
Reply to Reviewer 1 

 

We thank the reviewer for his general support of our work.  We also greatly appreciate the time 

and the effort invested by him in providing a meaningful review.  We have adopted some of the 

reviewer’s suggestions and corrected the errors and misprints noticed by him. Since there are, 

however, some points of disagreement between us, we welcome his suggestion to debate the 

differences. In the following we provide the detailed replies to the reviewer’s comments. The 

reviewers’ comments are in italics. 

1. The restrictive role of periodic conditions in the numerical simulations is drastically 

overestimated. 

It seems to be an axiom that if waves are well localized in the domain of consideration, then the 

boundary conditions do not matter (whether they are periodic as in the numerical tank, reflective 

as in a laboratory, etc).  

 

This seems to be the major point of disagreement. As it is our desire to address the reviewer’s 

inputs, we would appreciate greater clarification as to what is meant by the statement “It seems 

to be an axiom that if waves are well localized in the domain of consideration, then the boundary 

conditions do not matter (whether they are periodic as in the numerical tank, reflective as in a 

laboratory, etc).” We are unaware of any axiom which categorically states the boundary 

conditions do not matter.  

 

Moreover, it is generally known (including from personal experience) that reflections from the 

far end of the wave flume can change the wave pattern in the whole tank significantly. This is the 

reason why the wave energy absorbing beach is installed in all wave flumes (including ours), and 

active control of the wave maker is applied as well to remove secondary reflections in some 

tanks. In all our experiments, great care is taken to study the spatial evolution of wave trains of 

finite duration and we limit the measurements to locations that are sufficiently far from the end 

of the tank to mitigate the effects of secondary reflection, however minor they may be. 

 

As for numerical tanks, a similar approach may be adopted. Note that in recent years, numerous 

numerical wave tanks were based on various versions of the Boundary Elements Method and 

adopted by a number of research groups. The main motivation for those is to remove the 

requirement of periodic boundary conditions. One of the earliest attempts in this direction that 

we are aware of is the paper by Grilli et al. (Engng. Analysis with Boundary Elements 6 (2), 

97-107, 1989). At the start of Section 2.5 in that paper it reads: “In the present paper, the Laplace 

equation is solved in the physical space, since we intend to generate non-periodic waves and to 

absorb them. The presentation is limited in a 2-D model, but can in principle be extended to 3-D 

problems”.  

Moreover, regarding all experimental studies reporting on nonlinear unidirectional propagating 

wave trains published since the late 1970s, beginning from seminal papers by Yuen and Lake, we 

are unaware of any results indicating that spatially periodic boundary conditions can indeed be 

observed in experiments.  

 

“When there is a mean current, the surface potential is not localized.” 

 

We wish to stress that the application of the method proposed by Chalikov and Sheinin (2005) or 



any other method of conformal mapping does provide the velocity potential (not just the surface 

elevation) in the whole domain of calculation. The Stokes drift current has a vertical velocity 

profile and it is basically concentrated in a thin upper layer only. The necessity for mass 

conservation in the experimental wave tank (closed at both ends) results in a slow backward 

current in the lower layers that practically does not affect waves under deep water conditions. 

This was also observed in our experimental facility. It is therefore impossible to apply the 

Galilean transformation (as suggested by the reviewer) to mitigate the effect of the Stokes’ drift 

current.  

 

“The numerical simulations presented in the paper are inaccurate … due to the rough initial 

condition (since the bound waves are completely disregarded),” 

 

The bound waves are in fact accounted for in our simulations. We appreciate the suggestion by 

the reviewer to use Dysthe equations to calculate the initial condition. However, a different 

method was used in our paper. Prior to integration in time, the linear Peregrine Breather solution 

was modified to satisfy the governing equations; the initial conditions thus effectively include 

the bound waves as well and were obtained by applying an iterative procedure as described in 

Chalikov and Sheinin (2005). Also, our computational domain was longer than the effective 

length of the wave train.  

 

2. The bibliographic review is lopsided. 

The Peregrine breather and many other analytic solutions have been reproduced in 

laboratory experiments many times by A. Chabchoub with colleagues [Chabchoub, A., 

Hoffmann, N., Akhmediev, N. Rogue wave observation in a water wave tank. Phys. Rev. 

Lett. 106, 204502, 2011 and subsequent papers]. 

 

Shemer and Alperovich (2013) [hereafter referred to as SA] demonstrated that there were 

essential deficiencies in the original paper by Chabchoub et al. (2011). The spectra presented in 

JGR (2013) do not contain any quantitative data and hardly qualitative information as well, in a 

sharp contrast to SA. In private discussions with Amin Chabchoub, no evidence was presented 

by him to counter the points highlighted in SA. For these reasons, these two papers were not 

cited in our study. 

 

As for the paper by Slunyaev et al (2013), it will be cited in the revision of our manuscript 

although we wish to point out that many of the experimental and numerical results featured in 

that paper were already published in SA, half a year earlier.  

 

3. The interpretation of analytic solution (6) is wrong. 

 

In principle, we agree with the reviewer’s comment and will replace the term “asymmetric in 

space” to “aperiodic in space” to stress the point that the analytical solution of the Peregrine 

Breather evolving along the tank lacks spatial periodicity.  

 

4. The discussion of wave kinematics in page 1175-1176 is questionable. … one may assume 

quite the opposite – that the laboratory measurements were probably not accurately enough to 

claim the correctness of the breaking criterion. 



 

We believe that the comment is biased for the following reasons. In both Shemer and Liberzon 

(2014) and in the present manuscript, state of the art experimental methods were applied and we 

are curious as to what led the reviewer to question the accuracy of our results and the validity of 

conclusions. While it seems that the experimental findings by Chabchoub in PRL 2011 and later 

papers regarding the observability of breathers are accepted unconditionally and presented as 

truth, the reviewer questions the accuracy of our results without any substantiation.  

 

We would like to stress that the validity of the suggested breaking criteria was demonstrated in 

two independent studies with different experimental methods used. In Shemer and Liberzon, 

accurate Particle Tracking Velocimetry (PTV) measurements of Lagrangian velocity and 

acceleration were performed (ref. to Figures 4, 7, and 9 for velocity and Figure 10 for 

acceleration). The crest velocities at the inception of breaking were measured using digital video 

image processing. Moreover, the steepest crest propagation velocities proved to be in very good 

agreement with analytical solutions based on the Peregrine Breather. In that paper, the video 

clips were also presented as a supplement, providing visual evidence of strong acceleration of 

fluid particles at the inception of breaking. In the present study, the focus was made on detailed 

comparisons of fully nonlinear solutions in space with the time histories of the surface elevation 

measured at numerous locations along the tank. The instantaneous steepest crest velocities were 

obtained from data acquired by closely located probes. We do not see any reason to question the 

accuracy of our experimental results especially since the same level of scrutiny is not applied to 

other experiments. The possible reasons for minor discrepancies between experimental and 

numerical results are candidly discussed in the manuscript.   

 

5. Remarks to section ‘Discussion and conclusions’. 

 

In the present manuscript, we do not generate the boundary condition at the wavemaker. We just 

discuss the method to generate the appropriate initial wavemaker driving signal. As such, the 

reference suggested by the reviewer does not seem to be directly relevant.  

 

We see this Section as an integral part of the paper where the total body of results presented 

before are discussed from a common view point and without unnecessary repetitions.  

 

The truncation of an infinite wave train is indeed a common approach and was applied 

effectively in all studies of wave group propagation. We wish to clarify that we do not claim any 

element of novelty here and simply aim to provide a detailed description of the experimental 

accuracy. Shemer et al. have applied a similar approach since the late 1980s, as have many 

others.  

 

The Dysthe equation was indeed not discussed in this paper. An appropriate reference to SA will 

be given here in the revision.  

 

6. It is not clear, was the breaking observed in the numerical simulations or not, how the 

accuracy of numerical simulations was controlled. 

