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Abstract       6 

Statistical significance testing in wavelet analysis was improved through the development of a 7 

cumulative areawise test. The test was developed to eliminate the selection of two significance 8 

levels that an existing geometric test requires for implementation. The selection of two significance 9 

levels was found to make the test sensitive to the chosen pointwise significance level, which may 10 

preclude further scientific investigation. A set of experiments determined that the cumulative 11 

areawise test has greater statistical power than the geometric test in most cases, especially when 12 

the signal-to-noise ratio is high. The number of false positives identified by the tests was found to 13 

be similar if the respective significance levels were set to 0.05.   14 

1. Introduction 15 

In many research fields, it is of interest to understand the behavior of time series in order 16 

to achieve a deeper understanding of physical mechanisms or relationships. Such a task can be 17 

formidable given that time series are composed of oscillations, non-stationarities, and noise. A 18 

widely used method is wavelet analysis, which has proven useful in numerous geophysical 19 

investigations (Higuchi et al., 2003; Olsen et al., 2012; Meyers et al., 1993; Lee and Lwiza, 2008; 20 

Whitney, 2010; Wilson et al., 2014 Labat, 2004; Labat, 2008; Grinsted et al., 2004; Velasco and 21 

Mendoza, 2008, Schulte et al., 2016).  22 

When using any time series extraction procedure it is important to assess the significance 23 

of the computed test statistic against some null hypothesis. In geophysical applications, for 24 

example, red noise is typically chosen as the null hypothesis. Torrence and Compo (1998) were 25 

the first to apply wavelet analysis in a statistical framework using pointwise significance testing, 26 

allowing deterministic features to be distinguished from stochastic features. In a pointwise 27 

significance test, one tests each estimated wavelet power coefficient against a stationary theoretical 28 

red-noise background spectrum. Despite the insights gained from the statistical procedure, Maraun 29 

and Kurths (2004) showed that it can lead to many spurious results simply due to multiple testing. 30 

Addressing the multiple-testing problem, Maraun et al. (2007) developed an areawise test that 31 

decides whether a pointwise significant result is a deterministic feature distinguishable from 32 

typical stochastic fluctuations by using basic properties of the continuous wavelet transform. A 33 

simpler procedure for addressing multiple testing problems is the geometric test developed by 34 

Schulte et al. (2015). The calculation of the critical level for the geometric test is much simpler 35 

than that for the areawise test because it is calculated using a basic Monte Carlo procedure that 36 

generates a null distribution of the test statistic.  37 

Both the geometric and areawise tests suffer from a binary decision because one must 38 

choose both a pointwise significance level together with an areawise or geometric significance 39 
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level. The problem with such a statistical construction is that the outcomes of the testing procedure 1 

may depend on the chosen pointwise significance level. For an ideal test, there is a single 2 

significance level that is chosen and the results of the testing procedure depend only on that 3 

significance level. Thus, the objectives of this paper are the following: 4 

1) Quantify how the binary decision of the geometric test can lead to ambiguity in interpreting 5 

results; 6 

2) Understand and quantify the evolution of pointwise significant regions under a changing 7 

pointwise significance level using persistent topology;  8 

3) Design a statistical test whose application only requires the choice of a single significance level.  9 

Motivated by Objectives 1 and 2, the approach to achieve Objective 3 will be to consider the areas 10 

of pointwise significant regions over all pointwise significance levels, and hence the method will 11 

be called the cumulative areawise test.  12 

The paper is organized as follows. The data used in applications of the significance tests 13 

are described in Section 2 and a brief description of wavelet analysis is provided in Section 3. In 14 

Section 4, a review of existing statistical testing procedures is presented. The sensitivity of the 15 

geometric test to the chosen pointwise significance level is quantified in Section 5. The topological 16 

properties of red noise are analyzed in Section 6 and the cumulative areawise test is developed in 17 

Section 7. A comparison of the test in terms of statistical power to the existing geometric test is 18 

provided in Section 8. Applications of the test to prominent climate indices are presented in Section 19 

9 and are followed by concluding remarks in Section 10. 20 

2. Data 21 

The Niño 3.4 index data from 1900-2014 were obtained from the National Center for 22 

Atmospheric Research. This index quantifies the strength of the El-Niño/Southern Oscillation 23 

(ENSO) and is defined as sea surface temperature (SST) anomalies in the Equatorial Pacific in the 24 

region bounded by 120°W-170°W and 5°S-5°N (Trenberth, 1998). The Pacific Decadal 25 

Oscillation Index data were obtained from University of Washington 26 

(http://research.jisao.washington.edu/pdo/PDO.latest) and describe detrended SST variability in 27 

the North Pacific poleward of 20°N latitude (Mantua and Hare, 2002).   28 

3. Wavelet Analysis  29 

The wavelet transform of a time series 𝑥𝑛 (n = 1, ... , N) with a wavelet function 𝜓0 is given 30 

by  31 

𝑊𝑛(𝑠) =  √
𝛿𝑡

𝑠
∑ 𝑥𝑛′𝜓0[(𝑛′ − 𝑛)

𝛿𝑡

𝑠
]𝑁

𝑛′=1 ,                                   (1) 32 

where s is the wavelet scale, 𝛿𝑡 is a time step determined by the data, and N is the length of the 33 

time series. There are many kinds of wavelets, but perhaps the most common is the Morlet wavelet, 34 

the focus of this paper, which is given by 35 
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𝜓0(𝜂) =  𝜋−1/4𝑒𝑖𝜔0𝜂𝑒−
1

2
𝜂2

,                                               (2) 1 

where 𝜔0 is the dimensionless frequency, 𝜂 = 𝑠 ⋅ 𝑡, t is time, and the wavelet scale is related to 2 

the Fourier period by 𝜆 = 1.03𝑠 if 𝜔0 = 6. This particular wavelet balances both frequency and 3 

time-localizations. Throughout the paper, 𝜔0 = 6. The wavelet power spectrum is given by 4 

|𝑊𝑛(𝑠)|2.   5 

4. Existing Significance Tests  6 

4.1 Pointwise Significance Test 7 

Consider a first-order autoregressive (Markov) process  8 

𝑥𝑛 =  𝜌𝑥𝑛−1 + 𝑤𝑛,                                                        (3) 9 

where 𝜌 is the lag-1 autocorrelation coefficient and 𝑤𝑛 is Gaussian white noise with 𝑥0 = 0. The 10 

normalized theoretical power spectrum of the process is given by  11 

𝑝𝑓 =  
1− 𝜌2

1+ 𝜌2−2𝜌 cos(2𝜋𝑓 𝑁⁄ )
,                                               (4) 12 

where f = 0, … , N/2 is the frequency index (Gilman et al., 1963). To obtain, for example, the 5% 13 

