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ABSTRACT 14 

To study the imprints of the Solar-ENSO-Geomagnetic activity on the Indian Subcontinent, we 15 

have applied the Singular spectral analysis (SSA) and wavelet analysis to the tree ring 16 

temperature variability record from the Western Himalayas. Other data used in the present 17 

study are the Solar Sunspot Number (SSN), Geomagnetic Indices (aa Index) and Southern 18 

Oscillation Index (SOI) for the common time period of 1876-2000. Both  SSA and wavelet 19 

spectral analyses reveal the presence of 5-7 years short term ENSO variations and the 11 year 20 

solar cycle indicating the possible combined influences of solar-geomagnetic activities and 21 

ENSO on the Indian temperature. Another prominent signal corresponding to 33-year 22 

periodicity in the tree ring record suggests the Sun-temperature variability link probably 23 

induced by changes in the basic state of the earth’s atmosphere. In order to complement the 24 

above findings, we performed a wavelet analysis of SSA reconstructed time series, which agrees 25 

well with our earlier results and also increases the signal to noise ratio thereby showing strong 26 

influence of solar-geomagnetic activity & ENSO throughout the entire time period. The solar 27 

flares are considered to be responsible for causing the atmospheric circulation patterns. The 28 

net effect of solar-geomagnetic processes on the temperature record might suggest 29 

counteracting influences on shorter (about 5–6 y) and longer (about 11–12 y) time scales. The 30 

present analyses suggest that the influence of solar activities on the Indian temperature 31 

variability operates in part indirectly through coupling of ENSO on multilateral time scales. The 32 

analyses, hence, provide credible evidence for tele-connections of tropical pacific climatic 33 



2  

 

variability and Indian climate ranging from inter-annual-decadal time scales and also suggest 34 

the possible role of exogenic triggering in reorganizing the global earth-ocean-atmospheric 35 

systems. 36 

Key words: Geomagnetic activity, Western Himalayas, Sunspot Number, SOI index, Singular 37 

spectral analysis, Wavelet spectrum, Coherency. 38 

 39 

1. Introduction:  40 

Several recent studies of solar/geomagnetic effects on climate have been  examined on both 41 

global as well as on regional scales (Lean and Rind, 2008; Benestaed and Schmidt, 2009; Meehl, 42 

2009; Kiladis and Diaz 1989; Pant and Rupa Kumar 1997; Gray et al. 1992; Wiles et al. 1998; Friis 43 

and Svensmark 1997; Rigozo et al. 2005; Feng et al. 2003; Tiwari and srilakshmi 2009; Chowdary 44 

et al. 2006, 2014; Appenzeller et al. 1998; Proctor et al. 2002; Tsonis et al. 2005; Freitas and 45 

Mclean 2013). The Sun’s long-term magnetic variability caused by the sunspots is considered as 46 

one of the primary drivers of climatic changes. The short-term magnetic variability is due to the 47 

disturbances in Earth’s magnetic fields caused by the solar activities and is indicated by the 48 

geomagnetic indices. The Sun’s magnetic variability modulates the magnetic and particulate 49 

fluxes in the heliosphere. This determines the interplanetary conditions and imposes significant 50 

electromagnetic forces and effects upon the planetary atmosphere. All these effects are due to 51 

the changing solar-magnetic fields, which are relevant for planetary climates including the 52 

climate of the Earth. The Sun-Earth relationship varies on different time scales ranging from 53 

days to years bringing a drastic influence on the climatic patterns. The ultimate cause of solar 54 

variability, at time scales from decadal to centennial to millennial or even longer scales has its 55 

origin in the solar dynamo mechanism. During the solar maxima, huge amounts of solar energy 56 

particles are released, thereby causing the geomagnetic disturbances. The 11 years solar cycle 57 

acts as an important driving force for variations in the space weather, ultimately giving rise to 58 

climatic changes. It is, therefore, imperative to understand the origin of space climate by 59 

analyzing the different proxies of solar magnetic variabilities. Another important phenomenon 60 

is El Nino-Southern Oscillation (ENSO), which produces droughts, floods and intense rainfall. 61 

The strong coupling and interactions between the Tropical Ocean and the atmosphere play a 62 
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major role in the development of the global climatic system. The El Nino events generally recur 63 

approximately every 3-5 years with large events spaced around 3-7 years apart. The ENSO 64 

phenomena have shown huge impact on the Asian monsoon (Cole et. al., 1993), Indian 65 

monsoon (Chowdary et al. 2006, 2014) as well as globally (Horel and Wallance 1981; Barnett 66 

