
Referee #1: 
 
The paper describes a new method to calculate bred vectors in reconstructed time series. 
The method is original and it is compared the usual procedure to calculate bred vectors 
for the Lorenz model. The paper is clear and well written and in my opinion it deserves 
publication as it is now. 
 
We thank the referee for taking the time to read our manuscript and for the 
recommendation that the paper is ready for publication in Nonlinear Processes of 
Geophysics. 
 
 
Referee #2: 
 
 
The authors present a purely data driven method to extract from a given time sieres 
dynamical information about the underlying dynamical system. To this extend they 
combine the bred vector method with the time delay embedding method to construct 
the phase space of the dynamical system. Within this reconstructed phase space pairs 
of nearby trajectories between a control and an initially nearby trajectory are piecewise 
followed over a specified time interval to measure the final separation distance. At this 
point the bred vector idea comes into play. After a rescaling of the final separation 
vector a local search in phase space for trajectories close to the final control phase 
space point shifted by the rescaled final separation vector of the previous iteration is 
initiated. After a proper identification to avoid points on the control trajectory, the next 
piecewise tracking is initiated. The growth rates at the end of each interval are the 
basic information derived from the analysis. The method is applied to the Lorenz 1963 
L63 model. Three set ups are compared: (1) the standard breeding using the explicit 
L63, the proposed model, and an intermediate one where the time delay embedding is 
not used in favor of the original three dim L63 structure. The methods are compared by 
monitoring the local growth rates along the control trajectory and using positive large 
values as predictors for the regime shifts between the two leaves of the L63 attractor. 
With respect to this metric the new method performs reasonably well and the authors 
conclude that the new method provides a purely data-driven way to diagnose regime 
shifts for dynamical systems not well or not at all described by a set of equations. 
 
In principle the paper is worth to be published in NPGP. It contains new information 
e.g. the proposed method and offers (some) help in interpreting the results. However, 
there is no clear conclusion or message especially with respect to data requirements 
and/or the dimensionality of the dynamics. The authors simply state that they ensured 
sufficient data density in three dimensions. But it would be worth to see how the 
contingency table statistics degrade when the actual data density is reduced. Although it 
is only a result for the idealized L63 it can give hints about the performance using real 
data. Another nice-to-know information would be on the frequency distribution 
(estimated probability density) of the calculated growth rates for the three test beds. This 
would again give more confidence into the new method than the simple thresholding of 



looking at large growth rates. So my major suggestion before publication of this paper is 
that the authors should provide a clear message to the reader and potential user: is it 
worth to apply the method to other types of (real) data because the method is generic or 
are the results specific to the chosen setup? 
 
We thank the referee for taking the time to review our manuscript and provide us with 
these thoughtful comments. We appreciate the suggestion that our manuscript is 
appropriate for publication in this journal. Below we address the points raised. 
 
The key objective of our paper is to demonstrate that the breeding vector technique can 
be used to determine the stability of low-dimensional dynamical systems using the time 
series data of one of its variables. For this proof-of-principle, a simple and well-known 
Lorenz63  is used and the parameters used in the analysis are identified.  It is expected 
that this technique may not be effective for some systems and data sets, but a 
comprehensive analysis is needed to address many related issues, including the case of 
data density. Like most early papers on a new technique, including Packard et al.(1980) 
that showed time delay embedding using well-known systems, the emphasis in the paper 
is to demonstrate the new technique. Further studies on different systems and data sets 
would, over time, provide answers to the practical questions and the direct message to the 
reader is that the breeding technique for time series data works for the chosen well-
known system (Lorenz63) and thus shows promise as a new technique. 
 
