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Abstract

Regional decadal predictions have emerged in the past few years as a research field with
high application potential, especially for extremes like heat and drought periods. However,
up to now the prediction skill of decadal hindcasts, as evaluated with standard methods is
moderate, and for extreme values even rarely investigated. In this study, we use hindcast
data from a regional climate model (CCLM) for eight regions in Europe and quantify the
skill of the model alternatively by constructing time evolving climate networks and use the
network correlation threshold (link strength) as a predictor for heat periods. We show that
the skill of the network measure to predict the low frequency dynamics of heat periods is
superior to the typical approach of using a fixed temperature threshold for estimating the
number of heat periods in Europe.

1 Introduction

Decadal prediction is a relatively new field in climate research. Skillful prediction of
climate from years up to a decade would be beneficial for our society, economy and for
a better adaption to a changing climate. Within the large international Coupled Model
Intercomparison Project Phase 5 (CMIP5 Taylor et al., 2012) global decadal predictions
of climate key variables like temperature and precipitation have been performed with state-
of-the-art Earth system models. In order to validate the prediction skill of the models so
called hindcast experiments are conducted. That means, the models are initialized with
observations e.g. in 1961 and then run freely for 10 years and stop at the end of 1970.
In 1971, the models are again initialized and start to run for another 10 years and so
on. More advanced approaches of initializing every year have followed as well. These
hindcasts can be evaluated against observational data to quantify the prediction skill of
the models depending on the lead time, which is the time range between the initialization
and the forecast datum of interest. In recent years, several studies on decadal predictions
have shown the potential of these initialized (global) model runs (e.g. Keenlyside et al.,
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2008; Müller et al., 2012; Matei et al., 2012; van Oldenborgh et al., 2012; Corti et al.,
2012; Doblas-Reyes et al., 2013; García-Serrano et al., 2013; Smith et al., 2013; Meehl
et al., 2014; Chikamoto et al., 2015). However most studies concentrate on regions like
the Tropical Pacific or North Atlantic and on slowly evolving variables like sea-surface
temperature. These regions receive their predictability from large scale processes like the
Atlantic Meridional Overturning Circulation (AMOC) or Pacific Decadal Oscillation (PDO)
and thus allow to extract predictable signals out of the noise. To be useful for society, and
climate change adaption, regional climate predictions are required which should provide
skillful forecasts on smaller regions, shorter periods, and include climate extreme events on
populated land areas like the European continent. The European climate is more connected
to short term processes like the North Atlantic Oscillation (NAO), which is to a certain
extent predictable on seasonal scales, whereas the decadal predictable signal is weak
(Scaife et al., 2014), which has been shown also for temperature and precipitation in
large projects like ENSEMBLES (MacLeod et al., 2012). Further, the complex orography
with the Alps in the center contributes to a manifold of general weather situations and
hence to a complex climate (e.g. World Climate Research Program Coordinated Regional
Downscaling Experiment for Europe (CORDEX-EU), Jacob et al., 2013; Giorgi et al., 2009).
Nevertheless, the European continent is influenced by the AMOC and thus this process may
yield to a certain predictability, although the signal to noise ratio is most probably small. Up
to now, the prediction skill for Europe is weaker than for such regions as the South Pacific
or North Atlantic. Mieruch et al. (2014) have used a regional decadal hindcast ensemble
for Europe and detected moderate prediction skill for summer and winter temperature
and summer precipitation anomalies within the lead time of five years. Eade et al. (2012)
analyzed the predictability of temperature and precipitation extremes in a global model and
found a moderate but significant skill (correlation) for seasonal extremes. They also found
skill beyond the first year, but this skill arose from external forcing. Thus, Eade et al. (2012)
compared initialized climate predictions with uninitialized projections to evaluate the skill
gained by initializing and excluding the external forcing. They found that the “... impact of
initialization is disappointing”.
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Another relatively new field in climate research has been established, namely the
complex climate network approach. The general idea of climate networks is to consider
climate time series e.g. at the grid points of a climate model as nodes of the network and
the statistical connection between the time series as links of the network. A link between
two arbitrary time series (geolocations) exists, if the correlation measure between the time
series exceeds a certain threshold.