1989; Yasunari 1985; Nicholson 1997). In particular, the El Nino, solar, geomagnetic activities 67 

are the major affecting forces on the decadal and interdecadal temperature variability on global 68 

and regional scales in a direct/indirect way (El-Borie et al, 2010; Gray et al., 2010). Recent 69 

studies (Frohlich and Lean 2004; Steinhilber et al. 2009) indicate the possible influence of solar 70 

activity on Earth’s temperature/climate on multi-decadal time scales. The 11 year solar cyclic 71 

variations observed from the several temperature climate records also suggest the impact of 72 

solar irradiance variability on terrestrial temperature (Budyko 1969; Friis and Lassen 1991; Friis 73 

and Svensmark 1997; Kasatkina et al. 2007).  The bi-decadal (22 years) called the Hale cycle, is 74 

related to the reversal of the solar magnetic field direction (Lean et al. 1995; Kasatkina et al. 75 

2007). The 33 year cycle (Bruckener cycle) is also caused by the solar origin, but it is a very rare 76 

cycle (Kasatkina et al. 2007). The 2–7 years ENSO cyclic pattern and its possible coupling 77 

process is the major driving force for the temperature variability (Gray et al. 1992; Wiles et al. 78 

1998; Mokhov et al. 2000; Rigozo et al. 2007, Kothawale et al. 2010). El-Borie and Al–Thoyaib, 79 

2006; El-Borie et al., 2007 and El-Borie et al, 2010 have indicated in their studies that the global 80 

temperature should lag the geomagnetic activity with a maximum correlation when the 81 

temperature lags by 6 years.  Mendoza et. al., 1991 reported on possible connections between 82 

solar activity and El Nino’s, while Reid and Gage (1988) and Reid (1991) reported on the 83 

similarities between the 11-year running means of monthly sunspot numbers and global sea 84 

surface temperature. These findings suggest that there is a possibility of strong coupling 85 

between temperature-ENSO and solar-geomagnetic signals. 86 

 The mean global temperature of the Earth's surface also plays a very important role in 87 

bringing climatic changes. Several studies have been carried out to understand the detailed 88 

climatic changes of India in the past millennium using various proxy records e.g. ice cores, lake 89 

sediments, glacier fluctuations, peat deposits etc. There is a lack of high-precision and high-90 

resolution palaeo-climatic information for longer time scale from the Indian subcontinent. Tree-91 
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ring data is a promising proxy to retrieve high resolution past climatic changes from several 92 

geographical regions of India (Bhattacharyya et al. 1988; Bhattacharyya et al. 1992; Hughes, 93 

1992; Bhattacharyya and Yadav, 1996; Borgaonkar et al. 1996; Chaudhary et al. 1999; Yadav et 94 

al. 1999; Bhattacharyya and Chaudhary, 2003; Bhattacharyya et al. 2006; Shah et al. 200)  It  has 95 

been noted that tree-ring based climatic reconstructions in India generally do not exceed 96 

beyond 400 years records except at some sites in the Northwest Himalaya. Thus, a long record 97 

of tree-ring data is needed to extend available climate reconstruction further back to determine 98 

climatic variability on sub-decadal, decadal and century scale. However, non-availability of 99 

older living trees in most of the sites is hindering the preparation of long tree chronology. In a 100 

previous study (Tiwari and Srilakshmi, 2009), we have studied the periodicities and non-101 

stationary modes in the tree ring temperature data from the same region (AD 1200-2000). To 102 

reveal significant connections among the Solar-geomagnetic-ENSO ‘triad’ phenomena on tree 103 

ring width in detail for the period from 1876-2000, we have applied here the Singular spectral 104 

analysis (SSA) and the wavelet spectral analysis for Sunspot data, geomagnetic data (aa index), 105 

Troup Southern Oscillation Index (SOI) and the Western Himalayas tree ring data. Here our 106 

main objective is to employ wavelet-based analysis on SSA reconstructed time series to find out 107 

the evidence of the possible linkages, if any, among ENSO–solar-geomagnetic in the Indian 108 

temperature records.  109 

 110 

2. Source and Nature of Data:  111 

The data analyzed here includes the time series of (1) Smoothed Sunspot number for solar 112 

activity (2) Geomagnetic activity data (aa indices) (3) Troup Southern Oscillation Index (SOI) for 113 

the study of El Nino-Southern Oscillation called ENSO (4) Western Himalayan temperature 114 

variability record. All the data sets have been analyzed for the common period of 125 years 115 

spanning over 1876-2000. The monthly sunspot number data has been obtained from the 116 

Sunspot Index Data Center http:// astro.oma.be/SIDC/. The Troup SOI data is obtained from the 117 

Bureau of Meteorology of Australia, http://www.bom.gov.au/climate/. The data for 118 

geomagnetic activity, aa Index, was provided by the National Geophysical Data Center, NGDC, 119 