pointwise significance level (𝛼 = 0.05), one must multiply Eq. (4) by the 95th percentile of a chi-14 

square distribution with two degrees of freedom and divide the result by 2 to remove the degree-15 

of-freedom factor (Torrence and Compo, 1998). The result of the so-called pointwise testing 16 

procedure is a subset of wavelet power coefficients whose values exceed the specified background 17 

noise spectrum. Such clusters will be referred to as patches. 18 

4.2 Areawise and Geometric Significance Tests 19 

The areawise test developed by Maraun et al. (2007) takes advantage of how correlations 20 

between adjacent wavelet coefficients arising from the reproducing kernel produce patches that 21 

resemble the reproducing kernel. For patches generated from random fluctuations, the typical 22 

patch area is the area of the reproducing kernel. The areawise test assesses the significance of 23 

patches based on their area, where patches with greater area are more statistically significant. The 24 

estimation of the critical level of the test involves a root-finding algorithm that is computational 25 

inefficient. To remedy the computational drawback, Schulte et al. (2015) developed a geometric 26 

test that makes use of a normalized area. The normalized area allows patches at different scales to 27 

be compared simultaneously. The estimation of the critical level of the test is achieved simply 28 

through Monte Carlo methods by generating a large ensemble of patches under a null hypothesis 29 

to create a null distribution from which the critical level of the test can be obtained.  30 

4.3 Application of Existing Significance Tests 31 

Shown in Figure 2 is the wavelet power spectrum of the Niño 3.4 index. Large 5% patches 32 

were found and the largest was located in the time period 1950-2014 and in the period band 16-32 33 

months. The large patches after 1950 were also found to be 5% geometrically significant (thick 34 

contours) and subsets of the patches were also found to be 5% areawise significant (blue shading). 35 



 

4 
 

Both the areawise and geometric tests identified few patches in the period band of 2 to 4 months 1 

as statistically significant. For the wavelet power spectrum of the PDO index, a large patch 2 

centered at a period of 512 months extending from 1910 to 1980 was detected. Most of the patches, 3 

however, were located at periods less than 8 months, time scales not typically associated with the 4 

PDO. A few patches were identified as areawise and geometrically significant and such patches 5 

were in the 2 to 8 month period band.  6 

5. Sensitivity of the Geometric Test to the Chosen Pointwise Significance Level  7 

To show that the geometric test is sensitive to the chosen pointwise significance level, it 8 

will be useful to compute the quantity 9 

𝑟 =  
𝑁𝛼1,𝛼2

𝑁𝛼1

.                                                                (5) 10 

The quantity 𝑁𝛼1,𝛼2
 is the number of geometrically significant patches at the pointwise significance 11 

level 𝛼1 that are also geometrically significant at the pointwise significance level 𝛼2. 𝑁𝛼1
 is the 12 

number of patches at 𝛼1 that are geometrically significant at the level 𝛼𝑔𝑒𝑜. In the ideal situation, 13 

r = 1, indicating that geometrically significant patches never lose their geometric significance as 14 

the pointwise significance level is increased. This case, however, is optimistic, as the calculation 15 

of geometric significance is rather stochastic.  16 

To demonstrate the stochastic nature of the geometric test, r was computed for 1000 17 

wavelet power spectra of red-noise processes with lengths 1000 and 𝜌 =0.5 under four scenarios. 18 

Scenario 1 is the case in which 𝛼1 = 0.1, 𝛼2 = 0.05, and 𝛼𝑔𝑒𝑜 = 0.05 (Figure 3a). With the mean 19 

of r (denoted by 𝑟̅ hereafter) being 0.3, it can hardly be expected for a geometrically significant 20 

patch at 𝛼1 = 0.1 to remain significant when the pointwise significance level is changed to 𝛼2 =21 

0.05, at least in the case of red-noise processes. Scenario 2, shown in Figure 3b, is the same as 22 

Scenario 1 except that 𝛼𝑔𝑒𝑜 = 0.01. In this case, 𝑟̅ = 0.15, suggesting that the geometric test is 23 

even more sensitive to the chosen pointwise significance level for smaller 𝛼𝑔𝑒𝑜.  24 

In Scenario 3, 𝛼1 = 0.05 and 𝛼2 = 0.01, with 𝛼𝑔𝑒𝑜 = 0.01. The distribution shown in 25 

Figure 3c is even more skewed than that corresponding to Scenario 2, with 𝑟̅ = 0.05. Also note 26 

that in many cases 𝑟 = 0, indicating that there are patches that are not geometrically significant 27 

for both 𝛼1 = 0.05 and 𝛼2 = 0.01. The reason is that some patches existed at 𝛼1 = 0.05 but did 28 

not exist at 𝛼2 = 0.01 so that their normalized areas are zero.  29 

Scenario 4 is similar to Scenario 3 except that 𝛼𝑔𝑒𝑜 = 0.05. Although Scenarios 3 and 4 30 

used the same pointwise significance levels, the results differ, with 𝑟̅ = 0.22. The results are 31 

similar to that of Scenarios 1 and 2, where increasing the pointwise significance level increased 32 

the sensitivity of the geometric test to the chosen pointwise significance level.  33 

6. Persistent Topology 34 

6.1 Persistent Homology 35 
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Before developing the cumulative areawise test, it will be necessary to understand the 1 

topology of features found in a typical wavelet power spectrum. It will be especially important to 2 

understand how the features evolve as the pointwise significance level is increased or decreased.  3 

Such information can be obtained using persistent homology, a tool in applied algebraic topology 4 

(Edelsbrunner, 2004). Persistent homology will provide a formal setting for quantifying the 5 

evolution of patches. Some formal definitions will be given below, but the reader is referred to 6 

Edelsbrunner (2004) for a more detailed description of persistent homology.  7 

A pointwise significance patch will be defined formally as follows. A path in a set X is 8 

defined as a continuous function 𝑓: [0 1]  → 𝑋 (Lipschutz, 1965). A set X is said to be path-9 

connected if any two points x and y in X can be joined by a path. The path-component of a set X is 10 

the maximal path-connected subset of a set. Intuitively, one can think of a path-component as an 11 

isolated piece of the set. In the present setting, patches are path-connected components because 12 

they represent isolated pieces of the set consisting of all wavelet power coefficients that are 13 

pointwise significant.  14 

Denote by P the set of all pointwise wavelet power coefficients that are significant at the 15 

𝛼 level. Then two points x, y∈P will be called homologous (written x~y) at α if there exists a path 16 

𝑓: [0 1]  → 𝑃 such that f(0) = x and f(1) = y (Figure 4a). The definition implies two points are 17 

homologous when they can be joined by a continuous path. The set of all points that are 18 

homologous to x form an equivalence class called a homology class that is denoted by  19 