 

The accuracy of numerical simulations was tested using the standard procedure of reducing the 



integration steps, as specified in the manuscript. 

We thank the reviewer for highlighting the apparent inconsistency regarding the late stages of the 

evolution. In our simulations the horizontal fluid velocity appears to be discontinuous at a t/T0 

approximately 62. This also seems to fit with what is shown in Fig. 9 as the max crest height 

exceeds 3. We recall that these 2 plots are for the numerical simulations only of the temporal 

evolutions of spatially distributed functions.  

 

We clarify that this does not necessarily mean that the computation has to break down at t/T0 ≈62. 

The numerical computation breaks down when it just blows up. One of the goals of the paper is to 

determine up to what time do we want to set the applicability of the simulation results. Beyond that 

time, we say that the result is not useful. So since the simulation of the surface elevation ran till 

around 74T0, we used the data up to that time. However, as can be seen in Fig. 4 (surface elevations 

variation with time for fixed x values), using the data up to t/T0 = 62 does not affect the results 

shown in Fig. 10 - which aims to directly compare between experiments and the relevant 

post-processed results from the simulations.  

 

Less significant remarks: 

 

7.1. Abstract - We will change the phrase “A method was developed…” to “A method was 

applied…” 

 

7.1. - We accept the remark and the manuscript will be modified to include intermediate depth.  

 

7.2. - We question the observation since significant spectral broadening associated with the 

focusing of the Peregrine Breather seems to be irreversible.  

 

7.3. – We accept the comment and will change the first sentence to “Shemer and Alperovich 

(2013) demonstrated that the modified nonlinear Schrödinger (MNLS, or Dysthe) equation was 

advantageous in describing the PB evolution along a laboratory tank as compared to the NLS 

equation (Dysthe, 1979).” 

 

7.4. – The sentence will be changed “Shemer and Liberzon (2014) noticed that the spectral 

widening, being an essentially nonlinear process, occurs at slow spatial and temporal scales. 

Hence, it was found that the wave train behavior with background steepness of about 0.1 is still 

described by the PB solution of the NLS equation with reasonable accuracy, as long as the 

surface elevation spectrum remains sufficiently narrow and the maximum wave height in the 

train remained below approximately twice that of the background.” 

 

7.5. – The notation is correct. On page 1164, we refer to physical variables whereas on page 1168, 

the axes are defined according the conformal mapped space.  

 

7.6. – We accept the comment, the typo will be corrected.  

 

7.7. – We accept the comment and the year will be revised accordingly.  

 

7.8. – We accept the comment and the figure will be corrected.  



 

Reply to Reviewer 2 

 

We thank the reviewer for his general support of our work and greatly appreciate the time and 

effort invested by him in providing a meaningful review.  

 

We have accepted the reviewer’s suggestions and wish to clarify certain points raised by him. In 

the following we provide the detailed replies to the reviewer’s comments. The reviewers’ 

comments are in italics. 

 

1. First, it is noted that the authors’ focus is limited to the special class known as the 2D 

Peregrine breather wave packets.  

Given that the actual initial condition for the simulations and the initial driving signal for the 

wavemaker have been modified and are fundamentally different from the PB, the results on steep 

crests in the wave train presented in this study are of generic nature and applicable beyond the 

2D Peregrine breather wave packets. The crest slowdown was also observed in some other 

studies, as noticed by the reviewer. This fact is now accounted for in the revision. To stress that 

point, last line of the 4
th

 paragraph of Section 5 was modified. 

 

2. The wording on p.1179, lines 7-10 of the present paper should probably be modified to better 

reflect the generality and nature of this important advance in knowledge of water wave 

kinematics. 

We accept the reviewer’s comments; they are now accounted for in the revision. 

 

3. From a careful reading of this discussion and inspection of the key figures 9 and 10, it 

becomes evident that various sources operative lead to residual uncertainties in their companion 

model and observational assessment. These uncertainties preclude the conclusive evidence 

required for certainty of its validity. Hence I am obliged to recommend that the authors 

accordingly modify their wording on lines 19-21 of p.1179 of the paper. 

 

We accept the reviewer’s suggestion to some extent and have changed the statement to a 

somewhat vaguer formulation. On the other hand, the reviewer’s comment prompted us to point 

out that our conclusions are also supported by visual evidence as seen in video clips presented in 

the Supplements to both the present manuscript and to Shemer and Liberzon.  

 
New results on this topic that reduce these uncertainties have recently been published for a wider 

range of cases [Saket et al., ArXiv 1508.07702; Barthelemy et al., ArXiv 1508.06002]. These results 

provide evidence that questions the validity of the kinematic breaking condition as the primary 

determinant of breaking onset. 

 

It is our understanding that these two manuscripts were uploaded at the end of August. We should 

point out that the present paper was motivated to a large extent by an earlier study by Shemer and 

Liberzon (PoF 2014). The present manuscript was submitted on July 1 and made available online on 

July 24, 2015. We therefore do not feel that it is appropriate to cite manuscripts submitted after our 

work already was published in NPGD.  
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Abstract. A method wasdeveloped
✿✿✿✿✿✿

appliedto carry out detailedqualitative
✿✿✿✿✿✿✿✿✿

quantitativecomparison

of fully nonlinear computations with the measurements of unidirectional wave groups. Computa-

tional results on evolving wave groups were compared withthe
✿✿✿✿✿✿✿

previous
✿

available experiments.

The local surface elevation variation, evolution of envelope shapes, the velocity of propagation of

the steepest crests in the group and their relation to the height of the crests were obtained numeri-5

cally and experimentally. Conditions corresponding to incipient wave breaking were investigated in

greater detail. The results shed additional light onthe limits of applicability of the computational

results
✿✿✿✿✿✿✿✿✿✿

mechanisms
✿✿✿✿✿✿✿

leading
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

breaking
✿✿

of
✿✿✿✿✿

steep
✿✿✿✿✿

waves, as well as onmechanismsleadingto the

breakingof steepwaves
✿✿✿

the
✿✿✿✿✿

limits
✿✿

of
✿✿✿✿✿✿✿✿✿✿

applicability
✿✿✿

of
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

computational
✿✿✿✿✿✿

results.

1 Introduction10

Over the past few decades, rogue, or freak, waves have attracted considerable interest due to their de-

structive impact on offshore structures and ships (Dysthe et al., 2008; Kharif et al., 2009). A number

of possible mechanisms for rogue wave generation have been explored. Wave-current and wave-

bathymetry interactions may result in appearance of rogue waves (Kharif et al., 2009). Extremely

steep waves in ocean are thus usually affected by the directional characteristics of the wave field.15

Nevertheless, considerable effort has been invested in recent decades to study unidirectional wave

fields. The accumulated results clearly demonstrate that investigation of both deterministic and ran-

dom unidirectional waves can lead to a better understandingof mechanisms leading to appearance

of rogue waves in the presence of directional spreading as well. Experimental studies of 2-D wave

fields in wave basins require large and expensive facilitiesand are subject to numerous limitations20

on the wave parameters. Generation of unidirectional wave groups in long tanks by a computer-

controlled wavemaker offers significant advantages in terms of availability and versatility of op-

erational conditions. Extremely steep waves can be generated due to constructive interference of

numerous harmonics. While this focusing mechanism is basically linear, it is strongly affected by

nonlinearity (Shemer et al., 2007; Bateman et al., 2012). Analternative, essentially nonlinear, mech-25

anism is related to the specific properties of the governing equations. To that end, the nonlinear
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Schrödinger (NLS) equation (Zakharov, 1968; Hasimoto and Ono, 1972), applicable for description

of diverse nonlinear physical phenomena, is the simplest theoretical model describing evolution of

narrow-banded wave groups in deep
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

intermediate
✿✿✿✿✿

depth
✿

water. This equation attracts special

interest in rogue waves studies since it admits analytical solutions such as the so-called Kuznetsov–30