(http://www.ngdc.noaa.gov/stp/GEOMAG/aastar.shtml). The aa index is a measure of 120 
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disturbances level of Earth’s magnetic field based on magnetometer observations at two, nearly 121 

antipodal, stations in Australia and England. In recent studies, the tree ring proxy climate 122 

indicators have been potentially used for extracting information regarding past seasonal 123 

temperature or precipitation/drought based on the measurements of annual ring width. The 124 

detailed description of the data has been presented elsewhere (Yadav et. al., 2004). A brief 125 

account of the data pertinent to the present analysis, however, is summarized here. The tree 126 

ring data being analyzed here is one of the best temperature variability records (1876 to 2000) 127 

of the pre-monsoon season in the Western Himalayas available.  The mean temperature series 128 

is obtained from nine weather stations including both from high and low elevation areas in the 129 

Western Himalayas. Temperature variability history is based on widely spread pure Himalayan 130 

cedar (Cedrus deodara (Roxb.) G. Don) trees and characterizes all the sites with almost no 131 

ground vegetation and thereby minimizes individual variation in tree-ring sequences induced by 132 

inter tree competition (Yadav et. al., 2004). The mean chronological structure is based on in 133 

total 60 radii from 45 trees, statistical feature of which show that the chronology is suitable for 134 

dendro-climatic studies back to AD 1226 (Yadav et. al., 2004).  135 

 136 

3. Methods applied: To analyze the temporal series and to find the climatic structure, we have 137 

here three methods: Principal component analysis (PCA), Singular Spectral analysis (SSA) and 138 

wavelet analysis.  139 

3.1. Principal component analysis (PCA): As a preliminary analysis, we have applied the 140 

Principle component analysis (PCA) to the data sets to extract the principle components. PCA 141 

technique is applied for the reduction and extraction for dimensionality of the data and to rate 142 

the amount of variation present in the original data set. The purpose to apply the PCA is to 143 

identify patterns in the given time series. The new components thereby obtained by the PCA 144 

analysis are termed as PC1, PC2, PC3 and so on, (for the first, second and third principal 145 

components) are uncorrelated and decrease the amount of variance from the original data set. 146 

PC1 (the first component) captures most of the variance; PC2 captures the second most of the 147 

variance and so on.  148 
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3.2. Singular spectral analysis: The Singular Spectrum Analysis (SSA) method is designed to 149 

extract as much information as possible from a short, noisy time series without any prior 150 

knowledge about the dynamics underlying the series (Broomhead and King, 1986; Vautard and 151 

Ghil, 1989; Alonso et. al., 2005; Golyandina et al., 2001). The method is a form of principal 152 

component analysis (PCA) applied to lag-correlations structures of the time series. The basic 153 

SSA decomposes an original time series into a new series which consists of trend, periodic or 154 

quasi-periodic and white noises according to the singular value decomposition (SVD) and 155 

provides the reconstructed components (RCs). The basic steps involved in SSA are: 156 

decomposition (involves embedding, singular value decomposition (SVD)) and reconstruction 157 

(involves grouping and diagonal averaging). Embedding decomposes the original time series 158 

into the trajectory matrix; SVD turns the trajectory matrix into the decomposed trajectory 159 

matrices. The reconstruction stage involves grouping to make subgroups of the decomposed 160 

trajectory matrices and diagonal averaging to reconstruct the new time series from the 161 

subgroups.  162 

Step1: Decomposition: 163 

(a) Embedding: The first step in the basic SSA algorithm is the embedding step where 164 

the initial time series change into the trajectory matrix. Let the time series be Y = {y1, ………, yN} 165 

of length N without any missing values. Here the window length L is chosen such that 2 < L < 166 

N/2 to embed the initial time series. We map the time series Y into the L lagged vectors, Yi = 167 

{yi,……,yi+L-1} for i = 1…….K, where K = N - L + 1. The trajectory matrix TY (L  K dimensions) is 168 

written as: 

























K

Y

Y

Y
Y

T
.
.

2

1

  ……………………………………………..(1) 169 

(b) Singular Value Decomposition (SVD): Here we apply SVD to the trajectory matrix TY 170 

to decompose and obtain TY=UDV’ called eigentriples; where Ui (K  L dimensions;1 < i < L) is an 171 

orthonormal matrix; Di (1 < i < L) is a diagonal matrix of order L; Vi (L  L dimensions;1 < i < L) is 172 

a square orthonormal matrix.  173 
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The trajectory matrix is thus written as T
ii

d

i
iY VUT 




1

;   ………………(2) 174 

where the ith Eigen triple of T
iiii VUT   , I = 1, 2, 3…, d in which d = max(i: i > 0). 175 

Step 2: Reconstruction: 176 

(c) Grouping: Here the matrix Ti is decomposed into subgroups according to the trend, 177 

periodic or quasi-periodic components and white noises.  The grouping step of the 178 

reconstruction stage corresponds to the splitting of the elementary matrices Ti into several 179 

groups and summing the matrices within each group. Let I = {i1,i2,…., ip} be the group of indices 180 

i1, ….ip. Then the matrix TI corresponding to the group I is defines as TI=Ti1+ Ti2+…Tip. The split of 181 

the set of indices J=1, 2, . . . ,d into the disjoint subsets I1, I2,….Im corresponds to the equation 182 