The climate network community has been very active in recent years. Tsonis et al.
(2007) proposed “A new dynamical mechanism for major climate shifts” and explained
e.g. decadal shifts in global mean temperature (Tsonis and Swanson, 2012). Radebach
et al. (2013) discriminated different El Niño types using the network approach, Ludescher
et al. (2013) developed a network method to improve El Niño forecasting and Donges
et al. (2011) revealed a connection between (paleo-) climate variability and human evolution
using recurrence-networks, which are similar to the complex climate networks. Generally, it
has been shown that climate networks contain useful information for climate applications,
e.g. the relation between climate and topography found by Peron et al. (2014), dynamics of
the sun activity using visibility graphs (Zou et al., 2014) and the prediction of extreme floods
Boers et al. (2014).

In this paper, we exploit the idea to use an alternative heat period estimator, based on
complex climate networks, and show that its skill is superior to the typical approach of using
a fixed temperature threshold for prediction of heat periods on time scales up to a decade.

In Sect. 2 we introduce the daily maximum temperature data used in this study and
motivate our approach in Sect. 3. Section 4 describes our approach, which includes the
preparation of the data, the definition of heat periods and the construction of time evolving
climate networks. The results for applying the new approach to hindcasts are shown in
Sect. 5. Finally, we give the conclusions and an outlook in Sect. 6.
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2 Data

We apply the climate network approach to a decadal prediction ensemble generated
within the German research project MiKlip (Mittelfristige Klimaprognosen, Decadal Climate
Prediction, e.g. Kadow et al. (2015)) by the regional COSMO model in CLimate Mode
(COSMO-CLM or CCLM) Doms and Schättler (2002). CCLM has been used in numerous
studies recently e.g. in Kothe et al. (2014); Dosio et al. (2015), a comprehensive overview
can be found here: http://www.clm-community.eu. CCLM has been used to downscale
global decadal predictions from the Earth System Model of the Max Planck Institute for
Meteorology (MPI-ESM, Stevens et al., 2013). From a suite of different decadal prediction
experiments we have selected the so-called regional baseline 0 ensemble. This ensemble
consists of 10 members, each covering the period 1961–2010 for the European region
(according to CORDEX-EU Jacob et al., 2013; Giorgi et al., 2009) on a 0.22◦ grid. This
ensemble has already been used by Mieruch et al. (2014).

The regional baseline 0 ensemble (based on the global MPI-ESM model) has been
initialized every 10 years (1961, 1971, 1981, 1991, 2001). Within a decade the CCLM model
runs freely, except for the prescription of the atmospheric boundary conditions by the global
MPI-ESM model.

More details on the development of the ensemble and the initialization can be found in
Matei et al. (2012), Müller et al. (2012), Mieruch et al. (2014).

In the study presented here we use daily maximum near-surface temperatures from the
CCLM model and from the E-OBS v8.0 gridded climatology (Haylock et al., 2008) for the
European continent.

For our comparison, we use the so-called Prudence regions http://prudence.dmi.dk/,
namely British Isles, Iberian Peninsula, France, Central Europe, Scandinavia, Alps,
Mediterranean and Eastern Europe shown in Fig. 1.
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3 Motivation

Generally, heat periods are maximum temperature values persisting for several days and
occurring on spatially expanded regions. This means that many temperature time series
(grid points) behave in a “cooperative mode” (see e.g. Ludescher et al. (2013)). This
cooperative state can be described by the link strength, i.e. essentially the correlation
between time series, of a climate network. Thus, the link strength of a climate network could
turn out to be the better heat period estimator for model data, because it is independent of
the typically critical thresholds used in classical extreme value detection.

The standard estimator for heat periods according to the World Meteorological
Organization (WMO) is that the daily maximum temperature is 5K above the 1961–1990
mean maximum temperature at five consecutive days at least (Frich et al., 2002). Thus, the
standard method to compare the prediction skill of heat periods between observations and
model would be to count the heat periods e.g. for each year in an observational reference
data set and similarly in the model data, both according to the WMO definition (cf. Fig. 2).

A crucial problem of the standard estimator for model predictions is the inherent static
threshold used to detect heat periods. Although this threshold can be adapted to the model
climatology the problem is that it is still likely that the model slightly undershoots or otherwise
slightly misses the threshold if a true heat period occurs, assuming the model exhibits at
least some predictive skill.

To account for this situation in decadal predictions we propose a new method, based
on complex climate networks, to detect heat periods, which is independent of a fixed
temperature threshold. Again we want to emphasize that no new method for the detection of
heat periods is needed, if past observational data is used. The WMO based definition works
well. However, for detecting heat periods in 10-yearly initialized forecast/hindcast data, new
methods are needed. Not only to overcome the threshold problem, but also to consider
complex long-term climate evolution in contrast to short-term weather.