The data density required for accurate results will depend on the individual system and 
the availability of data – including the sampling rate, the length of the time series, the 
time delay and dimension required for a proper embedding, and the recurrence time of 
the system. One way to visualize this is to look at a recurrence plot for the embedding 
time and dimension selected. To form this plot, the pairwise distance between each point 
in the dataset is computed. If this distance places the points within a neighborhood of 
given radius, a symbol is plotted at the corresponding location. This method depends on 
having segments of trajectories that lie near the control trajectory in question. Taking the 
desired initial magnitude of separation between the control and perturbed trajectory as the 
neighborhood radius, this is represented on the recurrence plot by diagonal segments of 
neighboring points. For a deterministic, nonlinear system, the trajectory will return to a 
given neighborhood given sufficient time. One can increase the density of the points 
covering the attractor by observing the time series for a longer time. On the recurrence 
plot this can be thought of as taking successively larger square segments. For shorter the 
duration of the time series, resulting in a data set with lower density, there are few 
neighboring trajectories within the specified radius. This means that it will be difficult to 
identify neighboring trajectories to serve as perturbations for the control trajectory. As 
the duration of the time series is increased, more neighboring trajectories within the 
specified radius become available and the contingency statistics improve. The density we 
selected was sufficient such that we were able to find analogues to our perturbed initial 
conditions that met our target perturbation size of $\alpha = 0.1$, on average.  
 
The application of this method to real data will require some knowledge of the 
characteristics of underling system and analysis of the properties of the time series. 



Applying the techniques of nonlinear time series analysis outlined in the referenced 
articles will allow one to assess an appropriate embedding and whether such an approach 
is suitable for the data in question.  Further, with the size limitations of  a brief 
communication, we felt it best to restrict our analysis to the Lorenz attractor. 
Applications of this and other similar techniques to more complicated real systems are in 
progress and be forthcoming in future publications.  
 
Referee #3: 
 
The authors of "Breeding vectors in the phase space reconstructed from time series data” 
presented an interesting approach to detect the behavior of breeding vectors using only a 
one-dimensional time series. The authors use the well known embedding technique to 
observe the growth rate and the spatial structure of perturbations starting from a fixed 
distance.  
 
The paper is interesting but I have two main issues:  
 
a) in a seminal work of Lyapunov exponents determination starting from one dimensional 
time series Brown, Bryant and Abarbanel, PRA 43, 2787 (1991) "Computing the 
Lyapunov spectrum of a dynamical system from an observed time series" the authors 
discuss in detail the importance to use two dimensions in computing the exponents. This 
is probably related to the choice of the integer $l$ discussed at page 1306. Please discuss 
the relation between the choice of this paper and that given by Brown et al. namely the 
first minimum in the mutual information. I think that the authors should discuss the effect 
of changing $l$ in their findings.  
 
 
 
b) The example given on the standard Lorenz model is, in my opinion, not sufficient. The 
authors should test their technique on more complicated models like, for example, the 
Lorenz 96 model where the system dimension is larger than 3 and the embedding 
technique becomes more difficult to be applied. After the authors address the two points I 
raised the paper can be considered for publication. 
 
We thank the referee for taking the time to review our manuscript and provide us with 
these thoughtful comments. We appreciate the recommendation that our paper be 
considered for publication and address the issues raised below. 
 
To address the first point, the exclusion of points along the control trajectory is simply to 
ensure that the growth of separation between the control and perturbed trajectories is due 
to the nonlinear dynamics of the system rather than displacements along the control 
trajectory, as Brown et al. discuss in the referenced paper. We based our estimation of the 
number of points to exclude on the estimate for the time delay for the x(t) data, which we 
obtained by the same method as Brown et al., i.e. the first minimum of the average 
mutual information function. This ensures that the neighboring points used as perturbed 
trajectories are nearby due to the structure of the attractor and not just correlated in time. 



As long as sufficiently many points are excluded that the nearest neighbor to the 
perturbation tends to lie along a different orbit from the control trajectory, the numerical 
value of l does not have much effect on the results.  
 
Brown et al (also the  review: Abarbanel et al. RMP 1993) address the issue of spurious 
exponents due the inaccuracies or local features in the reconstructed space. The analysis 
in our paper is on the largest Lyapunov exponent and the existence or nature of spurious 
exponents would not affect the conclusions of the paper.  
 
