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Abstract. Several studies have been devoted to dynamic and statistical downscaling for analysis of

both climate variability and climate change. This paper introduces an application of artificial neural

networks (ANN) and multiple linear regression (MLR) by principal components to estimate rainfall

in South America. This method is proposed for downscaling monthly precipitation time series over

South America for three regions: the Amazon, Northeastern Brazil and the La Plata Basin, which is5

one of the regions of the planet that will be most affected by the climate change projected for the

end of the 21st century. The downscaling models were developed and validated using CMIP5 model

out- put and observed monthly precipitation. We used GCMs experiments for the 20th century (RCP

Historical; 1970-1999) and two scenarios (RCP 2.6 and 8.5; 2070-2100). The model test results

indicate that the ANN significantly outperforms the MLR downscaling of monthly precipitation10

variability.

1 Introduction

The forecasting of meteorological phenomena is a complex task. The mathematical, statistical, and

dynamic methods developed in recent decades help address the problem, but there is still a need

to investigate new techniques to improve the results. One of these techniques is statistical down-15

scaling, which involves the reduction of the model’s spatial scale. Downscaling techniques can be

divided into two broad categories: dynamic and statistical. Dynamic techniques focus on numerical

models with more detailed resolution, while statistical (or empirical) techniques use transfer func-

tions between scales. Currently, numerical weather prediction (NWP) models can forecast various

meteorological variables with acceptable accuracy (Ramírez, 2006).20

Specifically, rainfall is of great interest, both for its climatic and meteorological relevance and

direct effect on agricultural output, hydropower generation and other important economic factors.

However, it is one of the most difficult variables to forecast, because of its inherent spatial and
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temporal variability (Wilson, 2002; Antolik, 2000). For this reason, the temporal and spatial scales

involved are not yet solved satisfactorily by the available numerical models (Olson, 1995).25

Ramos (2000), studying artificial neural networks (ANN) and multiple linear regression (MLR),

found that the neural networks method performed better than linear regression, although both showed

good performance for monthly and seasonal rainfall. Ramírez (2005), using observed daily rainfall

in the São Paulo region, found that ANN outperformed to LMR, which showed a high bias for

days without rain. Ramírez (2006) analyzed daily rainfall in Southeastern Brazil and concluded that30

the ANN method tended to predict moderate rainfall with greater accuracy during austral summer

compared to ETA model forecasts. Mendes (2010) reported that the daily rainfall in the Amazon

Basin is better represented by ANN than autocorrelation models.

In this context, the aim of this study is to conduct a statistical downscaling to estimate rainfall

over South America, based on some models used in the fifth report of the IPCC (Intergovernmental35

Panel on Climate Change), by applying artificial neural networks and multiple linear regression

using principal components.

2 Data and Methods

2.1 Data

We used monthly precipitation simulations for the austral summer (December - January - Febru-40

ary) and winter (June - July - August) generated by ten models (Table 1) from the CMIP5 project

(Coupled Model Intercomparison Project 5th Phase), obtained from the Earth System Grid Feder-

ation (ESGF) of the German Climate Computing Center (http://ipcc-ar5.dkrz.de) and the Program

for Climate Model Diagnosis and Intercomparison (http://pcmdi3.llnl.gov). All model simulations

for the 20th century were compared with the precipitation data of the CRU TS 3.0 (Mitchell, 2005),45

produced by the Climatic Research Unit (CRU) - University of East Anglia (UEA). These data cover

the period from 1901 to 2005 and have spatial resolution from 0.5◦ x 0.5◦. We used climate simula-

tions for the 20th century (historical) in the 1970-1999 period, and projections for the 21st century

(Representative Concentration Pathways - RCP 2.6 and 8.5), for the period 2070-2099, as defined

by Moss (2010).50

Our focus on South America is because it is one of the planet’s regions that will be most af-

fected by the climate change projected for the end of the 21st century (Marengo, 2010). According

to Magrin (2014), significant trends in precipitation and temperature have been ob- served in South

America (SA). In addition, changes in climate variability and in extreme events have severely af-

fected the region. The three sub-regions evaluated in South America were defined according to the55

precipitation regime: the Amazon (AMZ), Northeastern Brazil (NEB), and the La Plata Basin (LPB)