Ma breathing solitons(Ma, 1979; Kuznetsov, 1977)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Kuznetsov, 1977; Ma, 1979). These solutions

of the NLS equation present spatially localized patterns that oscillate in time. The closely related

Akhmediev breather (Akhmediev et al., 1987) is periodic in space. When the periodicity in time

and space tends to infinity, both these types of solution tendto a simple Peregrine Breather (PB)

(Peregrine, 1983). It is localized in time and space, breathes only once and attains a maximum crest35

height that exceeds that of the background wave train by a factor of three. For this reason, the Pere-

grine and other breather-type solutions of the NLS equationhave been proposed as rogue wave proto-

types(Dysthe and Trulsen, 1999; Osborne et al., 2000; Shrira and Geogjaev, 2010)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Dysthe and Trulsen, 1999; Osborne et al., 2000; Shrira

Shemer and Alperovich (2013) conducted a series of experiments on the evolution of the Peregrine

breather (PB) along a wave tank. They demonstrated that the experimental results diverge from the40

Peregrine’s solution of the NLS equation. Notable asymmetry of the crest was observed, in agree-

ment with many earlier studies of extremely steep waves (Babanin et al., 2007). The discrepancy

between the fully symmetric NLS solution and experiments manifests itself mainly in significant

asymmetric widening of the wave spectrum, as well as in notably slower than predicted by the PB

solution amplification of the wave height. Moreover, these experiments suggested that, contrary to45

the behavior of the PB, there would be no return to the initialnearly monochromatic wave train.

Similar conclusions based on fully nonlinear simulations of PB evolution in time were reached by

Slunyaev and Shrira (2013). Shemer and Alperovich (2013) demonstrated that the modified nonlin-

ear Schrödinger (MNLS, or Dysthe)
✿✿✿✿✿✿✿✿✿✿✿✿✿

((Dysthe, 1979) )
✿

equation was advantageous in describing the

PB evolution
✿✿✿✿✿

along
✿✿✿

the
✿✿✿✿✿✿✿✿✿

laboratory
✿✿✿✿

tank as compared to the NLS equation(Dysthe, 1979). The im-50

proved performance of the Dysthe model was attributed in Shemer and Alperovich (2013) to the

additional 4th order terms in this equation that account forthe finite spectral width (Kit and Shemer,

2002).

Shemer and Liberzon (2014)noticed
✿✿✿✿

took
✿✿✿✿✿✿✿✿

advantage
✿✿

of
✿✿✿

the
✿✿✿✿

fact that the spectral widening, being

an essentially nonlinear process, occurs at slow spatial and temporal scales. Hence, it was found that55

the wave train behavior
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿

background
✿✿✿✿✿✿✿✿

steepness
✿✿

of
✿✿✿✿✿

about
✿✿✿

0.1 is still described by the PB solution

of the NLS equation with reasonable accuracy, as long as the surface elevation spectrum remains

sufficiently narrow and the maximum wave height in the train remained below approximately twice

that of the background. This observation enabled Shemer andLiberzon (2014) totake advantage

of
✿✿✿✿✿

utilize
✿

the available PB analytic solution to design experiments with PB in which the height of60

the steepest wave in the train at a prescribed measuring location can be controlled, thus facilitating

quantitative studies of the incipient wave breaking. Theirstudy was motivated by an earlier attempt

by Shemer (2013) to examine the kinematics of the steep wave on the verge of breaking using the
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Zakharov equation (Zakharov, 1968). By comparing the computational results with experimental

observations reported in Shemer et al. (2007), the conclusion was reached that wave breaking may65

occur when the horizontal liquid velocity at the crest becomes sufficiently high (Shemer, 2013).

These computations also showed that the maximum negative vertical Lagrangian acceleration seems

to remain significantly below the acceleration of gravityg, so that the Phillips dynamic breaking

criterion cannot be satisfied (Phillips, 1958). Computations of steep wave kinematics accurate up

to the 3rd order in the wave steepness demonstrated, though,that this approximation, while largely70

adequate for determination of the shape of the surface elevation, was insufficient for the accurate

characterization of the kinematics of steep waves (Shemer,2013). In order to overcome this limita-

tion, the kinematic parameters of the steepest wave in thePB
✿✿✿✿✿✿✿

PB-like wave train were determined

experimentally in Shemer and Liberzon (2014) simultaneously with estimates of the propagation

velocity of the steepest crest. To this end, two synchronized video cameras were used to image the75

wave field. The maximum possible horizontal Lagrangian velocities and accelerations at the surface

of steep water waves were measured by Particle Tracking Velocimetry (PTV) for gradually increas-

ing crest heights, up to the inception of a spilling breaker.Actual crest and phase velocities were

estimated from video recorded sequences of the instantaneous wave shape as well as from surface

elevation measurements by wave gauges. The slow-down of thecrest as it growths steeper was ob-80

served. It was suggested in Shemer and Liberzon (2014) that the inception of a spilling breaker is

associated with the horizontal velocity of water particlesat the crest attaining that of the crest, thus

confirming the kinematic criterion for the inception of breaking.

In the present study, we aim to extend the numerical analysisof the conditions prevailing at

the inception of breaking of the steepest crest in thePB
✿✿✿✿✿✿

PB-like wave train by carrying out fully85

nonlinear simulations. The simulation were performed using conformal mapping method approach

developed by Chalikov and Sheinin (1998, 2005) (hereafterknown
✿✿✿✿✿✿✿

referred
✿✿

to
✿

as the CS model).

A somewhat different implementation of this approach was suggested by Milewski et al. (2010).

Recently, Períc et al. (2014) reported on direct numerical simulations based on the volume of fluid

method to solve the two-phase Navier–Stokes equations. In their study Peregrine breather dynamics90

was investigated up to the initial stages of wave breaking.

In Sect. 2, the difference between the spatial and temporal evolution of the wave field is dis-

cussed. In Sect. 3, we give details about the solver that is based on the conformal mapping method

and stress that the resulting numerical solution describesthe temporal evolution starting from an

initial spatial distribution. In Sect. 4, the computational results are discussed for both the temporal95

evolution problem and then for the spatial evolution case. The corresponding experimental results

are also presented and compared directly with the numericalsimulations. In Sect. 5, the numerical

and experimental results are discussed and the conclusionsare drawn.
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2 Wave parameters: temporal vs. spatial evolution cases

The CS model enables computation of wave field evolution in time, starting from a given spatial dis-100

tribution as an initial condition. In laboratory experiments, however, waves are generated by a wave-

maker usually placed at one end of the experimental facility. The experimental data are commonly

accumulated only at preselected fixed locations within the tank where the sensors are placed. Quanti-

tative comparison of numerical computations with experimental results gained in those experiments

may thus constitute a complicated task. For a narrow-bandedwave field this problem has been con-105

sidered by Shemer and Dorfman (2008). For such wave fields, the envelope equations like the NLS

and Dysthe models often provide adequate results. In the narrow-banded models the temporalt and

the spatialx coordinates are related by the group propagation velocity,cg, thus enabling modifica-

tion of the governing temporal evolution equations to a spatial form. The spatial form of the Dysthe

model was presented by Lo and Mei (1985). Numerical computations based on the Dysthe model for110

unidirectional wave groups propagating in a long wave tank indeed provided good agreement with

experiments (Shemer et al., 2002). The spatial version of the Dysthe equation was also derived from

the spatial form of the Zakharov equation (Shemer et al., 2001, 2007) that is free of any restrictions

on the spectrum width (Kit and Shemer, 2002).

