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ABSTRACT

To study the imprints of the Solar-ENSO-Geomagnetic activity on the Indian Subcontinent, we
have applied the Singular spectral analysis (SSA) and wavelet analysis to the tree ring
temperature variability record from the Western Himalayas. Other data used in the present
study are the Solar Sunspot Number (SSN), Geomagnetic Indices (aa Index) and Southern
Oscillation Index (SOI) for the common time period of 1876-2000. Both SSA and wavelet
spectral analyses reveal the presence of 5-7 years short term ENSO variations and the 11 year
solar cycle indicating the possible combined influences of solar-geomagnetic activities and
ENSO on the Indian temperature. Another prominent signal corresponding to 33-year
periodicity in the tree ring record suggests the Sun-temperature variability link probably
induced by changes in the basic state of the earth’s atmosphere. In order to complement the
above findings, we performed a wavelet analysis of SSA reconstructed time series, which agrees
well with our earlier results and also increases the signal to noise ratio thereby showing strong
influence of solar-geomagnetic activity & ENSO throughout the entire time period. The solar
flares are considered to be responsible for causing the atmospheric circulation patterns. The
net effect of solar-geomagnetic processes on the temperature record might suggest
counteracting influences on shorter (about 5-6 y) and longer (about 11-12 y) time scales. The
present analyses suggest that the influence of solar activities on the Indian temperature
variability operates in part indirectly through coupling of ENSO on multilateral time scales. The

analyses, hence, provide credible evidence for tele-connections of tropical pacific climatic

1



34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

variability and Indian climate ranging from inter-annual-decadal time scales and also suggest
the possible role of exogenic triggering in reorganizing the global earth-ocean-atmospheric
systems.

Key words: Geomagnetic activity, Western Himalayas, Sunspot Number, SOI index, Singular

spectral analysis, Wavelet spectrum, Coherency.

1. Introduction:

Several recent studies of solar/geomagnetic effects on climate have been examined on both
global as well as on regional scales (Lean and Rind, 2008; Benestaed and Schmidt, 2009; Meehl,
2009; Kiladis and Diaz 1989; Pant and Rupa Kumar 1997; Gray et al. 1992; Wiles et al. 1998; Friis
and Svensmark 1997; Rigozo et al. 2005; Feng et al. 2003; Tiwari and srilakshmi 2009; Chowdary
et al. 2006, 2014; Appenzeller et al. 1998; Proctor et al. 2002; Tsonis et al. 2005; Freitas and
Mclean 2013). The Sun’s long-term magnetic variability caused by the sunspots is considered as
one of the primary drivers of climatic changes. The short-term magnetic variability is due to the
disturbances in Earth’s magnetic fields caused by the solar activities and is indicated by the
geomagnetic indices. The Sun’s magnetic variability modulates the magnetic and particulate
fluxes in the heliosphere. This determines the interplanetary conditions and imposes significant
electromagnetic forces and effects upon the planetary atmosphere. All these effects are due to
the changing solar-magnetic fields, which are relevant for planetary climates including the
climate of the Earth. The Sun-Earth relationship varies on different time scales ranging from
days to years bringing a drastic influence on the climatic patterns. The ultimate cause of solar
variability, at time scales from decadal to centennial to millennial or even longer scales has its
origin in the solar dynamo mechanism. During the solar maxima, huge amounts of solar energy
particles are released, thereby causing the geomagnetic disturbances. The 11 years solar cycle
acts as an important driving force for variations in the space weather, ultimately giving rise to
climatic changes. It is, therefore, imperative to understand the origin of space climate by
analyzing the different proxies of solar magnetic variabilities. Another important phenomenon
is ElI Nino-Southern Oscillation (ENSO), which produces droughts, floods and intense rainfall.