(Figure 1).
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2.2 Methods

2.2.1 Artificial Neural Networks (ANN)

An ANN is a system inspired by the operation of biological neurons with the purpose of learning60

a certain system. The construction of an ANN is achieved by providing a stimulus to the neuronal

model, calculating the output and adjusting the weights until the desired output is achieved. An entry

is submitted to the ANN along with a desired target, a defined response for the output (when this is

the case, the training is regarded as supervised). An error field is built based on the difference be-

tween the desired response and the output of the system. The error information is used as feedback65

for the system, which adjusts its parameters in a systematic way, in other words, the backpropagation

error algorythm is used to train the network. According to Alsmadi et al. (2009) the backpropaga-

tion architecture is the most popular, effective, and easy to learn model for complex, multilayered

networks. This network is used more than all others combined. This algorithm has a first phase with

a functional propagation signal (feedforward) and a second phase with the backpropagation of the70

error (backpropagation).

In the first phase, the functional signal based on the inputs propagates through the network until

generating an output, with the weights of synapses remaining fixed. In the second phase, the output

is compared with a target, producing an error signal. The error signal propagates from the output to

the input and the weights are adjusted in such a way as to minimize the error. The process is repeated75

until the performance is acceptable. As such, the performance of the ANN is strongly dependent on

the data source.

A first part of the data is used for training, the second is used for cross- validation, and the third

part is used for testing. The architecture of the ANN used in the present study can be found in Figure

2. It consists of an input, a hidden layer and an output layer. The number of intermediate units was80

obtained through trial and error. During the training, the performance of the ANN is also assessed

within the validation set.

The structure of the ANN used here involves training of 11 predictors (10 outputs of the models

plus the observation data) as input to the network, and the best network performance is selected.

We therefore expect that the ANN will be able to provide more reliable values (through the error85

analysis between the simulated values) than when using only climate models.

2.2.2 Multiple Linear Regression using Principal Components

Multiple linear regression (MLR) is a statistical technique that consists of finding a linear relation-

ship between a dependent (observed) variable (and more than one independent variable (outputs of

the GCMs). A multiple regression model can be represented by the following equation:90

Yi = a+ b1X1 + b2X2 + · · ·+ bmXm +C, (1)
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Where Yi is the dependent variable, X1, X2, · · · , Xm the independent variables, a is the intercept,

b1,b2 and bm are the multiple regression coefficients, to be estimated by the least squares method

(Wilks, 1995), and C is the error term.

In spite of their obvious success in many applications, MLRs present multicollinearity when em-95

ployed with climatic variables. In this regard, the parameter estimation errors can be incorrectly in-

terpreted Leahy (2000). To resolve this problem, we used principal components (PCs). This method

seeks to reduce the number of variables through orthogonal transformations, and to remove the mul-

ticollinearity of the independent variables. The PCs of the explanatory variables are therefore a new

set of variables with the same information as the original variables, but uncorrelated.100

The Multiple Linear Regression is commonly used in various research areas, and is widely ac-

cepted by the scientific community. The Artificial Neural Networks are still being inserted in science,

especially when it comes to climate studies. Our intention is to show advantages of using Artificial

Neural Networks to the weather. The advantages of the Artificial Neural Networks stands out: The

nonlinearity inherent Networks that allows this technique can perform functions that a linear pro-105

gram (such as Multiple Linear Regression) can not. In addition, a neural network can be designed to

provide information not only about which particular pattern select, but also on the confidence in the

decision.

3 Results and Discussion

3.1 Validation of the ANNs110

After using the precipitation simulations for the period 1970-1999 with the ANNs, we obtained

a final error after a number of interactions, which ranged from 1 to 600 (Figure 3). One of the

difficulties of using ANNs consists of identifying the best stopping point for training Haykin (2001),

because the training error starts out with a maximum value, decreases rapidly and then levels off,

indicating there is no more error to correct. In the summer, the network became stable more rapidly,115

indicating that the GCMs employed converge to the same pattern of precipitation.

With respect to winter, the networks remained unstable for a longer time before finding the mini-

mum error. The NEB region should be highlighted, which required the largest number of iterations,

around 600. This is possibly related to the greater variability of rainfall in this season (Figure 3).

