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ABSTRACT 14 

To study the imprints of the Solar-ENSO-Geomagnetic activity on the Indian Subcontinent, we 15 

have applied the Singular spectral analysis (SSA) and wavelet analysis to the tree ring 16 

temperature variability record from the Western Himalayas. Other data used in the present 17 

study are the Solar Sunspot Number (SSN), Geomagnetic Indices (aa Index) and Southern 18 

Oscillation Index (SOI) for the common time period of 1876-2000. Both  SSA and wavelet 19 

spectral analyses reveal the presence of 5-7 years short term ENSO variations and the 11 year 20 

solar cycle indicating the possible combined influences of solar-geomagnetic activities and 21 

ENSO on the Indian temperature. Another prominent signal corresponding to 33-year 22 

periodicity in the tree ring record suggests the Sun-temperature variability link probably 23 

induced by changes in the basic state of the earth’s atmosphere. In order to complement the 24 

above findings, we performed a wavelet analysis of SSA reconstructed time series, which agrees 25 

well with our earlier results and increases the signal to noise ratio thereby showing strong 26 

influence of solar-geomagnetic activity & ENSO throughout the entire period. The solar flares 27 

are considered responsible for causing the atmospheric circulation patterns. The net effect of 28 

solar-geomagnetic processes on the temperature record might suggest counteracting 29 

influences on shorter (about 5–6 y) and longer (about 11–12 y) time scales. The present 30 

analyses suggest that the influence of solar activities on the Indian temperature variability 31 

operates in part indirectly through coupling of ENSO on multilateral time scales. The analyses, 32 

hence, provide credible evidence for tele-connections of tropical pacific climatic variability and 33 
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Indian climate ranging from inter-annual-decadal time scales and also suggest the possible role 34 

of exogenic triggering in reorganizing the global earth-ocean-atmospheric systems. 35 

Key words: Geomagnetic activity, Western Himalayas, Sunspot Number, SOI index, Singular 36 

spectral analysis, Wavelet spectrum, Coherency. 37 

 38 

1. Introduction:  39 

Several recent studies of solar/geomagnetic effects on climate have been  examined on both 40 

global as well as on regional scales (Lean and Rind, 2008; Benestaed and Schmidt, 2009; Meehl, 41 

2009; Kiladis and Diaz 1989; Pant and Rupa Kumar 1997; Gray et al. 1992; Wiles et al. 1998; Friis 42 

and Svensmark 1997; Rigozo et al. 2005; Feng et al. 2003; Tiwari and srilakshmi 2009; Chowdary 43 

et al. 2006, 2014; Appenzeller et al. 1998; Proctor et al. 2002; Tsonis et al. 2005; Freitas and 44 

Mclean 2013). The Sun’s long-term magnetic variability caused by the sunspots is considered as 45 

one of the primary drivers of climatic changes. The short-term magnetic variability is due to the 46 

disturbances in Earth’s magnetic fields caused by the solar activities and is indicated by the 47 

geomagnetic indices. The Sun’s magnetic variability modulates the magnetic and particulate 48 

fluxes in the heliosphere. This determines the interplanetary conditions and imposes significant 49 

electromagnetic forces and effects upon the planetary atmosphere. All these effects are due to 50 

the changing solar-magnetic fields, which are relevant for planetary climates including the 51 

climate of the Earth. The Sun-Earth relationship varies on different time scales ranging from 52 

days to years bringing a drastic influence on the climatic patterns. The ultimate cause of solar 53 

variability, at time scales from decadal to centennial to millennial or even longer scales has its 54 

origin in the solar dynamo mechanism. During the solar maxima, huge amounts of solar energy 55 

particles are released, thereby causing the geomagnetic disturbances. The 11 years solar cycle 56 

acts as an important driving force for variations in the space weather, ultimately giving rise to 57 

climatic changes. It is, therefore, imperative to understand the origin of space climate by 58 

analyzing the different proxies of solar magnetic variabilities. Another important phenomenon 59 

is El Nino-Southern Oscillation (ENSO), which associated with droughts, floods and intense 60 

rainfall in different parts of the world. The strong coupling and interactions between the 61 

Tropical Ocean and the atmosphere play a major role in the development of the global climatic 62 
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system. The El Nino events generally recur approximately every 3-5 years with large events 63 

spaced around 3-7 years apart. The ENSO phenomena have shown huge impact on the Asian 64 

monsoon (Cole et. al., 1993), Indian monsoon (Chowdary et al. 2006, 2014) as well as globally 65 

(Horel and Wallance 1981; Barnett 1989; Yasunari 1985; Nicholson 1997). In particular, the El 66 

Nino, solar, geomagnetic activities are the major affecting forces on the decadal and 67 

interdecadal temperature variability on global and regional scales in a direct/indirect way (El-68 

Borie et al, 2010; Gray et al., 2010). Recent studies (Frohlich and Lean 2004; Steinhilber et al. 69 