The following schematic examples in Figs. 2a-c and Fig. 3 illustrate why the complex
network approach is able to detect heat periods without using a temperature threshold.
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The black curves represent (artificially generated) daily maximum temperature model data.
Further we assume that one heat period has actually occurred in Figs. 2a-c persisting for
15days from day 11 to day 25. Accordingly the black curves show different possible model
results if the model exhibits predictive skill to detect a signal out of the noise.

Figure 2a depicts that using the standard approach the model correctly detects one heat
period above the threshold. In Fig. 2b the model detects a signal, but this signal is too
weak to cross the threshold, thus no heat period would have been detected and the model
underestimates the number of heat periods. Overestimation of the number of heat periods
happens in Fig. 2c, where the model detects two heat periods (5 days above the threshold
at the edges and below the threshold in between). Now, the key point for our motivation is
that a heat period constitutes an event in space and time, thus in a certain region, many
time series would look like the ones in Fig. 2. The link strength of a network would be given
by the correlation between these coherent time series. Since the signals in Figs. 2a–c look
quite similar, the link strength of the network would thus be very similar in all three cases.
Whereas the standard approach would correctly predict the heat period in only one case
(Fig. 2a), the networks’ link strength would correctly predict the heat period in all three
cases, given a proper relation between link strength and heat periods.

To test the relation in principle, we created 100 artificial time series (Gaussian noise)
and included successively 0–9 heat periods. Figure 3a shows such a time series with three
artificial heat periods indicated by the dashed lines. In a following step, we calculated the
mean correlation (link strength) between these 100 coherent time series dependent on the
number of included heat periods depicted in Fig. 3b. As can be seen, more heat periods
are connected with a larger link strength. This simplified test shows that a proper relation
between link strength and heat periods could exist. Note that Fig. 3b is not a calibration
curve for real data, because we simply used Gaussian noise to create the time series.

It is clear that the argumentation above concerning the link strength as a heat period
estimator is quite simplistic, but it elucidates our approach and the main idea.
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4 Method

Our hypothesis is that complex network measures may be better estimators for climate
extremes than standard measures like absolute threshold exceedances.

4.1 Data pre-processing

Before using the complex networks in general it is necessary to remove stationary biases
and long-term variabilities from the climate time series (Donges et al., 2009).

We remove bias, trend and the average annual cycle by subtracting a standard linear
regression including a Fourier series from the time series according to:

yi(t) = δi +ωit+
2∑
j=1

αi,j sin

(
2πj · t
365.25

)
+βi,j cos

(
2πj · t
365.25

)
, (1)

where yi(t) represents daily maximum temperature from 1961 to 2010, δi is the intercept,
ωi is the linear trend and αi,j and βi,j represent the Fourier coefficients. Equation (1) is
evaluated individually at each grid point i= 1, . . . ,N .

In order to minimize the influence of cold periods on the network approach (details below
in Sect. 4.3), we remove the data lower than the 10% quantile. This filtering has no influence
on the standard estimator of heat periods. Then, the months from June to September are
selected because we are interested in summer heat periods.

These summer anomalies are used for both the standard approach, defined in Sect. 4.2,
and the new approach illustrated in Sect. 4.3. We introduce a skill measure to compare
the number of heat periods with values of the link strength (Sect. 4.4). Finally we present
a simple calibration formula to predict heat periods with the link strength, which can be
applied to real forecasts in Sect. 4.5.
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4.2 The standard approach for determining the number of heat periods

In this study, we define a heat period for E-OBS observational data as a time range when
the anomaly maximum temperature (according to Eq. 1) exceeds a fixed threshold of 3K at
five consecutive days at least, and additionally includes not less than 20% of the grid points
in the area of interest. This choice has been made to observe events frequently enough for
reliable statistics while simultaneously ensuring important impacts.

To account for the inherent model bias it is essential to adjust the temperature threshold
to the model climate. Thus, we estimate the percentile P3K corresponding to the 3K E-OBS
threshold for the complete time from 1961 to 2010 and the area of interest. Accordingly, we
use this percentile as the threshold for heat periods for the model data which is nevertheless
fixed for the whole area and time range and the argumentation of Sect. 3 still holds for the
model data. Table 1 shows this threshold in K for the eight Prudence regions, estimated
from the CCLM ensemble means. In the following, we will refer to this definition as standard
approach.