According to Villanueva (2011), it is assumed that the three sets (training, validation and testing)120

contain independent samples, and that they are well capable of representing the problem being ad-

dressed. One should therefore expect that good performance on the validation set will imply good

performance of the testing set. In this study, the validation values were closest to the test values in

summer.
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3.2 Validation of the MLR by PC125

To validate the MLR, the following assumptions need to be met: i) the residuals must have random

distribution around mean zero (homoscedasticity); ii) the residuals should have a normal distribution;

and iii) variance must be homogeneous (Silva, 2014).

Figures 4 and 5 show that the residuals versus adjusted values meet the assumption of homoscedas-

ticity. With respect to the QQ-plot, the quantiles of the residuals versus the normal distribution in-130

dicate that all regions present normality in the residuals. Given that the closer the residuals are to

the line, the closer they are to having normal distribution. The employed data therefore fit the MLR

by the PC model. Based on the PC analysis (Table 2), one can see that in summer for the AMZ

region, the accumulated proportion explains around 77% in NEB and 80% in PC6, while in winter,

the PC1 of the AMZ explained 71% and PC3 explained 72% in NEB, thus representing the greatest135

variability of precipitation in these regions. In general, one can observe that a smaller number of cli-

mate models were required in winter to capture the variance of precipitation in these regions. Similar

behavior of PCs in both seasons stands out in the LPB region, which may be due to the failure of

GCMs to capture the variance of precipitation in this region.

Tables 3 and 4 show the Pearson’s correlation coefficients at significance level of 5% between the140

ANNs and the observed data, and between the MLR by PC and observed data, respectively. One can

see that in both downscaling methods used, the highest correlations occur in winter in all regions

under study, indicating that the models are better able to represent the variability of precipitation

during this season.

Ramírez (2006) performed statistical downscaling for the precipitation forecast for the Southeast145

of Brazil, using ANNs and MLR with the ETA model. The results suggested that the precipitation

forecasts using ANNs performed better in winter than in summer, since the synoptic forcing is more

pronounced and the deep convective activity is less common. One can also observe that in the regions

NEB (ANN x Obs) and LPB (MLR x Obs), the correlations of 38 and 20%, respectively, were not

statistically significant. The lowest correlation occurred in the LPB region. Seth (2010) stated that150

the mean of the set of models reveals weaker moisture transport east of the Andes, which may be

one of the factors that induce underestimation of precipitation in this region.

3.3 Downscaling scenarios

Table 5 presents the results of the monthly precipitation simulation for the end of this century (2071-

2100) based on the ten GCMs described previously in the RCP scenarios 8.5 and 2.6, in relation to155

the reference period 1971-1999 (observation) for the two downscaling methods.

In both scenarios, and employing both ANNs and MLR, an increase of precipitation in the sum-

mer and a decrease in the winter can be observed. These results corroborate the findings of Mendes

(2010), who used ANNs and autocorrelation to study changes in monthly precipitation for the Ama-
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zon Basin in scenarios A2, A1B and B1, derived from five models of the CMIP3, used in the IPCC160

AR4. The authors found an increase in precipitation in the summer months and a reduction in winter.

In the NEB region (Table 5), an increase of precipitation in summer of around 30% was observed.

With respect to winter, one can see a reduction of 40% in the higher forcing scenario (RCP 8.5),

and of 10% (RCP2.6) in the lower climate forcing. The IPCC AR4 revealed CMIP5 precipitation

projections for end of century (2081?2100) of increase precipitation from October to March over165

the southern part of Southeast Brazil and the La Plata Basin. From April to September, the CMIP5

ensemble projects precipitation increases over the La Plata Basin and northwestern SA near the coast

(Stocker, 2013). According to Magrin (2014) seasonal scales, rainfall reductions during winter and

spring in southern Amazonia may indicate a late onset of the rainy season in those regions and a

longer dry season. The changes are more intense for the late 21-st century and for the RCP8.5 when170

compared to scenario RCP 2.6, as can be seen in Table 5.

