Wτ ::

as
::
a
:::::
heat

::::::
period

:::::::::
estimator.

Following our aim to use a network measure as a heat period estimator we construct
a complex network from the daily maximum temperature model data. Here we use an
undirected and unweighted simple approach

::::::
graph. Thus, the network consists of vertices

V , which are the spatial grid points of our temperature data, and edges (connections) E,
which are added between vertices and represent the statistical interdependence between
the anomaly daily maximum temperature time series. This complex climate network can be
represented by the symmetric adjacency matrix A with:

Aij =

{
0 if ij not connected

1 if ij connected
, (2)

where i and j represent the vertices, i.e. time series at grid points i, j = 1, . . . ,N . Two
grid points are connected if the correlation between their time series exceeds a predefined
threshold. The statistical interdependence between pairs {ij} (self-loops {ii} are not
allowed) of time series is measured using the Pearson (standard) correlation coefficient

11
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(Donges et al., 2009). From sensitivity studies we found that correlations between time
series in the order of 0.7–0.9 yield acceptable results. That means that using these
thresholds, we observe patterns with not too few and not to

:::
too

:
many connections. This

is important in order to resolve temporal dynamics of the network.
:::::::::::
Correlations

::
in

::::
this

:::::
order

::
of

::::::::::
magnitude

::::
are

::::::::::
significant

:::
on

::::
the

::::
5%

:::::
level

:::
for

::::
the

:::::
here

:::::
used

::::::::
summer

:::::
time

:::::::
series

::::
with

::::::
length

::
of

::::::
about

::::
120

::::::
days.

:
However, since we want to analyze different regions in Europe

and to generate comparable results we decided to alternatively create our networks with
a constant edge density (ratio of number of actual connections to maximum number of
connections) of

ρ= E
/( N

2

)
= 〈ki〉/(N − 1) = 0.3 , (3)

where E is the number of edges and 〈ki〉 is the mean node degree with

ki =
N∑
j=1

Aij , (4)

which gives the number of connections of a vertex i.
We implemented an iterative correlation threshold adaption method, which creates

networks for each area in Europe and each year with a constant
::
As

:::::::::::
mentioned

::::::
above

:::
we

::::::::
removed

::::
the

:::::
data

::::::
lower

:::::
than

:::
the

::::::
10%

::::::::
quantile,

:::
to

:::::
avoid

:::::
that

::::
the

:::
link

:::::::::
strength

::::
Wτ ::

is

:::::::::
influenced

:::
by

::::::::
possible

:::::
cold

:::::::
periods

::
in

:::
the

::::::
data.

:::
We

::::::
tested

:::::::
smaller

:::::::::
quantiles

:::::
(5%)

::::
and

::::::
larger

::::::::
quantiles

:::::::
(20%)

::::
and

::::::
found

::::
that

:::
the

:::::::
results

::::
are

:::::::
robust,

::::
i.e.

::::
they

:::::::::
changed

::::
only

::::::::
slightly.

::::
The

::::::
above

:::::
used

:::::::::::
parameters

:::::
(like

::::
the

:::::::
density

:::
of

:::::
0.3)

::::
and

::::
the

:::::
10%

::::::::
filtering

::::::
turned

::::
out

:::
to

:::
be

:::::::
optimal

:::
for

:::
our

::::::
data.

:::
For

::::::
other

:::::
data,

::::::
these

:::::::::::
parameters

:::::
most

:::::::::
probably

:::::
have

::
to

:::
be

:::::::::
adjusted.

:::::::::::
Additionally,

:::
by

:::::::::
removing

:::
the

:::::
data

::::::
lower

::::
than

::::
the

:::::
10%

::::::::
quantile,

:::::
gaps

::
in

::::
the

::::
time

::::::
series

::::
are

::::::::::
generated.

:::
To

:::::::
ensure

::::::::::::
significance,

:::
we

::::
take

::::
into

::::::::
account

:::::
only

::::::::::
correlation

:::::::::::
coefficients

::::::
where

:::
the

::::
two

::::::::::
underlying

:::::
time

::::::
series

:::::::
exhibit

:::
60

:::::::::
common

::::
data

:::::::
points

:::::::
(days).