4.3 The new approach

As an alternative heat period estimator, we propose to use the time varying link strength
Wτ (τ represents the years) of a network, based on modeled daily maximum temperature
time series. The link strength Wτ is the correlation threshold between time series, which is
needed to construct a network of a given edge density. Accordingly we want to show thatWτ

has the potential to be a better estimator for observational heat periods than the standard
estimator. This approach is similar to that used by Ludescher et al. (2013), who forecasted
El Niño events using the link strength of a network and showed the superiority to standard
sea surface temperature predictions by state-of-the-art climate models. By contrast to
Ludescher et al. (2013), however, we use the predicted 2m maximum temperature of CCLM
to create the networks and to forecast the number of heat periods.

To apply the method we proceed as follows. Suppose we have initialized our climate
model in the year 2001 with the ocean, soil, ice and atmospheric state at that time.

9
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Accordingly the climate model runs freely for 10 years, i.e. a retrospective decadal climate
prediction. Now we are interested in the capability of the model to represent heat periods
in summer. Based on the standard approach of counting heat periods (see Sect. 4.2) we
could determine the prediction skill of the model in forecasting (hindcasting) the number of
heat periods. Our approach, in contrast, is to create a time-evolving complex network with
fixed edge density (Berezin et al., 2012; Radebach et al., 2013; Ludescher et al., 2013;
Hlinka et al., 2014) from the modeled daily maximum temperature time series and use, as
mentioned, the dynamics of the link strength Wτ as a heat period estimator.

Following our aim to use a network measure as a heat period estimator we construct
a complex network from the daily maximum temperature model data. Here we use an
undirected and unweighted simple graph. Thus, the network consists of vertices V , which
are the spatial grid points of our temperature data, and edges (connections) E, which are
added between vertices and represent the statistical interdependence between the anomaly
daily maximum temperature time series. This complex climate network can be represented
by the symmetric adjacency matrix A with:

Aij =

{
0 if ij not connected

1 if ij connected
, (2)

where i and j represent the vertices, i.e. time series at grid points i, j = 1, . . . ,N . Two
grid points are connected if the correlation between their time series exceeds a predefined
threshold. The statistical interdependence between pairs {ij} (self-loops {ii} are not
allowed) of time series is measured using the Pearson (standard) correlation coefficient
(Donges et al., 2009). From sensitivity studies we found that correlations between time
series in the order of 0.7–0.9 yield patterns with not too few and not too many connections.
This is important in order to resolve temporal dynamics of the network. Correlations in this
order of magnitude are significant on the 5% level for the here used summer time series with
length of about 120 days. However, since we want to analyze different regions in Europe
and to generate comparable results we decided to alternatively create our networks with
a constant edge density (ratio of number of actual connections to maximum number of

10
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connections) of

ρ= E
/( N

2

)
= 〈ki〉/(N − 1) = 0.3 , (3)

where E is the number of edges and 〈ki〉 is the mean node degree with

ki =
N∑
j=1

Aij , (4)

which gives the number of connections of a vertex i.
As mentioned above we removed the data lower than the 10% quantile, to avoid that

the link strength Wτ is influenced by possible cold periods in the data. We tested smaller
quantiles (5%) and larger quantiles (20%) and found that the results are robust, i.e. they
changed only slightly. The above used parameters (like the density of 0.3) and the 10%
filtering turned out to be optimal for our data. For other data, these parameters most
probably have to be adjusted. Additionally, by removing the data lower than the 10%
quantile, gaps in the time series are generated. To ensure significance, we take into account
only correlation coefficients where the two underlying time series exhibit 60 common data
points (days). An effective way to estimate the link strength of a network with an edge
density of 0.3 is to calculate the 70% quantile of all correlation coefficients involved in the
network.

In a similar way as Berezin et al. (2012) we analyze the temporal variation of the link
strength Wτ , i.e the correlation threshold between time series (grid points) for a single year
τ (summer) from 1961 to 2010. Thus, instead of using the node degree as an estimator of
heat periods we use the link strength Wτ .