2009) indicate the possible influence of solar activity on Earth’s temperature/climate on multi-70 

decadal time scales. The 11 year solar cyclic variations observed from the several temperature 71 

climate records also suggest the impact of solar irradiance variability on terrestrial temperature 72 

(Budyko 1969; Friis and Lassen 1991; Friis and Svensmark 1997; Kasatkina et al. 2007).  The bi-73 

decadal (22 years) called the Hale cycle, is related to the reversal of the solar magnetic field 74 

direction (Lean et al. 1995; Kasatkina et al. 2007). The 33 year cycle (Bruckener cycle) is also 75 

caused by the solar origin, but it is a very rare cycle (Kasatkina et al. 2007). The 2–7 years ENSO 76 

cyclic pattern and its possible coupling process is the major driving force for the temperature 77 

variability (Gray et al. 1992; Wiles et al. 1998; Mokhov et al. 2000; Rigozo et al. 2007, Kothawale 78 

et al. 2010). El-Borie and Al–Thoyaib, 2006; El-Borie et al., 2007 and El-Borie et al, 2010 have 79 

indicated in their studies that the global temperature should lag the geomagnetic activity with a 80 

maximum correlation when the temperature lags by 6 years.  Mendoza et. al., 1991 reported on 81 

possible connections between solar activity and El Nino’s, while Reid and Gage (1988) and Reid 82 

(1991) reported on the similarities between the 11-year running means of monthly sunspot 83 

numbers and global sea surface temperature. These findings suggest that there is a possibility 84 

of strong coupling between temperature-ENSO and solar-geomagnetic signals. 85 

 Several studies have been carried out to understand the climatic changes of India in the 86 

past millennium using various proxy records e.g. ice cores, lake sediments, glacier fluctuations, 87 

peat deposits etc. There is a lack of high-precision and high-resolution palaeo-climatic 88 

information for longer time scale from the Indian subcontinent. Tree-ring data is a promising 89 

proxy to retrieve high resolution past climatic changes from several geographical regions of 90 

India (Bhattacharyya et al. 1988; Bhattacharyya et al. 1992; Hughes, 1992; Bhattacharyya and 91 
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Yadav, 1996; Borgaonkar et al. 1996; Chaudhary et al. 1999; Yadav et al. 1999; Bhattacharyya 92 

and Chaudhary, 2003; Bhattacharyya et al. 2006; Shah et al. 2007)  It  has been noted that tree-93 

ring based climatic reconstructions in India generally do not exceed beyond 400 years records 94 

except at some sites in the Northwest Himalaya. Thus, a long record of tree-ring data is needed 95 

to extend available climate reconstruction further back to determine climatic variability on sub-96 

decadal, decadal and century scale. However, non-availability of older living trees in most of the 97 

sites is hindering the preparation of long tree chronology. In a previous study (Tiwari and 98 

Srilakshmi, 2009), we have studied the periodicities and non-stationary modes in the tree ring 99 

temperature data from the same region (AD 1200-2000). To reveal significant connections 100 

among the Solar-geomagnetic-ENSO ‘triad’ phenomena on tree ring width in detail for the 101 

period from 1876-2000, we have applied here the Singular spectral analysis (SSA) and the 102 

wavelet spectral analysis for Sunspot data, geomagnetic data (aa index), Troup Southern 103 

Oscillation Index (SOI) and the Western Himalayas tree ring data. Here our main objective is to 104 

employ wavelet-based analysis on SSA reconstructed time series to find out the evidence of the 105 

possible linkages, if any, among ENSO–solar-geomagnetic in the Indian temperature records.  106 

 107 

2. Source and Nature of Data:  108 

The data analyzed here includes the time series of (1) Smoothed Sunspot number for solar 109 

activity (2) Geomagnetic activity data (aa indices) (3) Troup Southern Oscillation Index (SOI) for 110 

the study of El Nino-Southern Oscillation called ENSO (4) Western Himalayan temperature 111 

variability record. All the data sets have been analyzed for the common period of 125 years 112 

spanning over 1876-2000. The monthly sunspot number data has been obtained from the 113 

Sunspot Index Data Center http:// astro.oma.be/SIDC/. The Troup SOI data is obtained from the 114 

Bureau of Meteorology of Australia, http://www.bom.gov.au/climate/. The data for 115 

geomagnetic activity, aa Index, was provided by the National Geophysical Data Center, NGDC, 116 

(http://www.ngdc.noaa.gov/stp/GEOMAG/aastar.shtml). The aa index is a measure of 117 

disturbances level of Earth’s magnetic field based on magnetometer observations at two, nearly 118 

antipodal, stations in Australia and England. In recent studies, the tree ring proxy climate 119 

indicators are being used for extracting information regarding past seasonal temperature or 120 
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precipitation/drought based on the measurements of annual ring width. The detailed 121 

description of the data has been presented elsewhere (Yadav et. al., 2004). A brief account of 122 

the data pertinent to the present analysis, however, is summarized here. The tree ring data 123 

being analyzed here is one of the best temperature variability records (1876 to 2000) of the 124 

pre-monsoon season in the Western Himalayas available.  The mean temperature series is 125 

obtained from nine weather stations including both from high and low elevation areas in the 126 