[𝑥] =  {𝑦 ∈ 𝑃: 𝑦~𝑥}.                                                        (6) 20 

The set of all homology classes of P will be denoted by 𝐻0(P), where 𝐻0(P) is called the 0-21 

dimensional homology group (Hatcher, 2002). Each member of a homologous class is homologous 22 

but no two points from distinct homology classes are homologous. The homology classes form a 23 

partition of P into path-connected components and therefore patches at a given pointwise 24 

significance level can be regarded formally as homology classes. Mathematically, we have the 25 

quotient  26 

𝐻0(𝑃) =  𝑃 ~⁄ =  {[𝑥]: 𝑥 ∈ 𝑃}                                                (7) 27 

and the fundamental theorem of equivalence classes (Lipschutz, 1965) says that 𝐻0(𝑃) forms a 28 

partition of P.  29 

The number of equivalence classes, 𝛽0, can change as α is increased or decreased. A 30 

homology class at 𝛼2 will be said to be born at 𝛼2 if it did not exists at 𝛼1, for every 𝛼1 < 𝛼2.  The 31 

homology class [z] shown in Figure 4b, for example, was born at 𝛼2. Suppose that a homology 32 

class [x] is born at 𝛼1 and [y] is born at 𝛼2 for 𝛼1 < 𝛼2. Then [x] will be said to be older than [y].  33 

Homology classes can also die. The death of a homology class will simply mean that two 34 

classes have merged so that two points that are not homologous at 𝛼1 become homologous at 𝛼2. 35 

To see this, consider the homology classes [x] and [z] at 𝛼2 shown in Figure 4b. They both 36 

represent different homology classes because the point x cannot be connected to z by a path. At 37 

𝛼3, on the other hand, 𝑥~𝑧 or 𝑧~𝑥 so that x is member of [z] or z is a member of [x]. The result is 38 
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a reduction in the number of homology classes. When homology classes merge, it will be necessary 1 

to use the Elder rule (Edelsbrunner, 2004) from persistent homology to determine which classes 2 

die from a merger and which ones live. The Elder rule states that when two classes merge, the 3 

older class will continue to live. Therefore, according to the Elder rule, the class [x] will live after 4 

the merger with the class [z] at 𝛼3 and [z] will die. The reason [x] lives is because it was born at 5 

𝛼1 and [z] born was born at 𝛼2 so that [x] is older. The lifetime or persistence index of a homology 6 

class will be defined as the difference between the pointwise significance level at which it dies and 7 

the one at which it was born. If a homology class never dies, then its persistence index, by 8 

convention, will be set to infinity.  9 

The evolution of a homology class can be monitored using a barcode (Ghrist, 2008), which 10 

is a collection of horizontal lines representing the birth and death of homology classes. Following 11 

the convention of persistent homology, the y-axes of barcodes will be denoted by 𝐻0 and the x-12 

axes will be the pointwise significance level. In the barcode, the birth of a homology class will 13 

begin a horizontal line segment at the pointwise significance level at which it was born. The line 14 

segment will terminate at the pointwise significance level at which it dies.  15 

An example barcode is shown in Figure 4e for the evolution of homology classes shown in 16 

Figures 4a through 4d. The homology class [x] was born at 𝛼1 so that a horizontal line begins at 17 

𝛼1. The patch does not merge with another patch at 𝛼2 so that the horizontal line continues through 18 

𝛼2. The homology class [z] is born at 𝛼2 and the birth of the homology class results in a new line 19 

starting from 𝛼2. The merger of the homology classes [𝑥] and [z] at 𝛼2 results in the death of [z]. 20 

According to the Elder rule, the horizontal line corresponding to [x] in the barcode continues 21 

through 𝛼3, but the line corresponding to [z] terminates at 𝛼3. Also note the birth of a new 22 

homology class [q] at 𝛼3 and the corresponding beginning of the line segment. Another merger 23 

occurs at 𝛼4 because x~q and the Elder rule determines that the line segment for [q] ends and the 24 

horizontal line for [x] continues. The arrow indicates that [x] never dies.  25 

6.2 Persistent homology of red-noise 26 

To understand the topology of patches generated from red-noise processes, it is useful to 27 

use Monte Carlo methods to determine the number of patches at a particular pointwise significance 28 

level. Shown in Figure 5 is the ensemble mean of the number of patches as a function of 𝛼. The 29 

curve was obtained by generating 100 wavelet power spectra of red-noise processes of length 300 30 

and computing 𝛽0 for each of the wavelet power spectra at each pointwise significance level. The 31 

number of patches reached minima at 𝛼 =  0.01 and 𝛼 = 0.99 and a maximum at 𝛼 = 0.18.  32 

 To understand more fully the curve shown in Figure 5, the persistent homology of patches 33 

generated from red-noise processes of length 150 was computed as 𝛼 varied from 0.01 to 0.99. 34 

Barcodes representing the evolution of patches (homology classes) in the wavelet power spectra 35 

were also computed. In each case, 𝜌 = 0.5, but the results are identical for other autocorrelation 36 

coefficients. Shown in Figure 6 is a barcode corresponding to a typical wavelet power spectrum of 37 

a red-noise process. Recalling that the beginning of the line segment represents the birth of patches, 38 

the barcode indicates that a few patches were born at 𝛼 = 0.02. As 𝛼 increases to 𝛼 = 0.3 more 39 

patches are born, consistent with how more spurious results occur for larger pointwise significance 40 
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levels. Note that, for 𝛼 > 0.2, patches begin to die, representing the merger of smaller patches into 1 

larger patches. The merging process occurs until 𝛼  = 0.7, at which point all patches have merged 2 

into a single patch. To show that the distribution of persistence indices for patches generated from 3 

red-noise processes is not random, 100 wavelet power spectra of red-noise processes were 4 

generated and the persistence indices for all patches in each wavelet power spectrum were 5 

computed (Figure 7). The resulting distribution indicates that persistence indices are typically 0.01 6 

and relatively few patches live longer than 0.6. Overall, the distribution characterizes patches 7 

generated from red-noise processes as short-lived.  8 

7. Development of the cumulative areawise test  9 

7.1 Geometric Pathways  10 

The first step of the cumulative areawise test is to define the geometric evolution of a patch 11 

across a finite set of pointwise significance levels. The notion of evolution will be made precise 12 

by introducing the concept of a geometric pathway, which is defined as a collection 𝒫 of L patches 13 

at the corresponding pointwise significance levels 𝛼1 < 𝛼2<…< 𝛼𝐿 such that 14 

 𝑃1 ⊂ 𝑃2 ⊂ 𝑃3 ⊂ ⋯ ⊂ 𝑃𝐿                                                              (8) 15 

and 16 

 17 

𝑔1 < 𝑔2 < 𝑔3 … < 𝑔𝐿,                                                             (9) 18 

where each 𝑔𝑗 is a normalized area corresponding to the patch 𝑃𝑗. For this testing procedure, the 19 

normalized area will be calculated by dividing the patch area by the scale coordinate of the centroid 20 

squared. The inequalities (9) are guaranteed to hold for any nested sequence (8) (Appendix A). 21 