The main result of this paper is that the application of breeding to a reconstructed phase 
space without the use of a dynamical model is a viable data driven method. To achieve 
this in the brief communication we have  presented our results on the Lorenz63 model.  It 
is our hope that this paper will stimulate similar studies that explore the extension of this 
technique to other models and systems. We have applied similar techniques to those 
outlined here to real data and expect to present those in future publications. As a brief 
communication, it would not be possible to add additional results without altering the 
format of the article.  
 
 
Referee #4: 
 
Interactive comment on “Brief Communication: Breeding vectors in the phase 
space reconstructed from time series data” by Lynch et al. 
 
The authors proposed a new approach, i.e. the nearest-neighbor breeding, to model 
and predict sudden transitions in systems represented by time series data. Furthermore, 
they used the Lorenz-63 model to examine the validity of this method. The results 
show that the dynamical properties of the standard and nearest-neighbor breeding are 
similar. This validates the ability of this new approach to predict regime change in a 
dynamical system using the time series data of one variable. Thus, this has important 
implications. 
However, I think that the presentation needs to be improved. Here a list of points and 
questions should be addressed: 
 
We thank the referee for taking the time to review our manuscript and provide these 
thoughtful comments. We address each point below. 
 
1. Page 1304, line 15: The authors mentioned “the systems known to exhibit sudden 
regime changes in their data”. In fact, I am especially interested in these systems. In 
addition to magnetospheric substorms and geospace storms, are there any other 
systems known to exhibit sudden regime changes? As for the well-known phenomena 
such as the haze, rainstorm and thunderbolt, could the nearest-neighbor breeding be 
used to model and predict them? 
 
Our focus in the paper is on the demonstration of the breeding technique and the 
Lorenz63 model is used. Systems in nature that exhibit sudden changes, e. g.,  



magnetospheric substorms (see Vassiliadis et al. GRL 1991 for computation of the largest 
Lyapunov exponent for substorms ), are currently under study and we expect that the 
technique would be applicable to  many natural systems that exhibit regime changes – 
e.g. transitions from a quiet (near equilibrium) state to a disturbed or active state. The 
application of the techniques outlined in this article requires the system to have low 
dimensional underlying dynamics such that phase space trajectories lie onto an attractor. 
While the application to other systems is outside the scope of this article, we hope that 
others will follow and look into applying this method to these systems. The applicability 
of the technique the phenomena such as rainstorm etc. are of interest but requires detailed 
studies. 
 
2. Page 1305, lines 11-13: This sentence should be reformulated. It is not clear. 
 
Original sentence: Having defined the reconstructed phase space by the time-delayed embedding, the new 
approach to breeding is in essence a matter of selecting the perturbed trajectories that capture the unstable 
directions along the control. 
 
We will modify the sentence to read: Having defined the reconstructed phase space by 
the time-delayed embedding, the new approach to breeding is in essence a matter of 
selecting perturbed trajectories that diverge from the control trajectory along the unstable 
directions. 
 
3. Page 1306, line 2: The authors said “in order to avoid selecting nearest neighbors 
that are on the control trajectory”. Please explain the reasons. 
 
If nearest neighbors along the control trajectory are used to initiate the perturbed 
trajectory, the growth will be along the orbit and will not represent the nonlinear growth 
of diverging trajectories. By excluding a segment of the control trajectory near the point 
at the start of the breeding cycle, we take as our perturbations neighboring trajectories 
that may tend to diverge exponentially from the control trajectory via the nonlinear 
dynamics of the system. 
 
4. Page 1306, lines 1-4: Are there 2l+1 points to be excluded? 
 
We excluded the l+1 points centered around the point on the control trajectory. 
 
5. Page 1306, lines 7-8: “the density of the trajectory points must be high enough”. 
That is to say, the temporal resolution of the time series Dt should be sufficiently small. Is 
this right? 
 
It is important that the trajectory cover the attractor and that it do so densely enough that 
suitable analogues for perturbations can be found. The temporal resolution will certainly 
affect the density of points and the properties of the embedding and breeding, but the 
more important feature of the time series that contributes to adequate density is the 
duration of the time series.  Given sufficient time, systems like those suitable for this type 
of analysis will revisit neighborhoods of phase space arbitrarily frequently and within an 



arbitrarily small neighborhood. The radius of the neighborhood, or the size of the 
perturbation, will be limited in practice by the duration of the time series.  
 