:::
An

::::::::
effective

:::::
way

::
to

::::::::
estimate

::::
the

:::
link

:::::::::
strength

::
of

::
a
::::::::
network

:::::
with

:::
an

:
edge density of ρ= 0.3± 0.0005

:::
0.3

:::
is

::
to

::::::::
calculate

::::
the

:::::
70%

:::::::
quantile

:::
of

::
all

:::::::::::
correlation

:::::::::::
coefficients

::::::::
involved

::
in

:::
the

::::::::
network.
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In a similar way as Berezin et al. (2012) we analyze the temporal variation of the link
strength Wτ , i.e the correlation threshold between time series (grid points) for a single year
τ (summer) from 1961 to 2010. Thus, instead of using the node degree as an estimator of
heat periods we use the link strength Wτ .

Using the definitions above, we finally construct a network for the summer months of each
year based on anomaly maximum temperature model data. The quantity whose year-to-
year variation we are interested in is the link strength Wτ ; however, since we are interested
in decadal

:::::::
decadal variability, and since we do not expect the model to represent the year

to year fluctuations, we applied a 10 year moving average filter to the data
::::
both

::::
link

::::::::
strength

:::
and

::::::::
number

:::
of

:::::
heat

::::::::
periods,

:::::::::::::
subsequently. Since the CCLM model has been initialized

every decade (1961, 1971,..., 2001) we apply the filter only within a decade in order to
avoid transferring information between decades.

::
At

::::
the

:::::::::::
boundaries

::
of

:::
the

:::::::::
decades,

::::
the

::::
time

:::::
range

:::
for

::::
the

::::::::
running

::::::::
average

::
is

:::::::::::
shortened:

::::
For

::::::::
instance

::
at

::::
the

::::::::::
beginning

::
of

::::
the

::::::::
decade,

:::
we

::::
use

::::
only

:::
the

:::
six

::::::
years’

::::::
mean

:::::
(e.g.

:::::
from

:::::
2001

::
to

::::::
2005),

:::
in

:::
the

:::::::
second

:::::
year

::::::
seven,

::::
and

:::
so

:::
on.

4.4
::::::::::::
Comparison

:::
of

:::
the

:::::::::
different

:::::::::::
quantities

To quantify the prediction skill
::
of

::::
the

::::::
model, we calculate the absolute mean difference

between E-OBS heat periods
::::
(see

:::::
Eqs.

::
6
::::
and

:::
7)

::::::::
between

::::
the

::::::::
number

::
of

:::::
heat

::::::::
periods

::
in

::::::
E-OBS

::
(oand CCLM heat periods )

:::::
and

::::::
CCLM

:
(mand )

::::
and

::::
the

:
CCLM link strength

:
(Wτ :

).
To be comparable we normalized the time series to the range {0,1} by a subtraction of
the minimum of the time series and accordingly a devision

:::::::
division by the maximum for the

whole time span, e.g.
:::
for

:::
the

::::::::
number

::
of

:::::
heat

:::::::
periods

::
in

:::::::
CCLM:

:

mµ
:

r
d,τ =

(
mr
d,τ −

50
min
τ=1

(
mr
d,τ

))/ 50
max
τ=1

(
mr
d,τ −

50
min
τ=1

(
mr
d,τ

))
., (5)

::::::
where

:
r
::::::::
denotes

::::
the

:::::::::
European

:::::::
region,

::
d

:::::::
stands

::
for

::::
the

:::::::
decade

::::
and

::
τ
::::::::::
represents

::::
the

::::::
years.

::::
The

::::::::
similarly

::::::::
rescaled

:::::::
E-OBS

:::::::
number

:::
of

::::
heat

::::::::
periods

:::
will

:::
be

::::::::
denoted

::
as

::
Ω
::::
and

::::
the

::::::::
rescaled

::::::
CCLM

::::
link

::::::::
strength

::
as

:::
ψ.

:

13
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Thus the absolute mean difference between
::::::
(based

::::
on

:::::::::::
normalized

::::::
data)

:::::::::
between

:::::::::::
observation

::::
and

::::::
model

:
heat periods for a region r and a decade d is given by

M r
d (mµ

:
) =

∣∣∣∣∣ 1

10

10∑
τ=1

(
oΩ:

r
d,τ−m−µ:::

r
d,τ

)∣∣∣∣∣= |Ωr
d−µrd| , (6)

and the mean difference between
:::::::::::
observation

:
heat periods and

:::::
model

:
link strength is

M r
d (Wψ

:
) =

∣∣∣∣∣ 1

10

10∑
τ=1

(
oΩ:

r
d,τ−W−ψ:::

r
d,τ

)∣∣∣∣∣= |Ωr
d−ψ

r
d| , (7)

where τ represents the years within a decade and the bars in the above equations denote
temporal averages. Thus

:::::::::
Therefore, if the absolute mean difference is about 0, observations

and model agree well, whereas a difference of about 1 denotes the maximum discrepancy.