The length of a pathway will be given by L the number of elements in the pathway. The interval 22 

𝐼 =  [𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥] will be called the computation interval and the discrete spacing between 23 

adjacent pointwise significance levels, Δ𝛼, will be be referred to as the resolution.  24 

There is a close relationship between geometric pathways and persistent homology. The 25 

birth of homology classes also signifies the creation of a geometric pathway. In contrast, the death 26 

of homology classes does not indicate the termination of a geometric pathway. According to 27 

Equation (9), once the first element of the pathway is created the pathway cannot terminate because 28 

elements grow relative to the first element.  29 

The number of geometric pathways that are computed in a given wavelet power spectrum 30 

is related to Δ𝛼 and the persistent homology of patches quantified in Section 6.2. To see this, 31 

suppose geometric pathways were calculated at the resolution Δ𝛼 =  𝛼3 −  𝛼1 starting at 𝛼1 =32 

𝛼𝑚𝑖𝑛 and ending at 𝛼3 = 𝛼𝑚𝑎𝑥 as shown in Figure 4. At this resolution, two pathways would be 33 

created, 𝑋1 ⊂ 𝑋3 and 𝑄3. If the point z had not become homologous to the point x at 𝛼3, then an 34 

additional pathway corresponding to [z] would have been calculated because it would still be a 35 

path-connected component (i.e., a patch) distinct from 𝑋3 and 𝑄3. The argument suggests that only 36 
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geometric pathways comprised of patches with lifetimes greater than or equal to Δ𝛼 will be 1 

detected. A natural questions thus arises: how small should be Δ𝛼? It should certainly be made 2 

small enough to adequately capture the birth and merging of patches. The distribution of persistent 3 

indices shown in Figure 7 suggests that Δ𝛼 = 0.01 because most persistent indices are at that 4 

value. However, the discussion in Section 8 will suggest a coarser resolution may be used without 5 

altering the statistical properties of the test.  6 

7.2 Test Construction  7 

One can associate to each geometric pathway a test statistic, which will be the total sum of 8 

normalized areas 9 

𝛾 =  ∑ 𝑔𝑗
𝐿
𝑗=1 .                                                             (10) 10 

 The calculation of the critical level for the test can be computed using Monte Carlo methods by 11 

first fixing I and Δ𝛼. Secondly, one generates red-noise processes with the same autocorrelation 12 

coefficients as the input time series and calculates synthetic wavelet power spectra corresponding 13 

to each red-noise process. The final step is to compute 𝛾 for every pathway. The calculation results 14 

in a null distribution from which the desired critical level of the test can be obtained. The critical 15 

level corresponding to the 5% significance level of the test, as an example, is the 95th percentile 16 

of the null distribution. 17 

A null distribution calculated for a red-noise process with 𝜌 = 0.5 is shown in Figure 8. In 18 

the experiments, 𝛼𝑚𝑖𝑛 = 0.02 and 𝛼𝑚𝑎𝑥 = 0.82 with Δ𝛼 = 0.02. The distribution of 𝛾 is generally 19 

similar to the shape of the distribution for the persistence indices for 𝐻0 (Figure 7), where the 20 

smallest values of 𝛾 are preferred. It turns out that the distribution of 𝛾 can be well described by 21 

an exponential distribution. Using the method of maximum likelihood (Weerahandi, 2003), a 22 

theoretical exponential distribution was fitted to the empirical distribution, where the empirical 23 

distribution was found to be best described by an exponential distribution with mean 6.5. To show 24 

that the theoretical distribution models the empirical distribution, the percentiles of a theoretical 25 

exponential distribution with mean 6.5 were plotted as a function of the percentiles of the empirical 26 

distribution (Figure 8b). The linear relationship between the percentiles shown in Figure 8b 27 

indicates that the theoretical distribution well models the empirical distribution, with the 95th 28 

percentiles only differing by 1.0.   29 

 Associated with each element of the geometric pathway is the quantity 30 

𝛾𝑗 =  ∑ 𝑔𝐿−𝑖
𝐿−𝑗
𝑖=0 ,                                                                 (11) 31 

which represents the cumulative sum of the last L – j+1 elements of the pathway. One can calculate 32 

a p-value for every pathway element using Equation (11) by comparing each 𝛾𝑗 to the null 33 

distribution. Mathematically, for a null distribution 𝛾𝑛𝑢𝑙𝑙 the p-values are given by 34 

𝑝𝑗 =  Pr (𝛾𝑛𝑢𝑙𝑙 ≥  𝛾𝑗).                                                     (12) 35 
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The pathway element 𝑃𝑗 will be said to be cumulative areawise significant at the 𝛼𝑐 significance 1 

level if 𝑝𝑗 < 𝛼𝑐. The union of all cumulative areawise significant pathway elements will be the 2 

output of the testing procedure.  3 

 The 𝑝𝑗 satisfy  4 

𝑝1 < 𝑝2 < 𝑝3 … < 𝑝𝐿                                                        (13) 5 

because 𝛾𝑖 > 𝛾𝑗 for i > j. The inequality (13) and nested sequence (8) together show that the 6 

cumulative areawise significance of wavelet power coefficient is a monotonic function of the 7 

pointwise significance. To see this, denote by 𝑥𝑗 a wavelet power coefficient of the patch 𝑃𝑗 in a 8 

geometric pathway. If 𝑝𝑗
𝑝𝑤

 is the p-value of 𝑥𝑗 associated with the pointwise test, then 𝑝𝑖
𝑝𝑤

 > 𝑝𝑗
𝑝𝑤

 9 

for i > j. Let F be a function assigning to every 𝑝𝑗
𝑝𝑤

 a 𝑝𝑗. The function F is everywhere 10 

monotonically increasing because 𝑝𝑖
𝑝𝑤

 > 𝑝𝑗
𝑝𝑤

 implies that F (𝑝𝑖
𝑝𝑤

) = 𝑝𝑖 > 𝑝𝑗> F (𝑝𝑗
𝑝𝑤

) for i > j by 11 

inequality (13). This monotonicity property is not shared by the areawise or geometric tests, where 12 

there is no one-to-one function between the pointwise significance p-values and p-values for the 13 

areawise or geometric tests. In other words, wavelet power coefficients of different pointwise 14 

significance can have identical areawise or geometric significance. The monotonicity property also 15 

implies that each 𝑝𝑗 is only a function of 𝑝𝑗
𝑝𝑤

 and thus it has been shown that the cumulative 16 

areawise test is free of a binary decision (Objective 3).  17 

7.3 Application to Ideal Pathways  18 

To illustrate the testing procedure, it is perhaps best to consider an ideal case (Figure 9). 19 

