Reply to Reviewer 1

We thank the reviewer for his general support of our work. We also greatly appreciate the time
and the effort invested by him in providing a meaningful review. We have adopted some of the
reviewer’s suggestions and corrected the errors and misprints noticed by him. Since there are,
however, some points of disagreement between us, we welcome his suggestion to debate the
differences. In the following we provide the detailed replies to the reviewer’s comments. The
reviewers’ comments are in italics.

1. The restrictive role of periodic conditions in the numerical simulations is drastically

overestimated.

It seems to be an axiom that if waves are well localized in the domain of consideration, then the
boundary conditions do not matter (whether they are periodic as in the numerical tank, reflective
as in a laboratory, etc).

This seems to be the major point of disagreement. As it is our desire to address the reviewer’s
inputs, we would appreciate greater clarification as to what is meant by the statement “It seems
to be an axiom that if waves are well localized in the domain of consideration, then the boundary
conditions do not matter (whether they are periodic as in the numerical tank, reflective as in a
laboratory, etc).” We are unaware of any axiom which categorically states the boundary
conditions do not matter.

Moreover, it is generally known (including from personal experience) that reflections from the
far end of the wave flume can change the wave pattern in the whole tank significantly. This is the
reason why the wave energy absorbing beach is installed in all wave flumes (including ours), and
active control of the wave maker is applied as well to remove secondary reflections in some
tanks. In all our experiments, great care is taken to study the spatial evolution of wave trains of
finite duration and we limit the measurements to locations that are sufficiently far from the end
of the tank to mitigate the effects of secondary reflection, however minor they may be.

As for numerical tanks, a similar approach may be adopted. Note that in recent years, numerous
numerical wave tanks were based on various versions of the Boundary Elements Method and
adopted by a number of research groups. The main motivation for those is to remove the
requirement of periodic boundary conditions. One of the earliest attempts in this direction that
we are aware of is the paper by Grilli et al. (Engng. Analysis with Boundary Elements 6 (2),
97-107, 1989). At the start of Section 2.5 in that paper it reads: “In the present paper, the Laplace
equation is solved in the physical space, since we intend to generate non-periodic waves and to
absorb them. The presentation is limited in a 2-D model, but can in principle be extended to 3-D
problems”.

Moreover, regarding all experimental studies reporting on nonlinear unidirectional propagating
wave trains published since the late 1970s, beginning from seminal papers by Yuen and Lake, we
are unaware of any results indicating that spatially periodic boundary conditions can indeed be
observed in experiments.

“When there is a mean current, the surface potential is not localized.”

We wish to stress that the application of the method proposed by Chalikov and Sheinin (2005) or



any other method of conformal mapping does provide the velocity potential (not just the surface
elevation) in the whole domain of calculation. The Stokes drift current has a vertical velocity
profile and it is basically concentrated in a thin upper layer only. The necessity for mass
conservation in the experimental wave tank (closed at both ends) results in a slow backward
current in the lower layers that practically does not affect waves under deep water conditions.
This was also observed in our experimental facility. It is therefore impossible to apply the
Galilean transformation (as suggested by the reviewer) to mitigate the effect of the Stokes’ drift
current.

“The numerical simulations presented in the paper are inaccurate ... due to the rough initial
condition (since the bound waves are completely disregarded),”

The bound waves are in fact accounted for in our simulations. We appreciate the suggestion by
the reviewer to use Dysthe equations to calculate the initial condition. However, a different
method was used in our paper. Prior to integration in time, the linear Peregrine Breather solution
was modified to satisfy the governing equations; the initial conditions thus effectively include
the bound waves as well and were obtained by applying an iterative procedure as described in
Chalikov and Sheinin (2005). Also, our computational domain was longer than the effective
length of the wave train.

2. The bibliographic review is lopsided.

The Peregrine breather and many other analytic solutions have been reproduced in
laboratory experiments many times by A. Chabchoub with colleagues [Chabchoub, A.,
Hoffmann, N., Akhmediev, N. Rogue wave observation in a water wave tank. Phys. Rev.
Lett. 106, 204502, 2011 and subsequent papers].

Shemer and Alperovich (2013) [hereafter referred to as SA] demonstrated that there were
essential deficiencies in the original paper by Chabchoub et al. (2011). The spectra presented in
JGR (2013) do not contain any quantitative data and hardly qualitative information as well, in a
sharp contrast to SA. In private discussions with Amin Chabchoub, no evidence was presented
by him to counter the points highlighted in SA. For these reasons, these two papers were not
cited in our study.

As for the paper by Slunyaev et al (2013), it will be cited in the revision of our manuscript
although we wish to point out that many of the experimental and numerical results featured in
that paper were already published in SA, half a year earlier.

3. The interpretation of analytic solution (6) is wrong.

In principle, we agree with the reviewer’s comment and will replace the term “asymmetric in
space” to “aperiodic in space” to stress the point that the analytical solution of the Peregrine
Breather evolving along the tank lacks spatial periodicity.

4. The discussion of wave kinematics in page 1175-1176 is questionable. ... one may assume
quite the opposite — that the laboratory measurements were probably not accurately enough to
claim the correctness of the breaking criterion.



We believe that the comment is biased for the following reasons. In both Shemer and Liberzon
(2014) and in the present manuscript, state of the art experimental methods were applied and we
are curious as to what led the reviewer to question the accuracy of our results and the validity of
conclusions. While it seems that the experimental findings by Chabchoub in PRL 2011 and later
papers regarding the observability of breathers are accepted unconditionally and presented as
truth, the reviewer questions the accuracy of our results without any substantiation.

We would like to stress that the validity of the suggested breaking criteria was demonstrated in
two independent studies with different experimental methods used. In Shemer and Liberzon,
accurate Particle Tracking Velocimetry (PTV) measurements of Lagrangian velocity and
acceleration were performed (ref. to Figures 4, 7, and 9 for velocity and Figure 10 for
acceleration). The crest velocities at the inception of breaking were measured using digital video
image processing. Moreover, the steepest crest propagation velocities proved to be in very good
agreement with analytical solutions based on the Peregrine Breather. In that paper, the video
clips were also presented as a supplement, providing visual evidence of strong acceleration of
fluid particles at the inception of breaking. In the present study, the focus was made on detailed
comparisons of fully nonlinear solutions in space with the time histories of the surface elevation
measured at numerous locations along the tank. The instantaneous steepest crest velocities were
obtained from data acquired by closely located probes. We do not see any reason to question the
accuracy of our experimental results especially since the same level of scrutiny is not applied to
other experiments. The possible reasons for minor discrepancies between experimental and
numerical results are candidly discussed in the manuscript.

5. Remarks to section ‘Discussion and conclusions’.

In the present manuscript, we do not generate the boundary condition at the wavemaker. We just
discuss the method to generate the appropriate initial wavemaker driving signal. As such, the
reference suggested by the reviewer does not seem to be directly relevant.

