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Abstract 12 

 13 

Percolation theory can be used to find water flow paths of least resistance. Application of 14 

percolation theory to drainage networks allows identification of the range of exponent values that 15 

describe the tortuosity of rivers in real river networks, which is then used to generate the 16 

observed scaling between drainage basin area and channel length, a relationship known as 17 

Hack’s law. Such a theoretical basis for Hack’s law may allow interpretation of the range of 18 

exponent values based on an assessment of the heterogeneity of the substrate. 19 

 20 
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1. Introduction 22 

River networks display complex organization as documented in numerous studies. This 23 

work addresses only one of them, in particular, the relationship between drainage basin area and 24 

river length, which is non-trivial. In Euclidean geometry the basin area, A, would be proportional 25 

to the square of the river length, l, i.e., l should be proportional to A
1/2

. In actuality, as determined 26 

by Hack (1957), this relationship is  27 

      

with the value of β approximately 0.6. Later investigations did not always return the identical 28 

value of β. Nevertheless, Maritan et al., (1996) consider the value of β to be well constrained and 29 

refer to a study of Gray (1961) as having established that “the accepted values for the exponent 30 

[β] are in the range 0.57 to 0.6.” 31 

Hack (1957) (page 65) asserts that the relationship was a consequence of the lengthening 32 

of drainage basins with increasing size. But Montgomery and Dietrich (1992) compare straight-33 

line basin length, L, to A over seven orders of magnitude of length scale and find precisely L = 34 

A
0.5

. That result allows stream length to be expressed in terms of the straight line basin 35 

dimension, l = A
β
 = L

γ
 = L

2β
, so that γ = 2β. The exponent γ > 1then defines the tortuosity 36 

(sometimes known as sinuosity) of the stream path through the drainage basin. 37 

Hack’s law explanations have been sought in fractal (Tarboton et al., 1988; Maritan et al., 38 

1996), constructal (Reis, 2006) and “feasible optimality” (Rigon et al., 1998) theories. Fractal 39 

theories produce the required self-similar drainage basins (Peckham, 1995) as well as increasing 40 

stream sinuosity downstream. I suggest that Hack’s law can be understood using percolation 41 

theory (Stauffer and Aharony, 1994) because 1) the fractal structure of the percolation cluster 42 



generates values for γ that constrain the data for β reasonably, and 2) it exploits the concept that 43 

water flows along paths of minimal resistance, as in the subsurface also (Hunt et al., 2014). 44 

2. Theory 45 

There are two distinct applications of percolation theory to flow or conduction problems, 46 

and these two applications are those that provide the bounds to Hack’s exponent values. The 47 

more familiar application is to a binary system, where, e.g., bonds either connect neighboring 48 

sites (which in the simplest case are located on a lattice, or grid), or they don’t. If enough such 49 

neighboring sites are connected, a continuous path of interconnected bonds spans the system. 50 

This is denoted the percolation threshold. The shortest distance across the system within this 51 

connected cluster is called the chemical path length (Porto et al., 1997). Since all bonds have 52 

equal resistance, the shortest flow path has also the lowest resistance and optimal dissipation.  53 

The second possibility is a system, in which bonds of varying resistance connect each 54 

pair of neighboring sites. When the system is strongly heterogeneous, i.e., when the distribution 55 

of the natural logarithm of the resistances has variance, σ
2 

 >> 1, the proper application of 56 

percolation theory is to find the path of least cumulative resistance. Quantification of this process 57 

equates an integral over the local conductance distribution, from a “critical” value, to the largest 58 

value, with the percolation threshold (Pollak, 1972). This particular method became known as 59 

“critical path analysis,” or CPA. The subnetwork so defined is precisely at the percolation 60 

threshold (Stauffer and Aharony, 1994). However, the most interesting path across this system is 61 

not the shortest, but the optimal path, which provides the least energetic cost in a strongly 62 

heterogeneous network (Lopez et al., 2005), i.e., with variance tending to infinity. Since the 63 

optimization is not for length, but for energy costs, the path is longer than in a homogeneous 64 

system, meaning that its tortuosity exponent is larger. Nevertheless, the chemical path length in a 65 



homogeneous system is the analogue of the optimal path length in a heterogeneous system, 66 

because the shortest path in a system with identical links also represents the path of minimum 67 

energy dissipation. 68 

The restriction of river networks to the surface of the earth, and the measurement of 69 

stream lengths on 2D maps, makes the topology of stream  connections and the application of 70 

percolation theory two dimensional. In two dimensions, the chemical path length scales with the 71 

system size (Sheppard et al., 1999), L as L
1.13

, but the optimal path length scales with system size 72 

as L
1.21

, and does not depend on whether a percolation process is classed as random, or invasion 73 