Consider the pathway X, which can be written explicitly as  20 

𝑋1 ⊂ 𝑋2 ⊂ 𝑋3 ⊂ 𝑋4.                                                       (14) 21 

The patch exists at 𝛼1
𝑥 = 𝛼2, 𝛼2

𝑥 =  𝛼3, 𝛼3
𝑥 = 𝛼4, and 𝛼4

𝑥 = 𝛼5 =  𝛼𝑚𝑎𝑥. The test statistics, using 22 

Equation (11), for the geometric pathway are  23 

                                                           𝛾1
𝑥 =  𝑔1

𝑥+𝑔2
𝑥 + 𝑔3

𝑥 + 𝑔4
𝑥                                                 (15)                                                  24 

𝛾2
𝑥 =  𝑔2

𝑥 + 𝑔3
𝑥+𝑔4

𝑥,                                                         (16) 25 

𝛾3
𝑥 =  𝑔3

𝑥 + 𝑔4
𝑥,                                                                 (17) 26 

and 27 

𝛾4
𝑥 =  𝑔4

𝑥                                                                            (18) 28 

where 𝑔𝑗
𝑥 denotes the normalized area of a pathway element at 𝛼𝑗

𝑥. According to Figure 9b, both 29 

𝑋1 and 𝑋2 are cumulative areawise pathway elements because 𝛾1
𝑥, 𝛾2

𝑥 > 𝛾𝑐𝑟𝑖𝑡. The output of the 30 

testing procedure is therefore given by 31 

𝑋𝑠𝑖𝑔 = 𝑋2 =  𝑋1 ∪ 𝑋2.                                                      (19) 32 

A similar results holds for the pathway Y, where the output of the testing procedure is 33 
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𝑌𝑠𝑖𝑔 =  𝑋2 =  𝑌1 ∪ 𝑌2.                                                        (20) 1 

The pathway Z shown in Figure 9a can be written as  2 

𝑍1 ⊂ 𝑍2 ⊂ 𝑍3 ⊂ 𝑍4 ⊂ 𝑍5.                                                 (21) 3 

 The test statistics associated with each of the five pathway elements are 4 

𝛾1
𝑧 =  𝑔1

𝑧+𝑔2
𝑧 + 𝑔3

𝑧 + 𝑔4
𝑧 + 𝑔5

𝑧,                                             (22) 5 

𝛾2
𝑧 =  𝑔2

𝑧+𝑔3
𝑧 + 𝑔4

𝑧 + 𝑔5
𝑧,                                                      (23) 6 

𝛾3
𝑧 = 𝑔3

𝑧+𝑔4
𝑧+𝑔5

𝑧,                                                                  (24) 7 

𝛾4
𝑧 =  𝑔4

𝑧+𝑔5
𝑧,                                                                         (25) 8 

and 9 

𝛾5
𝑧 =  𝑔5

𝑧.                                                                                 (26)                                                                               10 

As shown in Figure 9b, none of the test statistics exceed 𝛾𝑐𝑟𝑖𝑡 and therefore the pathway elements 11 

are not cumulative areawise significant. The total output of the testing procedure in this case will 12 

be 13 

𝑋2 =   𝑋𝑠𝑖𝑔 ∪ 𝑌𝑠𝑖𝑔.                                                            (27)                            14 

8. Comparison with the geometric test 15 

8.1 True Positive Detection   16 

With the cumulative areawise test now developed, it will be useful to assess the statistical 17 

power of the test relative to that of the geometric test. The first aspect of the assessment will be to 18 

quantify how well both tests detect true positive results. To do so, let  19 

𝑥(𝑡) = 𝐴 sin(2𝜋𝑓𝑡) + 𝑤(𝑡)                                                     (28) 20 

be a sinusoid with amplitude A, frequency f, and additive Gaussian white noise w(t). The goal will 21 

be to evaluate the ability of both tests to detect true positives within a particular period band. A 22 

theoretical patch to which the ability of the geometric and cumulative areawise tests were 23 

compared was constructed as follows: (1) the time series x(t) for all 𝑡 ∈ [0, 500] was generated 24 

but with no additive white noise; (2) the wavelet power spectrum of x(t) was computed and the 5% 25 

pointwise significance test was performed on the wavelet power spectrum; and (3) the width of 26 

the significance patch in the wavelet power spectrum was calculated at t = 250 where edge effects 27 

are negligible. The theoretical patch is indicated by dotted lines in Figure 10, where the theoretical 28 

patch is a rectangle of fixed width extending from t = 0 to t = 500. In all experiments, 𝛼𝑚𝑎𝑥 = 0.18 29 

and Δ𝛼 = 0.02, but implications of other choices are discussed at the end of the section. 30 

 Let 𝑃𝑔𝑒𝑜 be the union of all pointwise significance patches at 𝛼 that are geometrically 31 

significant at the 𝛼𝑔𝑒𝑜 level and let 𝑃𝑡ℎ𝑒𝑜𝑟𝑦 be the theoretical patch. Then 32 
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𝑟𝑎 =  
𝐴𝑃𝑔𝑒𝑜∩𝑃𝑡ℎ𝑒𝑜𝑟𝑦

𝐴𝑃𝑡ℎ𝑒𝑜𝑟𝑦

                                                           (29) 1 

represents the areal fraction of 𝑃𝑡ℎ𝑒𝑜𝑟𝑦 detected by the geometric test. In Equation (29), 2 

𝐴𝑃𝑔𝑒𝑜∩𝑃𝑡ℎ𝑒𝑜𝑟𝑦
 denotes the area of 𝑃𝑔𝑒𝑜 ∩ 𝑃𝑡ℎ𝑒𝑜𝑟𝑦 and 𝐴𝑃𝑡ℎ𝑜𝑒𝑟𝑦

 denotes the area of 𝑃𝑡ℎ𝑒𝑜𝑟𝑦. If 𝑟𝑎 = 1, 3 

then the test detected all of the true positive results that are known by construction. Small values 4 

of 𝑟𝑎 indicate that the tests performed poorly, detecting only a fraction of the theoretical patch to 5 

be significant. A similar construction can be made for the cumulative areawise test by replacing 6 

𝑃𝑔𝑒𝑜 with 𝑃𝑐. Figure 9a illustrates the procedure for the cumulative areawise test when f = 0.8, A = 7 