5 Results

4.1
::::::::::
Prediction

:::
of

:::::
heat

::::::::
periods

Figure 4 shows that
:::
For

::
a

::::
real

:::::::::::
application

:::
of

:::
our

::::::::
method

:::
to

:::::::
predict

::::
the

::::::::
number

::
of

:::::
heat

:::::::
periods

::
in

::
a
:::::::::::
forecasting

:::::::
sense,

::
a

::::::::::
calibration

::::
step

::::::
using

:::::::::::::
observational

:::::
data

::
o

::
is

::::::::
needed

::
to

:::::::
convert

:
the link strength Wτ is a suitable estimator

::
of

::::
the

::::::
model

:::
to

::::
the

::::::::
number of heat

periods for France (Prudence region 3).
:::
my ::::

(the
::::::
index

::
y
:::::::
stands

:::
for

:::::
year

:::
in

::::
the

:::::::
future).

:::::::::
Therefore

:::::
long

::::::::
hindcast

:::::
data

::::
are

:::::::::
needed.

::::::
Based

::::
on

::::
our

::::::::
analysis

::::
we

::::::::
suggest

:::
as

::
a

::::
first

:::::::
attempt

::
to

::::::
apply

::
a
::::::
linear

:::::::::::
conversion

::::
from

::::
link

:::::::::
strength

:::
Wy:::

to
:::
the

::::::::
number

:::
of

::::
heat

::::::::
periods

:::
my,::::::

which
::
is
:::::
also

::::::::::
supported

:::
by

:::
our

:::::
tests

:::::::
shown

::
in

::::
Fig.

::
3:

:
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mr
y,W =

W r
y −min50

τ=1(W r
τ )

max50τ=1(W r
τ )−min50

τ=1(W r
τ )
·
(

50
max
τ=1

(orτ )−
50

min
τ=1

(orτ )

)
+

50
min
τ=1

(orτ )

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(8)

::::
This

::::::
linear

:::::::::
approach

::::::::::::
corresponds

::
to

::::
our

::::
skill

:::::::::
analysis,

::::::
where

::
a
::::::
linear

:::::::::::
connection

::::::::
between

:::
the

::::
link

::::::::
strength

::::
and

:::
the

:::::::
number

:::
of

::::
heat

::::::::
periods

::
is

:::::::::
assumed

::
as

:::::
well.

::::::
Again

:::
we

::::
note

::::
that

::::
this

:::::
study

:::::::::
presents

::::
only

:::
the

::::
skill

:::::::::
analysis

::
of

::::::::
hindcast

:::::
data

::::
and

::::
Eq.

:
8
::
is
::::::::
actually

:::
not

::::::
used

::::
now.

:

5
::::::::
Results

Figure 4 depicts the number of observed heat periods (solid line) and the corresponding
link strength (dashed line) retrieved from the complex evolving network, both from E-OBS
data . Figure 4

:::
for

:::::::
France

::::::::::
(Prudence

:::::::
region

:::
3),

:::::
and

::::::
shows

:::::
that

:::
the

::::
link

:::::::::
strength

::::
Wτ ::

is

:
a
::::::::
suitable

:::::::::
estimator

::
of

:::::
heat

::::::::
periods.

::
It shows that the network contains climate information

in the sense that the dynamics of the link strength Wτ is very similar to the dynamics of
heat periods, both based on the same data. So, the link strength can here be considered as
equivalent

::
an

::::::::::
estimator

:::
for

:::::
heat

:::::::
periods

::::::
which

::
is
::::::::::::
comparable

:
to the standard heat period

estimator.
::::::
Jumps

:::::::::
between

:::
the

:::::::::
decades

::::::
occur

:::
as

::::
the

::::::::
running

::::::
mean

:::::
filter

::
is

:::::
only

:::::::
applied

:::::
within

::::
the

::::::::
decades

:::::
(see

:::::
Sect.

:::::
4.3).

::::
The

:::::::::::::
corresponding

:::::::
figures

:::
for

:::
the

::::::
seven

::::::
other

:::::::::
Prudence

:::::::
regions

::::
can

:::
be

:::::
found

:::
in

:::
the

::::::::::::::
supplementary

:::::::::
material.