Using the definitions above, we finally construct a network for the summer months of each
year based on anomaly maximum temperature model data. The quantity whose year-to-
year variation we are interested in is the link strength Wτ ; however, since we are interested
in decadal variability, and since we do not expect the model to represent the year to year

11
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fluctuations, we applied a 10 year moving average filter to both link strength and number
of heat periods, subsequently. Since the CCLM model has been initialized every decade
(1961, 1971,..., 2001) we apply the filter only within a decade in order to avoid transferring
information between decades. At the boundaries of the decades, the time range for the
running average is shortened: For instance at the beginning of the decade, we use only the
six years’ mean (e.g. from 2001 to 2005), in the second year seven, and so on.

4.4 Comparison of the different quantities

To quantify the prediction skill of the model, we calculate the absolute mean difference (see
Eqs. 6 and 7) between the number of heat periods in E-OBS (o) and CCLM (m) and the
CCLM link strength (Wτ ). To be comparable we normalized the time series to the range
{0,1} by a subtraction of the minimum of the time series and accordingly a division by the
maximum for the whole time span, e.g. for the number of heat periods in CCLM:

µrd,τ =

(
mr
d,τ −

50
min
τ=1

(
mr
d,τ

))/ 50
max
τ=1

(
mr
d,τ −

50
min
τ=1

(
mr
d,τ

))
, (5)

where r denotes the European region, d stands for the decade and τ represents the years.
The similarly rescaled E-OBS number of heat periods will be denoted as Ω and the rescaled
CCLM link strength as ψ.
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Thus the absolute mean difference (based on normalized data) between observation and
model heat periods for a region r and a decade d is given by

M r
d (µ) =

∣∣∣∣∣ 1

10

10∑
τ=1

(
Ωr
d,τ −µrd,τ

)∣∣∣∣∣= |Ωr
d−µrd| , (6)

and the mean difference between observation heat periods and model link strength is

M r
d (ψ) =

∣∣∣∣∣ 1

10

10∑
τ=1

(
Ωr
d,τ −ψrd,τ

)∣∣∣∣∣= |Ωr
d−ψ

r
d| , (7)

where the bars in the above equations denote temporal averages. Therefore, if the absolute
mean difference is about 0, observations and model agree well, whereas a difference of
about 1 denotes the maximum discrepancy.

4.5 Prediction of heat periods

For a real application of our method to predict the number of heat periods in a forecasting
sense, a calibration step using observational data o is needed to convert the link strength
of the model to the number of heat periods my (the index y stands for year in the future).
Therefore long hindcast data are needed. Based on our analysis we suggest as a first
attempt to apply a linear conversion from link strength Wy to the number of heat periods
my, which is also supported by our tests shown in Fig. 3:

mr
y,W =

W r
y −min50

τ=1(W r
τ )

max50τ=1(W r
τ )−min50

τ=1(W r
τ )
·
(

50
max
τ=1

(orτ )−
50

min
τ=1

(orτ )

)
+

50
min
τ=1

(orτ ) (8)

This linear approach corresponds to our skill analysis, where a linear connection between
the link strength and the number of heat periods is assumed as well. Again we note that this
study presents only the skill analysis of hindcast data and Eq. 8 is actually not used now.

13
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5 Results

Figure 4 depicts the number of observed heat periods (solid line) and the corresponding
link strength (dashed line) retrieved from the complex evolving network, both from E-OBS
data for France (Prudence region 3), and shows that the link strength Wτ is a suitable
estimator of heat periods. It shows that the network contains climate information in the
sense that the dynamics of the link strength Wτ is similar to the dynamics of heat periods,
both based on the same data. So, the link strength can here be considered as an estimator
for heat periods which is comparable to the standard heat period estimator. Jumps between
the decades occur as the running mean filter is only applied within the decades (see
Sect. 4.3). The corresponding figures for the seven other Prudence regions can be found in
the supplementary material.

As an example, Prudence region 8 (Eastern Europe) is a region where the network
method performs better than the standard approach (Figs. 5 and 6). Figure 5 shows the
E-OBS number of heat periods o (black) and the CCLM ensemble mean number of heat
periods m (blue) for Eastern Europe together with the interquartile range (25th and 75th
percentiles), and Fig. 6 shows again the E-OBS number of heat periods now compared to
the CCLM link strength. Comparing the absolute mean differences, denoted as M in the
two figures reveals that our network approach enhances the skill in four decades, namely
1970, 1980, 1990, 2000. Especially the 1970s, 1980s, 1990s show a clear improvement
and our network approach better reflects the low frequency dynamics of the heat periods.
The 2000s seem to be off in both model cases, the number of heat periods and the link
strength, which indicates a failed model initialization.