1.0 and the signal-to-noise ratio (defined below) 𝜎 = 1.0. As indicated by the thick black contours, 8 

the cumulative areawise test was able to detect 30% of the true positives comprising the theoretical 9 

patch, whereas Figure 9b shows that the geometric test was only able to detect 20% of the true 10 

positives. It will be necessary to compute N = 1000 values of 𝑟𝑎 for different values of f and 𝜎 to 11 

determine if the tests truly perform differently. The signal-to-noise ratio is defined as  12 

𝜎 = 10log (
𝑝𝑠𝑖𝑔𝑛𝑎𝑙

𝑝𝑛𝑜𝑖𝑠𝑒
),                                                                 (30) 13 

where  14 

𝑝𝑠𝑖𝑔𝑛𝑎𝑙 =   
𝐴2

2
,                                                                  (31) 15 

𝑝𝑛𝑜𝑖𝑠𝑒 is the average power of the Gaussian white noise, and 𝜎 is measured in decibels (dB). It is 16 

also noted that because 𝜎 and A do not vary independently there is no need to perform different 17 

experiments for different values of A. For the experiments, A was set to 1.0.  18 

In the first experiment, the cumulative areawise significance level (denoted by 𝛼𝑐, 19 

herreafter) was set to 0.05, 𝛼𝑔𝑒𝑜 = 0.05, and 𝛼 = 0.01, 0.05, 0.1. The value of 𝜎 was varied from 5 20 

dB to 5 dB. The results are shown in Figure 11a. For both tests, the ability to detect true positives 21 

increased with increasing signal-to-noise level. At low signal-to-noise ratios, the tests performed 22 

similarly, detecting on average 10% of true positives. Differences between the test performances 23 

became larger as 𝜎 was increased and the cumulative areawise test outperformed the geometric 24 

test regardless of the chosen pointwise significance levels when 𝜎 ≥ −2.5 dB. A second 25 

experiment was conducted using 𝛼𝑐 = 0.01 and 𝛼𝑔𝑒𝑜 = 0.01 (Figure 11b). The results were found 26 

to be similar to that of the first experiment except that 𝑟𝑎 was generally smaller for both tests. The 27 

result is consistent with how the significance levels of the tests were increased. The results indicate 28 

that the cumulative areawise test is particularly useful in low-noise situations but one can expect 29 

the test to detect more true positives even in high-noise conditions. In agreement with Figure 3, 30 

the performance of the geometric test depended strongly on the chosen pointwise significance 31 

level, especially when the signal power was high. 32 

 Additional experiments were performed using different values of f. True positive detection, 33 

for a fixed 𝜎, was generally found to increase for larger f, though the cumulative areawise test was 34 

still found to detect more true positives. Additionally, it was found that true positive detection 35 

changed little if Δ𝛼 was set to a value less than 0.02. Setting Δ𝛼 to be greater than 0.03 was 36 



 

12 
 

generally found to result in a decrease in true positive detection. On the other hand, true positive 1 

detection increased dramatically as 𝛼𝑚𝑎𝑥 increased but with the caveat that the areas of spurious 2 

patches found outside the theoretical patch were found to be larger.  3 

8.2 False Positive Detection  4 

 The false positive detection of both tests depends on the topology of patches. The number 5 

of false positives produced by the geometric test performed at the pointwise significance level 𝛼 6 

on average will be  7 

𝑁𝑔𝑒𝑜(𝛼, 𝛼𝑔𝑒𝑜) = 𝛼𝑔𝑒𝑜𝛽0(𝛼).                                                  (32) 8 

For the cumulative areawise test, the number of false positives produced will be on average  9 

𝑁𝑐(𝛼𝑝𝑒𝑎𝑘 , 𝛼𝑐) = 𝛼𝑐𝛽0(𝛼𝑝𝑒𝑎𝑘),                                                (33) 10 

where 𝛼𝑝𝑒𝑎𝑘 satisfies 𝛼𝑚𝑖𝑛   ≤ 𝛼𝑝𝑒𝑎𝑘 ≤ 𝛼𝑚𝑎𝑥 and denotes the pointwise significance level for 11 

which 𝛽0 locally reaches a maximum (Figure 5). If 𝛼𝑐 =  𝛼𝑔𝑒𝑜, then the ratio of false positives for 12 

both tests is 13 

𝑟𝑓𝑎𝑙𝑠𝑒 =
𝛽0(𝛼)

𝛽0(𝛼𝑝𝑒𝑎𝑘)
.                                                          (34) 14 

Thus, if 𝛼 =  𝛼𝑝𝑒𝑎𝑘 both tests on average will have the same number of false positive results. On 15 

the other hand, 𝑟𝑓𝑎𝑙𝑠𝑒 < 1 if 𝛼𝑚𝑎𝑥 < 𝛼 < 0.18. According to Figure 5, 𝑁𝑔𝑒𝑜(0.05, 0.05) is 16 

approximately 11 and 𝑁𝑐(0.18,0.05) = 15 so that 𝑟𝑓𝑎𝑙𝑠𝑒 = 0 .73 and therefore one can expect 36% 17 

more false positives. However, this calculation is an overestimate because the output of the 18 

cumulative areawise test is the union of pathway elements as shown in Figure 7 and discussed in 19 

Section 7. In fact, an experiment was conducted by generating 1000 wavelet power spectra of red-20 

noise process with 𝜌 = 0.5 and lengths equal to 1000. The ratio 𝑟𝑓𝑎𝑙𝑠𝑒 for 𝛼𝑚𝑎𝑥 = 0.18, 𝛼𝑚𝑖𝑛 =21 

0.02, Δ𝛼 = 0.02, 𝛼𝑐 = 0.05, 𝛼𝑔𝑒𝑜 = 0.05, 𝛼 = 0.05 was computed for each wavelet power 22 

spectra. The mean value of 𝑟𝑓𝑎𝑙𝑠𝑒 was found to be 𝑟𝑓𝑎𝑙𝑠𝑒 = 0.82, slightly higher than the theoretical 23 

value. The result implies that one can expect the cumulative areawise test to produce 22% more 24 

false positive results. Confidence in results can be enhanced if 𝛼𝑐 = 0.01 without much loss in 25 

true positive detection, as shown by the comparison of the curves for 𝛼𝑐 = 0.01 and 𝛼𝑐 = 0.05 in 26 

Figures 8 and 9. An experiment similar to the previous experiment with 𝛼𝑐 = 0.01 showed that 27 

one can expect 50% more false positives for the geometric test. The reduction in false positive 28 

detection together with relatively high true positive detection suggests that the cumulative areawise 29 

test is reliable when 𝛼𝑐 = 0.01.   30 

9. Climate applications  31 

  The cumulative areawise test was applied to the wavelet power spectra of the PDO and 32 

