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Abstract 12 

 13 

Percolation theory can be used to find water flow paths of least resistance. The application of 14 

percolation theory to drainage networks allows identification of the range of exponent values that 15 

describe the tortuosity of rivers in real river networks, which is then used to generate the 16 

observed scaling between drainage basin area and channel length, a relationship known as 17 

Hack’s law. Such a theoretical basis for Hack’s law allows interpretation of the range of 18 

exponent values based on an assessment of the heterogeneity of the substrate. 19 
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1. Introduction 22 

River networks display complex organization as documented in numerous studies. This 23 

work addresses but one of them. In particular, the relationship between drainage basin area and 24 

river length is non-trivial. In Euclidean geometry the basin area, A, would be proportional to the 25 

square of the river length, l, i.e., l should be proportional to A
1/2

. In actuality, as determined by 26 

Hack (1957), this relationship is  27 

      

with the value of β approximately 0.6. Later investigations did not always return the identical 28 

value of β. Nevertheless, Maritan et al., (1996) consider the value of β to be well constrained and 29 

refer to a study of Gray (1961) as having established that “the accepted values for the exponent 30 

[β] are in the range 0.57 to 0.6.” 31 

Hack (1957) (page 65) asserts that the relationship was a consequence of the lengthening 32 

of drainage basins with increasing size. But Montgomery and Dietrich (1992) compare straight-33 

line basin length, L, to A over seven orders of magnitude of length scale and find precisely L = 34 

A
0.5

. That result allows stream length to be expressed in terms of the straight line basin 35 

dimension, l = A
β
 = L

γ
 = L

2β
, so that γ = 2β. The exponent γ > 1then defines the tortuosity 36 

(sometimes known as sinuosity) of the stream path through the drainage basin. 37 

Hack’s law explanations have been sought in fractal (Tarboton et al., 1988; Maritan et al., 38 

1996), constructal (Reis, 2006) and “feasible optimality” (Rigon et al., 1998) theories. Fractal 39 

theories produce the required self-similar drainage basins (Peckham, 1995) as well as increasing 40 

stream sinuosity downstream. I suggest that Hack’s law can be understood using percolation 41 

theory (Stauffer and Aharony, 1994) because 1) the fractal structure of the percolation cluster 42 



generates values for γ that constrain the data for β appropriately, and 2) it exploits the concept 43 

that water flows along paths of minimal resistance, as in the subsurface also (Hunt et al., 2014). 44 

2. Theory 45 

There are two distinct applications of percolation theory to flow or conduction problems, 46 

and these two applications are those that provide the bounds to Hack’s exponent values. The 47 

more familiar application is to a binary system, where, e.g., bonds either connect neighboring 48 

sites (which in the simplest case are located on a lattice, or grid), or they don’t. If enough such 49 

neighboring sites are connected, a continuous path of interconnected bonds spans the system. 50 

This is denoted the percolation threshold. The shortest distance across the system within this 51 

connected cluster is called the chemical path length (Porto et al., 1997). Since all bonds have 52 

equal resistance, the shortest flow path has also the lowest resistance and optimal dissipation.  53 

The second possibility is a system, in which bonds of varying resistance connect each 54 

pair of neighboring sites. When the system is strongly heterogeneous, i.e., when the distribution 55 

of the natural logarithm of the resistances has variance, σ
2 

 >> 1, the proper application of 56 

percolation theory is to find the path of least cumulative resistance. Quantification of this process 57 

equates an integral over the local conductance distribution, from a “critical” value, to the largest 58 

value, with the percolation threshold (Pollak, 1972). This particular method became known as 59 

“critical path analysis,” or CPA. The subnetwork so defined is precisely at the percolation 60 

threshold (Stauffer and Aharony, 1994). However, the most interesting path across this system is 61 

not the shortest, but the optimal path, which provides the least energetic cost in a strongly 62 

heterogeneous network (Lopez et al., 2005). Since the optimization is not for length, but for 63 

energy costs, the path is longer than in a homogeneous system, meaning that its tortuosity 64 

exponent is larger. Nevertheless, the chemical path length in a homogeneous system is the 65 



analogue of the optimal path length in a heterogeneous system, because the shortest path in a 66 

system with identical links also represents the path of minimum energy dissipation. 67 

River paths above the Earth’s surface are obviously impossible, and considering the 68 

orders of magnitude slower subsurface flow rates, we can also neglect interchanges between 69 

surface and subsurface as part of the river flow network, meaning that all hydrologic connections 70 

are restricted to the Earth’s surface. This lack of alternate paths above or below the surface 71 

makes two dimensional (2D) connectivity and universality relevant, regardless of the best 72 

particular description of the roughness of the Earth’s surface. In two dimensions, the chemical 73 

path length scales with the system size (Sheppard et al., 1999), L as L
1.13

, but the optimal path 74 

length scales with system size as L
1.21

, and does not depend on the particular percolation model. 75 

Calling the scaling exponent, γ, as above, we therefore find that percolation theory constrains its 76 

values to be, 1.13 <  γ < 1.21. It should be emphasized here that the precision of the numerical 77 

calculations of these exponent values by Sheppard et al., (1999) exceeded all other attempts by at 78 

least an order of magnitude, and these values are not best viewed as “empirical estimates.” These 79 

are thus two possible endpoints for the application of percolation theory to the formation of river 80 

networks, and are generated from homogeneous and heterogeneous systems, respectively.  How 81 

could they be realized in nature, or in landscape models? 82 

One can start from an initially homogeneous landscape, and allow stream incision 83 

through random headward erosion, analogous to the processes treated in early landscape 84 

evolution models (Willgoose et al., 1991), which generate hierarchical structures from random 85 

chance associated with rainfall magnitude variability. A connected path with the lowest 86 

dissipation (shortest length) will soon acquire the highest flow, through channel erosion 87 



feedbacks. Thus, once a river makes a random choice, the enhanced erosion power from the 88 

stream reinforces the initial random choice. 89 

The optimal path exponent describes the tortuosity of a channel, when the channel is 90 

determined by a global optimization of the flow path in a heterogeneous substrate, and could not 91 

be a simple product of headward erosion, which might produce only a local optimization. In such 92 

a case geological constraints from varying erodibility can dominate as channels extend either 93 

upward, by headward erosion, or downward, (e.g., by overtopping of sills). 94 

Using the above result that γ = 2β, we find for Hack’s (1957) original result, l = L
1.2