In order to see how the prediction skill of the standard as well as the network heat period
estimators vary with the considered region, we performed the same analysis as above
for the eight Prudence regions in Europe and for the 1960s, 1970s, 1980s, 1990s and
2000s. The corresponding figures for the other regions can be found in the supplement. To
summarize our results we calculated as the prediction skill the absolute mean difference
within a decade between E-OBS heat periods and CCLM heat periods (Eq. 6) and E-

14
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OBS heat periods and CCLM link strength (Eq. 7). Figure 7 shows which method performs
better regarding the eight regions (columns) and five decades (rows). Blue color in Fig. 7
indicates that the network approach performs better (M r

d (ψ)<M r
d (µ)) and red color stands

for a better performance of the standard approach (M r
d (ψ)>M r

d (µ)). White boxes in Fig. 7
denote a tie between the methods in the case of too small differences (|M r

d (ψ)−M r
d (µ)| ≤

0.05). The matrix of Fig. 7 shows that the network method is clearly superior in three regions
(5,7,8) and slightly superior in two regions (4,6), the standard approach is superior in two
regions (1 and 3) and in region 2 we observed a tie, i.e. no clear result.

The crucial question is if this result indicates that the network method performs
significantly better than the standard approach or not. However, testing for statistical
significance bears serious problems. There are so many factors involved in the analysis,
i.e. the models themselves, the downscaling, the ensemble, the initialization, the different
regions, the filtering, etc. that any nullhypothesis would be not well-posed and any test
would be questionable. This issue is discussed in detail in a 2013 paper entitled “Testing
ensembles of climate change scenarios for "statistical significance"” by climate statistics
instances Hans von Storch and Francis Zwiers (von Storch and Zwiers, 2013), who claim
that “... a statistical nullhypothesis may not be a well-posed problem ...” and “Even if
statistical testing were completely appropriate, the dependency of the power of statistical
tests on the sample size n remains a limitation on interpretation.” and finally “... propose
to employ instead a simple descriptive approach for characterising the information in an
ensemble ...”. Although we totally agree with the argumentation by (von Storch and Zwiers,
2013) that a “classical” significance test would most probably fail in our analysis, we think
that alternative significance tests, based on bootstrapping or surrogate data, could definitely
help for a better interpretation of the results. Thus, we construct the following significance
test based on surrogate data to answer the question: “What is the probability of getting a
rank matrix like the one in Fig. 7 by chance?”.

First, we have to define what is the possibly “significant” characteristic of the matrix in
Fig. 7. It is, as we concluded above, that the network method is superior in five regions.
Thus the question is: “What is the probability to observe at least five regions, where we have
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in each at least one blue matrix element more than a red one by chance?”. Accordingly we
constructed matrices like in Fig. 7 by randomly coloring 20 matrix elements blue and 20
red. Afterwards we colored 8 matrix elements white as in Fig. 7. Finally, we repeated this
surrogate procedure 1000 times and counted the cases (regions) where the blue matrix
elements dominate. Table 2 shows the probabilities that blue matrix elements dominate in
n regions. Since we have 16 blue elements and 16 red, it is sure that blue dominates in
n= 1 region and impossible to dominate in n= 7 and n= 8 regions. As can be seen from
Tab. 2 the probability of dominating in n= 5 regions by chance is only about 5%, thus the
results of our network approach have to be stated significant. Due to the symmetry of the
test, the same argumentation is valid for red matrix elements. Dominating in n= 2 regions,
as achieved by the standard approach (Fig. 7), can be realized easily by chance with a
probability of approx. 99%. Page 1 in the supplementary material shows an example of 12
of these randomly generated matrices, where one matrix, depicted by a black frame, fulfills
the “significance” criterion.

6 Conclusions and outlook

We presented a novel approach examining heat periods using a complex network analysis.
We have investigated the predictability of the slow dynamics of the occurrence of heat
periods in Europe based on daily maximum near-surface temperature data.

We found that the network approach is superior (significance is ≈ 5%) to the standard
approach in predicting heat periods in Europe, hence highlighting the potential of network
methods to improve the skill estimation in decadal prediction experiments. Picking up our
hypothesis and simplified argumentation from Sect. 3, the crucial point why we detect
heat periods with the network link strength is that heat periods are cooperative events
in space and time. Thus, the link strength can be used as an estimator of heat periods.
The drawback of the standard approach is most probably the inflexible threshold for the
detection of heat periods (cf. Fig. 2). If the climate model contains the signal of a heat
period, but with a slightly too small amplitude, the threshold will not be crossed and no heat
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period will be detected. In contrast, the complex climate network does not depend on such
fixed thresholds, and can use this information, which makes it the more robust estimator of
heat periods.