We see this Section as an integral part of the paper where the total body of results presented
before are discussed from a common view point and without unnecessary repetitions.

The truncation of an infinite wave train is indeed a common approach and was applied
effectively in all studies of wave group propagation. We wish to clarify that we do not claim any
element of novelty here and simply aim to provide a detailed description of the experimental
accuracy. Shemer et al. have applied a similar approach since the late 1980s, as have many
others.

The Dysthe equation was indeed not discussed in this paper. An appropriate reference to SA will
be given here in the revision.

6. It is not clear, was the breaking observed in the numerical simulations or not, how the
accuracy of numerical simulations was controlled.

The accuracy of numerical simulations was tested using the standard procedure of reducing the



integration steps, as specified in the manuscript.

We thank the reviewer for highlighting the apparent inconsistency regarding the late stages of the
evolution. In our simulations the horizontal fluid velocity appears to be discontinuous at a t/Tg
approximately 62. This also seems to fit with what is shown in Fig. 9 as the max crest height
exceeds 3. We recall that these 2 plots are for the numerical simulations only of the temporal
evolutions of spatially distributed functions.

We clarify that this does not necessarily mean that the computation has to break down at t/To ~62.
The numerical computation breaks down when it just blows up. One of the goals of the paper is to
determine up to what time do we want to set the applicability of the simulation results. Beyond that
time, we say that the result is not useful. So since the simulation of the surface elevation ran till
around 74T,, we used the data up to that time. However, as can be seen in Fig. 4 (surface elevations
variation with time for fixed x values), using the data up to t/TO = 62 does not affect the results
shown in Fig. 10 - which aims to directly compare between experiments and the relevant
post-processed results from the simulations.

Less significant remarks:

7.1. Abstract - We will change the phrase “A method was developed...” to “A method was
applied...”

7.1. - We accept the remark and the manuscript will be modified to include intermediate depth.

7.2. - We question the observation since significant spectral broadening associated with the
focusing of the Peregrine Breather seems to be irreversible.

7.3. — We accept the comment and will change the first sentence to “Shemer and Alperovich
(2013) demonstrated that the modified nonlinear Schrodinger (MNLS, or Dysthe) equation was
advantageous in describing the PB evolution along a laboratory tank as compared to the NLS
equation (Dysthe, 1979).”

7.4. — The sentence will be changed “Shemer and Liberzon (2014) noticed that the spectral
widening, being an essentially nonlinear process, occurs at slow spatial and temporal scales.
Hence, it was found that the wave train behavior with background steepness of about 0.1 is still
described by the PB solution of the NLS equation with reasonable accuracy, as long as the
surface elevation spectrum remains sufficiently narrow and the maximum wave height in the
train remained below approximately twice that of the background.”

7.5. — The notation is correct. On page 1164, we refer to physical variables whereas on page 1168,
the axes are defined according the conformal mapped space.

7.6. — We accept the comment, the typo will be corrected.
7.7. —We accept the comment and the year will be revised accordingly.

7.8. — We accept the comment and the figure will be corrected.



Reply to Reviewer 2

We thank the reviewer for his general support of our work and greatly appreciate the time and
effort invested by him in providing a meaningful review.

We have accepted the reviewer’s suggestions and wish to clarify certain points raised by him. In
the following we provide the detailed replies to the reviewer’s comments. The reviewers’
comments are in italics.

1. First, it is noted that the authors’ focus is limited to the special class known as the 2D
Peregrine breather wave packets.

Given that the actual initial condition for the simulations and the initial driving signal for the
wavemaker have been modified and are fundamentally different from the PB, the results on steep
crests in the wave train presented in this study are of generic nature and applicable beyond the
2D Peregrine breather wave packets. The crest slowdown was also observed in some other
studies, as noticed by the reviewer. This fact is now accounted for in the revision. To stress that
point, last line of the 4™ paragraph of Section 5 was modified.

2. The wording on p.1179, lines 7-10 of the present paper should probably be modified to better
reflect the generality and nature of this important advance in knowledge of water wave
kinematics.

We accept the reviewer’s comments; they are now accounted for in the revision.

3. From a careful reading of this discussion and inspection of the key figures 9 and 10, it
becomes evident that various sources operative lead to residual uncertainties in their companion
model and observational assessment. These uncertainties preclude the conclusive evidence
required for certainty of its validity. Hence | am obliged to recommend that the authors
accordingly modify their wording on lines 19-21 of p.1179 of the paper.

We accept the reviewer’s suggestion to some extent and have changed the statement to a
somewhat vaguer formulation. On the other hand, the reviewer’s comment prompted us to point
out that our conclusions are also supported by visual evidence as seen in video clips presented in
the Supplements to both the present manuscript and to Shemer and Liberzon.

New results on this topic that reduce these uncertainties have recently been published for a wider
range of cases [Saket et al., ArXiv 1508.07702; Barthelemy et al., ArXiv 1508.06002]. These results
provide evidence that questions the validity of the kinematic breaking condition as the primary
determinant of breaking onset.

It is our understanding that these two manuscripts were uploaded at the end of August. We should
point out that the present paper was motivated to a large extent by an earlier study by Shemer and
Liberzon (PoF 2014). The present manuscript was submitted on July 1 and made available online on
July 24, 2015. We therefore do not feel that it is appropriate to cite manuscripts submitted after our
work already was published in NPGD.
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Abstract. A method waslevelopedappliedto carry out detailedualitativequantitativecomparison
of fully nonlinear computations with the measurements dfimectional wave groups. Computa-

tional results on evolving wave groups were compared Withpreviousavailable experiments.
The local surface elevation variation, evolution of enpelshapes, the velocity of propagation of
the steepest crests in the group and their relation to thghhef the crests were obtained numeri-
cally and experimentally. Conditions corresponding tagient wave breaking were investigated in
greater detail. The results shed additional lightteelimits-ef-applicability-of-the-computational
resultsnechanisméeadingto the breakingof steepwaves as well as ommechanisméeadingto-the

1 Introduction

Over the past few decades, rogue, or freak, waves havetattremnsiderable interest due to their de-

structive impact on offshore structures and sAips (Dyst@,mhl Kharif et AII 20d)9). A number

of possible mechanisms for rogue wave generation have bge#ored. Wave-current and wave-

bathymetry interactions may result in appearance of rogamwklsha.LiLel_all.LZDA)Q). Extremely
steep waves in ocean are thus usually affected by the diredtcharacteristics of the wave field.