As demonstrated in Shemer and Dorfman (2008), the availability of the spatial form of the evolu-115

tion model is insufficient to pose the initial conditions forthe numerical simulations that correspond

exactly to those in experiments. In the present work, the temporal evolution is computed by a fully

nonlinear solver of the two-dimensional potential equations in finite water depth. Following ear-

lier works (Shemer and Alperovich, 2013; Shemer and Liberzon, 2014), the solution of the spatial

version of the NLS equation is used to set the initial conditions. For a narrow-banded deep-water120

wave group, the spatial and temporal variations of the surface elevationz at the leading order can be

presented as

ζ(x,t) = Re
[

a(x,t) · ei(k0x−ω0t)
]

(1)

Here the radian frequencyω0 = 2π/T0,T0 being the carrier wave period, and the wave number

k0 = 2π/λ0, λ0 being the carrier wave length, satisfy the finite water depthdispersion relationω0
2 =125

gk0 tanh(k0h). In Eq. (1),a is the slowly varying complex group envelope. The wave steepness is

defined asǫ= a0k0, wherea0 is the characteristic wave amplitude. The wave train given by Eq. (1)

propagates with the group velocitycg =

(

∂ω

∂k

)

k=k0

. Following Mei (1989) and Shemer et al. (1998),

in intermediate water depth the spatial NLS equation for thecomplex normalized envelope,Q=

a(x,t)/a0 is given by:130

− iQX +αQTT +β|Q|2Q= 0 (2)
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where the scaled dimensionless temporal and spatial coordinates areT = ǫω0(x/cg − t) andX =

ǫ2k0x respectively. The coefficients in the NLS equation have the following dimensionless form

α=−
ω0

2

2k0cg3
∂cg
∂k

(3)

β =
1

n

[

cosh(4k0h)+ 8− 2tanh2(k0h)

16sinh4(k0h)
−

1

2sinh2(2k0h)

(2cosh2(k0h)+n
2
)

k0h
tanh(k0h)

−n2

]

1

n

[

cosh(4k0h)+ 8− 2tanh2(k0h)

16sinh4(k0h)
−

1

2sinh2(2k0h)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(4)

135

where the parametern= cg/cp represents the ratio of group and phase velocities and is given by

n=
1

2

{

1+
2k0h

sinh(2k0h)

}

. (5)

For the deep water case,k0h→∞ andα= β = 1. The Peregrine Breather solution of the NLS

equation for intermediate water depth (Eq. 2) is:

Q=−

√

2
α

β
e−2iαX

[

1−
4(1− 4iαX)

1+ 4T 2 +16(αX)2

]

(6)140

Equations (1) and (6) provide variation of the instantaneous surface elevation in time and in space,

with focusing corresponding toT =X = 0. In Shemer and Alperovich (2013) and Shemer and Liberzon

(2014), the wavemaker driving signal as a function of time was selected using the deep-water ver-

sion of Eq. (1
✿

2) and the prescribed focusing distance from the wavemaker,x0, by substituting

X =X0 =−ǫ2k0x0 into Eq. (6). The relative height of the initial hump in the wave amplitude145

distribution at the wavemaker in Shemer and Liberzon (2014)wasabout
✿✿✿✿✿✿✿✿

exceeded10% above the

background.

The present study has been carried out in the 18m long, 1.2m wide and 0.9m deep wave tank

(water depthh= 0.6m). More details about the experimental facility are given inShemer et al.

(1998). The carrier wave periodT0 = 0.8 s was selected, corresponding to the carrier wave length150

λ0 = 1.0m and the dimensionless water depthk0h= 3.77. For these parameters, both coefficients in

the NLS
✿✿✿✿✿✿✿

equation
✿

(
✿✿✿✿

eq0b)
✿✿✿✿✿

given
✿✿✿

byEqs. (3) and (4) in fact differ from unity:α= 1.078 andβ = 0.711.

The carrier wave amplitude ofζ0 =
√

2α
β
a0 = 0.026m was used, corresponding to the nonlinearity

ǫ= k0a0 = 0.094.

Giventhat
✿✿✿✿

Sincethe nonlinear numerical solver in the present study requires an initial condition as155

a given spatial distribution at a certain instant, the following procedure to determine the appropriate

initial spatial distribution was adopted.

Using Eq. (6), a value ofx0 is specified at which the prescribed maximum crest of the PB isto

be located. Note that in physical terms, this initial condition corresponds to a situation in which the

whole wave train is placed upstream of the wavemaker. Due to the focusing properties of the NLS160

equation in sufficiently deep water (k0h > 1.36), the maximum wave height in the train increases in

the course of the evolution process. In order to obtain the amplification, at the wavemaker location,

of about 20% similar to that employed in Shemer and Liberzon (2014), the initial height of the PB
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hump has to be significantly smaller than that. The amplification corresponding to 5% was selected.

The temporal variation of the surface elevation atx= x0, ζ(x0, t), can be calculated usingT (x0, t)165

andX(x0). The maximum amplification occurs atT = 0 corresponding to the dimensional time

tmax=−x0/cg; the resultingζ(t) is symmetric with respect totmax. Note that at the instantt= tmax,

the spatial distributionζ(x,tmax) is not fully symmetric with respect tox0 due to the presence of term

e−2iαX in Eq. (6). It should be stressed that in experiments as well as in numerical simulations, the

actual extent of the wave group is necessarily finite. In the experiments of Shemer and Alperovich170

(2013) and Shemer and Liberzon (2014) the wave train with duration of 70 carrier wave periods was

generated by the wavemaker. The duration of the wave train of70T0 is long enough to eliminate

the effect of truncation to the central part of the train where the hump is located and which is of

particular interest, and on the other handto eliminate
✿✿✿✿✿✿✿✿✿

sufficiently
✿✿✿✿✿

short
✿✿

to
✿✿✿✿✿✿

prevent
✿

contamination of

the measured surface elevation by possible reflection from the far end of the tankwaves. In the spatial175

domain, this duration of the wave train corresponds to 35λ0. The numerical method applied in the

present study assumes spatially periodic boundary conditions. Since the initial spatial distribution is

not periodic, the periodicity was enforced by applying a linear tapering window over 2 wave length

λ0 at the edges of the wave train. As a result, the effective, undisturbed by tapering, wave group

extended initially for about 32λ0. To allow evolution of the wave train unaffected by boundaries, the180

computational domain was selected as[−32λ0,32λ0], with x= 0 corresponding to the location of

the maximum crest at the initial instant of the computations, t= 0. The temporal initial condition

adopted in the study is plotted in the top panel of Fig. 1. The corresponding spatial variation of the

surface elevation with the same maximum crest height is plotted in the bottom panel of the same

figure.185

3 Numerical solution methodology

The temporal evolution of the initial wave field presented inthe bottom panel of Fig. 1 is obtained

by solving potential flow equations following the fully nonlinear numerical approach developed

by Chalikov and Sheinin (1998, 2005). The CS model is known tobe stable and does not have

limitations in terms of wave steepness. It has been extensively and successfully used for numerical190

simulations of numerous problems related to evolution of nonlinear waves. The conformal mapping

method is applied to solve Laplace’s equation for the velocity potential. Surface tension effects are

neglected. The principal equations are re-written in a surface-following coordinate system (ξ and

ζ) and reduced to two time-evolutionary equations for the surface elevationz and velocity potential

φs at the surface. The evolutionary equations representing the kinematic and dynamic boundary195

conditions at the free surface are written in terms of the Fourier coefficients ofz andφs. This enables

the reduction of the evolutionary equations into a system oftime-dependent ordinary differential
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equations for4M +2 Fourier coefficients ofz andφs, coupled with appropriate initial conditions.

HereM refers to the truncation number of the Fourier series.

The initial surface elevation is given as a function of the physical variablex. To solve the problem200

in the mapped space, this initial condition has to be converted into a function of equally spacedξ.

This is done by an iteration procedure.