The general prediction skill of climate in Europe using standard measures is still
moderate. In this sense our work adds new aspects to our previous study (Mieruch et al.,
2014) and also the work of Eade et al. (2012) who found a strong variation of skill with
region and decade. In essence, we found regions and decades in Europe where our
climate model output, or more specifically the used network estimator, follows the slowly
evolving dynamics of observed heat periods. We also found regions and decades, where
the network estimator is not able to represent the observational reference. Understanding
of this variability in prediction skill is one of the future challenges of decadal predictions.

Concluding, our approach shows that the complex climate networks approach yields
meaningful climate information and has the potential to improve skill measures within the
framework of climate prediction. It is the first time that such network techniques have been
used in climate predictions. Since climate or decadal predictions aim to predict natural
variability in the order of years, suitable statistics are needed. Natural variability in the
order of years evolves highly dynamical and often nonlinear. Thus, the complex climate
networks could bear the potential to be very useful in climate predictions. Our approach,
which is even based on the most simple network measure, the node degree (or as we used
it the link strength) yields optimistic results. So, we think that our analysis could be the
starting point for using the complex networks in climate predictions, using other measures
and/or multivariate data could turn out to be the better way of analyzing predictions of
natural variability years ahead than using methods from short- or medium range forecasting.
Further, from the network perspective it would be interesting to analyze other network
measures like clustering, similarities or path lengths and how they are connected to
climate evolution. The incorporation of other relevant variables like precipitation, wind or soil
moisture into the network is an appealing aspect. From a physical or climatological point of
view it is important to understand why the network measures are able to represent climate
dynamics, which could also contribute to a better understanding of the sources of decadal
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predictability. Thus, the incorporation and investigation of processes like the AMOC, PDO
or NAO together with complex networks and climate prediction might be an option for the
future.
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Table 1. Ensemble mean variation of the temperature threshold calculated for heat periods with the
standard approach in CCLM data (see Sect. 4.2).

Prudence region 1 2 3 4 5 6 7 8

Temperature threshold (in K) 3.16 3.38 2.81 2.52 2.66 2.85 3.46 2.79
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Table 2. Probability that blue matrix elements in Fig. 7 dominate in n regions by chance. Half of
the elements are colored blue and red, respectively, and eight white elements are randomly added
subsequently.

Number of regions n 1 2 3 4 5 6 7 8

Probability in % 100 99 82 35 5 0.1 0 0
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Figure 1. The 8 Prudence regions. (Topography: ETOPO1, Amante and Eakins, 2009.)
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Figure 2. Schematical illustration of our approach (temperature anomaly on the y axis): (a) model
detects correctly one heat period above the threshold, (b) model underestimates the number of heat
periods, (c) model overestimates the number of heat periods (details see text).
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Figure 3. (a) Artificial time series including 3 heat periods (dashed lines). (b) Relation between the
network link strength and the number of heat periods, based on 100 artificial time series.
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Figure 4. Number of heat periods (1961–2010) in France (Prudence 3) in summer from E-OBS
o (solid line) and corresponding E-OBS link strength W (dashed line). The “M’s” denote the
absolute mean difference within a decade between E-OBS and the CCLM ensemble mean after
normalization, see Eq. 7.
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Figure 5. Number of heat periods (1961-2010) in Eastern Europe (Prudence 8) in summer from
E-OBS o (black) and CCLM number of heat periods (blue: ensemble mean and interquartile range).
The “M’s” denote the absolute mean difference within a decade between E-OBS and the CCLM
ensemble mean after normalization, see Eq. 6.
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Figure 6. Number of heat periods (1961-2010) in Eastern Europe (Prudence 8) in summer from
E-OBS o (black) and CCLM link strength or correlation threshold W (red: ensemble mean and
interquartile range). The “M’s” denote the absolute mean difference within a decade between E-
OBS and the CCLM ensemble mean after normalization, see Eq. 7.
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Figure 7. Rank matrix of the performance of the two methods. Blue: network approach performs
better, red: standard approach performs better, white: tie.
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