 6. Page 1307, line 1: Is here “m = 3 and τ = 7” determined by the methods described in 
section 2 (Page 1305, lines 2-9)?  
 
Yes, we determined the dimension and time delay by looking at estimates of the 
correlation dimension and mutual information function respectively.  
 
7. Page 1307, line 17: The authors used the breeding window size n = 8 with Δt = 0.01 
and perturbation size α = 0.10 in all experiments. Then, what about the sensitivity of the 
results in this paper on n and α?  
 
We chose these parameters to make a direct comparison of our work to the results 
presented by Evans et al.  [Table coming] 
 
8. Page 1307, line 21: The authors said “excluding l = 6 adjacent points”. However, I 
think there should be 2l+1=13 points to be excluded. Am I right?  
 
We excluded l=6 points, three on either side of the control point.  
 
9. Page 1307, line 25: The authors said “The left column of Fig. 1 shows the growth 
rates along the respective controls in the three experiments”, but not mentioned the 
specific points. Are the points in the left column of Fig. 1 the control trajectory points? 
That is to say, do these points correspond to the time series data?  
 
The points in the left column are the control trajectory points for which bred vector 
growth rates were computed. They correspond exactly to the time series data. We will 
modify the text to clarify this point. 
 
10. Page 1308, line 18: The threshold value “1” seems to be unreasonable. According to 
Fig. 1(f), there are many red stars corresponding to the absolute value of x1 that is 
greater than 1. If ignoring all these stars, some information about the regime change may 
not be noted and used.  
 
The threshold value of 1 is for the minimum (maximum) value attained by the x variable 
for orbits in the positive (negative) regime. It is true that sometimes this method will miss 
a regime change or predict a regime change when none occurs as is indicated by the false 
alarm rate.  
 
11. Page 1309, lines 10-11: The first reason should be reformulated. I do not understand 
what you said.  
 
Original sentence: First, unlike the size of a particular variable, breeding can be tested in any dynamical 
model. 
 



We will modify the sentence to read: First, unlike threshold values of a particular 
variable, bred vector growth can be tested in any dynamical model.  
 
12. Page 1309, lines 17-19: For the time series data of variable x when t is smaller than 
10, the longer duration of the high growth rate does not indicate the next longer-lasting 
regime (Fig. 1d). Please clarify this phenomenon. 
 
If the system is continuous, there should be segments along the trajectory that have a high 
growth rate for bred vectors. Since we have discrete data, the distribution of points for 
which bred vectors are computed will not always capture the entire segment. We will 
increase the size of the figure so that it is easier to see that there are often several red 
stars, or high growth rate bred vectors, preceding a long duration regime change that are 
very close to one another.  
 
 
Modifications to the text: 
 
Page 1305, lines 11-13: Once the phase space has been reconstructed by the time-delay 
embedding, the new approach to breeding is in essence of matter of selecting perturbed 
trajectories that tend to grow along the unstable directions with respect to the control 
trajectory. 
 
Page 1307, line 26: The left column of Fig. 12 shows the points along the respective 
control trajectories for which bred vector growth rates were computed in each of the three 
experiments.  
 
Page 1308, lines 18-19: We note that we slightly modified the empirical rule for the 
experiments using nearest neighbor breeding, by excluding red stars when they occurred 
on orbits with extrema of x1 whose absolute value was greater than 1 as the trajectory 
approaches  x1 = 0, since they led to false alarms in the prediction of regime change. 
 
Page 1309, lines 10-11: First, unlike threshold values of a particular variable, bred vector 
growth can be tested in any dynamical model. For many systems, there will not be a 
correspondence between the numerical value of a particular variable and regime change. 
 
Figure 1 has been updated. 
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Abstract

Bred vectors characterize the nonlinear instability of dynamical systems and so far have
been computed only for systems with known evolution equations. In this article, bred vec-
tors are computed from a single time series data using time-delay embedding, with a new
technique, nearest-neighbor breeding. Since the dynamical properties of the standard and
nearest-neighbor breeding are shown to be similar, this provides a new and novel way to
model and predict sudden transitions in systems represented by time series data alone.