Western Himalayas. Temperature variability history is based on widely spread pure Himalayan 127 

cedar (Cedrus deodara (Roxb.) G. Don) trees and characterizes all the sites with almost no 128 

ground vegetation and thereby minimizes individual variation in tree-ring sequences induced by 129 

inter tree competition (Yadav et. al., 2004). The mean chronological structure is based on in 130 

total 60 radii from 45 trees in total, statistical feature of which show that the chronology is 131 

suitable for dendro-climatic studies back to AD 1226 (Yadav et. al., 2004).  132 

 133 

3. Methods applied: To analyze the temporal series and to find the climatic structure, we have 134 

here three methods: Principal component analysis (PCA), Singular Spectral analysis (SSA) and 135 

wavelet analysis.  136 

3.1. Principal component analysis (PCA): As a preliminary analysis, we have applied the 137 

Principal component analysis (PCA) to the data sets for the reduction and extraction of 138 

dimensionality of the data and to rate the amount of variation present in the original data set. 139 

The purpose to apply the PCA is to identify patterns in the given time series. The new 140 

components thereby obtained by the PCA analysis are termed as PC1, PC2, PC3 and so on, (for 141 

the first, second and third principal components), and are uncorrelated. The different PCs 142 

capture part of the variance and are ranked depending on their corresponding percentage 143 

variance. 144 

 145 

3.2. Singular spectral analysis: The Singular Spectrum Analysis (SSA) method is designed to 146 

extract as much information as possible from a short, noisy time series without any prior 147 

knowledge about the dynamics underlying the series (Broomhead and King, 1986; Vautard and 148 

Ghil, 1989; Alonso et. al., 2005; Golyandina et al., 2001). The method is a form of principal 149 
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component analysis (PCA) applied to lag-correlations structures of the time series. The basic 150 

SSA decomposes an original time series into a new series which consists of trend, periodic or 151 

quasi-periodic and white noises according to the singular value decomposition (SVD) and 152 

provides the reconstructed components (RCs). The basic steps involved in SSA are: 153 

decomposition (involves embedding, singular value decomposition (SVD)) and reconstruction 154 

(involves grouping and diagonal averaging). Embedding decomposes the original time series 155 

into the trajectory matrix; SVD turns the trajectory matrix into the decomposed trajectory 156 

matrices. The reconstruction stage involves grouping to make subgroups of the decomposed 157 

trajectory matrices and diagonal averaging to reconstruct the new time series from the 158 

subgroups.  159 

Step1: Decomposition: 160 

(a) Embedding: The first step in the basic SSA algorithm is the embedding step where 161 

the initial time series change into the trajectory matrix. Let the time series be Y = {y1, ………, yN} 162 

of length N without any missing values. Here the window length L is chosen such that 2 < L < 163 

N/2 to embed the initial time series. We map the time series Y into the L lagged vectors, Yi = 164 

{yi,……,yi+L-1} for i = 1…….K, where K = N - L + 1. The trajectory matrix TY (L  K dimensions) is 165 

written as: 




















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Y
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.
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1

  ……………………………………………..(1) 166 

(b) Singular Value Decomposition (SVD): Here we apply SVD to the trajectory matrix TY 167 

to decompose and obtain TY=UDV’ called eigentriples; where Ui (K  L dimensions;1 < i < L) is an 168 

orthonormal matrix; Di (1 < i < L) is a diagonal matrix of order L; Vi (L  L dimensions;1 < i < L) is 169 

a square orthonormal matrix.  170 

The trajectory matrix is thus written as T
ii

d

i
iY VUT 




1

;   ………………(2) 171 

where the ith Eigen triple of T
iiii VUT   , I = 1, 2, 3…, d in which d = max(i: i > 0). 172 

Step 2: Reconstruction: 173 
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(c) Grouping: Here the matrix Ti is decomposed into subgroups according to the trend, 174 

periodic or quasi-periodic components and white noises.  The grouping step of the 175 

reconstruction stage corresponds to the splitting of the elementary matrices Ti into several 176 

groups and summing the matrices within each group. Let I = {i1,i2,…., ip} be the group of indices 177 

i1, ….ip. Then the matrix TI corresponding to the group I is defines as TI=Ti1+ Ti2+…Tip. The split of 178 

the set of indices J=1, 2, . . . ,d into the disjoint subsets I1, I2,….Im corresponds to the equation 179 