(3): 183 

T=TI1+TI2+…TIm.   ……………….(3) 184 

The sets I1,….,Im are called the eigen triple grouping. 185 

 (d) Diagonal averaging: The diagonal averaging transfers each matrix T into a time 186 

series, which is an additive component of the initial time series Y. If zij stands for a element 187 

matrix Z, the kth term of the resulting series is obtained by averaging zij over all i, j such that 188 

i+j=k+2. This is called diagonal averaging or the Hankelization of the matrix Z. The Hankel matrix 189 

HZ, is the trajectory matrix corresponding to the series obtained by the result of diagonal 190 

averaging.   191 

Considering equation (3), let X (L  K) matrix with elements xij, where 1  i  L, 1  j  K. 192 

Here diagonal averaging transforms matrix X to a series g0,…,gT-1 using the formula: 193 
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This diagonal averaging by equation (4) applied to the resultant matrix XIn, produces time series 195 

Yn of length T. For such signal characteristics, it is essential to examine the time-frequency 196 
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pattern as to understand whether a particular frequency is temporally consistent or 197 

inconsistent. Hence for non-stationary signals, we need a transform that will be useful to obtain 198 

the frequency content of the time series/signal as a function of time.  199 

An alternative method for studying the non-stationarity of the time series is wavelet 200 

transform. For non-stationary signals, wavelets decomposition would be the most appropriate 201 

method because the analyzing functions (the wavelets function) are localized both in time and 202 

frequency.  203 

 204 

3.3. Wavelet spectral analysis: During the past decades, wavelet analysis has become a popular 205 

method for the analysis of aperiodic and quasi-periodic data (Grinsted et. al., 2004; Jevrejeva 206 

et. al., 2003; Torrence and Compo, 1998; Torrence and Webster, 1999). In particular, it has 207 

become an important tool for studying localized variations of power within a time series. By 208 

decomposing a time series into time-frequency space, the dominant modes of variability and 209 

their variation with respect to time can be identified. The wavelet transform has various 210 

applications in geophysics, including tropical convection (Weng and Lau 1994), the El Niño–211 

Southern Oscillation (Gu and Philander 1995), etc. We have applied the wavelet analysis to 212 

analyze the non-stationary signals which permits the identification of main periodicities of 213 

ENSO-sunspot-geomagnetic in the time series. The results give us more insight information 214 

about the evolution of these variables in frequency-time mode. 215 

A wavelet transform requires the choice of analyzing function  (called “mother 216 

wavelet”) that has the specific property of time-frequency localization. The continuous wavelet 217 

transform revolves around decomposing the time series into scaling components for identifying 218 

oscillations occurring at fast (time) scale and other at slow scales. Mathematically, the 219 

continuous wavelets transform of a time series f(t) can be given as: 220 

dt
a

btψ)t(f
a

)b,a)(f(W ψ 





 

 




1
………..(5) 221 

Here f(t) represents time series,  is the base wavelets function (here we have chosen the  222 

Morlet function), with length that is much shorter than the time series f(t). W stands for 223 

wavelet coefficients. The variable ‘a’ is called the scaling parameter that determines the 224 
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frequency (or scale) so that varying ‘a’ gives rise to wavelet spectrum. The factor ‘b’ is related to 225 

the shift of the analysis window in time so that varying b represents the sliding method of the 226 

wavelet over f(t).  227 

In several recent analyses, complex Morlet wavelet has been found useful for 228 

geophysical time series analysis. The Morlet is mostly used to find out areas where there is high 229 

amplitude at certain frequencies. The complex Morlet wavelet can be represented by a periodic 230 

sinusoidal function with a Gaussian envelope and is excellent for Morlet wavelet may be 231 

defined mathematically, as follows: 232 

24
1 2

0)(
tti eet 

    ………..(6) 233 

where 0 is a non-dimensional value. 0 is chosen to be 5 to make the highest and lowest 234 

values of  approximately equal to 0.5, thus making the admissibility condition satisfied. The 235 

complex valued Morlet transform enables to extract information about the amplitude and 236 

phase of the signal to be analyzed. Wavelet transform preserves the self-similarity scaling 237 

property, which is the inherent characteristic feature of deterministic chaos. The continuous 238 

wavelet transform has edge artifacts because the wavelet is completely localized in time. The 239 

cone of influence (COI) is the area in which the wavelet power caused by a discontinuity at the 240 

edge has dropped to e-2 of the value to the edge. The statistical significance of the wavelet 241 

power can be assessed relative to the null hypotheses that the signal is generated by a 242 

stationary process with a given background power spectrum (Pk) of first order autoregressive 243 