4 Conclusions

This paper investigated the applicability of artificial neural networks and multiple linear regression

analysis by principal components, as temporal downscaling methods for the generation of monthly

precipitation over South America (for current years and future scenarios). Both the ANN and MLR175

methods provided good fit with the observed data. This indicates that ANNs are a viable alternative

for the modeling of precipitation in time series. ANNs can be compared with the statistical model,

and this indicates that the networks are a potentially competitive tool.

The future scenarios used (RCP 2.6, lower climate forcing, and RCP 8.5, higher climate forc-

ing) indicate an increase in precipitation in summer and a reduction in precipitation during winter180

according to both the methods used.

In general, the results showed that the use of ANNs produced more accurate results than MLR by

PC, which can be attributed to the fact that ANNs perform tasks that a linear program is unable to

do. In addition, one of the advantages of ANNs is their capacity for temporal processing, and thus

their ability to incorporate not only concurrent, but also several predictive values, as inputs without185

any additional effort.
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Figure 1. Illustration of the study areas of the defined regions.
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Figure 2. Structure of the artificial neural network.

Figure 3. Absolute error as a function of the number of iterations, AMZ (green), NEB (red) and LPB (black).

Continuous lines represent the summer period for each region and the dashed lines represent winter.
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Figure 4. Residuals x Fitted Values and Theoretical Quantiles, for the summer. (a) AMZ, (b) NEB, and (c)

LPB..
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Figure 5. The same as in Fig. 4, but for winter.
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Table 1. List of models from the CMIP5 dataset used in this study.

Acronym Model Resolutions

ACCESS ACCESS1.0 1.3◦ x 1.9◦

CCSM CCSM4 0.9◦ x 1.3◦

CNRM CNRM-CM5 1.4◦ x 1.4◦

CSIRO CSIRO-Mk3-6-0 1.9◦ x 1.9◦

EC-EARTH EC-EARTH 1.1◦ x 1.1◦

HadGEM-ES HadGEM2-ES 1.3◦ x 1.9◦

INM INMCM4 1.5◦ x 2.0◦

MPI MPI-ESM-LR 1.9◦ x 1.9◦

MRI MRI-CGCM3 1.1◦ x 1.1◦

NorESM NorESM1-M 1.9◦ x 2.5◦
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Table 3. p-value and Pearson’s correlation coefficient at the level of significance of 5% between the ANNs and

observed data from the CRU in all regions under study.

p-value Correlation coefficient

AMZ NEB LPB AMZ NEB LPB

Summer 1.60e−07∗ 0.08 0.01∗ 0.61 0.38 0.18

Winter 5.28e−10∗ 1.02e−10∗ 1.20e−06∗ 0.77 0.69 0.49

∗Significance 5%.

Table 4. p-value and Pearson’s correlation coefficient at the level of significance of 5% between the MLR by

PCs and observed data from the CRU in all regions under study.

p-value Correlation coefficient

AMZ NEB LPB AMZ NEB LPB

Summer 1.35e−10∗ 2.69e−04∗ 0.06 0.52 0.27 0.20

Winter 1.44e−18∗ 9.56e−14∗ 0.00∗ 0.62 0.60 0.33

∗Significance 5%.

Table 5. Change in monthly precipitation in terms of an increase or decrease by the end of this century

(2071-2100) in the scenarios RCP 8.5 and 2.6, in relation to the reference period 1971-1999 (observation),

in mm.month−1 and percentage.

RCP 8.5 RCP 2.6

ANN(mm/%) MLR (mm/%) ANN(mm/%) MLR (mm/%)

AMZ
Summer 20.0 / 14.1 23.1 /16.5 18.8 / 13.3 22.4 / 15.8

Winter -9.3 / -12.2 -9.9 / -13.9 -0.5 / -0.7 -3.1 / -4.9

NEB
Summer 55.2 / 36.2 47.1 / 30.9 48.0 / 33.1 40.0 / 27.5

Winter -6.6 / -42.7 -6.9 / -44.5 -1.81 / -9.41 -2.06 / -10.7

LPB
Summer 7.26 / 5.63 5.7 / 4.42 5.56 / 4.4 4.01 / 3.15

Winter -2.79 / -4.17 -3.67 / -5.48 -3.09 / -4.63 -3.09 / -4.56
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