(3): 180 

T=TI1+TI2+…TIm.   ……………….(3) 181 

The sets I1,….,Im are called the eigen triple grouping. 182 

 (d) Diagonal averaging: The diagonal averaging transfers each matrix T into a time 183 

series, which is an additive component of the initial time series Y. If zij stands for a element 184 

matrix Z, the kth term of the resulting series is obtained by averaging zij over all i, j such that 185 

i+j=k+2. This is called diagonal averaging or the Hankelization of the matrix Z. The Hankel matrix 186 

HZ, is the trajectory matrix corresponding to the series obtained by the result of diagonal 187 

averaging.   188 

Considering equation (3), let X (L  K) matrix with elements xij, where 1  i  L, 1  j  K. 189 

Here diagonal averaging transforms matrix X to a series g0,…,gT-1 using the formula: 190 
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This diagonal averaging by equation (4) applied to the resultant matrix XIn, produces time series 192 

Yn of length T. For such signal characteristics, it is essential to examine the time-frequency 193 

pattern as to understand whether a particular frequency is temporally consistent or 194 

inconsistent. Hence for non-stationary signals, we need a transform that will be useful to obtain 195 

the frequency content of the time series/signal as a function of time.  196 

An alternative method for studying the non-stationarity of the time series is wavelet 197 

transform. For non-stationary signals, wavelets decomposition would be the most appropriate 198 
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method because the analyzing functions (the wavelets function) are localized both in time and 199 

frequency.  200 

 201 

3.3. Wavelet spectral analysis: During the past decades, wavelet analysis has become a popular 202 

method for the analysis of aperiodic and quasi-periodic data (Grinsted et. al., 2004; Jevrejeva 203 

et. al., 2003; Torrence and Compo, 1998; Torrence and Webster, 1999). In particular, it has 204 

become an important tool for studying localized variations of power within a time series. By 205 

decomposing a time series into time-frequency space, the dominant modes of variability and 206 

their variation with respect to time can be identified. The wavelet transform has various 207 

applications in geophysics, including tropical convection (Weng and Lau 1994), the El Niño–208 

Southern Oscillation (Gu and Philander 1995), etc. We have applied the wavelet analysis to 209 

analyze the non-stationary signals which permits the identification of main periodicities of 210 

ENSO-sunspot-geomagnetic in the time series. The results give us more insight information 211 

about the evolution of these variables in frequency-time mode. 212 

A wavelet transform requires the choice of analyzing function  (called “mother 213 

wavelet”) that has the specific property of time-frequency localization. The continuous wavelet 214 

transform revolves around decomposing the time series into scaling components for identifying 215 

oscillations occurring at fast (time) scale and other at slow scales. Mathematically, the 216 

continuous wavelets transform of a time series f(t) can be given as: 217 

dt
a

btψ)t(f
a

)b,a)(f(W ψ 





 

 




1
………..(5) 218 

Here f(t) represents time series,  is the base wavelets function (here we have chosen the  219 

Morlet function), with length that is much shorter than the time series f(t). W stands for 220 

wavelet coefficients. The variable ‘a’ is called the scaling parameter that determines the 221 

frequency (or scale) so that varying ‘a’ gives rise to wavelet spectrum. The factor ‘b’ is related to 222 

the shift of the analysis window in time so that varying b represents the sliding method of the 223 

wavelet over f(t).  224 

In several recent analyses, complex Morlet wavelet has been found useful for 225 

geophysical time series analysis. The Morlet is mostly used to find out areas where there is high 226 
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amplitude at certain frequencies. The complex Morlet wavelet can be represented by a periodic 227 

sinusoidal function with a Gaussian envelope and is excellent for Morlet wavelet may be 228 

defined mathematically, as follows: 229 

24
1 2

0)(
tti eet 

    ………..(6) 230 

where 0 is a non-dimensional value. 0 is chosen to be 5 to make the highest and lowest 231 

values of  approximately equal to 0.5, thus making the admissibility condition satisfied. The 232 

complex valued Morlet transform enables to extract information about the amplitude and 233 

phase of the signal to be analyzed. Wavelet transform preserves the self-similarity scaling 234 

property, which is the inherent characteristic feature of deterministic chaos. The continuous 235 

wavelet transform has edge artifacts because the wavelet is completely localized in time. The 236 

cone of influence (COI) is the area in which the wavelet power caused by a discontinuity at the 237 

edge has dropped to e-2 of the value to the edge. The statistical significance of the wavelet 238 

power can be assessed relative to the null hypotheses that the signal is generated by a 239 

stationary process with a given background power spectrum (Pk) of first order autoregressive 240 

(AR1) process. (Grinsted et. al., 2004) 241 

22

2

1

1
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k
e

P






 ……………(7) 242 

where k is Fourier frequency index. 243 

The cross wavelet transform is applied to two time series to identify the similar patterns 244 

which are difficult to assess from a continuous wavelet map. Cross wavelet power reveals areas 245 

with high common power. The cross wavelet of two time series x (t) and y (t) is defined as WXY = 246 