(AR1) process. (Grinsted et. al., 2004) 244 

22

2

1

1
ki

k
e

P






 ……………(7) 245 

where k is Fourier frequency index. 246 

The cross wavelet transform is applied to two time series to identify the similar patterns 247 

which are difficult to assess from a continuous wavelet map. Cross wavelet power reveals areas 248 

with high common power. The cross wavelet of two time series x (t) and y (t) is defined as WXY = 249 
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Wx Wy*, where * denotes complex conjugate. The cross wavelet power of two time series with 250 

background power spectra ௞ܲ
௑ and ௞ܲ

௒ is given as  251 

,)()()(
Y

k
X

k
v

Y
n

X
n PP

v
pZp

YX
sWsW

D 

















………(8) 252 

where ܼ௩(݌) is the confidence level associated with the probability p for a pdf defined by the 253 

square root of the product of the two 2 distributions (Torrence and Compo, 1998). The 254 

wavelet power is 
2

)(sW X
n  and the complex argument of )(sW X

n can be interpreted as the local 255 

phase. The cross wavelet analysis gives the correlation between the two time series as function 256 

of period of the signal and its time evolution with a 95% confidence level contour. The 257 

statistical significance is estimated using red noise model.  258 

Wavelet coherence is another important measure to assess how coherent the cross 259 

wavelet spectrum transform is in time frequency space. The wavelet coherence of two time 260 

series is defined as (Torrence and Webster, 1998) 261 

ܴ௡ଶ(ݏ) =  หௌ(௦షభ ௐ೙
೉ೊ(௦))ห

మ

ௌ(௦షభหௐ೙
೉(௦)ห

మ
).ௌ(௦షభหௐ೙

ೊ(௦)ห
మ

)
……………(9) 262 

where S is a smoothing operator. The smoothing operator is written as S (W) = S scale(S time 263 

(Wn(s))), where Sscale denotes smoothing along the wavelet scale axis and Stime smoothing in 264 

time. Here for the morelet wavelet, the smoothing operator is  265 

















2

2

2
1)()( s

t

nstime csWWS ………………….(10) 266 

  nnstime scsWWS 6.0)()( 2 …………..(11) 267 

Where c1 and c2 are normalization constants and п is the rectangle function. The factor of 0.6 is 268 

empirically determined scale decorrelation length of the Morlet wavelet (Torrence and Compo, 269 

1998). The statistical significance level of the wavelet coherence is estimated using the Monte 270 

Carlo methods (Grinsted et. al., 2004). 271 
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 272 

4. Results and Discussion: 273 

We analyzed the data sets spanning over the period of 1876-2000 using the PCA, SSA and 274 

wavelet spectral analyses. Figure 1 shows  four time series: (1) Smoothed Sunspot number 275 

representing solar activities; (2) Geomagnetic (aa indices); (3) Troup Southern Oscillation Index 276 

(SOI) for the study of ENSO and (4) Western Himalayan temperature variability record that are 277 

analyzed in the present work. From visual inspection it is apparent from Fig. 1 that both WH 278 

and SOI data show irregular and random pattern, while sunspot numbers have quasi- cyclic 279 

character. Further WH tree ring record also exhibits distinct temperature variability but 280 

nonstationary behavior at  different scales. This variability might be suggestive of coupled 281 

global ocean-atmospheric dynamics or some other factors, such as deforestation, 282 

anthropogenic, high latitudinal influence etc (Yadav et. al., 2004).  283 

(Figure 1) 284 

Hence it is quite difficult to differentiate such a complex climate signals visually and difficult to 285 

infer any clear oscillation without the help of powerful mathematical methods. For 286 

identification of any oscillatory components and understanding the climatic variations on 287 

regional and global scale, we have applied the PCA, SSA and wavelet analysis. Figure 2 shows 288 

the principal components (PCs) for the first four eigen triples (PC1, PC2, PC3, PC4) for the given 289 

data sets. Figure 3 shows the power spectra of the principal components (PCs) for the four data 290 

sets shown in figure 2. From the figure 3, it is observed that the power spectra of PC1-4 for the 291 

sunspot data exhibits high power at 124, 11, 4-2.8 years. The presence of high solar signal at 292 

124 years indicates the quasi-stable oscillatory components in the data. The power spectra of 293 

geomagnetic data also shows the presence of strong signals at 124, 10-11, 4-2 years suggesting 294 

a strong link of solar-geomagnetic activity. The power spectra of WH temperature data shows 295 

strong high power at  ~62 years, 32-35 years, 11 years, 5 years and 2-3 years suggesting a 296 

strong  influence of solar-geomagnetic-ENSO effects on the Indian climate system. Dominant 297 

amplitude is found at 32-35 years corresponding to Atlantic Multi-decadal Oscillation (AMO) 298 

cycles. These results can be better confirmed by applying the mathematical tools of SSA and 299 

wavelet analysis. 300 
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(Figure 2 & 3) 301 