(Sheppard et al., 1999). However, not all possible underlying correlations in the local 74 

conductance distribution have been investigated. It is known that certain fractal correlation 75 

structures in the local conductances can reduce the exponent associated with the conductivity, or 76 

reduce the fractal dimensionality of the percolation backbone, (Sahimi and 77 

Mukhopadhyay,1996), but there was no corresponding effect noted on the tortuosity or optimal 78 

paths exponent. Physical arguments suggest that positive correlations will tend to shorten paths, 79 

reducing tortuosity, in accord with the general result that making all conductance magnitudes 80 

equal reduces the tortuosity of connected paths.  Consequently, one might ask whether negative 81 

correlations could lengthen paths. In any case, calling the scaling exponent, γ, as above, we 82 

therefore find that known  results from percolation theory constrain its values to be, 1.13 <  γ < 83 

1.21. It should be emphasized here that the precision of the numerical calculations of these 84 

exponent values by Sheppard et al., (1999) exceeded all other attempts by at least an order of 85 

magnitude. These it appears that two possible endpoints for the application of percolation theory 86 

to the formation of river networks, generated from homogeneous and heterogeneous systems, 87 



respectively, constrain observed values of Hack’s exponents reasonably well.  How could they 88 

be realized in nature, or in landscape models? 89 

One can start from an initially homogeneous landscape, and allow stream incision 90 

through random headward erosion, analogous to the processes treated in early landscape 91 

evolution models (Willgoose et al., 1991), which generate hierarchical structures from random 92 

chance associated with rainfall magnitude variability. A connected path with the lowest 93 

dissipation (shortest length) will soon acquire the highest flow, through channel erosion 94 

feedbacks. Thus, once a river makes a random choice, the enhanced erosion power from the 95 

stream reinforces the initial random choice. 96 

The optimal path exponent describes the tortuosity of a channel, when the channel is 97 

determined by a global optimization of the flow path in a heterogeneous substrate, and could not 98 

be a simple product of headward erosion, which might produce only a local optimization. In such 99 

a case geological constraints from varying erodibility can dominate as channels extend either 100 

upward, by headward erosion, or downward, (e.g., by overtopping of sills). 101 

Using the above result that γ = 2β, we find for Hack’s (1957) original result, l = L
1.2

.  The 102 

range quoted by Maritan et al. (1996), 0.57  <  β  < 0.6 generates 1.14  <  γ < 1.20. The predicted 103 

range of tortuosity exponent values, γ, 1.13 <  γ < 1.21, generated by percolation theory appears 104 

in accord with the observed range of values, and to be slightly larger, consistent with interpreting 105 

this range as bounds on observed values. 106 

Note that, while e.g., Willemin (2000) found a wider range of β (0.5 to 0.7) than did Gray 107 

(1961), these values were for limited statistics (as small as 11 data points). Although this range is 108 

wide, compared with our predictions, when all statistics were put together (Willemin’s figure 11) 109 

the resulting value of β was 0.58. Further, individual values did increase monotonically with 110 



increasing geologic heterogeneity. Northwestern Iowa, in the middle of the North American 111 

craton produced 0.5, New York, 0.64, and coastal Oregon, in a region of active tectonics, 0.7. 112 

Finally, the range of values for β quoted by Gray (1961) arose from his consideration of studies 113 

over different regions with distinct terrain; uncertainty in a given region was reported in the 114 

variation of the numerical prefactor, rather than the exponent. 115 

4. Conclusions 116 

 Percolation predictions generate a range of exponents consistent with those 117 

reported in Hack’s law, including the tendency for the largest exponent values to 118 

occur in geologically heterogeneous environments. 119 

 The statistical nature of percolation theory is in accord with the tendency of the 120 

spread in Hack’s exponent values to diminish with increasing sample size, 121 

 The source of the tortuosity in the “optimal paths” of lowest energy dissipation is 122 

in general accord with the “feasible optimality” (Rigon et al., 1998) proposed to 123 

explain Hack’s law. 124 
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