The strong coupling and interactions between the Tropical Ocean and the atmosphere play a
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major role in the development of the global climatic system. The El Nino events generally recur
approximately every 3-5 years with large events spaced around 3-7 years apart. The ENSO
phenomena have shown huge impact on the Asian monsoon (Cole et. al., 1993), Indian
monsoon (Chowdary et al. 2006, 2014) as well as globally (Horel and Wallance 1981; Barnett
1989; Yasunari 1985; Nicholson 1997). In particular, the El Nino, solar, geomagnetic activities
are the major affecting forces on the decadal and interdecadal temperature variability on global
and regional scales in a direct/indirect way (El-Borie et al, 2010; Gray et al., 2010). Recent
studies (Frohlich and Lean 2004; Steinhilber et al. 2009) indicate the possible influence of solar
activity on Earth’s temperature/climate on multi-decadal time scales. The 11 year solar cyclic
variations observed from the several temperature climate records also suggest the impact of
solar irradiance variability on terrestrial temperature (Budyko 1969; Friis and Lassen 1991; Friis
and Svensmark 1997; Kasatkina et al. 2007). The bi-decadal (22 years) called the Hale cycle, is
related to the reversal of the solar magnetic field direction (Lean et al. 1995; Kasatkina et al.
2007). The 33 year cycle (Bruckener cycle) is also caused by the solar origin, but it is a very rare
cycle (Kasatkina et al. 2007). The 2-7 years ENSO cyclic pattern and its possible coupling
process is the major driving force for the temperature variability (Gray et al. 1992; Wiles et al.
1998; Mokhov et al. 2000; Rigozo et al. 2007, Kothawale et al. 2010). El-Borie and Al-Thoyaib,
2006; El-Borie et al., 2007 and El-Borie et al, 2010 have indicated in their studies that the global
temperature should lag the geomagnetic activity with a maximum correlation when the
temperature lags by 6 years. Mendoza et. al., 1991 reported on possible connections between
solar activity and El Nino’s, while Reid and Gage (1988) and Reid (1991) reported on the
similarities between the 11-year running means of monthly sunspot numbers and global sea
surface temperature. These findings suggest that there is a possibility of strong coupling
between temperature-ENSO and solar-geomagnetic signals.

The mean global temperature of the Earth's surface also plays a very important role in
bringing climatic changes. Several studies have been carried out to understand the detailed
climatic changes of India in the past millennium using various proxy records e.g. ice cores, lake
sediments, glacier fluctuations, peat deposits etc. There is a lack of high-precision and high-

resolution palaeo-climatic information for longer time scale from the Indian subcontinent. Tree-
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ring data is a promising proxy to retrieve high resolution past climatic changes from several
geographical regions of India (Bhattacharyya et al. 1988; Bhattacharyya et al. 1992; Hughes,
1992; Bhattacharyya and Yadav, 1996; Borgaonkar et al. 1996; Chaudhary et al. 1999; Yadav et
al. 1999; Bhattacharyya and Chaudhary, 2003; Bhattacharyya et al. 2006; Shah et al. 200) It has
been noted that tree-ring based climatic reconstructions in India generally do not exceed
beyond 400 years records except at some sites in the Northwest Himalaya. Thus, a long record
of tree-ring data is needed to extend available climate reconstruction further back to determine
climatic variability on sub-decadal, decadal and century scale. However, non-availability of
older living trees in most of the sites is hindering the preparation of long tree chronology. In a
previous study (Tiwari and Srilakshmi, 2009), we have studied the periodicities and non-
stationary modes in the tree ring temperature data from the same region (AD 1200-2000). To
reveal significant connections among the Solar-geomagnetic-ENSO ‘triad’ phenomena on tree
ring width in detail for the period from 1876-2000, we have applied here the Singular spectral
analysis (SSA) and the wavelet spectral analysis for Sunspot data, geomagnetic data (aa index),
Troup Southern Oscillation Index (SOI) and the Western Himalayas tree ring data. Here our
main objective is to employ wavelet-based analysis on SSA reconstructed time series to find out
the evidence of the possible linkages, if any, among ENSO-solar-geomagnetic in the Indian

temperature records.

2. Source and Nature of Data:

The data analyzed here includes the time series of (1) Smoothed Sunspot number for solar
activity (2) Geomagnetic activity data (aa indices) (3) Troup Southern Oscillation Index (SOI) for
the study of El Nino-Southern Oscillation called ENSO (4) Western Himalayan temperature
variability record. All the data sets have been analyzed for the common period of 125 years
spanning over 1876-2000. The monthly sunspot number data has been obtained from the
Sunspot Index Data Center http:// astro.oma.be/SIDC/. The Troup SOI data is obtained from the

Bureau of Meteorology of Australia, http://www.bom.gov.au/climate/. The data for

geomagnetic activity, aa Index, was provided by the National Geophysical Data Center, NGDC,