To explore the stationary characteristics of these peaks obtained by the PCA, we have applied 302 

the Morlet based wavelet transform approach (Holschneider, 1995; Foufoula-Georgiou and 303 

Kumar, 1995; Torrence and Compo, 1998; Grinsted et. al., 2004). The wavelet spectrum 304 

identifies the main periodicities in the time series and helps to analyze the periodicties with 305 

respect to time. Figure 4 shows the wavelet spectrum for the a) Smoothed Sunspot number for 306 

solar activity (SSN) (b) Western Himalayan (WH) temperature variability record (c) Geomagnetic 307 

activity and (c) Troup Southern Oscillation Index (SOI).  From the wavelet spectrum of sunspot 308 

time series (Figure 4a), the signal near 11-year is the strongest feature and is persistent during 309 

the entire series indicating the non-stationary behavior of the sunspot time series. The wavelet 310 

spectrum of SOI (figure 4c) shows strong amplitudes. However, due to non-stationary (time 311 

variant) character of the time series, the observed spectral peaks (power) split in the interval of 312 

2- 8 years. The wavelet power spectrum of the western Himalayan temperature variability 313 

(Figure 4b) reveals significant power concentration at inter-annual time scales of 3-5 years and 314 

at 11 years solar cycle.  A dominant amplitude modes is also seen in the low frequency range at 315 

around 35-40 years (at periods 1930-1980) corresponding to AMO cycles. Our result agrees well 316 

with the results of other climate reconstructions (Mann et. al., 1995) from tree rings and other 317 

proxies. The observed variability in AMO periodicity has also been reported in other tree ring 318 

record (Gray et. al., 2004). The statistical significance of the wavelet power spectrum is tested 319 

by a Monte Carlo method (Torrence and Compo, 1998). The WH spectra depicting statistically 320 

significant powers at around 5 years, 11 years and 33 years above the 95% significance level, 321 

suggests a clear picture of the imprint of sunspot-geomagnetic and ENSO on the tree ring data. 322 

The wavelet power spectrum of the geomagnetic record (Fig. 4d) indicates significant power on 323 

shorter scales around 2, 4-8, 11 years period.  324 

(Figure 4) 325 

In order to have better visualization of similar periods in two time series and for the 326 

interpretation of the results, cross wavelet spectrum has been applied. Figure 5 shows the cross 327 

wavelet spectrum of the a) SSN-WH temperature data b) WH data-SOI and c) SSN-SOI data. The 328 

contours (dark black lines) are the enclosing regions where wavelet cross power is significantly 329 
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higher, at 95% confidence levels. The wavelet cross-spectra of WH-SSN (Fig.5a) show 330 

statistically significant high power over a period of 1895-1985 in 8-16 years band. It is seen that 331 

the WH-SOI cross-spectra (Fig. 5b), the high power is observed at 2–4 year band and 8–16 years 332 

as well. The SSN-SOI spectra (Fig. 5c) shows a strong correlation at 11 years solar cycle, which  is 333 

stronger during 1910-1950 and 1960-2000 (Rigozo et. al., 2002, Rigozo et. al., 2003) suggesting 334 

the strongest El Nino and La Nina events indicating solar modulation on ENSO (Kodera, 2005; 335 

Kryjov and Park, 2007). These results show a good correspondence in response of growth of the 336 

tree ring time series during the intense solar activity. Hence the results strongly support the 337 

possible origin of these periodicities from Solar and ENSO events. The interesting conclusion 338 

from Fig. 5 is that WH–sunspot connections are strong at 11 years, ENSO–sunspot also exhibit 339 

strong power around 11 years; the WH–ENSO connections are spread over three bands, the 2–4 340 

y; 4–8 and 8–16 y, covering the solar cycle and its harmonics; the WH-geomagnetic exhibits 341 

strong connections around 2-4, 4-6, 11 years and 35-40 years indicating the influence of solar-342 

geomagnetic activity on Indian temperature.  343 

(Figure 5) 344 

 345 

The Singular spectral analysis (SSA) is performed for all the four data sets with window length of 346 

40. The SSA spectra with 40 singular values and its corresponding reconstructed series (varying 347 

from RC1-15 in some cases) are plotted are shown in Figure 6 &7. The important insights from  348 