Wx Wy*, where * denotes complex conjugate. The cross wavelet power of two time series with 247 

background power spectra ௞ܲ
௑ and ௞ܲ

௒ is given as  248 
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where ܼ௩(݌) is the confidence level associated with the probability p for a pdf defined by the 250 

square root of the product of the two 2 distributions (Torrence and Compo, 1998). The 251 

wavelet power is 
2

)(sW X
n  and the complex argument of )(sW X

n can be interpreted as the local 252 

phase. The cross wavelet analysis gives the correlation between the two time series as function 253 

of period of the signal and its time evolution with a 95% confidence level contour. The 254 

statistical significance is estimated using red noise model.  255 

Wavelet coherence is another important measure to assess how coherent the cross 256 

wavelet spectrum transform is in time frequency space. The wavelet coherence of two time 257 

series is defined as (Torrence and Webster, 1998) 258 

ܴ௡ଶ(ݏ) =  หௌ(௦షభ ௐ೙
೉ೊ(௦))ห

మ

ௌ(௦షభหௐ೙
೉(௦)ห

మ
).ௌ(௦షభหௐ೙

ೊ(௦)ห
మ

)
……………(9) 259 

where, S is a smoothing operator. The smoothing operator is written as S (W) = S scale(S time 260 

(Wn(s))), where Sscale denotes smoothing along the wavelet scale axis and Stime smoothing in 261 

time. Here for the morelet wavelet, the smoothing operator is  262 

















2

2

2
1)()( s

t

nstime csWWS ………………….(10) 263 

  nnstime scsWWS 6.0)()( 2 …………..(11) 264 

Where c1 and c2 are normalization constants and п is the rectangle function. The factor of 0.6 is 265 

empirically determined scale decorrelation length of the Morlet wavelet (Torrence and Compo, 266 

1998). The statistical significance level of the wavelet coherence is estimated using the Monte 267 

Carlo methods (Grinsted et. al., 2004). 268 

 269 

4. Results and Discussion: 270 

We analyzed the data sets spanning over the period of 1876-2000 using the PCA, SSA and 271 

wavelet spectral analyses. Figure 1 shows four time series: (1) Smoothed Sunspot number 272 

representing solar activities; (2) Geomagnetic (aa indices); (3) Troup Southern Oscillation Index 273 

(SOI) for the study of ENSO and (4) Western Himalayan temperature variability record that are 274 
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analyzed in the present work. From visual inspection it is apparent from Fig. 1 that both WH 275 

and SOI data show irregular and random pattern, while sunspot numbers have quasi- cyclic 276 

character. Further WH tree ring record also exhibits distinct temperature variability but 277 

nonstationary behavior at different scales. This variability might be suggestive of coupled global 278 

ocean-atmospheric dynamics or some other factors, such as deforestation, anthropogenic, high 279 

latitudinal influence etc (Yadav et. al., 2004).  280 

(Figure 1) 281 

Hence it is quite difficult to differentiate such a complex climate signals visually and difficult to 282 

infer any clear oscillation without the help of powerful mathematical methods. For 283 

identification of any oscillatory components and understanding the climatic variations on 284 

regional and global scale, we have applied the PCA, SSA and wavelet analysis. Figure 2 shows 285 

the principal components (PCs) for the first four eigen triples (PC1, PC2, PC3, PC4) for the given 286 

data sets. Figure 3 shows the power spectra of the principal components (PCs) for the four data 287 

sets shown in figure 2. From the figure 3, it is observed that the power spectra of PC1-4 for the 288 

sunspot data exhibits high power at 124, 11, 4-2.8 years. The presence of high solar signal at 289 

124 years indicates the quasi-stable oscillatory components in the data. The power spectra of 290 

geomagnetic data also shows the presence of strong signals at 124, 10-11, 4-2 years suggesting 291 

a strong link of solar-geomagnetic activity. The power spectra of WH temperature data shows 292 

strong high power at  ~62 years, 32-35 years, 11 years, 5 years and 2-3 years suggesting  strong 293 

combined influence of global ocean-atmospheric circulation, solar-geomagnetic and ENSO 294 

effects on the Indian climate system.  Climate cycles of 50-70 years have been widely reported 295 

in various ocean and atmospheric phenomena (Ogurtsov, et al. 2002,Tiwari, 2005). Schiesinger 296 

and Ramankutt (1994), Minobe (1997) have reported similar 55-70 year inter decadal 297 

oscillations in global mean temperature. Dominant amplitudes corresponding to 62 and 32-35 298 

years periodicities may, therefore, be linked to the Atlantic Multi-decadal Oscillation (AMO) of 299 

ocean -atmospheric circulations. The 11-year peak is well known solar signal while the 2-5 year 300 

periods apparently falls in ENSO frequency band. These results could be better confirmed by 301 

applying the mathematical tools of SSA and wavelet analyses. 302 

(Figure 2 & 3) 303 
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To explore the stationary characteristics of these peaks obtained by the PCA, we have applied 304 

the Morlet based wavelet transform approach (Holschneider, 1995; Foufoula-Georgiou and 305 