For time integration, a fourth order Runge–Kutta scheme wasused. We refer the reader to Cha-

likov and Sheinin (2005) for further details. In the presentcomputations, the dimensional spatial

discretization interval wasλ0/256, so that the total number of spatial pointsN = 17,920; the trun-205

cation number for the Fourier Series isM =N/9. This value ofM effectively means that waves

with wavelengths shorter than1.5 cm where capillary effects become dominant are disregarded. The

dimensional integration step in time isdt= 3.125× 10−6 s.Theoutput

✿✿✿

The
✿✿✿

CS
✿✿✿✿✿

model
✿✿✿✿✿✿

allows
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

computation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

velocity
✿✿✿✿✿✿✿

potential
✿✿

as
✿

a
✿✿✿✿✿✿✿

function
✿✿✿

of
✿✿✿

two
✿✿✿✿✿✿✿✿✿✿

parameters:

✿

ξ
✿✿✿

and
✿✿✿

ζ,
✿✿✿

the
✿✿✿✿✿✿✿

velocity
✿✿✿✿✿✿✿

potential
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿

entire
✿✿✿✿✿✿

domain
✿✿✿✿

can
✿✿✿✿

thus
✿✿

be
✿✿✿✿✿✿✿✿✿

calculated
✿✿

at
✿✿✿

any
✿✿✿✿✿✿✿

instant.
✿✿

In
✿✿✿✿✿

view210

✿✿

of
✿✿✿

the
✿✿✿✿✿

focus
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

present
✿✿✿✿✿

study,
✿✿✿

the
✿✿✿✿✿✿

output
✿✿✿✿✿✿✿✿✿

parameters
✿

of the numerical integration are the surface

elevationz, velocity potential at the surfaceφs and the physical spatial coordinatex, which are all

functions ofξ andt. In order to record the data for future use, the results for surface elevation, the

coordinatesx and non-dimensional velocity potential are saved at every 3.125ms. Note also that

spline interpolation procedure is needed to obtain values of the surface elevationz and the velocity215

potentialφs at equally spaced values ofx.

Milewski et al. (2010) have also employed the conformal mapping method to investigate the un-

steady evolution of two-dimensional fully nonlinear free surface gravity-capillary solitary waves for

infinite depth. Though their numerical approach is similar to that of CS, certain differences between

the methods exist. The numerical approach of Milewski et al.(2010) was implemented in our com-220

putations as well. No significant differences with the results based on the CS model were obtained,

thus further demonstrating the robustness of the present results.

4 Numerical and experimental results

In Fig. 2, the spatial instantaneous wave surface profile is plotted for several characteristic selected

instants. As mentioned above, the origin of the frame of referencesx= 0 corresponds to the lo-225

cation of the maximum crest in the initial spatial distribution. The simulations demonstrate that

abnormally high waves appear at both edges of the wave train as a result of truncation and ta-

pering of the infinite wave train defined by Eqs. (1) and (6) as specified in the previous section.

Similar phenomenon was observed in experiments with truncated wave trains reported in earlier

works (Shemer and Alperovich, 2013; Shemer and Liberzon, 2014). The effect of truncation, how-230

ever, apparently does not extend to the central part of the wave train even at relatively long times,

as can be seen from the upper curves in this figure. The effect of nonlinear focusing on the behav-
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ior of this central part of the train in the vicinity of the hump is of principal interest in this study.

The dashed lines in Fig. 2 originate at the leading edge, the center and the trailing edge of the

initial wave train and correspond to the location of the point propagating with the group velocity235

cg = 0.63m s−1. It transpires from the figure that the leading edge of the train indeed propagates

with the speed that is close tocg, while the trailing edge seems to move somewhat faster. The prop-

agation velocity of the steepest crest, however, exceeds notably the group velocitycg, in agreement

with the experimental observations and the numerical simulation based on the Dysthe equation in

Shemer and Liberzon (2014)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Shemer and Alperovich (2013).240

The spatial variation of the velocity of the fluid at the surfaceuh = ∂φs/∂x is plotted in Fig. 3 at

the same instants as in Fig. 2, but in a moving withcg frame of reference. Only the central part of the

wave train is shown. The horizontal fluid velocity at the steepest crest increases notably during the

focusing process. At the upper curve in Fig. 3, the fast increase in the horizontal velocity at the crest

resultsin apparentdiscontinuityof uh, thusviolatingthebasicassumptionsadoptedin thenumerical245

approachandindicatingthatsimulationsat largertimesmaybecomeinaccurate
✿

is
✿✿✿✿✿✿

clearly
✿✿✿✿

seen. Note

that in earlier experiments by Shemer and Liberzon (2014) wave breaking was indeed observed at

comparable distances from the wavemaker.

The individual waves in Fig. 3 manifest variable left-rightasymmetry. Furthermore, it should be

stressed that periodic boundary conditions prescribed by the computational model imply that the250

mean value of the horizontal velocity
✿✿

uh is zero, and the values ofthe horizontalvelocity
✿✿

uh
✿

at

the boundaries of the computational domain vanish. This actually means that Stokes drift cannot

be reproduced in the present numerical simulations. Note that significant Stokes drift was indeed

documented in experiments by Shemer and Liberzon (2014).

Measurements in a wave tank are routinely performed using wave gauges spread along the facility.255

To faciliate
✿✿✿✿✿✿✿

facilitate the direct comparison between numerical and experimental results, we need

to first determine the location of the wavemaker in our numerical simulations. Then, we examine

vertical cross-sections of the data as presented in Fig. 2 atfixed locations relative to the adopted

coordinate of the wavemaker. The location of the wavemaker is identified by the vertical line in the

latter figure wherex= xwm = 25.273m. The temporal variation of the surface elevation is plotted260

in Fig. 4 at selected locations that cover the range of the wave gauge positions in the experiment,

starting with that atxwm or x∗ = 0, the variablex∗ denoting the distance from the wavemaker. The

disturbances at the leading edge of the truncated wave groupare disregarded here. The growth of the

maximum crest height with the distance is obvious, albeit non-monotonic. In the uppermost curve

in Fig. 4 the relative crest amplification exceeds the factorof 2, as in Shemer and Liberzon (2014)265

at a comparable distance from the wavemaker. Here again, thebroken line that corresponds to the

propagation velocity ofcg clearly shows that the steepest crests in the train propagate at velocities

exceedingcg.
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A closer look at the surface elevation variation with time ispresented in Fig. 5; the time here

is shifted at each position by delay that would occur if the hump in the group indeed propagated270

with the group velocity. Actually, the maximum crest is invariably observed earlier. Both the vertical

(trough-crest) and the horizontal (right-left) asymmetries of steep waves are clearly visible in the

plotted records.

In Fig. 6, we follow after the highest crests in the instantaneous snapshots of wave trains. The

elevations of the highest crests at each instant are compared with the propagation velocity of those275

crests,vcr. To enable comparison of parameters with different dimensions, crest heights are normal-

ized by the background wave amplitudeζ0, while crest propagation velocities are normalized by

the
✿✿✿✿✿

carrier
✿✿✿✿✿

wave
✿

phase velocitycp. Note that this figure corresponds to evolution times at which

the hump’s amplification is still relatively modest. Nevertheless, the crests propagate with time-

dependent velocitiesvcr that may be notably different fromcp as would be the case for a purely280

monochromatic wave train. It was demonstrated in experiments of Shemer and Liberzon (2014) that

even for waves in the train that are far away from the hump and thus seem to be essentially monochro-

matic, the mean crest propagation velocity is somewhat higher thancp due to two main factors: the

presence of the exponential term in Eq. (6), and Stokes driftcurrent due to nonlinearity. As stressed

above, in the present computations the Stokes drift is absent as a result of the prescribed periodicity285

of the boundary conditions. The instantaneous steep crest velocities in Fig. 6 differ fromcp, as well

as from the computed
✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Shemer and Liberzon (2014)behavior ofvcr for the Peregrine breatherby

Shemer and Liberzon (2014). It transpires from the comparison of the two curves in Fig. 6that the

higher are the crests, the lower is their propagation velocity. The minima in the instantaneous max-

imum crests heights correspond to the local maxima in their instantaneous propagation velocities.290

The averaged highest crest propagation velocity in Fig. 6 is1.253m s−1, slightly abovecp.