(http://www.ngdc.noaa.gov/stp/GEOMAG/aastar.shtml). The aa index is a measure of
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disturbances level of Earth’s magnetic field based on magnetometer observations at two, nearly
antipodal, stations in Australia and England. In recent studies, the tree ring proxy climate
indicators have been potentially used for extracting information regarding past seasonal
temperature or precipitation/drought based on the measurements of annual ring width. The
detailed description of the data has been presented elsewhere (Yadav et. al., 2004). A brief
account of the data pertinent to the present analysis, however, is summarized here. The tree
ring data being analyzed here is one of the best temperature variability records (1876 to 2000)
of the pre-monsoon season in the Western Himalayas available. The mean temperature series
is obtained from nine weather stations including both from high and low elevation areas in the
Western Himalayas. Temperature variability history is based on widely spread pure Himalayan
cedar (Cedrus deodara (Roxb.) G. Don) trees and characterizes all the sites with almost no
ground vegetation and thereby minimizes individual variation in tree-ring sequences induced by
inter tree competition (Yadav et. al., 2004). The mean chronological structure is based on in
total 60 radii from 45 trees, statistical feature of which show that the chronology is suitable for

dendro-climatic studies back to AD 1226 (Yadav et. al., 2004).

3. Methods applied: To analyze the temporal series and to find the climatic structure, we have
here three methods: Principal component analysis (PCA), Singular Spectral analysis (SSA) and
wavelet analysis.

3.1. Principal component analysis (PCA): As a preliminary analysis, we have applied the
Principle component analysis (PCA) to the data sets to extract the principle components. PCA
technique is applied for the reduction and extraction for dimensionality of the data and to rate
the amount of variation present in the original data set. The purpose to apply the PCA is to
identify patterns in the given time series. The new components thereby obtained by the PCA
analysis are termed as PC1, PC2, PC3 and so on, (for the first, second and third principal
components) are uncorrelated and decrease the amount of variance from the original data set.
PC1 (the first component) captures most of the variance; PC2 captures the second most of the

variance and so on.
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3.2. Singular spectral analysis: The Singular Spectrum Analysis (SSA) method is designed to
extract as much information as possible from a short, noisy time series without any prior
knowledge about the dynamics underlying the series (Broomhead and King, 1986; Vautard and
Ghil, 1989; Alonso et. al., 2005; Golyandina et al., 2001). The method is a form of principal
component analysis (PCA) applied to lag-correlations structures of the time series. The basic
SSA decomposes an original time series into a new series which consists of trend, periodic or
quasi-periodic and white noises according to the singular value decomposition (SVD) and
provides the reconstructed components (RCs). The basic steps involved in SSA are:
decomposition (involves embedding, singular value decomposition (SVD)) and reconstruction
(involves grouping and diagonal averaging). Embedding decomposes the original time series
into the trajectory matrix; SVD turns the trajectory matrix into the decomposed trajectory
matrices. The reconstruction stage involves grouping to make subgroups of the decomposed
trajectory matrices and diagonal averaging to reconstruct the new time series from the
subgroups.

Stepl: Decomposition:

(a) Embedding: The first step in the basic SSA algorithm is the embedding step where
the initial time series change into the trajectory matrix. Let the time series be Y = {y, ......... , YN}
of length N without any missing values. Here the window length L is chosen such that 2 < L <
N/2 to embed the initial time series. We map the time series Y into the L lagged vectors, Yi =
iy Yisa} for i = 1......K, where K= N - L + 1. The trajectory matrix Ty (L x K dimensions) is

Y1
Y2
WHEteN as: Ty =| . | (1)

Yk

(b) Singular Value Decomposition (SVD): Here we apply SVD to the trajectory matrix Ty
to decompose and obtain Ty=UDV’ called eigentriples; where U; (K x L dimensions;1 <i<L)is an
orthonormal matrix; D; (1 <i<L) is a diagonal matrix of order L; V; (L x L dimensions;1 <i<L)is

a square orthonormal matrix.
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The trajectory matrix is thus written as T, = > U, /A V", e )
i=1

where the i" Eigen tripleof T, =U, x \/l_ixViT ,1=1,2,3...,dinwhich d = max(i: /4, >0).
Step 2: Reconstruction:

(c) Grouping: Here the matrix T; is decomposed into subgroups according to the trend,
periodic or quasi-periodic components and white noises. The grouping step of the
reconstruction stage corresponds to the splitting of the elementary matrices T; into several
groups and summing the matrices within each group. Let | = {iy,i»,...., i} be the group of indices
i1, ....Ip. Then the matrix T, corresponding to the group | is defines as T=Ti+ Tio+...Tip. The split of
the set of indices J=1, 2, . .. ,d into the disjoint subsets Iy, I,....In corresponds to the equation
(3):

T=Tit Tt Time e, 3)
The sets I,....,In are called the eigen triple grouping.