Nevertheless, considerable effort has been invested @antetecades to study unidirectional wave
fields. The accumulated results clearly demonstrate thiastigation of both deterministic and ran-
dom unidirectional waves can lead to a better understarafimgechanisms leading to appearance
of rogue waves in the presence of directional spreading #sBxperimental studies of 2-D wave
fields in wave basins require large and expensive faciléies are subject to numerous limitations
on the wave parameters. Generation of unidirectional wawaps in long tanks by a computer-
controlled wavemaker offers significant advantages in seofavailability and versatility of op-
erational conditions. Extremely steep waves can be gestbidie to constructive interference of
numerous harmonics. While this focusing mechanism is blhsigzear, it is strongly affected by

nonlinearity k&hgmgLej_HL_zddl_aaleman}LalJZO12)aWemative, essentially nonlinear, mech-

anism is related to the specific properties of the governipgagons. To that end, the nonlinear
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Schradinger (NLS) equatiolj (ZakhaH)v, 1bb§; Hasimoto an&,bﬁlb), applicable for description

of diverse nonlinear physical phenomena, is the simplesirtitical model describing evolution of
narrow-banded wave groups in deepd intermediatedepthwater. This equation attracts special
interest in rogue waves studies since it admits analytiaki®ns such as the so-called Kuznetsov—

Ma breathing soliton@lﬁ“@@d@zng@g&l 19 jﬂ$ 1979)These solutions

of the NLS equation present spatially localized patteria$ dscillate in time. The closely related

Akhmediev breatherl_(A}ghm_e_dLeALeﬂAL_lb87) is periodic pace. When the periodicity in time
and space tends to infinity, both these types of solution teralsimple Peregrine Breather (PB)
(@;LLLDHE@. Itis localized in time and space, besatinly once and attains a maximum crest

height that exceeds that of the background wave train bytarfat three. For this reason, the Pere-

grine and other breather-type solutions of the NLS equdttame been proposed as rogue wave proto-

type

y 99-O0sberhre-¢ aauh{aey |
She_m_e_La.nd_Alp_eLosLiJ;L_(zd13) conducted a series of expatswa the evolution of the Peregrine

breather (PB) along a wave tank. They demonstrated thaifherienental results diverge from the

Peregrine’s solution of the NLS equation. Notable asymynetithe crest was observed, in agree-

ment with many earlier studies of extremely steep WaLLe_s_éEﬂEj_al.]_ZQdﬂ. The discrepancy
between the fully symmetric NLS solution and experimentsifests itself mainly in significant

asymmetric widening of the wave spectrum, as well as in hptslower than predicted by the PB
solution amplification of the wave height. Moreover, thespezgiments suggested that, contrary to
the behavior of the PB, there would be no return to the initerly monochromatic wave train.
Similar conclusions based on fully nonlinear simulatioh®B evolution in time were reached by
b&nlamnd_ihtdr@dl 3). Shemer and Alr \}_iszh_d2018)cxdrstrated that the modified nonlin-
ear Schrodinger (MNLS, or Dysth ‘lem 9) quation was advantageous in describing the
PB evolutionalongthe laboratorytank as compared to the NLS equatm@% The im-
proved performance of the Dysthe model was attributejdimﬂnﬁ.nd_Alp_emidhL(ZleB) to the
er

additional 4th order terms in this equation that accountterfinite spectral widt
2002)

bh&m&mh@dlmmmwmm the spectral widening, being
an essentially nonlinear process, occurs at slow spatibieanporal scales. Hence, it was found that

the wave train behaviawith backgroundsteepnessf about0.1 s still described by the PB solution

of the NLS equation with reasonable accuracy, as long asutiace elevation spectrum remains
sufficiently narrow and the maximum wave height in the tramained below approximately twice
that of the background. This observation enal}ﬂ_e_d_&h_em_etm kZQlLl) tolcendinninge

of-utilize the available PB analytic solution to design experimenth WB in which the height of

the steepest wave in the train at a prescribed measurintidoazan be controlled, thus facilitating
guantitative studies of the incipient wave breaking. Tls&iidy was motivated by an earlier attempt
by r@s) to examine the kinematics of the steep watheoverge of breaking using the

dD;é;;hg and Tr;;l§é£! 1g@; Osborne ét al,, j
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Zakharov equatio 68). By comparing the cdatmnal results with experimental

observations reported hj_Shﬂm_e_Lét [a[_dOO?), the comeiusas reached that wave breaking may
occur when the horizontal liquid velocity at the crest beesmsufficiently highl@ﬂ 13).

These computations also showed that the maximum negatitieald.agrangian acceleration seems
to remain significantly below the acceleration of gravjtyso that the Phillips dynamic breaking
criterion cannot be satisfiem 58). Computatiof steep wave kinematics accurate up
to the 3rd order in the wave steepness demonstrated, ththagtthis approximation, while largely
adequate for determination of the shape of the surfacet&layavas insufficient for the accurate
characterization of the kinematics of steep wa M). In order to overcome this limita-
tion, the kinematic parameters of the steepest wave ifPHEB-like wave train were determined

experimentally ir{ Shemer and Libean_(;bM) simultangowsth estimates of the propagation

velocity of the steepest crest. To this end, two synchrahizdeo cameras were used to image the

wave field. The maximum possible horizontal Lagrangiancitks and accelerations at the surface
of steep water waves were measured by Particle Trackingcvediry (PTV) for gradually increas-

ing crest heights, up to the inception of a spilling breaketual crest and phase velocities were
estimated from video recorded sequences of the instanianeave shape as well as from surface
elevation measurements by wave gauges. The slow-down afdiséas it growths steeper was ob-

served. It was suggested.i i ern_k2014)hhanCeption of a spilling breaker is
associated with the horizontal velocity of water partidéshe crest attaining that of the crest, thus
confirming the kinematic criterion for the inception of bkeay.

In the present study, we aim to extend the numerical anabfstie conditions prevailing at
the inception of breaking of the steepest crest inRIBePB-like wave train by carrying out fully
nonlinear simulations. The simulation were performed gisionformal mapping method approach

developed bJ( Chalikov and SheiHn (1%8, 2005) (heredtesvrreferredto as the CS model).

A somewhat different implementation of this approach waggssted b)l!_MjJ_emLs_Ki_e_t_JilL(ZQllO).
Recently. @Ll) reported on direct numerical simulationseam the volume of fluid

method to solve the two-phase Navier—Stokes equationkelngtudy Peregrine breather dynamics

was investigated up to the initial stages of wave breaking.