SSA spectra are the  identification of gaps in the eigen value spectra. As a rule, the pure noise 349 

series produces a slowly decreasing sequence of singular values. The explicit plateau in the 350 

spectra represents the ordinal numbers of paired eigen triples. The eigen triples 2-3 for the 351 

sunspot data corresponds to 11 years period; eigen triples for 1-2,3-5,6-10,11-14 for the WH 352 

temperature data are related to harmonic with specific periods (periods 33-35, 11, 5, 2); eigen 353 

triples for 2-5,6-9,10-13 for the geomagnetic data are related to periods 11, 5,2 years. The 354 

eigen triples for the SOI data represents to ~ 5-7, 2 years periods.  In order to assess 355 

periodicities, the periodogram and the wavelet power spectra are plotted using the SSA 356 

reconstructed data (SSA-RC) (Figure 8). From the figure 8, the periodogram of SSA-RC of SSN 357 

and Geomagnetic data shows strong power at ~120, 10-11 years; the SOI data shows strong 358 
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peaks at 6-9, 3, years & WH data shows strong power at ~32, ~10-11, 3-5 years. The wavelet 359 

spectra for all the SSA-RC data confirms the results excepts for periods at ~120 years as the 360 

scaling period for the wavelet spectra is 64 years period. The coherency plot of the SSA-RC data 361 

sets (Figure 9) indicates a significant power at 33 years, 11 years, 2-7 years in the WH 362 

temperature record suggesting the possible influences of Sunspot-geomagnetic activity and 363 

ENSO through tele-connection and hence significant role of these remote internal oscillations of 364 

the atmosphere-ocean system on the Indian climate system. Researchers have attributed these 365 

phenomena to internal ocean dynamics and involve ocean atmospheric coupling as well as 366 

variability in the strength of thermohaline circulations (Knight et. al., 2005; Delworth and Mann, 367 

2000).  368 

(Figures 6, 7, 8 & 9) 369 

             In general our result agrees well with earlier findings in the sense that statistically 370 

significant global cycles of coupled effects of Sunspot/geomagnetic and ENSO are present in the 371 

land based temperature variability record. However, there are certain striking features in the 372 

spectra that need to be emphasized regarding the western Himalayas temperature variability: i) 373 

Inter-annual cycles in period range of 3-8 years corresponding to ENSO in the wavelet spectra 374 

exhibit intermittent oscillatory characteristics throughout the large portion of the record (Fig 4); 375 

ii) The 11 years solar cycle in the cross wavelet spectrum of SSN and SOI (Figure 5) indicate the 376 

solar modulation in the ENSO phenomena (Kodera, 2005; Kryjov and Park, 2007). iii) The high 377 

amplitude at 11 years in the time intervals 1900-1995 with a strong intensity from 1900-1995 378 

shows a good correspondence with the high temperature variability for the interval of high 379 

solar-geomagnetic activity. The Multi-decadal (30-40 years) periodicity identified here in 380 

Western Himalayan tree ring temperature record matches with North Atlantic sea surface 381 

temperature variability implying that the temperature variability in the western Himalayan is 382 

not a regional phenomenon, but a globally tele-connected climate phenomena associated with 383 

the global ocean-atmospheric dynamics system (Tiwari & srilakshmi, 2009; Delworth et. al., 384 

1993; Stocker, 1994). The coupled ocean-atmosphere system appears to transport energy from 385 

the hot equatorial regions towards Himalayan territory in a cyclic manner. These results may 386 

provide constraints for modeling of climatic variability over the Indian region and ENSO 387 



15  

 

phenomena associated with the redistribution of temperature variability. The solar-388 

geomagnetic effects play a major role in abnormal heating of the land surface thereby indirectly 389 

affects the atmospheric temperature gradient between the land-ocean coupled systems. In the 390 

present work, the connections between solar/geomagnetic activity and ENSO on the WH time 391 

series are found to be statistically  significant, especially when they are studied over contrasting 392 

epochs of respectively high and low solar activity. The correlation plots for the SSA-RC data sets 393 

of WH-sunspot, WH-aa index, WH-SOI and Sunspot-aa index are plotted in figure 10. It is 394 

noticed that there is a correlation plots for the Geomagnetic-sunspot activity has a maximum 395 

correlation value at 1 year lag suggesting the strong influence of sunspot & geomagnetic forcing 396 

on one another. The cross-correlation plot for the WH data and the SOI represents a maximum 397 

value at zero lag. The correlations plot for WH-sunspot & WH-geomagnetic index exhibits 398 

almost the identical results suggesting the possible impact of solar activities on the Indian 399 

temperature variability.  400 

(Figures 10) 401 

The net effect of solar activity on temperature record therefore appears to be the result 402 

of cooperating or counteracting influences of earth’s magnetic activity on the shorter and 403 

longer periods, depending on the indices used; scale-interactions, therefore, appear to be 404 

important. Nevertheless, the link between Indian climate and solar/geomagnetic activity 405 

emerges as having the strong evidence; next is the ENSO–solar activity connection.  406 

 407 

5. Conclusions: 408 

In the present paper, we have studied and identified the periodic patterns from the published 409 

Indian temperature variability records using the modern spectral methods of Singular spectral 410 

analysis (SSA)-Wavelet methods. The application of wavelet analysis for the SSA reconstructed 411 

time series, along with the removal of noise in the data identifies the existence of a high-412 

amplitude, recurrent, multi-decadal scale patterns that are present in Indian temperature 413 

records. The power spectra of WH temperature data shows strong high power at  ~62 years, 32-414 