(d) Diagonal averaging: The diagonal averaging transfers each matrix T into a time
series, which is an additive component of the initial time series Y. If z; stands for a element
matrix Z, the kth term of the resulting series is obtained by averaging z; over all i, j such that
i+j=k+2. This is called diagonal averaging or the Hankelization of the matrix Z. The Hankel matrix
HZ, is the trajectory matrix corresponding to the series obtained by the result of diagonal
averaging.

Considering equation (3), let X (L x K) matrix with elements x;;, where 1 <i<L,1<j<K,

Here diagonal averaging transforms matrix X to a series go,...,gr-1 using the formula:

1 K+1
LI S O<k<L -1
K+1&5 ™
1 L
0 =47+ 2 Xnimez L' -1<k <K" 4)
]r_n:1 N-k+1
Xr?,k—m+2 K* -1<k<T
T- m=k—k*+2

This diagonal averaging by equation (4) applied to the resultant matrix X,,, produces time series

Y, of length T. For such signal characteristics, it is essential to examine the time-frequency
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pattern as to understand whether a particular frequency is temporally consistent or
inconsistent. Hence for non-stationary signals, we need a transform that will be useful to obtain
the frequency content of the time series/signal as a function of time.

An alternative method for studying the non-stationarity of the time series is wavelet
transform. For non-stationary signals, wavelets decomposition would be the most appropriate
method because the analyzing functions (the wavelets function) are localized both in time and

frequency.

3.3. Wavelet spectral analysis: During the past decades, wavelet analysis has become a popular
method for the analysis of aperiodic and quasi-periodic data (Grinsted et. al., 2004; Jevrejeva
et. al., 2003; Torrence and Compo, 1998; Torrence and Webster, 1999). In particular, it has
become an important tool for studying localized variations of power within a time series. By
decomposing a time series into time-frequency space, the dominant modes of variability and
their variation with respect to time can be identified. The wavelet transform has various
applications in geophysics, including tropical convection (Weng and Lau 1994), the El Nifio—
Southern Oscillation (Gu and Philander 1995), etc. We have applied the wavelet analysis to
analyze the non-stationary signals which permits the identification of main periodicities of
ENSO-sunspot-geomagnetic in the time series. The results give us more insight information
about the evolution of these variables in frequency-time mode.

A wavelet transform requires the choice of analyzing function ¥ (called “mother
wavelet”) that has the specific property of time-frequency localization. The continuous wavelet
transform revolves around decomposing the time series into scaling components for identifying
oscillations occurring at fast (time) scale and other at slow scales. Mathematically, the

continuous wavelets transform of a time series f(t) can be given as:

1 7 t—-b
W, (F)(@,b) = —= [f(thy| —|dt
Va o, a
Here f(t) represents time series, V¥ is the base wavelets function (here we have chosen the
Morlet function), with length that is much shorter than the time series f(t). W stands for

wavelet coefficients. The variable ‘a’ is called the scaling parameter that determines the
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frequency (or scale) so that varying ‘a’ gives rise to wavelet spectrum. The factor ‘b’ is related to
the shift of the analysis window in time so that varying b represents the sliding method of the
wavelet over f(t).

In several recent analyses, complex Morlet wavelet has been found useful for
geophysical time series analysis. The Morlet is mostly used to find out areas where there is high
amplitude at certain frequencies. The complex Morlet wavelet can be represented by a periodic
sinusoidal function with a Gaussian envelope and is excellent for Morlet wavelet may be
defined mathematically, as follows:

2
y(t)=n SN ©)
where @y is a non-dimensional value. o is chosen to be 5 to make the highest and lowest
values of y approximately equal to 0.5, thus making the admissibility condition satisfied. The
complex valued Morlet transform enables to extract information about the amplitude and
phase of the signal to be analyzed. Wavelet transform preserves the self-similarity scaling
property, which is the inherent characteristic feature of deterministic chaos. The continuous
wavelet transform has edge artifacts because the wavelet is completely localized in time. The
cone of influence (COI) is the area in which the wavelet power caused by a discontinuity at the
edge has dropped to e of the value to the edge. The statistical significance of the wavelet
power can be assessed relative to the null hypotheses that the signal is generated by a
stationary process with a given background power spectrum (Py) of first order autoregressive

(AR1) process. (Grinsted et. al., 2004)

1-a?