Prudence region 5 (Scandinavia
::
As

:::
an

:::::::::
example,

::::::::::
Prudence

::::::
region

::
8
:::::::::
(Eastern

:::::::
Europe) is

a region where the network method performs better than the standard method
:::::::::
approach

(Figs. 5 and 6). Figure 5 shows the E-OBS number of heat periods
:
o
:
(black) and the CCLM

ensemble mean number of heat periods
::
m

:
(blue) for France

:::::::
Eastern

:::::::
Europe

:
together

with the interquartile range (25th and 75th percentiles)IQR.As can be seen, the model
cannot follow the observational reference, especially from 1970–2010, well. By contrast,
the CCLM link strength, shown in Fig. 6 (red) follows the decadal variability of the E-OBS
heat periodsdynamics well. Thus, in this case the network measure is the better heat period
estimator. ,

::::
and

:::::
Fig.

::
6

::::::
shows

::::::
again

::::
the

:::::::
E-OBS

:::::::
number

:::
of

:::::
heat

:::::::
periods

:::::
now

::::::::::
compared

::
to

15
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:::
the

:::::::
CCLM

:::
link

:::::::::
strength.

:::::::::::
Comparing

::::
the

::::::::
absolute

::::::
mean

::::::::::::
differences,

::::::::
denoted

:::
as

:::
M

::
in
::::

the

:::
two

:::::::
figures

:::::::
reveals

:::::
that

:::
our

::::::::
network

::::::::::
approach

:::::::::
enhances

::::
the

::::
skill

::
in

:::::
four

:::::::::
decades,

:::::::
namely

:::::
1970,

::::::
1980,

::::::
1990,

::::::
2000.

::::::::::
Especially

::::
the

:::::::
1970s,

:::::::
1980s,

::::::
1990s

::::::
show

::
a
:::::
clear

:::::::::::::
improvement

:::
and

::::
our

::::::::
network

:::::::::
approach

::::::
better

::::::::
reflects

:::
the

::::
low

::::::::::
frequency

:::::::::
dynamics

:::
of

:::
the

:::::
heat

::::::::
periods.

::::
The

::::::
2000s

::::::
seem

::
to

:::
be

::::
off

::
in

:::::
both

::::::
model

:::::::
cases,

::::
the

:::::::
number

:::
of

:::::
heat

:::::::
periods

:::::
and

:::
the

::::
link

::::::::
strength,

::::::
which

:::::::::
indicates

::
a

:::::
failed

::::::
model

::::::::::::
initialization.

:

In order to see how the prediction skill of the standard as well as the network heat
period estimators vary with the region considered

::::::::::
considered

:::::::
region, we performed the

same analysis as above for the 8
::::
eight

:
Prudence regions in Europe and for the 1960s,

1970s, 1980s, 1990s and 2000s.
:::
The

::::::::::::::
corresponding

:::::::
figures

:::
for

::::
the

:::::
other

::::::::
regions

::::
can

:::
be

:::::
found

:::
in

:::
the

:::::::::::::
supplement. To summarize our results we calculated as the prediction skill

the absolute mean difference within a decade between E-OBS heat periods and CCLM
heat periods (Eq. 6) and E-OBS heat periods and CCLM link strength (Eq. 7)based
on normalized time series. The prediction skill “M ” is also included in Figs. 5 and 6.
Figure 7 shows which method performs better regarding the 8

::::
eight

:
regions (columns)

and 5
:::
five

:
decades (rows). Blue color in Fig. 7 indicates that the network approach

performs better (M r
d (W )<M r

d (m)
::::::::::::::::
M r
d (ψ)<M r

d (µ)) and red color stands for a better
performance of the standard method (M r

d (W )>M r
d (m)

::::::::
approach

::::::::::::::::::
(M r

d (ψ)>M r
d (µ)).

White boxes in Fig. 7 denote a tie between the methods in the case of too small
differences (|M r

d (W )−M r
d (m)| ≤ 0.05). Interpreting the

::::::::::::::::::::::::
|M r

d (ψ)−M r
d (µ)| ≤ 0.05).

:::::
The

matrix of Fig. 7 we conclude
::::::
shows

:
that the network method is superior in 3 regions

(4,
::::::
clearly

:::::::::
superior

::
in

::::::
three

:::::::
regions

::
(5,

::::
7,8)

::::
and

:::::::
slightly

:::::::::
superior

::
in

::::
two

::::::::
regions

:::
(4,6), the

standard approach is superior in 2 regions (
:::
two

::::::::
regions

:::
(1

::::
and

:
3, 8) and in 3 regions (1,

::::::
region 2 , 7) we observed a tie, i.e. no clear result.