35 years, 11 years, 5 years and 2-3 years suggesting a strong influence of solar-geomagnetic-415 

ENSO effects on the Indian climate system. The presence of dominant amplitude at 33-year 416 
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cycle periodicity corresponds to Atlantic Multidecadal Oscillation (AMO) cycles. It also suggests 417 

the Sun-temperature variability probably involving the induced changes in the basic state of the 418 

atmosphere. The 30-40 yrs periodicity in Western Himalayan tree ring temperature record 419 

matches with the global signal of the coupled ocean-atmospheric oscillation (Delworth et. al., 420 

1993; Stocker, 1994) implying that the temperature variability in Himalayan is not a regional 421 

phenomenon, but seems to be tele-connected phenomena with the global ocean-atmospheric 422 

climate system. The coherency plots of the SSA reconstructed WH-Sunspot; WH-geomagnetic 423 

and WH-SOI data sets show strong spectral signatures in the whole record confirming the 424 

possible influences of Sunspot-geomagnetic activities  and ENSO through teleconnection and 425 

hence the significant role of these remote internal oscillations of the atmosphere-ocean system 426 

on the Indian temperatures. We conclude that the signature of solar-geomagnetic activity 427 

affects the surface air temperatures of Indian subcontinent. However, long data sets from the 428 

different sites on the Indian continent are necessary to identify the influences of the 120 years 429 

solar-geomagnetic cycles.  430 
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Figure 1. Time series data of (a) Sunspot Index (b) the mean pre-monsoon temperature 624 

anomalies of the Western Himalayas (Yadav et. al., 2004) (c) Southern Oscillation Index 625 

(SOI) and (d) Geomagnetic Indices (aa indices) for common period 1876-2000. 626 
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629 
Figure 2. First four principal components (PCs:1-4) for time series (a) Sunspot numbers (b) the mean pre-monsoon temperature anomalies 630 

of the Western Himalayas (c) SOI index and (d) Geomagnetic Indices (aa indices) for the period 1876-2000.  631 



25  

 

 632 

Figure 3. Power spectra of the first four principal component (PCs) (PC1-4 shown in Fig. 2) for all the data sets with their significant 633 
periodicities at 124, 11, 4 and 2.8 years are indicated in bold letters.  634 
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 635 

Figure 4. Wavelet power spectrum of (a) Sunspot Number (b) Western Himalaya temperature 636 

data  (c) Southern Oscillation Index (SOI) and (d) Geomagnetic activity (aa Indices) with cone 637 

of influence (lighter shade smooth curve) and black lines indicate significant power on 95% 638 

level compared to red noise based on first order auto-regressive (AR(1)) coefficient. The 639 

legend on right indicates the cross-wavelet power.  640 

 641 
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 643 

Figure 5.  Cross Wavelet spectrum between (a) Sunspot number-Western Himalayan data 644 

(b) Western Himalayan-Southern Oscillation Index (c) Sunspot number- Southern 645 

Oscillation Index  and (d) Geomagnetic: aa indices-Western Himalayan data with cone of 646 

influence (lighter shade smooth curve) and black lines indicate significant power on 95% 647 

level compared to red noise based on AR(1) coefficient. The legend on right indicates the 648 

cross-wavelet power.  649 
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 650 

Figure 6. Singular spectra with its SSA decomposed components & its reconstructed time 651 
series for (a) Sunspot Number and (b) Western Himalaya temperature data.  652 

 653 
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 654 

Figure 7. Singular spectra with its SSA decomposed components & its reconstructed time 655 
series for (c) SOI and (d) Geomagnetic activity (aa Indices). 656 
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 657 

Figure 8. Power spectrum and Wavelet power spectrum of SSA reconstructed (a) Sunspot 658 

data (b) Geomagnetic Indices (aa index) (c) SOI index and (d) the Western Himalayas 659 

temperature data with cone of influence (lighter shade smooth curve) and black lines indicate 660 

significant power on 95% level compared to red noise based on AR(1) coefficient. The legend 661 

on right indicates the cross-wavelet power.  662 
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 668 

Figure 9.  Squared wavelet coherence plotted for the SSA reconstructed time series between 669 

(a) WH-SSN (b) WH-SOI and (c) WH-aa index with cone of influence (lighter shade smooth 670 

curve) and black lines indicate significant power on 95% level compared to red noise based on 671 

AR(1) coefficient.  672 
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 678 

Figure 10. Cross-correlation of SSA reconstructed time series of (a) aa Index-Western 679 

Himalayan (WH) temperature data; (b) SOI-WH temperature data; (c) sunspot –WH data and 680 

(d) aa Index-sunspot data.  681 
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