“2igk |2 e ()

P, =
1- ae

where k is Fourier frequency index.

The cross wavelet transform is applied to two time series to identify the similar patterns
which are difficult to assess from a continuous wavelet map. Cross wavelet power reveals areas

with high common power. The cross wavelet of two time series x (t) and y (t) is defined as W*" =

9
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W*WY*, where * denotes complex conjugate. The cross wavelet power of two time series with

background power spectra P¥ and P! is given as

5 an (s)Wn*(s)‘< ) :ZVT(p) CYSYI @)

oXoY

where Z,(p) is the confidence level associated with the probability p for a pdf defined by the

square root of the product of the two %’ distributions (Torrence and Compo, 1998). The
wavelet power is Mnx (s)‘2 and the complex argument of Mnx (s)‘ can be interpreted as the local

phase. The cross wavelet analysis gives the correlation between the two time series as function
of period of the signal and its time evolution with a 95% confidence level contour. The
statistical significance is estimated using red noise model.

Wavelet coherence is another important measure to assess how coherent the cross
wavelet spectrum transform is in time frequency space. The wavelet coherence of two time

series is defined as (Torrence and Webster, 1998)

|s(s~1 wXY (s))|”

R2(s) =
n() s~ WX )|*).sG= 1wy ()]

where S is a smoothing operator. The smoothing operator is written as S (W) = S scae(S time
(Whn(s))), where Sscae denotes smoothing along the wavelet scale axis and Sime Smoothing in

time. Here for the morelet wavelet, the smoothing operator is

Sime W)|, = (Wn (s) * cfszJ ...................... (10)

S time (W)L = (Wn (s)* CZH(O'GS))n

Where c¢; and ¢, are normalization constants and n is the rectangle function. The factor of 0.6 is
empirically determined scale decorrelation length of the Morlet wavelet (Torrence and Compo,
1998). The statistical significance level of the wavelet coherence is estimated using the Monte

Carlo methods (Grinsted et. al., 2004).
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4. Results and Discussion:

We analyzed the data sets spanning over the period of 1876-2000 using the PCA, SSA and
wavelet spectral analyses. Figure 1 shows four time series: (1) Smoothed Sunspot number
representing solar activities; (2) Geomagnetic (aa indices); (3) Troup Southern Oscillation Index
(SQI) for the study of ENSO and (4) Western Himalayan temperature variability record that are
analyzed in the present work. From visual inspection it is apparent from Fig. 1 that both WH
and SOI data show irregular and random pattern, while sunspot numbers have quasi- cyclic
character. Further WH tree ring record also exhibits distinct temperature variability but
nonstationary behavior at different scales. This variability might be suggestive of coupled
global ocean-atmospheric dynamics or some other factors, such as deforestation,
anthropogenic, high latitudinal influence etc (Yadav et. al., 2004).

(Figure 1)

Hence it is quite difficult to differentiate such a complex climate signals visually and difficult to
infer any clear oscillation without the help of powerful mathematical methods. For
identification of any oscillatory components and understanding the climatic variations on
regional and global scale, we have applied the PCA, SSA and wavelet analysis. Figure 2 shows
the principal components (PCs) for the first four eigen triples (PC1, PC2, PC3, PC4) for the given
data sets. Figure 3 shows the power spectra of the principal components (PCs) for the four data
sets shown in figure 2. From the figure 3, it is observed that the power spectra of PC1-4 for the
sunspot data exhibits high power at 124, 11, 4-2.8 years. The presence of high solar signal at
124 years indicates the quasi-stable oscillatory components in the data. The power spectra of
geomagnetic data also shows the presence of strong signals at 124, 10-11, 4-2 years suggesting
a strong link of solar-geomagnetic activity. The power spectra of WH temperature data shows
strong high power at ~62 years, 32-35 years, 11 years, 5 years and 2-3 years suggesting a
strong influence of solar-geomagnetic-ENSO effects on the Indian climate system. Dominant
amplitude is found at 32-35 years corresponding to Atlantic Multi-decadal Oscillation (AMO)
cycles. These results can be better confirmed by applying the mathematical tools of SSA and