Niño 3.4 indices at the 0.01 level. A red-noise background spectrum was used for each, with 33 

𝛼𝑚𝑎𝑥 = 0.18, 𝛼𝑚𝑖𝑛 = 0.02, and Δ𝛼 = 0.02.  34 
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 The wavelet power spectrum for the Niño 3.4 index indicates potential predictive 1 

capabilities (Figure 12a). There are two notable features, one extending from 1870 to 1920 in the 2 

16-64 month period band and another one extending from 1960 to 2014 in the 8-64 month period 3 

band. Perhaps just as interesting is the deficit in cumulative areawise significance from 1920 to 4 

1960 in the 8-64 month period band. The deficit could be the result of the 2-7 year mode being 5 

modulated by a decadal ENSO mode, a nonlinear paradigm (Timmermann, 2002). Such a 6 

modulation would imply that more extreme El Niño phases would be favored if the decadal mode 7 

is in a positive regime. On the other hand, results shown in Figure 12a show that neither the decadal 8 

nor the multi-decadal variability exceeded a red-noise background so modulations would be 9 

difficult to predict.  10 

The wavelet power spectrum of the PDO index is shown in Figure 12b. There is enhanced 11 

variance at multi-decadal time scales but the variance does not exceed a red-noise background. 12 

Cumulative areawise-significant regions, however, were detected in the 2-8 month period band 13 

from 1900 to 1960. The results indicate that the PDO is a red-noise process, consistent with prior 14 

work showing that the PDO results from the oceanic integration of atmospheric white-noise 15 

stochastic forcing (Newmann et al., 2003).   16 

10. Conclusions  17 

A cumulative areawise test was developed for assessing the significance of features in 18 

wavelet power spectra. The test was generally found to have greater statistical power than the 19 

geometric test except possibly under high-noise situations, in which case the tests were found to 20 

perform similarly. The main advantage of the new testing procedure is that the results are no longer 21 

dependent two significance levels. The geometric test results were found to be very sensitive to 22 

the chosen pointwise significance level, making it difficult for researchers to decide what patches 23 

are significant and what patches are not significant. The cumulative areawise test was found to 24 

detect more true positives relative to the geometric test for some common pointwise and geometric 25 

significance levels.  26 

The cumulative areawise test can be applied to wavelet power spectra obtained using other 27 

analyzing wavelets such as the Paul and Dog wavelets. Moreover, the results presented for the 28 

Morlet wavelet were found to be generally similar to those for the Paul and Dog wavelets. It is 29 

recommended, however, that different null distributions be calculated for the different analyzing 30 

wavelets.  31 

The cumulative areawise test can also be applied to wavelet coherence, wavelet partial 32 

coherence, and multiple wavelet coherence spectra. In these cases, the critical levels of the 33 

pointwise test would need to be calculated using Monte Carlo methods. The implementation of the 34 

cumulative areawise test, however, is exactly the same as for wavelet power spectra. It is noted 35 

that different null distributions for the cumulative areawise test should be used for each, as the 36 

cumulative areas of patches in coherence spectra may differ from those found in wavelet power 37 

spectra.  38 

The cumulative areawise test applied in this paper was limited to two-dimensional wavelet 39 

power spectra. The method, however, may also be applied to global power spectra obtained by 40 
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time averaging wavelet power at each scale. In this 1-dimensional case, geometric pathways would 1 

be a nested sequence of arcs. Each member of the nested sequence would be a portion of a global 2 

peak that lies above the critical level of the test. Additionally, the 1-dimesional test may also prove 3 

useful for global coherence (Schulte et al., 2015), which measures the coherence between two time 4 

series as a function of wavelet scale. More generally, one can construct an n-dimensional 5 

cumulative areawise test where the test statistics would be the cumulative sum of n-dimensional 6 

volumes corresponding to a nested sequence of n-dimensional geometric objects.  7 

A potential drawback of the cumulative areawise test is that it may become computationally 8 

expensive for very long time series. As the length of the time series increases, the number of 9 

geometric pathways that need to be calculated also increases. The increase in the number of 10 

geometric pathways was found to be nonlinear (not shown), meaning a small change in the time 11 

series length yielded a larger change in the number of geometric pathways. Another limitation is 12 

that the test relies on the selection of several parameters. One needs to select I and Δ𝛼. Fortunately, 13 

the results of procedure were found to change little if Δ𝛼 was smaller than 0.02.  14 

The results from the climate-mode analysis suggest that the predictability of the PDO is 15 

limited and that the multi-decadal variability of the PDO is the result of a stochastic process. The 16 

Niño 3.4 index, by contrast, was found to have deterministic features, implying that future states 17 

of ENSO may be predictable.  18 

A Matlab software package written by the author to implement the cumulative areawise 19 

test is available at justinschulte.com. 20 

    21 
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  1 

Appendix A 2 

Let 𝑃1 and 𝑃2 be two subsets of a patch P with area A such that 𝑃 =  𝑃1 ∪ 𝑃2. Let 𝐴1 and 𝐴2 denote 3 

the areas of 𝑃1 and 𝑃2, respectively. One can thus write  4 

𝐴 =  𝐴1 +  𝐴2,                                                              (A1) 5 

𝐴 =  𝑟1𝐴 + 𝑟2𝐴,                                                            (A2) 6 

and 7 

𝑟2 = 1 − 𝑟1,                                                              (A3) 8 

where 𝑟1, 𝑟2 ∈ [0,1]. The centroid of P can be written as 9 

1

𝐴
∬ 𝑠𝑑𝑠𝑑𝑡 =  

1

𝐴
∬ 𝑠𝑑𝑠𝑑𝑡 +  

1

𝐴
∬ 𝑠𝑑𝑠𝑑𝑡

𝑤

𝑃2

𝑤

𝑃1

𝑤

𝑃
                                       (A4) 10 

=
1

𝐴
∬ 𝑠𝑑𝑠𝑑𝑡 =  

𝑟1

𝐴1
∬ 𝑠𝑑𝑠𝑑𝑡 +  

𝑟2

𝐴2
∬ 𝑠𝑑𝑠𝑑𝑡

𝑤

𝑃2

𝑤

𝑃1

𝑤

𝑃
                                       (A5) 11 

or 12 

 𝐶𝑠 =  𝑟1𝐶1
𝑠 +  𝑟2𝐶2

𝑠,                                                        (A6)                                          13 

so that 14 

𝐶𝑠− 𝑟2 𝐶2
𝑠

𝑟1
=  𝐶1

𝑠,                                                            (A7) 15 

where 𝐶1
𝑠 and 𝐶2

𝑠 are the scale coordinates of the centroids for 𝑃1 and 𝑃2. The equation implies 16 

that  17 

𝐶𝑆 − 𝑟2 𝐶2
𝑠 > 0                                                            (A8) 18 

because 𝐶1
𝑠 is always positive. The normalized areas of P and 𝑃1 are given by  19 