1 Introduction

Prediction of sudden regime changes in the evolution of dynamical systems is a challenging
problem. For systems with known dynamical models, such as the Earth’s atmosphere, sim-
ulated trajectories under judiciously chosen, finite-size perturbations can provide useful in-
formation regarding regime changes by detecting fast-growing instabilities along the model
representation of the system evolution, called the “control.” Breeding is a technique to gen-
erate an ensemble of such perturbations, developed for operational ensemble forecasting
of the numerical weather prediction (Toth and Kalnay, 1993, 1997; Kalnay, 2003), and the
resulting perturbations are called “bred vectors.” Evans et al. (2004) demonstrated that the
growth rate of the bred vectors could be used as a means of predicting the regime changes
in the chaotic Lorenz (1963) system (Lorenz, 1963). They found that the appearance of
high growth rate typically indicated that a regime change would occur upon completion of
the current orbit, and that the longer the duration of the high growth rate, the longer the next
regime would last.

Models of most natural systems like the Earth’s atmosphere are described by a very
large number of dynamical variables and thus are high dimensional. However, the variables
or degrees of freedom are nonlinearly coupled, and consequently in dissipative systems
the dimensionality of the phase space is significantly reduced. This is the basis for the time-
delay embedding method in the reconstruction of phase space (Packard et al., 1980; Tak-

2
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ens, 1981). The ability of this method to yield the dynamics inherent in observational data,
independent of modeling assumptions, has stimulated the modeling of dynamics using time
series data, and has led to the development of forecasting tools. For example, reconstruc-
tion of the dynamics of the Earth’s magnetosphere using time series data has led to low
dimensional models and forecasts of space weather (Sharma et al., 1993; Sharma, 1995).
The data-derived models of magnetospheric substorms and geospace storms (Vassiliadis
et al., 1995; Ukhorskiy et al., 2002; Valdivia et al., 1996) now provide near real-time fore-
casts using the solar wind data monitored by the ACE spacecraft at the first Lagrange point
(L1).

This paper presents a novel extension of the original breeding technique to the phase
space reconstructed from time series data using the time-delay embedding method. Be-
cause dynamic instabilities are intrinsically low dimensional (Patil et al., 2001), such an ex-
tension is an appealing approach for the systems known to exhibit sudden regime changes
in their data. The predictive capabilities of this new breeding technique are tested using
data taken from the chaotic Lorenz system (Lorenz, 1963).

2 Phase space reconstruction

To extend the breeding technique to a system represented by a time series x(t) at discrete
times t= t1, t2, . . . , tN , we first give a brief introduction of the time-delay embedding and
set the notation used in this study. The state of the system at ti in the reconstructed phase
space is defined by an m component vector:

xi = {x1(ti),x2(ti), . . . ,xm(ti)}, (1)

where xk(ti) = x(ti�⌧(k�1)�t) is the time-delay coordinate for k = 1, . . . ,m, ⌧ is the delay
time, and �t is the temporal resolution of the time series. The vectors xi specify the dy-
namical behavior inherent in the data in the form of a trajectory. The time-delay embedding
(Sauer et al., 1991; Abarbanel et al., 1993; Kantz and Schreiber, 1997) requires only two
parameters, viz. the dimension m and time delay ⌧ . Among the several techniques available

3
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for obtaining these parameters from the data, the convergence of the correlation among the
trajectories (Sauer et al., 1991; Abarbanel et al., 1993; Kantz and Schreiber, 1997) and the
minimum in the mean-square prediction error (Chen and Sharma, 2006) yield the optimum
values of m. The time delay ⌧ also depends on the correlations, and the minimum of the
mutual information function yields reliable values (Sauer et al., 1991; Abarbanel et al., 1993;
Kantz and Schreiber, 1997; Chen and Sharma, 2006).