Kumar, 1995; Torrence and Compo, 1998; Grinsted et. al., 2004). The wavelet spectrum 306 

identifies the main periodicities in the time series and helps to analyze the periodicties with 307 

respect to time. Figure 4 shows the wavelet spectrum for the a) Smoothed Sunspot number for 308 

solar activity (SSN) (b) Western Himalayan (WH) temperature variability record (c) Geomagnetic 309 

activity and (c) Troup Southern Oscillation Index (SOI).  From the wavelet spectrum of sunspot 310 

time series (Figure 4a), the signal near 11-year is the strongest feature and is persistent during 311 

the entire series indicating the non-stationary behavior of the sunspot time series. The wavelet 312 

spectrum of SOI (figure 4c) shows strong amplitudes. However, due to non-stationary (time 313 

variant) character of the time series, the observed spectral peaks (power) split in the interval of 314 

2- 8 years. The wavelet power spectrum of the western Himalayan temperature variability 315 

(Figure 4b) reveals significant power concentration at inter-annual time scales of 3-5 years and 316 

at 11 years solar cycle.  A dominant amplitude modes is also seen in the low frequency range at 317 

around 35-40 years (at periods 1930-1980) corresponding to AMO cycles. Our result agrees well 318 

with the results of other climate reconstructions (Mann et. al., 1995) from tree rings and other 319 

proxies. The observed variability in AMO periodicity has also been reported in other tree ring 320 

record (Gray et. al., 2004). The statistical significance of the wavelet power spectrum is tested 321 

by a Monte Carlo method (Torrence and Compo, 1998). The WH spectra depicting statistically 322 

significant powers above the 95% significance level at around 5 years, 11 years and 33 years 323 

suggests possible imprint of sunspot-geomagnetic and ENSO phenomena on the tree ring data. 324 

On shorter time scales, the wavelet power spectrum of the geomagnetic record (Fig. 4d) also 325 

reveals statistically significant power at around 2, 4-8, 11 years period.  326 

(Figure 4) 327 

In order to have better visualization of similar periods in two time series and for the 328 

interpretation of the results, cross wavelet spectrum has been applied. Figure 5 shows the cross 329 

wavelet spectrum of the a) SSN-WH temperature data b) WH data-SOI and c) SSN-SOI data. The 330 

contours (dark black lines) are the enclosing regions where wavelet cross power is significantly 331 

higher, at 95% confidence levels. The wavelet cross-spectra of WH-SSN (Fig.5a) show 332 
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statistically significant high power over a period of 1895-1985 in 8-16 years band. It is seen that 333 

the WH-SOI cross-spectra (Fig. 5b), the high power is observed at 2–4 year band and 8–16 years 334 

as well. The SSN-SOI spectra (Fig. 5c) shows a strong correlation at 11 years solar cycle, which  is 335 

stronger during 1910-1950 and 1960-2000 (Rigozo et. al., 2002, Rigozo et. al., 2003) suggesting 336 

the strongest El Nino and La Nina events indicating solar modulation on ENSO (Kodera, 2005; 337 

Kryjov and Park, 2007). These results show a good correspondence in response of growth of the 338 

tree ring time series during the intense solar activity. Hence the results strongly support the 339 

possible origin of these periodicities from Solar and ENSO events. The interesting conclusion 340 

from Fig. 5 is that WH–sunspot connections are strong at 11 years, ENSO–sunspot also exhibit 341 

strong power around 11 years; the WH–ENSO connections are spread over three bands, the 2–4 342 

y; 4–8 and 8–16 y, covering the solar cycle and its harmonics; the WH-geomagnetic exhibits 343 

strong connections around 2-4, 4-6, 11 years and 35-40 years indicating the influence of solar-344 

geomagnetic activity on Indian temperature.  345 

(Figure 5) 346 

 347 

The Singular spectral analysis (SSA) is performed for all the four data sets with window length of 348 

40. The SSA spectra with 40 singular values and its corresponding reconstructed series (varying 349 

from RC1-15 in some cases) are plotted are shown in Figure 6 &7. The important insights from  350 

SSA spectra are the  identification of gaps in the eigen value spectra. As a rule, the pure noise 351 

series produces a slowly decreasing sequence of singular values. The explicit plateau in the 352 

spectra represents the ordinal numbers of paired eigen triples. The eigen triples 2-3 for the 353 

sunspot data corresponds to 11 years period; eigen triples for 1-2,3-5,6-10,11-14 for the WH 354 

temperature data are related to harmonic with specific periods (periods 33-35y, 11y, 5y, 2y); 355 

eigen triples for 2-5,6-9,10-13 for the geomagnetic data are related to periods 11, 5,2 years. 356 