The experiments were carried out with the goal to enable quantitative comparison of the numerical

results with experiments. The wavemaker driving signal wasdesigned to generate surface elevation

variation in time corresponding to the lowest curve in Fig. 4. Measurements were performed by

multiple (up to four) resistance-type wave gauges placed ona bar in the center of the tank and con-295

nected to a computer-controlled carriage. The spacing between adjacent gauges was 0.4m. At each

run, the position of the carriage was set by computer. Each successive run was initiated only after

any disturbance of the water surface from the previous run had fully decayed. Measurements per-

formed in different runs at fixed locations demonstrated excellent repeatability of results. Thus, the

data collected at different locations obtained in various runs could be compared using the initiation300

of the wavemaker driving signal as a common temporal reference. Multiple experimental runs with

different carriage positions provided experimental records of the temporal variation of the surface

elevation in the wave train propagating along the whole tankwith spacing that did not exceed 0.2m;

denser measurements were carried out in the vicinity of the locations where inception of breaking

was detected in visual observations.305
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An example of the sequence of the experimentally recorded wave trains for6.6≤ x≤ 7.8m is

presented in Fig. 7. Modifications of the wave train shape between the adjacent locations are rela-

tively minor. The variation along the tank of the location and height of the steepest crest in the central

part of the train can be easily followed from these records. Note that the highest crest atx= 7.6m

ceases to be such atx= 7.8m, where the following wave in the train becomes the steepest one. Such310

a transition of the highest crest in the train from one wave toanother
✿✿✿

that
✿

causes discontinuity in the

velocity of propagation of the steepest crest
✿✿✿

was
✿✿✿✿✿✿✿

already
✿✿✿✿✿✿

noticed
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Shemer and Liberzon (2014).

It is impractical to carry out direct comparison of the fast varying surface elevation records mea-

sured in the experiments as presented in Fig. 7, with the corresponding numerical results. In or-

der to comparedirectly the computed and the measured results, the corresponding envelopes were315

computed; the absolute values of the measured and simulatedwave train envelopes are presented

in Fig. 8 for various distances from the wavemaker. To calculate the envelopes of the wave train

in both simulations and in experiments, the records were first band-pass filtered in the domain

0.5ω0 ≤ ω ≤ 1.5ω0. This procedure leaves only the “free” waves, while the higher order “bound”

waves that cause vertical asymmetry of the records are removed. The envelopes of the filtered signals320

were then computed using the Hilbert transform. For more details, see e.g. Shemer et al. (1998).

Figure 8 demonstrates that essential similarity exists between the shapes of the measured wave

trains at different distances from the wavemaker and those obtained in the numerical simulations. The

propagation velocities of the leading edge of the wave train, as well as of the steepest crest, are also

quite close in simulations and in experiments. The agreement between the numerical solution and325

the experimental results is, however, not perfect; the differences cannot be attributed to experimental

errors only.

Important parameters of the wave train in the course of its propagation along the tank obtained in

the simulations are plotted in Figs. 9 and 10. In Fig. 9, the temporal variation of the computed ve-

locities of the highest crests at each instant,vcr, and of the fluid velocity at those crests,umax
h are pre-330

sented at late stages of the evolution, up the the apparent breakdown of computations at
✿✿✿✿✿✿✿✿✿

t/T0 ≈ 74.

✿✿✿✿✿✿✿✿

However,
✿✿

the
✿✿✿✿✿✿✿✿✿

maximum
✿✿✿✿

crest
✿✿✿✿✿✿

height
✿✿✿✿✿✿✿✿✿✿✿

amplification
✿✿✿✿✿✿✿✿

exceeding
✿

3
✿✿✿✿

was
✿✿✿✿✿✿✿✿

observed
✿

at
✿

t/T0 ≈ 62. The max-

imum crest elevations are also plotted in this figure for comparison. To enable comparison, all data

are rendered dimensionless by normalizing them by their appropriate characteristic values. The fluid

velocities increase with crest heights, while the crest propagation velocities decrease. At final stages335

the fluid velocity at the crest seems to exceed the crest velocity. The corresponding spatial variations

are plotted in Fig. 10. In this figure, whenever available, the related experimental results are plotted

as well.

The evolution of the steepest crest heights along the tank, as plotted in Fig. 10, in simulations

and in experiments exhibit qualitative and to some extent quantitative similarity. The steepest crest340

heights have a tendency to grow along the tank; this growth isessentially non-monotonic in com-

putations as well as in measurements. At distances from the wavemaker beyond 7m the measured
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steepest crest heights may exceed the background by a factorof 2.5; the amplification factor in sim-

ulations is somewhat higher than that. The propagation velocity of the steepest crest,vcr, varies to

a certain extent in experiments and in computations, remaining close to the phase velocity of the car-345

rier wave,cp. The discontinuity in the steepest crest propagation velocity obtained in the experiments

is related to the transition of the steepest crest in the train from one wave to another, as discussed

with relation to Fig. 7. The spatial resolution of the determination of vcr is obviously much better

in the numerical simulations than in the experiments. For that reason, oscillations of the measured

steepest crest velocity are less pronounced in the experimental results. As discussed with respect to350

the temporal variation ofccr in Fig. 6, the crest propagation velocity decreases when crests become

higher. This feature is more visible in the results of simulations as compared to the measurements

due to their better resolution.

The bottom curve in Fig. 10 represents the variation along the tank of the instantaneous water

particle velocity at the steepest crest, computed asumax
h = ∂φs/∂x at the crest. This velocity varies355

in accordance with the variation of the crest height; as the crest becomes higher, the values ofumax
h

grow and may exceed notably the group velocitycg. Nevertheless, for the whole domain of com-

putations the horizontal liquid velocity at the crest remains lower than the computedvcr. Note that

the computed temporal variations ofvcr andumax
h plotted in Fig. 9 demonstrate that the values ofvcr

may decrease below the local maximum ofumax
h , however, this does not occurs simultaneously. No360

measurements ofumax
h were carried out in this study, however, detailed results onthe Lagrangian

kinematics at the wave crest approaching breaking obtainedusing Particle Tracking Velocimetry

(PTV) were presented for the identical carrier wave parameters and somewhat different wavemaker

driving signal in Shemer and Liberzon (2014).

At distances exceeding about 7m from the wavemaker, the pattern of variation of the steepest365

crests height and of their propagation velocityvcr plotted in Fig. 10 becomes less organized. In

experiments, inception of spilling breaker was observed atthose distances, see the video in the

Supplement. In order to obtain more accurate estimates ofvcr in this region, measurements of the

surface elevation were performed each 0.1m. The resulting steepest crest propagation velocities are

plotted in Fig. 10 using different symbols. These results demonstrate that at the locations where the370

spilling breakers were observed, the measuredvcr may indeed fall below the computed water surface

velocity at the crest,umax
h .

It was suggested in Shemer and Liberzon (2014) that spillingbreaker appear when the the hori-

zontal water particle velocity at the steep crestumax
h attains instantaneous crest propagation velocity

vcr. While spilling breakers were clearly seen in the experiments at distances of about 7.5–8 and375

8.5–9m from the wavemaker, as can be observed in the video in the Supplement, in computations

the values ofumax
h , while increasing at steep crests, remain consistently lower by about 10% than the

computedvcr, although extremely low steepest crest propagation velocities were occasionally ob-
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tained numerically, see Fig. 9. The experimentally determined values of crest propagation velocity

may indeed fall below the computed water particle velocityumax
h .380

In this respect it should be stressed that the velocitiesumax
h andvcr obtained in the present fully

nonlinear numerical simulations, while apparently being close to their actual values as demonstrated

in Fig. 10, cannot be seen as the exact ones. One obvious reason for that inaccuracy is the lack of the

Stokes drift in the computational results due to the imposedperiodicity of the boundary conditions.