In Sect.[2, the difference between the spatial and tempodlon of the wave field is dis-
cussed. In Sedf] 3, we give details about the solver thatsischan the conformal mapping method
and stress that the resulting numerical solution desctibedsemporal evolution starting from an
initial spatial distribution. In Seckl4, the computatibresults are discussed for both the temporal
evolution problem and then for the spatial evolution cage Gorresponding experimental results
are also presented and compared directly with the numesiicallations. In SecE]5, the numerical
and experimental results are discussed and the conclusmierdsawn.
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2 Wave parameters: temporal vs. spatial evolution cases

The CS model enables computation of wave field evolutiomietistarting from a given spatial dis-
tribution as an initial condition. In laboratory experintgrhowever, waves are generated by a wave-
maker usually placed at one end of the experimental factite experimental data are commonly
accumulated only at preselected fixed locations withindn& tvhere the sensors are placed. Quanti-
tative comparison of numerical computations with experitabresults gained in those experiments
may thus constitute a complicated task. For a harrow-bandee field this problem has been con-

sidered b)l/_Shgm&La.nd_D_QLth\in_(,ZbOS). For such wave fieldsritielope equations like the NLS

and Dysthe models often provide adequate results. In thewdranded models the tempoteind

the spatialr coordinates are related by the group propagation velagitythus enabling modifica-

tion of the governing temporal evolution equations to aigpédrm. The spatial form of the Dysthe

model was presented i (1985). Numerical comjmusbased on the Dysthe model for
unidirectional wave groups propagating in a long wave tawleed provided good agreement with
experimentsl (Shemer et MOZ). The spatial versioneobDyfsthe equation was also derived from
the spatial form of the Zakharov equati 2}.20_0_{7) that is free of any restrictions
on the spectrum widtIL (Kit and Shellnle_L._ZbOZ).

As demonstrated ‘n Shemer and DQeran (iOOS), the avatlabfithe spatial form of the evolu-

tion model is insufficient to pose the initial conditions fbe numerical simulations that correspond

exactly to those in experiments. In the present work, theoteal evolution is computed by a fully
nonlinear solver of the two-dimensional potential equaiin finite water depth. Following ear-

lier works tShgmer and Alpeericl:, ngs; Shemer and Lit&r[mll), the solution of the spatial

version of the NLS equation is used to set the initial condsi For a narrow-banded deep-water

wave group, the spatial and temporal variations of the sarédevatior: at the leading order can be
presented as

((z,t) =Re|a(z,?) . ¢ilkoz—wot) o

Here the radian frequenay, = 27 /Ty, Ty being the carrier wave period, and the wave number
ko = 27/ Mo, Ao being the carrier wave length, satisfy the finite water delghersion relation,? =
gkotanh(koh). In Eq. [3),a is the slowly varying complex group envelope. The wave stesp is
defined as = agkg, Whereay is the characteristic wave amplitude. The wave train giveid. (1)

propagates with the group velocity = <Z:) Followmg. 119819) anb Shemer ed é (1 b98)

k_
in intermediate water depth the spatial NLS equatlon forabmmplex normalized envelopé) =

a(x,t)/ag is given by:

—iQx +aQrr + BlQPPQ =0 2



135

140

145

150

155

160

where the scaled dimensionless temporal and spatial cwiedi arel’ = ewy(x/cy —t) and X =

e?kox respectively. The coefficients in the NLS equation have dfiewing dimensionless form

2
a=- 2]:;ch3 % 3)
5= 1 [cosh(élkoh) +8 — 2tanh?(koh) B 1 (2cosh®(koh) + n2) 1 lcosh(4koh) + 8 — 2tanh?(koh) B 1
n 16sinh? (koh) 2sinh?(2koh) % —n? n 16sinh? (koh) 2sinh? (2kj
(4)
where the parameter= ¢, /c,, represents the ratio of group and phase velocities andés diy
n= % {1 + mi’(“;]];m} : )

For the deep water caskyh — oo and o = 8 = 1. The Peregrine Breather solution of the NLS
equation for intermediate water depth (Eh. 2) is:

a o 4(1 — 4iaX)
—_ [9= 2t X 1— 6
@==/25¢ [ 1+4T2+16(aX)2] ©
Equations[{ll) and{6) provide variation of the instantasesurface elevation in time and in space,

with focusing corresponding 6 = X = 0. IniShemer and AlpeeriHJ (2d13) And Shemer and Lib&rzon

), the wavemaker driving signal as a function of time welected using the deep-water ver-

sion of Eq. ) and the prescribed focusing distance from the wavemakgrby substituting
X = X = —€*koxo into Eq. [8). The relative height of the initial hump in the weaamplitude
distribution at the wavemaker kn_Sﬁemer_aad;ib_eri_on_(lZ@ﬂ@abeu%%geAgeNdO% above the

background.

The present study has been carried out in then18ng, 1.2m wide and 0.9n deep wave tank
Ei;;[ ;; ;I.
). The carrier wave peridtl) = 0.8 s was selected, corresponding to the carrier wave length

water depthh = 0.6 m). More details about the experimental facility are give

Ao = 1.0 m and the dimensionless water deptih = 3.77. For these parameters, both coefficients in
the NLSequation(egOb)givenby Egs. [3) and{4) in fact differ from unity: = 1.078 andg = 0.711.
The carrier wave amplitude af, = \/%ao = 0.026 m was used, corresponding to the nonlinearity
€ = kogag = 0.094.

GiventhatSincethe nonlinear numerical solver in the present study requireinitial condition as
a given spatial distribution at a certain instant, the felltg procedure to determine the appropriate
initial spatial distribution was adopted.

Using Eq. [6), a value afy is specified at which the prescribed maximum crest of the RB is
be located. Note that in physical terms, this initial coiaditcorresponds to a situation in which the
whole wave train is placed upstream of the wavemaker. Dulkeddcusing properties of the NLS
equation in sufficiently deep watekyh > 1.36), the maximum wave height in the train increases in
the course of the evolution process. In order to obtain thglifination, at the wavemaker location,
of about 20% similar to that employed ih_S_h_em_e_La.nd_L'Lb_eJJzL)_u_d014), thitgal height of the PB
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hump has to be significantly smaller than that. The amplificatorresponding to % was selected.
The temporal variation of the surface elevatiorrat x, ((xo,t), can be calculated usirf(xo,t)
and X (zp). The maximum amplification occurs @t= 0 corresponding to the dimensional time
tmax = —Zo/cg; the resulting; (¢) is symmetric with respect tax. Note that at the instamt= tmax,
the spatial distributiog (x, tmax) is not fully symmetric with respect te, due to the presence of term

e~ %X in Eq. [@). It should be stressed that in experiments as el aumerical simulations, the

actual extent of the wave group is necessarily finite. In ttpeaments ok Shemer and AlperQJich

dzmi) anxh Shemer and Liberﬂﬁ@bm) the wave train withtthm of 70 carrier wave periods was

generated by the wavemaker. The duration of the wave tra#06§ is long enough to eliminate

the effect of truncation to the central part of the train veht#re hump is located and which is of
particular interest, and on the other haaeliminatesufficiently shortto preventcontamination of
the measured surface elevation by possible reflection fnefer end of the tankaves In the spatial
domain, this duration of the wave train corresponds t&,39 he numerical method applied in the
present study assumes spatially periodic boundary conditiSince the initial spatial distribution is
not periodic, the periodicity was enforced by applying &éintapering window over 2 wave length
Ao at the edges of the wave train. As a result, the effectivejstundbed by tapering, wave group
extended initially for about 3%,. To allow evolution of the wave train unaffected by boundsyihe
computational domain was selected[ag82),32)\], with 2 = 0 corresponding to the location of
the maximum crest at the initial instant of the computatjans 0. The temporal initial condition
adopted in the study is plotted in the top panel of Elg. 1. Téveesponding spatial variation of the
surface elevation with the same maximum crest height iggadan the bottom panel of the same
figure.