The eigen triples for the SOI data represents to ~ 5-7, 2 years periods.  In order to assess 357 

periodicities, the periodogram and the wavelet power spectra are plotted using the SSA 358 

reconstructed data (SSA-RC) (Figure 8). From the figure 8, the periodogram of SSA-RC of SSN 359 

and Geomagnetic data shows strong power at ~120, 10-11 years; the SOI data shows strong 360 

peaks at 6-9, 3, years & WH data shows strong power at ~32, ~10-11, 3-5 years. The wavelet 361 
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spectra for all the SSA-RC data confirms the results excepts for the periods at ~120 years, which 362 

is beyond the maximum scaling period chosen for the present wavelet. The coherency plot of 363 

the SSA-RC data sets (Figure 9) indicates a significant power at 33 years, 11 years, 2-7 years in 364 

the WH temperature record suggesting the possible influences of Sunspot-geomagnetic activity 365 

and ENSO through tele-connection and hence significant role of these remote internal 366 

oscillations of the atmosphere-ocean system on the Indian climate system. Researchers have 367 

attributed these phenomena to internal ocean dynamics and involve ocean atmospheric 368 

coupling as well as variability in the strength of thermohaline circulations (Knight et. al., 2005; 369 

Delworth and Mann, 2000).  370 

(Figures 6, 7, 8 & 9) 371 

             In general our result agrees well with earlier findings in the sense that statistically 372 

significant global cycles of coupled effects of Sunspot/geomagnetic and ENSO are present in the 373 

land based temperature variability record. However, there are certain striking features in the 374 

spectra that need to be emphasized regarding the western Himalayas temperature variability: i) 375 

Inter-annual cycles in period range of 3-8 years corresponding to ENSO in the wavelet spectra 376 

exhibit intermittent oscillatory characteristics throughout the large portion of the record (Fig 4); 377 

ii) The 11 years solar cycle in the cross wavelet spectrum of SSN and SOI (Figure 5) indicate the 378 

solar modulation in the ENSO phenomena (Kodera, 2005; Kryjov and Park, 2007). iii) The high 379 

amplitude at 11 years in the time intervals 1900-1995 with a strong intensity from 1900-1995 380 

shows a good correspondence with the high temperature variability for the interval of high 381 

solar-geomagnetic activity. The Multi-decadal (30-40 years) periodicity identified here in 382 

Western Himalayan tree ring temperature record matches with North Atlantic sea surface 383 

temperature variability implying that the temperature variability in the western Himalayan is 384 

not a regional phenomenon, but a globally tele-connected climate phenomena associated with 385 

the global ocean-atmospheric dynamics system (Tiwari & srilakshmi, 2009; Delworth et. al., 386 

1993; Stocker, 1994). The coupled ocean-atmosphere system appears to transport energy from 387 

the hot equatorial regions towards Himalayan territory in a cyclic manner. These results may 388 

provide constraints for modeling of climatic variability over the Indian region and ENSO 389 

phenomena associated with the redistribution of temperature variability. The solar-390 
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geomagnetic effects play a major role in abnormal heating of the land surface thereby indirectly 391 

affects the atmospheric temperature gradient between the land-ocean coupled systems. In the 392 

present work, the connections between solar/geomagnetic activity and ENSO on the WH time 393 

series are found to be statistically  significant, especially when they are studied over contrasting 394 

epochs of respectively high and low solar activity. The correlation plots for the SSA-RC data sets 395 

of WH-sunspot, WH-aa index, WH-SOI and Sunspot-aa index are plotted in figure 10. It is 396 

noticed that there is a correlation plots for the Geomagnetic-sunspot activity has a maximum 397 

correlation value at 1 year lag suggesting the strong influence of sunspot & geomagnetic forcing 398 

on one another. The cross-correlation plot for the WH data and the SOI represents a maximum 399 

value at zero lag. The correlations plot for WH-sunspot & WH-geomagnetic index exhibits 400 

almost the identical results suggesting the possible impact of solar activities on the Indian 401 

temperature variability.  402 

(Figures 10) 403 

The net effect of solar activity on temperature record therefore appears to be the result 404 

of cooperating or counteracting influences of earth’s magnetic activity on the shorter and 405 

longer periods, depending on the indices used; scale-interactions, therefore, appear to be 406 

important. Nevertheless, the link between Indian climate and solar/geomagnetic activity 407 

emerges as having the strong evidence; next is the ENSO–solar activity connection.  408 

 409 

5. Conclusions: 410 

In the present paper, we have studied and identified the periodic patterns from the published 411 

Indian temperature variability records using the modern spectral methods of Singular spectral 412 

analysis (SSA)-Wavelet methods. The application of wavelet analysis for the SSA reconstructed 413 

time series, along with the removal of noise in the data identifies the existence of a high-414 

amplitude, recurrent, multi-decadal scale patterns that are present in Indian temperature 415 

records. The power spectra of WH temperature data shows strong high power at  ~62 years, 32-416 