The Stokes drift is an experimental reality and constitutesabout 3% of cp; accounting for the Stokes385

drift velocity can thus immediately shrink the gap betweenumax
h andvcr at the steepest crests in the

numerical simulations. The experimental determination ofvcr as performed in the present study is

inaccurate mainly due to the presence of unavoidable low-level noise in the surface elevation records

that limit the precision of defining the instant when the maximum surface elevation is attained. The

PTV-derived results onumax
h presented in Fig. 7 of Shemer and Liberzon (2014) show that horizontal390

surface velocities as high as 0.8cp, notably higher than the maximum values ofumax
h in Fig. 10, were

indeed measured at the breaking location. It thus can be concluded that the differences betweenumax
h

andvcr obtained numerically as presented in 10 stem from less than perfect accuracy of the model.

The total body of numerical and experimental results thusconfirmsthe
✿✿✿✿✿✿✿

provides
✿✿✿✿✿✿

further
✿✿✿✿✿✿✿

support
✿✿

to

✿✿

the
✿✿✿✿✿✿✿

validity
✿✿

of
✿✿✿

thekinematic breaking criterion according to which the spilling breaker emerges when395

the instantaneous liquid velocity at the crest,umax
h , attains that of the crest,vcr.

The amplitude spectra of the wave train are plotted in Figs. 11 and 12. In Fig. 11 the numerically-

derived frequency spectra ofη(t) are compared at selected values ofx∗ with the corresponding

experimental results. At the wave maker (x∗ = 0), the spectrum in linear-logarithmic coordinates still

retains resemblance to triangular shape characteristic for Peregrine Breather. Nevertheless, a weak400

asymmetry around the dominant frequencyω0 can already be noticed at this location. Note that at

x∗ = 0 the wave train already evolved over significant duration from its initial PB shape in Fig. 1. The

non-negligible contribution of low frequency as well as 2ndand 3rd bound wave harmonics is also

evident. The spectral asymmetry gets stronger and the spectrum widens with the distance from the

wave maker. Reasonable agreement is obtained between the experimental and the numerical results.405

The wavenumber spectrum for the computed variation ofη(x) plotted in Fig. 12 at selected instants

t cannot be compared with experiment. This is due to the fact that the spatial extent of the wave

train exceeds significantly the length of the tank, see Fig. 2. Note that even for significantly shorter

wave trains, the experimental procedure that enables extracting wavenumber spectra (as opposed to

frequency spectra) is extremely tedious, see Shemer and Dorfman (2008). The temporal evolution of410

wavenumber spectra in Fig. 12 is qualitatively similar to that discussed with respect to Fig. 11. An

initial nearly symmetric around the dominant wavenumber spectrum becomes more asymmetric and

the spectrum widens as time increases towards breaking.
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5 Discussion and conclusions

In the present study, fully nonlinear numerical simulations of evolution of a unidirectional nonlin-415

ear wave train with an initial shape of a Peregrine Breather were qualitatively and quantitatively

compared with the experimental results. The simulations were carried out using a conformal map-

ping approach as detailed in Chalikov and Sheinin (2005). Tovalidate the accuracy of the code, the

computational results were reproduced using an alternative numerical approach of Milewski et al.

(2010). These and some other numerical methods that are often applied to solve wave propagation420

problems require complete information on the wave field overthe entire computational range at

a certain instant. These initial conditions are unavailable in any controlled wave experiment in a lab-

oratory facility. The unidirectional wave field in a tank is in fact prescribed by the wavemaker that is

usually located at one end of the facility and driven by a computer generated signal.

The initial condition in experiments thus corresponds to surface elevation variation with time at425

a prescribed wavemaker location. To reconcile between the initial spatial distribution of wave field

parameters required for the numerical solution, and the temporal variation of the surface elevation at

the wavemaker prescribed as the initial condition in the experiments, the approach originally applied

in Shemer and Dorfman (2008) was generalized here to a fully nonlinear wave field with an arbitrary

spectral width. This generalization makes it possible to carry out consistent quantitative comparison430

of the results of numerical simulations and of measurements.

In the present simulations, the initial spatial distribution of the surface elevation is based on the

PB analytical solution. In order to determine in the numerical solution the measurable temporal

variation of the surface elevation at any given location along the tank, the initial spatial distribution

in the present study was centered upstream of the wavemaker,see Fig. 2. The appropriate location of435

the wavemaker was determined then by comparing the surface elevation variation in time with that

measured in the experiment. The wavemaker driving signal generates surface elevation variation in

time that corresponds to the bottom curve in Fig. 4. This dependence that is very different from the

analytical solution given by PB is obtained as a result of evolution of the wave train with an initial

shape given in the bottom panel of Fig. 1. It enables detailedand quantitative comparison of the440

simulations with experiment.

Several important points regarding PB were highlighted in this study. The solution (6) of the

spatial form of the nonlinear Schrödinger equation (2) isasymmetric
✿✿✿✿✿✿✿✿

aperiodicin space due to the

presence of an exponential term. Similarly, the temporal form of the NLS equation (Lo and Mei,

1985; Shemer and Dorfman, 2008) yields PB that has an asymmetry in time. Moreover, the solution445

(6) extends to infinity inbothtime and space whereas inbothexperimentsand
✿✿✿✿✿✿✿✿✿✿

experiments
✿✿

as
✿✿✿✿

well
✿✿

as

✿✿

in numerical simulations the extent of the wave train is finite in bothx andt. The exact shape of the

analytical solution (6) thus can be reproduced neither in the experiments nor innumericalsimulations

.
✿✿✿✿✿✿✿✿✿✿✿

computations.
✿✿✿✿✿

Note
✿✿✿✿

that
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

present
✿✿✿✿✿

study,
✿✿✿

the
✿✿✿✿✿

actual
✿✿✿✿✿✿

initial
✿✿✿✿✿✿✿✿

condition
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿✿

and

✿✿

the
✿✿✿✿✿✿✿✿✿✿

wavemaker
✿✿✿✿✿✿✿

driving
✿✿✿✿✿

signal
✿✿✿✿✿

have
✿✿✿✿

been
✿✿✿✿✿✿✿✿

modified
✿✿✿✿

and
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿✿✿

fundamentally
✿✿✿✿✿✿✿✿

different
✿✿✿✿

from
✿✿✿✿

PB.
✿✿✿✿

The450
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✿✿✿✿✿✿✿✿

presented
✿✿✿✿✿✿

results
✿✿

on
✿✿✿✿✿

steep
✿✿✿✿✿

crests
✿✿✿

in
✿✿✿

the
✿✿✿✿✿

wave
✿✿✿✿

train
✿✿✿

are
✿✿✿✿✿✿✿✿

therefore
✿✿✿

of
✿✿✿✿✿✿

generic
✿✿✿✿✿✿

nature
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

applicable

✿✿✿✿✿✿

beyond
✿✿✿

the
✿✿✿

2D
✿✿✿

PB
✿✿✿✿

wave
✿✿✿✿✿✿✿

packets.
✿

Two different approaches were suggested to deal withthoseproblems
✿✿

the
✿✿✿✿✿✿✿✿

problems
✿✿✿✿✿✿✿

outlined
✿✿✿

in

✿✿

the
✿✿✿✿✿✿✿✿

previous
✿✿✿✿✿✿✿✿✿

paragraph. In numerical simulations, the truncated wave train with the spatial exten-

sion that contains an integer number of carrier wave lengthsis often used as the initial condition455

(Slunyaev and Shrira, 2013). However, imposing a non-zero periodic boundary condition on an es-

sentially aperiodic function may affect significantly the nature of the solution. It was thus decided

in the present study to follow the experimental approach of Shemer and Alperovich (2013) and

Shemer and Liberzon (2014). The theoretical solution givenby Eq. (6) was truncated and tapered

before being used to determine the initial condition at the wavemaker. In order to mitigate the effect460

of truncation on the central part of the wave train, a sufficiently large number of wave periods (about

70) was used in those experiments. A similar approach was adopted in the present study. As can be

seen in both experimental and numerical results (Figs. 1, 4 and 9), truncation and tapering, while

indeed satisfying periodic boundary conditions in the computational domain, cause appearance of

abnormally high waves at the leading and trailing edges of the wave train. The effect of truncation465

is apparently limited to the edges of the train, and does not affect the behavior of the central part of

PB
✿✿✿✿✿✿

PB-like
✿✿✿✿✿

wave
✿✿✿✿

trainwith the gradually amplified, albeit non-monotonically, hump in the envelope.