3 Numerical solution methodology

The temporal evolution of the initial wave field presentedhia bottom panel of Fid.]1 is obtained
by solving potential flow equations following the fully naméar numerical approach developed

by [Chalikov and Sheinir‘] (19b£, 2d05). The CS model is knowhedostable and does not have

limitations in terms of wave steepness. It has been extelysand successfully used for numerical

simulations of numerous problems related to evolution aflinear waves. The conformal mapping
method is applied to solve Laplace’s equation for the véygootential. Surface tension effects are
neglected. The principal equations are re-written in aagefollowing coordinate systeny énd

¢) and reduced to two time-evolutionary equations for théeserelevation: and velocity potential
¢° at the surface. The evolutionary equations representiagkitiematic and dynamic boundary
conditions at the free surface are written in terms of theriéogoefficients ok and¢®. This enables

the reduction of the evolutionary equations into a systertinoé-dependent ordinary differential
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equations forl M + 2 Fourier coefficients ot and¢®, coupled with appropriate initial conditions.
Here M refers to the truncation number of the Fourier series.

The initial surface elevation is given as a function of thggital variabler. To solve the problem
in the mapped space, this initial condition has to be comdertto a function of equally space&d
This is done by an iteration procedure.

For time integration, a fourth order Runge—Kutta scheme weasl. We refer the reader to Cha-
likov and Sheinin 5) for further details. In the preseomputations, the dimensional spatial
discretization interval was, /256, so that the total number of spatial poidts= 17,920; the trun-
cation number for the Fourier Seriesiig = N/9. This value ofM effectively means that waves
with wavelengths shorter than5 cm where capillary effects become dominant are disregardeel. T
dimensional integration step in timeds = 3.125 x 10~% s. Fheoutput

TheCSmodelallowsfor thecomputatiorof thevelocity potentialasafunctionof two parameters:

and ¢, the velocity potentialfor the entire domaincanthus be calculatedat any instant.In view

of the focusof the presentstudy,the outputparametersf the numerical integration are the surface
elevationz, velocity potential at the surfacg® and the physical spatial coordinatewhich are all

functions of¢ andt. In order to record the data for future use, the results foiase elevation, the
coordinatesr and non-dimensional velocity potential are saved at evet23ns. Note also that
spline interpolation procedure is needed to obtain valtiéseosurface elevation and the velocity
potentialy® at equally spaced values of

Milewski et al. k&b) have also employed the conformal niagpnethod to investigate the un-
steady evolution of two-dimensional fully nonlinear fregface gravity-capillary solitary waves for

infinite depth. Though their numerical approach is simitethtat of CS, certain differences between

the methods exist. The numerical approaclj of Milewski lad@ld)) was implemented in our com-
putations as well. No significant differences with the reshhsed on the CS model were obtained,

thus further demonstrating the robustness of the pressultse

4 Numerical and experimental results

In Fig.[2, the spatial instantaneous wave surface profiléoisgul for several characteristic selected
instants. As mentioned above, the origin of the frame ofregfees: = 0 corresponds to the lo-
cation of the maximum crest in the initial spatial distribnt The simulations demonstrate that
abnormally high waves appear at both edges of the wave tgim r@sult of truncation and ta-
pering of the infinite wave train defined by Egsl (1) ahd (6) peciied in the previous section.
Similar phenomenon was observed in experiments with ttedcevave trains reported in earlier

works bﬂemer_mdﬂp_emﬂlctj ZLHS Shemer and Libévlloﬂ)ZOThe effect of truncation, how-

ever, apparently does not extend to the central part of thve Wain even at relatively long times,

as can be seen from the upper curves in this figure. The effexirdinear focusing on the behav-
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ior of this central part of the train in the vicinity of the hpnis of principal interest in this study.
The dashed lines in Fidl 2 originate at the leading edge, ¢méec and the trailing edge of the
initial wave train and correspond to the location of the pgiropagating with the group velocity
cg =0.63ms™. It transpires from the figure that the leading edge of thim tiredeed propagates
with the speed that is close tg, while the trailing edge seems to move somewhat faster. Tog p

agation velocity of the steepest crest, however, exceedblyathe group velocity,,, in agreement

with the experimental observations and the numerical sitrari based on the Dysthe equation in

The spatial variation of the velocity of the fluid at the soda;, = 9¢°/0x is plotted in Fig[B at
the same instants as in Fig. 2, but in a moving wijtirame of reference. Only the central part of the
wave train is shown. The horizontal fluid velocity at the ptst crest increases notably during the
focusing process. At the upper curve in [ib. 3, the fast m®edn the horizontal velocity at the crest

s clearlyseen Note

that in earlier experiments thy Shemer and leel i_o_(lZOl&)evizneakmg was indeed observed at

comparable distances from the wavemaker.

The individual waves in Fid.]3 manifest variable left-rigltymmetry. Furthermore, it should be
stressed that periodic boundary conditions prescribechbycomputational model imply that the
mean value of the horizontal velocity, is zero, and the values dfie-herizentalvelocity-y, at
the boundaries of the computational domain vanish. Thigadlgt means that Stokes drift cannot
be reproduced in the present numerical simulations. Natedignificant Stokes drift was indeed

documented in experiments L)LS_h_em_er_a.nd_L'Lb_érlzo_n_[ZOl4).

Measurements in a wave tank are routinely performed using wauges spread along the facility.

To facitiatefacilitate the direct comparison between numerical and experimeesailts, we need
to first determine the location of the wavemaker in our nuoarsimulations. Then, we examine
vertical cross-sections of the data as presented in[JFig.fixeat locations relative to the adopted
coordinate of the wavemaker. The location of the wavemakitantified by the vertical line in the
latter figure wherer = z,,m = 25.273 m. The temporal variation of the surface elevation is plotted
in Fig.[4 at selected locations that cover the range of theevgauge positions in the experiment,
starting with that at:,,, or z. = 0, the variablex, denoting the distance from the wavemaker. The
disturbances at the leading edge of the truncated wave gireugtisregarded here. The growth of the

maximum crest height with the distance is obvious, albeit-mmnotonic. In the uppermost curve

in Fig.[4 the relative crest amplification exceeds the faofd?, as i i cln_(zbl4)
at a comparable distance from the wavemaker. Here agaitrttken line that corresponds to the
propagation velocity ot, clearly shows that the steepest crests in the train propagatelocities
exceeding:.
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A closer look at the surface elevation variation with timepiesented in Fid.15; the time here
is shifted at each position by delay that would occur if thenpun the group indeed propagated
with the group velocity. Actually, the maximum crest is inedly observed earlier. Both the vertical
(trough-crest) and the horizontal (right-left) asymmestrof steep waves are clearly visible in the
plotted records.