::::
The

:::::::
crucial

:::::::::
question

:::
is

::
if
:::::

this
::::::

result
::::::::::

indicates
:::::
that

::::
the

::::::::
network

:::::::::
method

:::::::::
performs

:::::::::::
significantly

::::::
better

:::::
than

::::
the

::::::::::
standard

:::::::::
approach

:::
or

:::::
not.

::::::::::
However,

:::::::
testing

:::
for

::::::::::
statistical

:::::::::::
significance

::::::
bears

:::::::
serious

::::::::::
problems.

::::::
There

::::
are

:::
so

::::::
many

:::::::
factors

::::::::
involved

:::
in

:::
the

:::::::::
analysis,

:::
i.e.

:::
the

::::::::
models

:::::::::::
themselves,

::::
the

:::::::::::::
downscaling,

:::
the

:::::::::::
ensemble,

:::
the

::::::::::::
initialization,

::::
the

::::::::
different

:::::::
regions,

:::::
the

::::::::
filtering,

:::::
etc.

::::
that

:::::
any

::::::::::::::
nullhypothesis

:::::::
would

::::
be

::::
not

:::::::::::
well-posed

:::::
and

::::
any
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:::
test

:::::::
would

:::
be

:::::::::::::
questionable.

:::::
This

::::::
issue

:::
is

::::::::::
discussed

:::
in

::::::
detail

::
in

::
a
::::::

2013
::::::
paper

::::::::
entitled

:::::::
“Testing

:::::::::::
ensembles

:::
of

:::::::
climate

::::::::
change

::::::::::
scenarios

:::
for

::::::::::
"statistical

::::::::::::::
significance"”

:::
by

:::::::
climate

::::::::
statistics

::::::::::
instances

:::::
Hans

:::::
von

::::::
Storch

:::::
and

:::::::
Francis

:::::::
Zwiers

::::::::::::::::::::::::::::::
(von Storch and Zwiers, 2013) ,

::::
who

::::::
claim

::::
that

:::
“...

::
a
::::::::::
statistical

::::::::::::::
nullhypothesis

::::
may

::::
not

:::
be

::
a
:::::::::::

well-posed
:::::::::
problem

:::
...”

::::
and

:::::
“Even

:::
if

:::::::::
statistical

:::::::
testing

::::::
were

:::::::::::
completely

::::::::::::
appropriate,

::::
the

:::::::::::::
dependency

::
of

::::
the

:::::::
power

::
of

::::::::::
statistical

:::::
tests

::::
on

::::
the

::::::::
sample

:::::
size

::
n

:::::::::
remains

::
a

:::::::::
limitation

::::
on

::::::::::::::
interpretation.”

:::::
and

:::::
finally

::::
“...

::::::::
propose

:::
to

::::::::
employ

::::::::
instead

::
a

:::::::
simple

:::::::::::
descriptive

::::::::::
approach

:::
for

::::::::::::::
characterising

:::
the

:::::::::::
information

::
in

::::
an

:::::::::
ensemble

::::
...”.

:::::::::
Although

:::
we

:::::::
totally

::::::
agree

::::
with

::::
the

::::::::::::::
argumentation

:::
by

::::::::::::::::::::::::::::::::
(von Storch and Zwiers, 2013) that

::
a

::::::::::
“classical”

:::::::::::
significance

:::::
test

::::::
would

:::::
most

:::::::::
probably

:::
fail

::
in

::::
our

:::::::::
analysis,

:::
we

::::::
think

::::
that

:::::::::::
alternative

::::::::::::
significance

::::::
tests,

::::::
based

::::
on

:::::::::::::
bootstrapping

:::
or

:::::::::
surrogate

:::::
data,

::::::
could

:::::::::
definitely

:::::
help

::::
for

::
a

::::::
better

:::::::::::::
interpretation

:::
of

::::
the

:::::::
results.

::::::
Thus,

::::
we

::::::::
construct

::::
the

:::::::::
following

:::::::::::
significance

:::::
test

::::::
based

:::
on

::::::::::
surrogate

::::
data

:::
to

:::::::
answer

::::
the

:::::::::
question:

::::::
“What

::
is

:::
the

::::::::::
probability

::
of

:::::::
getting

::
a
:::::
rank

::::::
matrix

::::
like

:::
the

::::
one

::
in

::::
Fig.