3 Bred vectors in reconstructed phase space

Having defined the reconstructed phase space by the time-delayed embedding, the new
approach to breeding is in essence a matter of selecting the perturbed trajectories that
capture the unstable directions along the control

:::::::
diverge

:::::
from

::::
the

:::::::
control

:::::::::
trajectory

::::::
along

:::
the

::::::::
unstable

::::::::::
directions. Over a breeding cycle with window size n, the control starting from

xi evolves to xi+n and its neighbor (perturbed) xj to xj+n. The corresponding growth rate
of the bred vector is given by

gi =
1

n�t

ln
⇣
||�xf

i||/||�x0
i ||
⌘

(2)

where �x

0
i = xj �xi and �x

f
i = xj+n�xi+n are the initial and final perturbations of the

breeding cycle. To select the perturbed trajectory of the next breeding cycle around the
control starting from xi+n, we follow the spirit of the standard breeding in which the initial
perturbation is given by �x

0
i+n = ↵�x

f
i/||�xf

i||, i.e., the final perturbation of the previous
cycle is rescaled and bred as the new perturbation. Here the perturbation size ↵ is constant
for all breeding cycles. In the reconstructed phase space, however, the trajectory is defined
by discrete points, and the rescaled position xi+n+↵�x

f
i/||�xf

i|| may not be a trajectory
point. We thus search and select the nearest point xj⇤ and refer to the distance between
these two points as the displacement distance. In order to avoid selecting nearest neighbors
that are on the control trajectory, points xi+j±l immediately adjacent to xi+n for small l are
excluded from the search for xj⇤ so as to ensure that �x0

i+n = xj⇤ �xi+n captures the
4
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instability around the control. We call this technique the “nearest-neighbor breeding”. Like
the standard breeding, it involves two parameters, viz., the window size n and the target
perturbation size ↵. For successful applications of the nearest-nerighbor search, the density
of the trajectory points must be high enough that, on average, the displacement distance
in the nearest-neighbor search is small with respect to target initial perturbation size ↵ and
the correlation between �x

f
i and �x

0
i+n is nearly 1.

4 Results and discussion

To test whether the nearest-neighbor breeding shares with the standard breeding the ability
to predict regime changes in the reconstructed phase space, we use the 3-dimensional
Lorenz (1963) system (Lorenz, 1963) and generate a time series data set. Along with its
simplicity, this system possesses dynamical properties desirable for this study, namely, high
nonlinearity that manifests in a low dimensional attractor and chaotic transitions between
two regimes (Fig. 1). The model equations are given by:

dx

dt
= � (y�x)

dy

dt
=�xz+ rx� y (3)

dz

dt
= xy� bz

with the commonly used parameter values r = 28, b= 8/3, and � = 10. Forward integra-
tion of the model is performed using a fourth order Runge–Kutta with time step 0.01. To
reconstruct the phase space from a single time series x(ti) with the temporal resolution
�t= 0.01, we use the embedding dimension m= 3 and time delay ⌧ = 7, which corre-
spond to the time-scale of the mutual information function (Sauer et al., 1991; Abarbanel
et al., 1993; Kantz and Schreiber, 1997; Chen and Sharma, 2006). The reconstructed sys-
tem is a discrete set of trajectory points that exhibits the dynamical features of the attractor
(Sauer et al., 1991; Abarbanel et al., 1993; Kantz and Schreiber, 1997) as shown in Fig. 1c.
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The regime transitions are analyzed by performing and comparing the following three
breeding experiments. Experiment (a) is the standard breeding in the 3-dimensional model
phase space using Eq. (3) as in Evans et al. (2004). Experiment (b) is the nearest-
neighbor breeding applied to a discrete time series data in the model phase space, i.e.,
x̂i = {x(ti),y(ti), z(ti)}. This experiment reveals whether the nearest-neighbor breeding,
without any knowledge about the model equations, gives comparable results to the standard
breeding in the original model phase space. Finally, Experiment (c) is our new technique,
i.e., the nearest-neighbor breeding in the phase space reconstructed by the time-delayed
embedding of a single time series as in Eq. (1).