In Fig.[d, we follow after the highest crests in the instartars snapshots of wave trains. The
elevations of the highest crests at each instant are conhpatie the propagation velocity of those
crestsyer. To enable comparison of parameters with different dim@rssicrest heights are normal-
ized by the background wave amplitugg while crest propagation velocities are normalized by
the carrierwave phase velocity,. Note that this figure corresponds to evolution times at Wwhic
the hump’s amplification is still relatively modest. Neveless, the crests propagate with time-
dependent velocities, that may be notably different fromy, as would be the case for a purely

monochromatic wave train. It was demonstrated in experiHlH!TtS_h_emaLa.nd_L'Lb_eLZIOlj_(Zdl4) that

even for waves in the train that are far away from the hump lansiseem to be essentially monochro-

matic, the mean crest propagation velocity is somewhatenitiianc,, due to two main factors: the
presence of the exponential term in Hd. (6), and Stokesdrifent due to nonlinearity. As stressed
above, in the present computations the Stokes drift is alasea result of the prescribed periodicity
of the boundary conditions. The instantaneous steep ceéstities in Fig[® differ from:;,, as well

as from the computeby|§_hemer and Liberzuw (Zdlb)ehavior ofver for the Peregrine breathsr

14)t transpires from the comparison of the two curves in Fithd the

higher are the crests, the lower is their propagation vlo€he minima in the instantaneous max-
imum crests heights correspond to the local maxima in timsiiantaneous propagation velocities.
The averaged highest crest propagation velocity in[Big.16253 ms~!, slightly abovec,,.

The experiments were carried out with the goal to enabletifative comparison of the numerical
results with experiments. The wavemaker driving signal designed to generate surface elevation
variation in time corresponding to the lowest curve in ElgMeasurements were performed by
multiple (up to four) resistance-type wave gauges placed bar in the center of the tank and con-
nected to a computer-controlled carriage. The spacingdsstvadjacent gauges was th4At each
run, the position of the carriage was set by computer. Eacbessive run was initiated only after
any disturbance of the water surface from the previous rehfbidy decayed. Measurements per-
formed in different runs at fixed locations demonstratecebant repeatability of results. Thus, the
data collected at different locations obtained in variaussrcould be compared using the initiation
of the wavemaker driving signal as a common temporal retereMultiple experimental runs with
different carriage positions provided experimental rdsasf the temporal variation of the surface
elevation in the wave train propagating along the whole taitk spacing that did not exceed G2
denser measurements were carried out in the vicinity ofdbations where inception of breaking
was detected in visual observations.
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An example of the sequence of the experimentally recordegt wrains for6.6 <z <7.8m is
presented in Fid.]7. Modifications of the wave train shapaéen the adjacent locations are rela-
tively minor. The variation along the tank of the locatiorddreight of the steepest crest in the central
part of the train can be easily followed from these recordstieNhat the highest crestat= 7.6 m
ceases to be suchat= 7.8 m, where the following wave in the train becomes the steepest®uch
a transition of the highest crest in the train from one wavartotherthatcauses discontinuity in the

velocity of propagation of the steepest cresisalreadynoticedin/Shemer and Liberz]} 2014)

It is impractical to carry out direct comparison of the fagtying surface elevation records mea-

sured in the experiments as presented in [Hig. 7, with theesponding numerical results. In or-
der to comparelirectly-the computed and the measured results, the correspondietppes were
computed; the absolute values of the measured and simwiatesl train envelopes are presented
in Fig.[8 for various distances from the wavemaker. To caleuthe envelopes of the wave train
in both simulations and in experiments, the records wer¢ lfiiand-pass filtered in the domain
0.5wp < w < 1.5wq. This procedure leaves only the “free” waves, while the aigbrder “bound”
waves that cause vertical asymmetry of the records are retindhe envelopes of the filtered signals

were then computed using the Hilbert transform. For moraildetsee ed. Shemer QJ le. (l|998).
Figure[8 demonstrates that essential similarity existevéen the shapes of the measured wave

trains at different distances from the wavemaker and thb&ereed in the numerical simulations. The
propagation velocities of the leading edge of the wave ti@snwell as of the steepest crest, are also
quite close in simulations and in experiments. The agreélmemveen the numerical solution and
the experimental results is, however, not perfect; thedfices cannot be attributed to experimental
errors only.

Important parameters of the wave train in the course of iip@gation along the tank obtained in
the simulations are plotted in Fidd. 9 dnd 10. In Eig. 9, tmeperal variation of the computed ve-
locities of the highest crests at each instagt,and of the fluid velocity at those cresi§;* are pre-
sented at late stages of the evolution, up the the appareakdown of computations &t7, ~ 74.
Howeverthemaximumcrestheightamplificationexceeding wasobserveditt /T, ~ 62. The max-
imum crest elevations are also plotted in this figure for carigon. To enable comparison, all data
are rendered dimensionless by normalizing them by theirgpiate characteristic values. The fluid
velocities increase with crest heights, while the crespagation velocities decrease. At final stages
the fluid velocity at the crest seems to exceed the crestitgldtie corresponding spatial variations
are plotted in Fig_T0. In this figure, whenever available, ttlated experimental results are plotted
as well.

The evolution of the steepest crest heights along the tanmp)aited in Fig[ID, in simulations
and in experiments exhibit qualitative and to some exteantjtative similarity. The steepest crest
heights have a tendency to grow along the tank; this grow#ssentially non-monotonic in com-
putations as well as in measurements. At distances from #vemaker beyond m the measured

10
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steepest crest heights may exceed the background by a ¢d&dx; the amplification factor in sim-
ulations is somewhat higher than that. The propagationcitglof the steepest crest,, varies to

a certain extent in experiments and in computations, rem@iose to the phase velocity of the car-
rier wave c,. The discontinuity in the steepest crest propagation itglobtained in the experiments
is related to the transition of the steepest crest in the fram one wave to another, as discussed
with relation to Fig[yV. The spatial resolution of the det&ration of v, is obviously much better
in the numerical simulations than in the experiments. Fat thason, oscillations of the measured
steepest crest velocity are less pronounced in the expatédmesults. As discussed with respect to
the temporal variation of,; in Fig.[8, the crest propagation velocity decreases wheststecome
higher. This feature is more visible in the results of sintioles as compared to the measurements
due to their better resolution.