wavelet analysis.
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(Figure 2 & 3)
To explore the stationary characteristics of these peaks obtained by the PCA, we have applied
the Morlet based wavelet transform approach (Holschneider, 1995; Foufoula-Georgiou and
Kumar, 1995; Torrence and Compo, 1998; Grinsted et. al., 2004). The wavelet spectrum
identifies the main periodicities in the time series and helps to analyze the periodicties with
respect to time. Figure 4 shows the wavelet spectrum for the a) Smoothed Sunspot number for
solar activity (SSN) (b) Western Himalayan (WH) temperature variability record (c) Geomagnetic
activity and (c) Troup Southern Oscillation Index (SOI). From the wavelet spectrum of sunspot
time series (Figure 4a), the signal near 11-year is the strongest feature and is persistent during
the entire series indicating the non-stationary behavior of the sunspot time series. The wavelet
spectrum of SOI (figure 4c) shows strong amplitudes. However, due to non-stationary (time
variant) character of the time series, the observed spectral peaks (power) split in the interval of
2- 8 years. The wavelet power spectrum of the western Himalayan temperature variability
(Figure 4b) reveals significant power concentration at inter-annual time scales of 3-5 years and
at 11 years solar cycle. A dominant amplitude modes is also seen in the low frequency range at
around 35-40 years (at periods 1930-1980) corresponding to AMO cycles. Our result agrees well
with the results of other climate reconstructions (Mann et. al., 1995) from tree rings and other
proxies. The observed variability in AMO periodicity has also been reported in other tree ring
record (Gray et. al., 2004). The statistical significance of the wavelet power spectrum is tested
by a Monte Carlo method (Torrence and Compo, 1998). The WH spectra depicting statistically
significant powers at around 5 years, 11 years and 33 years above the 95% significance level,
suggests a clear picture of the imprint of sunspot-geomagnetic and ENSO on the tree ring data.
The wavelet power spectrum of the geomagnetic record (Fig. 4d) indicates significant power on
shorter scales around 2, 4-8, 11 years period.
(Figure 4)

In order to have better visualization of similar periods in two time series and for the
interpretation of the results, cross wavelet spectrum has been applied. Figure 5 shows the cross
wavelet spectrum of the a) SSN-WH temperature data b) WH data-SOI and ¢) SSN-SOI data. The

contours (dark black lines) are the enclosing regions where wavelet cross power is significantly
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higher, at 95% confidence levels. The wavelet cross-spectra of WH-SSN (Fig.5a) show
statistically significant high power over a period of 1895-1985 in 8-16 years band. It is seen that
the WH-SOI cross-spectra (Fig. 5b), the high power is observed at 2—4 year band and 8-16 years
as well. The SSN-SOI spectra (Fig. 5¢) shows a strong correlation at 11 years solar cycle, which is
stronger during 1910-1950 and 1960-2000 (Rigozo et. al., 2002, Rigozo et. al., 2003) suggesting
the strongest El Nino and La Nina events indicating solar modulation on ENSO (Kodera, 2005;
Kryjov and Park, 2007). These results show a good correspondence in response of growth of the
tree ring time series during the intense solar activity. Hence the results strongly support the
possible origin of these periodicities from Solar and ENSO events. The interesting conclusion
from Fig. 5 is that WH—sunspot connections are strong at 11 years, ENSO—-sunspot also exhibit
strong power around 11 years; the WH-ENSO connections are spread over three bands, the 2—-4
y; 4-8 and 8-16 y, covering the solar cycle and its harmonics; the WH-geomagnetic exhibits
strong connections around 2-4, 4-6, 11 years and 35-40 years indicating the influence of solar-
geomagnetic activity on Indian temperature.