::
7
:::
by

::::::::::
chance?”.

:::::
First,

:::
we

:::::
have

:::
to

::::::
define

:::::
what

:::
is

:::
the

:::::::::
possibly

:::::::::::
“significant”

:::::::::::::
characteristic

:::
of

:::
the

:::::::
matrix

::
in

:::
Fig.

:::
7.

::
It

:::
is,

:::
as

:::
we

::::::::::
concluded

:::::::
above,

:::::
that

:::
the

::::::::
network

::::::::
method

::
is

:::::::::
superior

::
in

::::
five

::::::::
regions.

:::::
Thus

:::
the

::::::::
question

:::
is:

::::::
“What

::
is

:::
the

::::::::::
probability

::
to

::::::::
observe

:::
at

::::
least

::::
five

::::::::
regions,

::::::
where

:::
we

:::::
have

::
in

:::::
each

::
at

:::::
least

::::
one

:::::
blue

::::::
matrix

::::::::
element

:::::
more

:::::
than

:
a
::::
red

::::
one

:::
by

:::::::
chance

:::
?”.

:::::::::::
Accordingly

:::
we

:::::::::::
constructed

::::::::
matrices

::::
like

:::
in

::::
Fig.

::
7

:::
by

:::::::::
randomly

::::::::
coloring

:::
20

:::::::
matrix

:::::::::
elements

:::::
blue

::::
and

:::
20

::::
red.

::::::::::
Afterwards

::::
we

:::::::
colored

::
8

::::::
matrix

:::::::::
elements

::::::
white

:::
as

::
in

::::
Fig.

:::
7.

:::::::
Finally,

:::
we

:::::::::
repeated

::::
this

:::::::::
surrogate

::::::::::
procedure

:::::
1000

::::::
times

::::
and

:::::::::
counted

:::
the

:::::::
cases

:::::::::
(regions)

::::::
where

::::
the

:::::
blue

::::::
matrix

::::::::
elements

::::::::::
dominate.

::::::
Table

::
2

::::::
shows

::::
the

:::::::::::
probabilities

:::::
that

::::
blue

::::::
matrix

::::::::::
elements

:::::::::
dominate

::
in

:
n
::::::::
regions.

::::::
Since

::::
we

:::::
have

:::
16

:::::
blue

:::::::::
elements

::::
and

:::
16

:::::
red,

:
it
:::
is

::::
sure

:::::
that

::::
blue

:::::::::::
dominates

::
in

:::::
n= 1

::::::
region

:::::
and

::::::::::
impossible

::
to

::::::::::
dominate

::
in

:::::
n= 7

:::::
and

:::::
n= 8

::::::::
regions.

:::
As

::::
can

:::
be

:::::
seen

:::::
from

::::
Tab.

::
2

:::
the

::::::::::
probability

:::
of

::::::::::
dominating

:::
in

:::::
n= 5

::::::::
regions

:::
by

:::::::
chance

::
is

:::::
only

::::::
about

::::
5%,

:::::
thus

:::
the

::::::
results

:::
of

:::
our

::::::::
network

::::::::::
approach

:::::
have

::
to

:::
be

::::::
stated

:::::::::::
significant.

::::
Due

:::
to

:::
the

::::::::::
symmetry

:::
of

:::
the

::::
test,

:::
the

::::::
same

::::::::::::::
argumentation

::
is

:::::
valid

:::
for

:::
red

:::::::
matrix

:::::::::
elements.

:::::::::::
Dominating

::
in
::::::
n= 2

::::::::
regions,

::
as

:::::::::
achieved

:::
by

::::
the

:::::::::
standard

:::::::::
approach

:::::
(Fig.

::::
7),

::::
can

:::
be

::::::::
realized

::::::
easily

:::
by

::::::::
chance

::::
with

::
a

:::::::::
probability

:::
of

:::::::
approx.

::::::
99%.

:::::
Page

::
1

::
in

::::
the

::::::::::::::
supplementary

::::::::
material

::::::
shows

:::
an

:::::::::
example

::
of

:::
12
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::
of

:::::
these

::::::::::
randomly

:::::::::
generated

:::::::::
matrices,

:::::::
where

::::
one

:::::::
matrix,

::::::::
depicted

:::
by

::
a

:::::
black

::::::
frame,

::::::
fulfills

:::
the

:::::::::::::
“significance”

::::::::
criterion.