The bottom curve in Fid,_10 represents the variation aloegtamk of the instantaneous water
particle velocity at the steepest crest, computedi& = 0¢°/0x at the crest. This velocity varies
in accordance with the variation of the crest height; as thstdecomes higher, the values: g
grow and may exceed notably the group velocity Nevertheless, for the whole domain of com-
putations the horizontal liquid velocity at the crest remsdiower than the computed,. Note that
the computed temporal variations«®f andu]'® plotted in Fig[® demonstrate that the valuesgf
may decrease below the local maximumu@f®, however, this does not occurs simultaneously. No
measurements af"™ were carried out in this study, however, detailed resultshenLagrangian
kinematics at the wave crest approaching breaking obtaisedy Particle Tracking Velocimetry
(PTV) were presented for the identical carrier wave parameind somewhat different wavemaker

driving signal iA_ShﬁmgLand_le_echn_(sz).

At distances exceeding aboutn/from the wavemaker, the pattern of variation of the steepest

crests height and of their propagation velocity plotted in Fig.[ID becomes less organized. In
experiments, inception of spilling breaker was observethase distances, see the video in the
Supplement. In order to obtain more accurate estimates; af this region, measurements of the
surface elevation were performed each:i.IThe resulting steepest crest propagation velocities are
plotted in Fig[ID using different symbols. These resultsadlestrate that at the locations where the
spilling breakers were observed, the measugethay indeed fall below the computed water surface
velocity at the crest,"®,

It was suggested Jn Shemer and LibeHoLdZOM) that spilinegker appear when the the hori-

zontal water particle velocity at the steep crg8t* attains instantaneous crest propagation velocity

ver. While spilling breakers were clearly seen in the experimertdistances of about 7.5-8 and
8.5-9m from the wavemaker, as can be observed in the video in thel&uppt, in computations
the values ofu"®, while increasing at steep crests, remain consistentlgidy about 105 than the
computedug,, although extremely low steepest crest propagation \tsscivere occasionally ob-

11
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tained numerically, see Fif] 9. The experimentally deteedivalues of crest propagation velocity
may indeed fall below the computed water particle veloaff§*.

In this respect it should be stressed that the velocitfg® and v, obtained in the present fully
nonlinear numerical simulations, while apparently beiluge to their actual values as demonstrated
in Fig.[10, cannot be seen as the exact ones. One obviousfesgbat inaccuracy is the lack of the
Stokes drift in the computational results due to the impgsaebdicity of the boundary conditions.
The Stokes drift is an experimental reality and constitatesut 3% of ¢,,; accounting for the Stokes
drift velocity can thus immediately shrink the gap betwe€@* andv, at the steepest crests in the
numerical simulations. The experimental determinationphs performed in the present study is
inaccurate mainly due to the presence of unavoidable leelfeise in the surface elevation records
that limit the precision of defining the instant when the maxin surface elevation is attained. The
PTV-derived results on"™® presented in Fig. 7 J}f Shemer and LibeJZIQLdOl@ show thédrtal
surface velocities as high as 8,8notably higher than the maximum valuesf*in Fig.[10, were
indeed measured at the breaking location. It thus can béudeatthat the differences betweefi™
andwvg obtained numerically as presentedd 10 stem from less thefeqt accuracy of the model.

The total body of numerical and experimental results #asfirmstheprovidesfurther supportto
thevalidity of thekinematic breaking criterion according to which the spilbreaker emerges when
the instantaneous liquid velocity at the cregt?* attains that of the cresty,.

The amplitude spectra of the wave train are plotted in Eifi@rid I2. In Fig11 the numerically-
derived frequency spectra gft) are compared at selected valuesxofwith the corresponding
experimental results. At the wave maker & 0), the spectrum in linear-logarithmic coordinates still
retains resemblance to triangular shape characteristiedcegrine Breather. Nevertheless, a weak
asymmetry around the dominant frequengycan already be noticed at this location. Note that at
x, = 0 the wave train already evolved over significant durationfits initial PB shape in Fidll1. The
non-negligible contribution of low frequency as well as Zmdl 3rd bound wave harmonics is also
evident. The spectral asymmetry gets stronger and therspeegtidens with the distance from the
wave maker. Reasonable agreement is obtained betweenpérezntal and the numerical results.
The wavenumber spectrum for the computed variation(oj plotted in Fig[IP at selected instants
t cannot be compared with experiment. This is due to the fattttie spatial extent of the wave
train exceeds significantly the length of the tank, see[Biflde that even for significantly shorter
wave trains, the experimental procedure that enablesatixtgavavenumber spectra (as opposed to
frequency spectra) is extremely tedious,Lsss_Shﬂme.Lalim&!LItZO_Qb). The temporal evolution of

wavenumber spectra in Fig.]12 is qualitatively similar tattHiscussed with respect to Fig] 11. An

initial nearly symmetric around the dominant wavenumbecspum becomes more asymmetric and

the spectrum widens as time increases towards breaking.

12
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5 Discussion and conclusions

In the present study, fully nonlinear numerical simulasiaf evolution of a unidirectional nonlin-
ear wave train with an initial shape of a Peregrine Breathemrevgualitatively and quantitatively
compared with the experimental results. The simulationewarried out using a conformal map-

ping approach as detailedhn_QhaﬁkQALa.n_d_S_h:Lihm_(IZOOSyaTnﬂate the accuraci of the code, the

mputational results were reproduced using an altematimerical approach of Milewski et al.

). These and some other numerical methods that arre afigied to solve wave propagation
problems require complete information on the wave field dherentire computational range at
a certain instant. These initial conditions are unavadaflany controlled wave experiment in a lab-
oratory facility. The unidirectional wave field in a tank isfect prescribed by the wavemaker that is
usually located at one end of the facility and driven by a cotepgenerated signal.

The initial condition in experiments thus corresponds tdege elevation variation with time at
a prescribed wavemaker location. To reconcile betweemilkialispatial distribution of wave field
parameters required for the numerical solution, and th@teat variation of the surface elevation at
the wavemaker prescribed as the initial condition in theeeixpents, the approach originally applied

in |S_h_em_e_r_a.n_d_llQ|:th]_(2d08) was generalized here to a faltimear wave field with an arbitrary

spectral width. This generalization makes it possible toyoaut consistent quantitative comparison

of the results of numerical simulations and of measurements

In the present simulations, the initial spatial distribatiof the surface elevation is based on the
PB analytical solution. In order to determine in the numadrgolution the measurable temporal
variation of the surface elevation at any given locatiomglthe tank, the initial spatial distribution
in the present study was centered upstream of the wavensaleeFigl 2. The appropriate location of
the wavemaker was determined then by comparing the surfecatien variation in time with that
measured in the experiment. The wavemaker driving signadigees surface elevation variation in
time that corresponds to the bottom curve in Elg. 4. This ddprce that is very different from the
analytical solution given by PB is obtained as a result of@ian of the wave train with an initial
shape given in the bottom panel of Fig. 1. It enables detailed quantitative comparison of the
simulations with experiment.