𝐴𝑁 =
𝐴

(𝐶𝑠)2
                                                                (A9) 20 

and 21 

𝐴1
𝑁 =  

𝐴1

(𝐶1
𝑠)2

.                                                               (A10) 22 

Thus,  23 

𝑟𝑛𝑜𝑟𝑚 =  
𝐴1

𝑁

𝐴𝑁 =
𝑟1

3(𝐶𝑠)2

(𝐶𝑠− (1− 𝑟1)𝐶2
𝑠)2 .                                               (A11) 24 

At 𝑟1= 0, 𝑟𝑛𝑜𝑟𝑚 = 0 because 𝑃1 has no area. At 𝑟1= 1, 𝑟𝑛𝑜𝑟𝑚 = 1 because 𝐴1 = 𝐴. Moreover, the 25 

function is monotonically increasing for 𝑟1 = [0 1] so that 𝑟𝑛𝑜𝑟𝑚 ≤ 1. The same arguments hold 26 

for 𝑃2 except that 𝑟𝑛𝑜𝑟𝑚 decreases monotonically.   27 
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 1 

Figure 1. Wavelet power spectra of the Niño 3.4 index. Thin black contours enclose regions of 5% 2 

pointwise significance and thick contours indicate those patches that are geometrically significant 3 

at the 5% level. Light blue shading represents 5% areawise significant subsets of the patches. Light 4 

shading represents cone of influence (COI), the region in which edge effects cannot be ignored.  5 
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 2 

Figure 2. Same as Figure 1 but for the PDO index.   3 
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 1 

Figure 3. (a) A histogram of 𝑟 =  
𝑁𝛼1,𝛼2

𝑁𝛼1

 for 𝛼1 = 0.1 , 𝛼2 = 0.05, and 𝛼𝑔𝑒𝑜 = 0.05  obtained from 2 

the generation of 300 wavelet power spectra of red-noise processes of length 1000 with lag-1 3 

autocorrelation coefficients equal to 0.5. (b) Same as (a) but with 𝛼𝑔𝑒𝑜 = 0.01. (c) Same as (a) but 4 

with 𝛼1 = 0.05, 𝛼2 = 0.01, and 𝛼𝑔𝑒𝑜 = 0.01. (d) Same as (c) but with 𝛼𝑔𝑒𝑜 = 0.05.  5 
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 1 

Figure 4. (a) - (d) The topological evolution of  patches across four pointwise significance levels. 2 

(e) The barcode showing the birth and death of patches throughout the evolution process. 3 

Horizontal lines with arrows indicate those patches that never die.  4 
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 2 

Figure 5. The mean number of patches as a function of 𝛼.  The curve was obtained by generating 3 

100 wavelet power spectra of red-noise processes of length 300 and computing 𝛽0 for each of the 4 

wavelet power spectra at each pointwise significance level. The quantities 𝛼𝑚𝑖𝑛 and 𝛼𝑚𝑎𝑥 are the 5 

lower and upper bounds of the computation interval for the cumulative areawise test and 𝛼𝑝𝑒𝑎𝑘 is 6 

the pointwise significance level for which the number of patches reaches a maximum within the 7 

computation interval.   8 
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              1 

Figure 6. Example barcode for 𝐻0 corresponding to a wavelet power spectrum of a red-noise 2 

process with length 150 and 𝜌 = 0.5.  3 
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                1 

Figure 7. Distribution of persistence indices representing the lifetimes of patches. The distribution 2 

was obtained by generating 1000 wavelet power spectra of red-noise processes with lengths 500 3 

and 𝜌 = 0.5. Persistence indices equal to infinity are excluded from the distribution.  4 
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 1 

Figure 8. (a) Null distribution of 𝛾 obtained by generating 10,000 geometric pathways under the 2 

null hypothesis of red-noise, where the red-noise processes were of length 1000 and had lag-1 3 

autocorrelation coefficients equal to 0.5. (b) Percentiles of a theoretical exponential distribution 4 

with mean 6.5 plotted as a function of the percentiles calculated from the distribution shown in (a).  5 
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        1 

         2 

Figure 9. (a) Geometric pathway of three significance patches, X, Y, and Z in the interval I = 3 

[𝛼1, 𝛼5]. (b) The geometric evolution of the pathways showing how 𝑍5 was created from the 4 

merging of 𝑋3 and 𝑍4 as 𝛼 changed from 𝛼4 to 𝛼5. (c) The cumulative areas of geometric pathway 5 

elements, where the summation begins at 𝛼5, and the dotted line represents the critical level of the 6 

cumulative areawise test.  7 
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 1 

Figure 10. (a) Cumulative areawise test applied to a sinusoid with a frequency of 0.8 and amplitude 2 

equal to 0.8. Signal-to-noise ratio is 1.0. Contours represent patches that are elements of 5% 3 

significant pathways. Dotted lines represent the upper and lower boundaries of a theoretical patch 4 

obtained by generating the wavelet power spectrum of a pure sine wave and calculating the width 5 

of the patch at t = 250. (b) Same as (a) except for the geometric test with 𝛼 = 0.05 and 𝛼𝑔𝑒𝑜 =6 

0.05. Contours represent patches that are geometrically significant.  7 
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                    1 

Figure 11. (a) The ensemble mean 𝑟𝑎 as a function of the signal-to-noise to ratio for the areawise 2 

test with 𝛼𝑐 = 0.05 and the geometric test with 𝛼𝑔𝑒𝑜 =  0.05. Gray shading represents the 95% 3 

confidence interval and all means for the geometric test are significantly different at the 5% level 4 

from the means for the areawise test except for those corresponding to the 𝛼 = 0.01 curve for 5 

signal-to-noise ratios less than -1.5. The confidence intervals and statistical significance were 6 

obtained by the bootstrap method (Efron, 1979). The data for each signal-to-noise-ratio were 7 

sampled with replacement 1000 times to generate a distribution of bootstrap replicates, from which 8 

95% confidence intervals were obtained. Two ensemble means were said to significantly different 9 

at the 5% level if their 95% confidence intervals did not intersect. (b) Same as (a) except with 10 

𝛼𝑐 = 0.01 and 𝛼𝑔𝑒𝑜 =  0.01. All means for the geometric test in panel (b) are significantly 11 

different at the 5% level from the means for the areawise test.  12 
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1 
Figure 12. The application of the cumulative areawise test to the (a) Niño 3.4 index and (b) PDO 2 

index. Contours enclose regions of 1% cumulative areawise significance.  3 