These high waves do not characterize thePeregrinewave train proper and therefore were disregarded

in the present study.

The computational results indeed are in a good qualitative and to acertain
✿✿✿✿

largeextent quantita-470

tive agreement with the current experiments, as well as withthose of Shemer and Liberzon (2014).

This includes the behavior of the truncated train edges, theamplification of the hump along the tank,

the asymmetric spectral widening, as well as the variation of the envelope shape along the tank.

Of particularinterestis the slowdownof steepcrestsin PB wave train that
✿✿✿✿

Crest
✿✿✿✿✿✿✿✿✿

slowdown
✿✿✿✿

was

✿✿✿✿

noted
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿

Johannssen
✿✿✿

and
✿✿✿✿✿

Swan
✿✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿

fully-nonlinear
✿✿✿✿✿✿✿✿✿✿

calculations
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Johannessen and Swan , 2001) and475

✿✿✿✿✿✿✿✿✿✿

experiments
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Johannessen and Swan , 2003) .
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿

slowdown
✿✿

of
✿✿✿✿✿

crests
✿✿

in
✿✿✿✿✿✿✿

PB-like
✿✿✿✿

wave
✿✿✿✿✿

train
✿✿

as
✿✿✿✿

they

✿✿✿✿

grow
✿✿

in
✿✿✿✿✿✿

heightwas first observed by Shemer and Liberzon (2014). In somewhatdifferentcontext
✿✿

in

✿✿✿✿✿✿✿✿✿✿

experiments
✿✿✿

and
✿✿✿✿✿

NLS
✿✿✿✿✿✿✿✿

solutions
✿✿✿✿

and
✿✿

is
✿✿✿

of
✿✿✿✿✿✿✿✿

particular
✿✿✿✿✿✿✿

interest
✿✿✿✿✿

More
✿✿✿✿✿✿✿

recently, this effect was also

stressedrecentlyin Banner et al. (2014) andin Kurnia and Groesen (2014)
✿

in
✿✿✿

the
✿✿✿✿✿✿

context
✿✿

of
✿✿✿✿✿✿✿✿

focusing

✿✿

of
✿✿✿

2D
✿✿✿

and
✿✿✿

3D
✿✿✿✿✿✿✿✿✿

nonlinear
✿✿✿✿

deep
✿✿✿✿✿

water
✿✿✿✿✿

wave
✿✿✿✿✿✿

packets
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Banner et al. (2014) ,
✿✿✿

for
✿✿✿

2D
✿✿✿✿✿✿✿✿

nonlinear
✿✿✿✿✿

wave480

✿✿✿✿✿✿

packets
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

byKurnia and Groesen (2014) as
✿✿✿✿

well
✿✿

as
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿

Fedele (2014) ,
✿✿✿✿

thus
✿✿✿✿✿✿✿✿

providing
✿✿✿✿✿✿✿✿

additional
✿✿✿✿✿✿✿✿

evidence

✿✿

to
✿✿✿

the
✿✿✿✿✿✿

generic
✿✿✿✿✿✿

nature
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

phenomenon. It was noticed in Shemer and Liberzon (2014) that the

increase in the maximum crest height along the tank is not monotonic. As the maximum crest

height increases, the water particles at the crest accelerate to higher maximum velocitiesumax
h , while

the crestcrestpropagation speedvcr decreases. The equalityumax
h = vcr was thus suggested as the485

kinematic criterion for wave breaking. A slightly different version of this criterion was offered by

Kurnia and Groesen (2014); they maintain that the maximum liquid particle velocityumax
h exceeds
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about0.8vcr at breaking. If only the simulations are considered, it seems that this somewhat weaker

version of the kinematic breaking criterion is confirmed. However, the present experimentalresults

indicate
✿✿

as
✿✿✿✿

well
✿✿

as
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿

results,
✿✿✿✿✿✿✿✿✿

combined
✿✿✿✿

with
✿✿✿✿✿

those
✿✿✿✿✿✿✿

obtained
✿✿✿✿✿✿✿✿✿✿✿✿✿

experimentally
✿✿✿

by
✿✿✿✿✿✿✿✿✿

alternative490

✿✿✿✿✿✿✿

methods
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Shemer and Liberzon (2014) ,
✿✿✿✿✿✿✿

provide
✿

a
✿✿✿✿✿✿

strong,
✿✿✿✿✿

albeit
✿✿✿✿

not
✿✿✿✿

fully
✿✿✿✿✿✿✿✿✿✿

conclusive,
✿✿✿✿✿✿

support
✿✿✿

to

✿✿

the
✿✿✿✿✿✿✿✿✿

conjecture
✿

that indeed the particle velocities atbreaking
✿✿✿

the
✿✿✿✿✿✿✿✿

inception
✿✿

of
✿✿✿✿✿✿✿

breaking
✿✿✿✿✿

attain
✿✿✿✿

andex-

ceed the crest propagation velocities, thusconfirming
✿✿✿

and
✿✿✿✿

thus
✿✿

to
✿

the kinematic breaking criterion

in the formulation suggestedby Shemer and Liberzon (2014)
✿✿

in
✿✿✿

that
✿✿✿✿✿

study.
✿✿✿✿

This
✿✿✿✿✿✿✿✿✿

conjecture
✿✿

is
✿✿✿✿✿✿

further

✿✿✿✿✿✿✿✿✿✿

corroborated
✿✿✿

by
✿✿✿✿✿

visual
✿✿✿✿✿✿✿

evidence
✿✿

as
✿✿✿✿

seen
✿✿

in
✿✿✿✿✿

video
✿✿✿✿

clips
✿✿✿✿✿✿✿✿

presented
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿

Supplements
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Shemer and Liberzon (2014) and495

✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

present
✿✿✿✿✿

study.

This combined numerical and experimental study of nonlinear wave trains also clarifies the lim-

itations of the adopted fully nonlinear solution method. The procedure of truncation and tapering

of the initial condition applied here does not solve all the problems associated with imposing the

periodic boundary conditions in the numerical solution. The prescribed spatial periodicity of the ve-500

locity potential effectively eliminates appearance of the2nd order Stokes drift current, thus resulting

in an inaccurate horizontal velocity at the liquid surface.As demonstrated by Shemer and Liberzon

(2014), the Stokes drift is actually observed in laboratoryexperiments. In this respect it should be

stressed that, while the periodicity in the time domain is possible for propagating unidirectional

waves, they are, strictly speaking, aperiodic in space. This point adds an additional aspect to es-505

sential differences that exist between the spatial and temporal formulations of the wave evolution

problem, as discussed above. All nonlinear solutions that are based on spatially periodic boundary

conditions, as in the method adopted here, as well as in a variety of alternative methods that employ

spatial discrete Fourier decomposition, therefore contain intrinsic inaccuracy already at the 2nd or-

der in the nonlinearity parameterǫ. These numerical solutions thus can only provide approximate510

results and require careful experiments to verify their validity. The present study shows that the fully

nonlinear solution, although flawed, yields better agreement with experiments than the application of

the limited to the 3rd order spatial version of the modified nonlinear Schrödinger (Dysthe) equation

that does not require spatial periodicity
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Shemer and Alperovich (2013).
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Figure 1. The prescribed initial variation of the surface elevationη in the temporal (top) and spatial (bottom)

domains for the carrier wave periodT0 = 0.8 s and background carrier amplitudeζ0 = 0.026m; calculated for

X =−2.613 (x0 = 31m.) in Eq. (6).
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Figure 2. The temporal evolution of the surface elevationη in a fixed reference frame; wave parameters as in

Fig. 1. Vertical line marks the location of the wavemaker atx= xwm = 25.273m, broken lines correspond to

propagation with the group velocitycg.
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as in Fig. 1.
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