(Figure 5)

The Singular spectral analysis (SSA) is performed for all the four data sets with window length of
40. The SSA spectra with 40 singular values and its corresponding reconstructed series (varying
from RC1-15 in some cases) are plotted are shown in Figure 6 &7. The important insights from
SSA spectra are the identification of gaps in the eigen value spectra. As a rule, the pure noise
series produces a slowly decreasing sequence of singular values. The explicit plateau in the
spectra represents the ordinal numbers of paired eigen triples. The eigen triples 2-3 for the
sunspot data corresponds to 11 years period; eigen triples for 1-2,3-5,6-10,11-14 for the WH
temperature data are related to harmonic with specific periods (periods 33-35, 11, 5, 2); eigen
triples for 2-5,6-9,10-13 for the geomagnetic data are related to periods 11, 5,2 years. The
eigen triples for the SOI data represents to ~ 5-7, 2 years periods. In order to assess
periodicities, the periodogram and the wavelet power spectra are plotted using the SSA
reconstructed data (SSA-RC) (Figure 8). From the figure 8, the periodogram of SSA-RC of SSN

and Geomagnetic data shows strong power at ~120, 10-11 years; the SOI data shows strong
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peaks at 6-9, 3, years & WH data shows strong power at ~32, ~10-11, 3-5 years. The wavelet
spectra for all the SSA-RC data confirms the results excepts for periods at ~120 years as the
scaling period for the wavelet spectra is 64 years period. The coherency plot of the SSA-RC data
sets (Figure 9) indicates a significant power at 33 years, 11 years, 2-7 years in the WH
temperature record suggesting the possible influences of Sunspot-geomagnetic activity and
ENSO through tele-connection and hence significant role of these remote internal oscillations of
the atmosphere-ocean system on the Indian climate system. Researchers have attributed these
phenomena to internal ocean dynamics and involve ocean atmospheric coupling as well as
variability in the strength of thermohaline circulations (Knight et. al., 2005; Delworth and Mann,
2000).
(Figures 6,7,8 & 9)

In general our result agrees well with earlier findings in the sense that statistically
significant global cycles of coupled effects of Sunspot/geomagnetic and ENSO are present in the
land based temperature variability record. However, there are certain striking features in the
spectra that need to be emphasized regarding the western Himalayas temperature variability: i)
Inter-annual cycles in period range of 3-8 years corresponding to ENSO in the wavelet spectra
exhibit intermittent oscillatory characteristics throughout the large portion of the record (Fig 4);
i) The 11 years solar cycle in the cross wavelet spectrum of SSN and SOI (Figure 5) indicate the
solar modulation in the ENSO phenomena (Kodera, 2005; Kryjov and Park, 2007). iii) The high
amplitude at 11 years in the time intervals 1900-1995 with a strong intensity from 1900-1995
shows a good correspondence with the high temperature variability for the interval of high
solar-geomagnetic activity. The Multi-decadal (30-40 years) periodicity identified here in
Western Himalayan tree ring temperature record matches with North Atlantic sea surface
temperature variability implying that the temperature variability in the western Himalayan is
not a regional phenomenon, but a globally tele-connected climate phenomena associated with
the global ocean-atmospheric dynamics system (Tiwari & srilakshmi, 2009; Delworth et. al.,
1993; Stocker, 1994). The coupled ocean-atmosphere system appears to transport energy from
the hot equatorial regions towards Himalayan territory in a cyclic manner. These results may

provide constraints for modeling of climatic variability over the Indian region and ENSO
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phenomena associated with the redistribution of temperature variability. The solar-
geomagnetic effects play a major role in abnormal heating of the land surface thereby indirectly
affects the atmospheric temperature gradient between the land-ocean coupled systems. In the
present work, the connections between solar/geomagnetic activity and ENSO on the WH time
series are found to be statistically significant, especially when they are studied over contrasting
epochs of respectively high and low solar activity. The correlation plots for the SSA-RC data sets
of WH-sunspot, WH-aa index, WH-SOI and Sunspot-aa index are plotted in figure 10. It is
noticed that there is a correlation plots for the Geomagnetic-sunspot activity has a maximum
correlation value at 1 year lag suggesting the strong influence of sunspot & geomagnetic forcing
on one another. The cross-correlation plot for the WH data and the SOI represents a maximum
value at zero lag. The correlations plot for WH-sunspot & WH-geomagnetic index exhibits
almost the identical results suggesting the possible impact of solar activities on the Indian
temperature variability.
(Figures 10)

The net effect of solar activity on temperature record therefore appears to be the result
of cooperating or counteracting influences of earth’s magnetic activity on the shorter and
longer periods, depending on the indices used; scale-interactions, therefore, appear to be
important. Nevertheless, the link between Indian climate and solar/geomagnetic activity

emerges as having the strong evidence; next is the ENSO-solar activity connection.