:

6 Conclusions and outlook

We presented a novel approach examining climate predictions
::::
heat

:::::::::
periods

:
using

a complex network analysis. We have investigated the predictability of the slow dynamics
of the occurrence of heat periods in Europe based on daily maximum near-surface
temperature data.

We found that the network approach has similar skill as the standard method and has
the potential

:
is

:::::::::
superior

::::::::::::
(significance

:::
is

:::::::
≈ 5%)

:::
to

::::
the

:::::::::
standard

:::::::::
approach

:::
in

::::::::::
predicting

::::
heat

::::::::
periods

::
in

::::::::
Europe,

:::::::
hence

:::::::::::
highlighting

::::
the

:::::::::
potential

::
of

::::::::
network

:::::::::
methods

:
to improve

the predictability of heat periods for some European regions
::::
skill

::::::::::
estimation

:::
in

::::::::
decadal

:::::::::
prediction

:::::::::::::
experiments. Picking up our hypothesis and simplified argumentation from

Sect. 4
:
3, the crucial point why we detect heat periods with the network link strength is

that heat periods are cooperative events in space and time. Thus, the link strength can be
used as an estimator of heat periods. The drawback of the standard method

:::::::::
approach

:
is

most probably the inflexible threshold for the detection of heat periods (cf. Fig. 2). If the
climate model contains the signal of a heat period, but with a slightly too small amplitude,
the threshold will not be crossed and no heat period will be detected. In contrast, the
complex climate network does not depend on such fixed thresholds, and can use this
information, which makes it the more robust estimator of heat periods. At present, we have
no explanation for the dependence of the skill on the region.

The general prediction skill of climate in Europe using standard measures is still
moderate. In this sense our work adds new aspects to our previous study (Mieruch et al.,
2014) and also the work of Eade et al. (2012) who found a strong variation of skill with
region and decade. In essence, we found regions and decades in Europe where our
climate model output, or more specifically the used network estimator, follows the slowly
evolving dynamics of observed heat periods. We also found regions and decades, where

18



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

the network estimator is not able to represent the observational reference.
:::::::::::::
Understanding

::
of

::::
this

:::::::::
variability

::
in

::::::::::
prediction

::::
skill

::
is

::::
one

::
of

::::
the

:::::
future

:::::::::::
challenges

::
of

::::::::
decadal

:::::::::::
predictions.

:

Concluding, our approach shows that the complex climate networks approach yields
meaningful climate information and can complement standard

:::
has

:::
the

:::::::::
potential

::
to

::::::::
improve

skill measures within the framework of climate prediction. Furthermore, our study has given
examples that

:
It

::
is

::::
the

::::
first

:::::
time

::::
that

:::::
such

::::::::
network

:::::::::::
techniques

:::::
have

:::::
been

:::::
used

:::
in

:::::::
climate

:::::::::::
predictions.

:::::
Since

:::::::
climate

:::
or

:::::::
decadal

:::::::::::
predictions

::::
aim

::
to

::::::
predict

:::::::
natural

:::::::::
variability

::
in
::::
the

:::::
order

::
of

::::::
years,

:::::::
suitable

:::::::::
statistics

:::
are

::::::::
needed.

:::::::
Natural

:::::::::
variability

:::
in

:::
the

:::::
order

::
of

::::::
years

:::::::
evolves

::::::
highly

:::::::::
dynamical

::::
and

::::::
often

:::::::::
nonlinear.

::::::
Thus,

:
the complex climate network approach has

::::::::
networks

:::::
could

:::::
bear the potential to improve climate predictionsof extremes.

Several research questions remain andarise. From
:::
be

::::
very

::::::
useful

:::
in

:::::::
climate

:::::::::::
predictions.

:::
Our

:::::::::::
approach,

::::::
which

:::
is

:::::
even

:::::::
based

::::
on

::::
the

:::::
most

:::::::
simple

:::::::::
network

:::::::::
measure,

::::
the

::::::
node

::::::
degree

::::
(or

:::
as

:::
we

:::::
used

::
it
::::
the

::::
link

:::::::::
strength)

::::::
yields

:::::::::
optimistic

::::::::
results.