In all experiments, the growth rate gi is computed using the breeding window size n= 8
with �t= 0.01 and (targeted) perturbation size ↵= 0.10 over 10 000 total breeding cycles
after an initial spin-up to make sure that the trajectory has reached the attractor. To ensure
sufficient data density for the nearest-neighbor search in Experiments (b) and (c), the re-
spective data sets are constructed from 80 000 data points in the original phase space. By
excluding l = 6 adjacent points on the control trajectory from the nearest-neighbor search,
the average displacement distance and vector correlation between the standard and the
nearest neighbor breeding are 0.17 and 0.97 in Experiment (b); they are 0.12 and 0.98 in
Experiment (c).

The left column of Fig. 1 shows the growth rates
:::
the

::::::
points

:
along the respective controls

in
::::::
control

:::::::::::
trajectories

:::
for

::::::
which

::::
bred

:::::::
vector

::::::
growth

:::::
rates

:::::
were

::::::::::
computed

::
in

:::::
each

::
of

:
the three

experiments. The magnitudes of the growth rate are represented by colors using the same
empirical thresholds as in Evans et al. (2004): negative growth points (gi < 0) in blue, low
growth points (0 gi < 3.2) in green, medium growth points (3.2 gi < 6.4) in yellow, and
high growth points (gi � 6.4) in red. As shown in Evans et al. (2004) for the standard breed-
ing, all experiments show high growth at points concentrated in the regime transition re-
gion, while the regions with different growth rates are well separated. The nearest-neighbor
breeding,

:::::
both in the original (Fig. 1b) and

::
in

:::
the

:
reconstructed (Fig. 1c) phase spaces,

successfully captures the features found in the standard breeding (Fig. 1a), although the
separation between the different growth rates is less sharp. The right column of Fig. 1
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shows the time series of the first phase space coordinate (x) for the first 500 breeding cy-
cles for each of the three experiments. Note that, by construction, the first coordinate x in
phase space coincides with the first coordinate x1 in the embedded space.

As pointed out by Evans et al. (2004) and apparent in the right column of Fig. 1, high
bred vector growth rate, marked in red, is a very good predictor of regime change in the
standard breeding in the Lorenz model. Thus we test the predictive capacities of the bred
vectors for the regime changes in terms of the binary (YES-NO) forecasts based on the rule
suggested by Evans et al. (2004): the presence of a red star in the previous orbit renders
the regime change (YES), while the absence means the continuation of the current regime
(NO). We note that we slightly modified the empirical rule for the experiments using nearest
neighbor breeding, by excluding red stars when they occurred on orbits with extrema of x1
whose absolute value was greater than 1

::
as

::::
the

:::::::::
trajectory

::::::::::::
approaches

::::::
x1 = 0, since they

led to false alarms in the prediction of regime change.
Table 1 is the contingency table (Wilks, 1995) of the forecast/event pairs for the three ex-

periments, where individual forecasts (FCST) are made by the rule and the observed events
(OBS) are based on the actual occurrence or non-occurrence of the transition. Correspond-
ing accuracy measures for these binary forecasts (Wilks, 1995) are shown in Tables 2 using
the Hit Rate (HR), Threat Score (TS), and False Alarm Rate (FAR). It is apparent that the
three experiments succeed in predicting with similar accuracy the change of regime. The
HRs and TSs for the three methods are close, varying from 82 to 87, and 72 to 76%, re-
spectively. The FARs are about 6% for the standard breeding, but it increases to 11 and
13% when nearest-neighbor breeding is used in the original model phase space and in the
reconstructed phase space, respectively.