5. Conclusions:

In the present paper, we have studied and identified the periodic patterns from the published
Indian temperature variability records using the modern spectral methods of Singular spectral
analysis (SSA)-Wavelet methods. The application of wavelet analysis for the SSA reconstructed
time series, along with the removal of noise in the data identifies the existence of a high-
amplitude, recurrent, multi-decadal scale patterns that are present in Indian temperature
records. The power spectra of WH temperature data shows strong high power at ~62 years, 32-
35 years, 11 years, 5 years and 2-3 years suggesting a strong influence of solar-geomagnetic-

ENSO effects on the Indian climate system. The presence of dominant amplitude at 33-year
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cycle periodicity corresponds to Atlantic Multidecadal Oscillation (AMO) cycles. It also suggests
the Sun-temperature variability probably involving the induced changes in the basic state of the
atmosphere. The 30-40 yrs periodicity in Western Himalayan tree ring temperature record
matches with the global signal of the coupled ocean-atmospheric oscillation (Delworth et. al.,
1993; Stocker, 1994) implying that the temperature variability in Himalayan is not a regional
phenomenon, but seems to be tele-connected phenomena with the global ocean-atmospheric
climate system. The coherency plots of the SSA reconstructed WH-Sunspot; WH-geomagnetic
and WH-SOI data sets show strong spectral signatures in the whole record confirming the
possible influences of Sunspot-geomagnetic activities and ENSO through teleconnection and
hence the significant role of these remote internal oscillations of the atmosphere-ocean system
on the Indian temperatures. We conclude that the signature of solar-geomagnetic activity
affects the surface air temperatures of Indian subcontinent. However, long data sets from the
different sites on the Indian continent are necessary to identify the influences of the 120 years

solar-geomagnetic cycles.
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Figure 5. Cross Wavelet spectrum between (a) Sunspot number-Western Himalayan data
(b) Western Himalayan-Southern Oscillation Index (c) Sunspot number- Southern
Oscillation Index and (d) Geomagnetic: aa indices-Western Himalayan data with cone of
influence (lighter shade smooth curve) and black lines indicate significant power on 95%
level compared to red noise based on AR(1) coefficient. The legend on right indicates the

cross-wavelet power.
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651  Figure 6. Singular spectra with its SSA decomposed components & its reconstructed time
652  series for (a) Sunspot Number and (b) Western Himalaya temperature data.
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655  Figure 7. Singular spectra with its SSA decomposed components & its reconstructed time
656  series for (c) SOI and (d) Geomagnetic activity (aa Indices).
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Figure 8. Power spectrum and Wavelet power spectrum of SSA reconstructed (a) Sunspot

data (b) Geomagnetic Indices (aa index) (c) SOI index and (d) the Western Himalayas

temperature data with cone of influence (lighter shade smooth curve) and black lines indicate

significant power on 95% level compared to red noise based on AR(1) coefficient. The legend

on right indicates the cross-wavelet power.

30



Period (years)

W =

o
o B A 0

0.6

0.5

Period (years)
o

N W
o

0.4

o
i
z 8 0.2
g 16
= 0.1
s:zj

1876 1895 1915 1935 1955 1975 1995 0

Time (in vears
568 (in years)

669  Figure 9. Squared wavelet coherence plotted for the SSA reconstructed time series between
670 (a) WH-SSN (b) WH-SOI and (c) WH-aa index with cone of influence (lighter shade smooth
671  curve) and black lines indicate significant power on 95% level compared to red noise based on

672  AR(1) coefficient.
673
674
675
676

677

31



678

679
680
681

682

683

684

Crosscorrelation: RC-aa Index - RC-WH temp data

|
= = @
= = = i
;

correlatnon value

o
[ )

correlation value

|
=
e

1
(=]
"
tho-
.y
(—]
p—
tn

L-'.Clgs
(@)

Crosscorrelation: RC-sunspot data - RC-WH temp data

o

As -10 5

0.6- .

0.2 1

correlation value

=
T

10 15

71

—_
(=]

|
i

Lk
(©

correlation value

Crosscorrelation: RC-SOI data - RC-WH temp data

Les
(b)

Crosscorrelation: RC-aa Index - RC-sunspot data

—
[—]
I
-
-
—
(=]
p—
th

()

'0'-‘15 10 s

10 1

th
th

Figure 10. Cross-correlation of SSA reconstructed time series of (a) aa Index-Western

Himalayan (WH) temperature data; (b) SOI-WH temperature data; (c) sunspot ~WH data and

(d) aa Index-sunspot data.
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