::::
So,

:::
we

:::::
think

::::
that

::::
our

::::::::
analysis

:::::
could

:::
be

::::
the

:::::::
starting

::::::
point

:::
for

:::::
using

::::
the

::::::::
complex

:::::::::
networks

:::
in

:::::::
climate

:::::::::::
predictions,

:::::
using

::::::
other

::::::::::
measures

:::::::
and/or

::::::::::::
multivariate

:::::
data

::::::
could

::::
turn

::::
out

:::
to

:::
be

::::
the

:::::::
better

::::
way

:::
of

:::::::::
analyzing

:::::::::::
predictions

::
of

::::::::
natural

:::::::::
variability

::::::
years

:::::::
ahead

:::::
than

::::::
using

:::::::::
methods

:::::
from

::::::
short-

::
or

::::::::
medium

::::::
range

:::::::::::
forecasting.

::::::::
Further,

:::::
from the network perspective it would be interesting

to analyze other network measures like clustering, similarities or path lengths and how
they are connected to climate evolution. Additionally, the

:::
The

:
incorporation of other relevant

variables like precipitation, wind or soil moisture into the network is an appealing aspect.
From a physical or climatological point of view it is important to understand why the network
measures are able to represent climate dynamics, which could also contribute to a better
understanding of the sources of decadal predictability.

Thus, the incorporation and investigation of processes like the AMOC, PDO or NAO
together with complex networks and climate prediction might be an option for the future.
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Table 1. Ensemble mean variation of the temperature threshold calculated for heat periods
:::
with

:::
the

:::::::
standard

:::::::::
approach in CCLM data

:::
(see

:::::
Sect.

::::
4.2).

Prudence region 1 2 3 4 5 6 7 8

Temperature threshold (in K) 3.16 3.38 2.81 2.52 2.66 2.85 3.46 2.79
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Table 2.
:::::::::
Probability

::::
that

::::
blue

::::::
matrix

::::::::
elements

::
in
::::

Fig.
::
7
:::::::::
dominate

::
in

::
n

:::::::
regions

::
by

::::::::
chance.

::::
Half

::
of

:::
the

::::::::
elements

:::
are

:::::::
colored

::::
blue

::::
and

::::
red,

:::::::::::
respectively,

:::
and

:::::
eight

:::::
white

:::::::::
elements

:::
are

::::::::
randomly

::::::
added

::::::::::::
subsequently.

:::::::
Number

::
of

:::::::
regions

::
n

:
1
: :

2
:
3

:
4

:
5
: :

6
: :

7
: :

8
:

::::::::
Probability

::
in
:
%

:::
100

: ::
99

: ::
82

: ::
35

: :
5
: :::

0.1
:
0
: :

0
:
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Figure 1. The 8 Prudence regions. (Topography: ETOPO1, Amante and Eakins, 2009.)
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Figure 2. Schematical illustration of our approach (temperature anomaly on the y axis): (a) model
detects correctly one heat period above the threshold, (b) model underestimates the number of heat
periods, (c) model overestimates the number of heat periods (details see text).
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Figure 3. (a) Artificial time series including 3 heat periods (dashed lines). (b) Relation between the
network link strength and the number of heat periods, based on 100 artificial time series.
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Figure 4. Number of heat periods (1961–2010) in France (Prudence 3) in summer from E-OBS
data

:
o
:

(solid line) and corresponding E-OBS link strength
::
W

:
(dashed line).

:::
The

:::::
“M’s”

:::::::
denote

:::
the

:::::::
absolute

::::::
mean

:::::::::
difference

:::::
within

::
a
:::::::
decade

::::::::
between

:::::::
E-OBS

::::
and

:::
the

::::::
CCLM

:::::::::
ensemble

::::::
mean

::::
after

::::::::::::
normalization,

:::
see

::::
Eq.

::
7.
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Figure 5. Number of heat periods (1961-2010) in Scandinavia
:::::::
Eastern

:::::::
Europe

:::::::::
(Prudence

:::
8)

:
in

summer from E-OBS
:
o
:

(black) and CCLM number of heat periods (blue: ensemble mean and
interquartile range). The “M’s” denote the absolute mean difference within a decade between E-
OBS and the CCLM ensemble mean after normalization

:
,
:::
see

:::
Eq.

::
6.
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Figure 6. Number of heat periods (1961-2010) in Scandinavia
:::::::
Eastern

:::::::
Europe

:::::::::
(Prudence

:::
8)

:
in

summer from E-OBS o
:

(black) and CCLM link strength or correlation threshold
::
W (red: ensemble

mean and interquartile range). The “M’s” denote the absolute mean difference within a decade
between E-OBS and the CCLM ensemble mean after normalization,

::::
see

:::
Eq.

::
7.
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Figure 7. Rank matrix of the performance of the two methods. Blue: network approach performs
better, red: standard approach performs better, white: tie.
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