We note that, in addition to large bred vector growth rate, two other methods have been
also proposed to predict regime changes in the Lorenz three variable system. In his original
paper (Lorenz, 1963), Lorenz pointed out that regime changes were associated with large
values of the variable z. Yadav et al. (2005) showed that large absolute magnitudes of the
x variable are also a good predictor. We have implemented the method used in Yadav et al.
(2005) for the time series x(t) and got equally good results. However, the main objective of

7
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this paper is to determine whether bred vectors can predict stability from a single time series
data, i. e., in the reconstructed phase space. The reasons for the choice of bred vectors as
predictor of fast growth in the dynamical system are two-fold. First, unlike the size

::::::::
threshold

::::::
values

:
of a particular variable, breeding

::::
bred

::::::
vector

:::::::
growth

:
can be tested in any dynamical

model.
:::
For

:::::
many

:::::::::
systems,

:::::
there

::::
will

:::
not

:::
be

::
a

:::::::::::::::
correspondence

:::::::::
between

:::
the

::::::::::
numerical

:::::
value

::
of

::
a

:::::::::
particular

::::::::
variable

:::::
and

:::::::
regime

::::::::
change.

:
Second, bred vector perturbations and their

growth have a clear physical meaning in that they detect instabilities (Hoffman et al., 2009)
and are akin to the leading local Lyapunov vector and their corresponding growth (Norwood
et al., 2013). Thus while predictions based on threshold values of a single variable work
well for the Lorenz model, bred vector growth rate may be suitable for making predictions in
a broad range of dynamical systems.

For the binary forecasts, Evans et al. (2004) noted that the next regime tended to be
longer-lasting when the duration of the high growth rate is longer using the standard breed-
ing (Fig. 1d). This tendency is also found using the nearest neighbor breeding in the re-
constructed phase space in Experiment (c). However, in Fig. 1f, the cases of high growth
rate may be separated by slower growth rates (e.g., at time t⇠ 23) due to the time delay
involved in the construction of the embedded time series.

5 Conclusions

The ability to predict regime change in a dynamical system using the time series data of just
one of its many variables, demonstrated in this paper, has important implications. For most
systems in nature and in laboratory, the time series observations of only a limited number
of physical variables, often a single variable, are available. In many cases even the actual
number of variables is not known. This paper presents and demonstrates that the nearest
neighbor breeding enables the prediction of regime change in systems for which regime
change follows the appearance of instabilities, thus extending the predictive capability be-
yond the cases whose time evolution equations are known. Further, when regime change
is associated with large changes in the dynamical states, this technique can lead to the

8
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prediction of large or extreme events in the cases where nonlinear dynamical predictions
are made using time series data, e.g., in the Earth’s magnetosphere and space weather
(Chen and Sharma, 2006).
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Table 1. Contingency tables based on the rule that regime change will occur in the orbit following the
appearance of high growth rate bred vectors using three different methods. In (b) and (c) using the
nearest-neighbor breeding, high growth rate points in orbits with absolute values of extrema above
1 are excluded. OBS and FCST stand for observed and forecast, respectively; (a)–(c) are the same
as in Fig. 1.

OBS
Yes No Total

Yes 374 38 412
(a) FCST No 80 573 653

Total 454 611 1065

Yes 396 67 463
(b) FCST No 58 544 602

Total 454 611 1065

Yes 383 77 460
(c) FCST No 71 534 605

Total 454 611 1065
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Table 2. Measures of forecast accuracy in terms of the Hit Rate (HR), Threat Score (TS), and False
Alarm Rate (FAR); (a)–(c) are the same as in Fig. 1. The final row shows the values when the
threshold of x(ti) rule is used.

HR (%) TS (%) FAR (%)

(a) 82.4 76.0 5.2
(b) 87.2 76.0 11.0
(c) 84.4 72.1 12.6
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Figure 1. The first column of figures depicts the growth rates of bred vectors in the Lorenz system us-
ing three different methods: (a) standard breeding in the phase space (x,y,z); (b) nearest-neighbor
breeding in the phase space (x,y,z); and (c) nearest-neighbor breeding in the reconstructed phase
space (x1,x2,x3). The colored points correspond to negative (blue), low (green), medium (yellow)
and high (red) growth. The second column of figures depicts the first coordinate of phase space as
a function of time, with red stars indicating the points with high growth rate (gi � 6.4) bred vectors for
the three different methods: (d) standard breeding in the phase space (x,y,z); (e) nearest-neighbor
breeding in the phase space (x,y,z); and (f) nearest-neighbor breeding in the reconstructed phase
space (x1,x2,x3).
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