.  The 95 

range quoted by Maritan et al. (1996), 0.57  <  β  < 0.6 generates 1.14  <  γ < 1.20. The predicted 96 

range of tortuosity exponent values, γ, 1.13 <  γ < 1.21, generated by percolation theory appears 97 

to differ by less than 1% from the observed range of values, and to be slightly larger, consistent 98 

with interpreting this range as bounds on observed values. 99 

Note that, while e.g., Willemin (2000) found a wider range of β (0.5 to 0.7) than did Gray 100 

(1961), these values were for limited statistics (as small as 11 data points). Although this range is 101 

wide, compared with our predictions, when all statistics were put together (Willemin’s figure 11) 102 

the resulting value of β was 0.58. Further, individual values did increase monotonically with 103 

increasing geologic heterogeneity. Northwestern Iowa, in the middle of the North American 104 

craton produced 0.5, New York, 0.64, and coastal Oregon, in a region of active tectonics, 0.7. 105 

Finally, the range of values for β quoted by Gray (1961) arose from his consideration of studies 106 

over different regions with distinct terrain; uncertainty in a given region was reported in the 107 

variation of the numerical prefactor, rather than the exponent. 108 

4. Conclusions 109 



 Percolation predictions generate the range of exponents observed in Hack’s law, 110 

including the tendency for the largest exponent values to occur in geologically 111 

heterogeneous environments. 112 

 The statistical nature of percolation theory is in accord with the tendency of the 113 

spread in Hack’s exponent values to diminish with increasing sample size, 114 

 The source of the tortuosity in the “optimal paths” of lowest energy dissipation is 115 

in general accord with the “feasible optimality” (Rigon et al., 1998) proposed to 116 

explain Hack’s law. 117 

References 118 

Gray, D. M., 1961, Interrelationships of watershed characteristics, J. Geophys. Res. 66 1215-119 

1223. 120 

Hack, J.T., 1957. Studies of longitudinal profiles in Virginia and Maryland. USGS Professional 121 

Papers 294-B, Washington DC, pp. 46–97. 122 

Hunt, A. G., R. P. Ewing, and B. Ghanbarian, 2014, Percolation Theory for Flow in Porous 123 

Media, 3
rd

 edition, Springer, Berlin. 124 

Lopez, E., S. V. Buldyrev, L. A. Braunstein, S. Havlin, and H. E. Stanley, Possible connection 125 

between the optimal path and flow in percolation clusters, Phys. Rev. E 72, 056131 126 

_2005_ 127 

Maritan, A., A. Rinaldo, R. Rigon, A Giacometti, and I. Rodriguez-Iturbe, 1996, Scaling laws for 128 

river networks, Phys. Rev. E 53(2): 1510-1515. 129 

Montgomery, D. R., and W. E. Dietrich, 1992, Channel initiation and the problem of landscape 130 

scale, Science, 255 826-830. 131 



Peckham, S. D., 1995, New results for self-similar trees with applications to river networks, 132 

Water Resour. Res. 31 (4) 1023-1029. 133 

Pollak, M., 1972, A percolation treatment of dc hopping conduction, J. Non Cryst. Solids, 11: 1–134 

24, doi:10.1016/0022-3093(72)90304-3. 135 

Porto, M, A. Bunde, S. Havlin, and H. E. Roman, 1997, Structural and dynamical properties of 136 

the percolation backbone in two and three dimensions, Phys. Rev. E 56: 1667-1675 137 

Reis, A. H., 2006, Constructal view of scaling laws of river basins, Geomorphology 78: 201–138 

206.  139 

Rigon, R., I. Rodriguez-Iturbe, and A. Rinaldo, 1998, Feasible optimality implies Hack’s law, 140 

Water Resour. Res. 34 (11) 3181-3189. 141 

Sheppard, A. P., M. A. Knackstedt, W. V. Pinczewski, and M. Sahimi, 1999, Invasion 142 

percolation: new algorithms and universality classes, J. Phys. A: Math. Gen. 32: L521-143 

L529. 144 

Stauffer, D. and A. Aharony, 1994, Introduction to Percolation Theory, 2
nd

 edition, Taylor and 145 

Francis, London. 146 

Tarboton, D. G., R. L. Bras, I. Rodriguez-Iturbe, I, 1988, The fractal nature of river networks, 147 

Water Resour. Res. 24: 1317-1322. 148 

Willemin, J. H., 2000, Hack’s law: Sinuosity, convexity, elongation, Water Resour. Res. 36 (11) 149 

3365-3374. 150 

Willgoose, G., R. L. Bras, and I. Rodriguez-Iturbe, 1991, A coupled channel network growth and 151 

hillslope evolution model. 2. Nondimensionalization and applications, Water Resour. 152 

Res. 27 (7) 1685-1696. 153 