35 years, 11 years, 5 years and 2-3 years suggesting a strong influence of solar-geomagnetic-417 

ENSO effects on the Indian climate system. The presence of dominant amplitude at 33-year 418 

cycle periodicity corresponds to Atlantic Multidecadal Oscillation (AMO) cycles. It also suggests 419 
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the Sun-temperature variability probably involving the induced changes in the basic state of the 420 

atmosphere. The 30-40 yrs periodicity in Western Himalayan tree ring temperature record 421 

matches with the global signal of the coupled ocean-atmospheric oscillation (Delworth et. al., 422 

1993; Stocker, 1994) implying that the temperature variability in Himalayan is not a regional 423 

phenomenon, but seems to be tele-connected phenomena with the global ocean-atmospheric 424 

climate system. The coherency plots of the SSA reconstructed WH-Sunspot; WH-geomagnetic 425 

and WH-SOI data sets show strong spectral signatures in the whole record confirming the 426 

possible influences of Sunspot-geomagnetic activities  and ENSO through teleconnection and 427 

hence the significant role of these remote internal oscillations of the atmosphere-ocean system 428 

on the Indian temperatures. We conclude that the signature of solar-geomagnetic activity 429 

affects the surface air temperatures of Indian subcontinent. However, long data sets from the 430 

different sites on the Indian continent are necessary to identify the influences of the 120 years 431 

solar-geomagnetic cycles.  432 
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 634 

Figure 1. Time series data of (a) Sunspot Index (b) the mean pre-monsoon temperature 635 

anomalies of the Western Himalayas (Yadav et. al., 2004) (c) Southern Oscillation Index 636 

(SOI) and (d) Geomagnetic Indices (aa indices) for common period 1876-2000. 637 

 638 

 639 
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640 
Figure 2. First four principal components (PCs:1-4) for time series (a) Sunspot numbers (b) the mean pre-monsoon temperature anomalies 641 

of the Western Himalayas (c) SOI index and (d) Geomagnetic Indices (aa indices) for the period 1876-2000.  642 
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 643 

Figure 3. Power spectra of the first four principal component (PCs) (PC1-4 shown in Fig. 2) for all the data sets with their significant 644 
periodicities at 124, 11, 4 and 2.8 years are indicated in bold letters.  645 
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 646 

Figure 4. Wavelet power spectrum of (a) Sunspot Number (b) Western Himalaya temperature 647 

data  (c) Southern Oscillation Index (SOI) and (d) Geomagnetic activity (aa Indices) with cone 648 

of influence (lighter shade smooth curve) and black lines indicate significant power on 95% 649 

level compared to red noise based on first order auto-regressive (AR(1)) coefficient. The 650 

legend on right indicates the cross-wavelet power.  651 

 652 

 653 
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 654 

Figure 5.  Cross Wavelet spectrum between (a) Sunspot number-Western Himalayan data 655 

(b) Western Himalayan-Southern Oscillation Index (c) Sunspot number- Southern 656 

Oscillation Index  and (d) Geomagnetic: aa indices-Western Himalayan data with cone of 657 

influence (lighter shade smooth curve) and black lines indicate significant power on 95% 658 

level compared to red noise based on AR(1) coefficient. The legend on right indicates the 659 

cross-wavelet power.  660 
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 661 

Figure 6. Singular spectra with its SSA decomposed components & its reconstructed time 662 
series for (a) Sunspot Number and (b) Western Himalaya temperature data.  663 

 664 
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 665 

Figure 7. Singular spectra with its SSA decomposed components & its reconstructed time 666 
series for (c) SOI and (d) Geomagnetic activity (aa Indices). 667 
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 668 

Figure 8. Power spectrum and Wavelet power spectrum of SSA reconstructed (a) Sunspot 669 

data (b) Geomagnetic Indices (aa index) (c) SOI index and (d) the Western Himalayas 670 

temperature data with cone of influence (lighter shade smooth curve) and black lines indicate 671 

significant power on 95% level compared to red noise based on AR(1) coefficient. The legend 672 

on right indicates the cross-wavelet power.  673 
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 679 

Figure 9.  Squared wavelet coherence plotted for the SSA reconstructed time series between 680 

(a) WH-SSN (b) WH-SOI and (c) WH-aa index with cone of influence (lighter shade smooth 681 

curve) and black lines indicate significant power on 95% level compared to red noise based on 682 

AR(1) coefficient.  683 
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 689 

Figure 10. Cross-correlation of SSA reconstructed time series of (a) aa Index-Western 690 

Himalayan (WH) temperature data; (b) SOI-WH temperature data; (c) sunspot –WH data and 691 

(d) aa Index-sunspot data.  692 
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