Several important points regarding PB were highlightedhiis study. The solutior{6) of the
spatial form of the nonlinear Schrédinger equation (2dgmmetricaperiodicin space due to the
presence of an exponential term. Similarly, the temporahfof the NLS equatio ei,

|_9_8_$ Shemer and DQrfmlaln, 2dD08) yields PB that has an asymindgime. Moreover, the solution

(6) extends to infinity irbethtime and space whereashnthexperimentandexperimentaiswell as
in numerical simulations the extent of the wave train is finitothx andt. The exact shape of the

analytical solution{) thus can be reproduced neitherérettperiments nor inumericakimulations
—computationsNote thatin the presentstudy, the actualinitial conditionfor the simulationsand
the wavemakemriving signal have beenmodified and are fundamentallydifferent from PB. The

13
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beyondthe 2D PB wavepackets.

Two different approaches were suggested to deal thitiseproblemsthe problemsoutlinedin
the previousparagraphin numerical simulations, the truncated wave train wite sipatial exten-
sion that contains an integer number of carrier wave lengtldten used as the initial condition

dS_Iuﬂ;La.eLa.nd_ShLdrli._ZdB). However, imposing a non-zermgic boundary condition on an es-

sentially aperiodic function may affect significantly thatare of the solution. It was thus decided

in the present study to follow the experimental approach leEnSer and AIpergvigM_(;QlB) and

i ll]_(2d14). The theoretical solution glwerEq. [6) was truncated and tapered
before being used to determine the initial condition at tlheemaker. In order to mitigate the effect

of truncation on the central part of the wave train, a suffitielarge number of wave periods (about
70) was used in those experiments. A similar approach wastedn the present study. As can be
seen in both experimental and numerical results (Figsl hdfS, truncation and tapering, while
indeed satisfying periodic boundary conditions in the cataponal domain, cause appearance of
abnormally high waves at the leading and trailing edges efithve train. The effect of truncation
is apparently limited to the edges of the train, and does ffettethe behavior of the central part of
PB-PB-like wavetrainwith the gradually amplified, albeit non-monotonicallypfoiin the envelope.
These high waves do not characterizefleeegrinavave train proper and therefore were disregarded
in the present study.

The computational results indeed are in a good qualitaticketa acertainlarge extent quantita-

tive agreement with the current experiments, as well as thite o ' (Jn_(ZbM).
This includes the behavior of the truncated train edgesatimgification of the hump along the tank,
the asymmetric spectral widening, as well as the variatiothe envelope shape along the tank.

Softenletnee he-slowdownof-steeperestsin-PB-wave-train-thatCrestslowdownwas
notedby Johannsseand Swanin fully-nonlinear calculation al.n_._j001 and
experiment lél.n_._Z{OOZBpe slowdownof crestsin PB-like wavetrain asthe

grow in heightwas first observed by Shemer and Libe}zlm&@lﬂ)seme\maéiﬁeremeen{exm
experimentsand NLS solutionsand is of particularinterestMore recently this effect was also

stressedecenthyiniBanneretatb{204 4 andikurpiaand-Groesen{20H)) thecontextof focusin

of 2D and3D nonlineardeepwatervygwglﬁgtﬁsbyba ner tell. 4)for 2D nonlinearwave

acketdyKurnia and Groesen (2014) well asb |£e_d_e_| (2014)thusprovidingadditionalevidence

to the genericnatureof the phenomenonit was noticed iA_She_m&La.nd_L'Lb_e_Lchl_u_(Zbl4) that the
increase in the maximum crest height along the tank is notatomic. As the maximum crest

119

height increases, the water particles at the crest actekerhigher maximum velocities, ®, while
the cresterestpropagation speed,, decreases. The equalityf'® = v, was thus suggested as the
kinematic criterion for wave breaking. A slightly differewversion of this criterion was offered by

[Kumia_a.nﬂ_G_r_o_e_sJérll_(Zdl4); they maintain that the maximagidi particle velocityu]'®* exceeds

14



about0.8v. at breaking. If only the simulations are considered, it se#mat this somewhat weaker
version of the kinematic breaking criterion is confirmedwdwer, the present experimentakuits
490 indicateaswell asnumericalresults,combinedwith thoseobtainedexperimentallyby alternative
methodsin [Shemer and Liberzl) 2014provide a strong,albeit not fully conclusive supportto
the conjecturethat indeed the particle velocities ingthe inceptionof breakingattainandex-
ceed the crest propagation velocitigsusecenfirmingandthusto the kinematic breaking criterion

in the formulation suggest@yw i) thatstudy. This conjectures further

495 corroboratedby visualevidenceasseenn videoclips presenteih Supplements/Shemer and Liberzl} 2014) and

to the presenstudy:
This combined numerical and experimental study of nontineve trains also clarifies the lim-

itations of the adopted fully nonlinear solution methodeTgrocedure of truncation and tapering
of the initial condition applied here does not solve all theljpems associated with imposing the
500 periodic boundary conditions in the numerical solutione Phescribed spatial periodicity of the ve-
locity potential effectively eliminates appearance of2nel order Stokes drift current, thus resulting
in an inaccurate horizontal velocity at the liquid surfage.demonstrated tly Shemer and Libe}zon
), the Stokes drift is actually observed in laboratxgeriments. In this respect it should be
stressed that, while the periodicity in the time domain isgilnle for propagating unidirectional

505 waves, they are, strictly speaking, aperiodic in spaces pbint adds an additional aspect to es-
sential differences that exist between the spatial and eeahfformulations of the wave evolution
problem, as discussed above. All nonlinear solutions trebased on spatially periodic boundary
conditions, as in the method adopted here, as well as in atyanf alternative methods that employ
spatial discrete Fourier decomposition, therefore caritdrinsic inaccuracy already at the 2nd or-

510 der in the nonlinearity parameter These numerical solutions thus can only provide approtdma
results and require careful experiments to verify theiidigl. The present study shows that the fully
nonlinear solution, although flawed, yields better agragméth experiments than the application of
the limited to the 3rd order spatial version of the modifiedlirear Schrédinger (Dysthe) equation

that does not require spatial periodi

515 Resuppoereiti udyby-agran
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Figure 1. The prescribed initial variation of the surface elevatipim the temporal (top) and spatial (bottom)
domains for the carrier wave peridd = 0.8 s and background carrier amplitude = 0.026 m; calculated for
X = —2.613 (zo = 31 m.) in Eq. [8).
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Figure 2. The temporal evolution of the surface elevatipin a fixed reference frame; wave parameters as in
Fig.[. Vertical line marks the location of the wavemaker at xwm = 25.273 m, broken lines correspond to
propagation with the group velocity.

18



Figure 3. The temporal evolution of the horizontal fluid velocity in a moving refeesiname; wave parameters

asin Fig[d.

N uT
L L L L L L L L L
-8 -6 -4 -2 0 2 4 6 8
- cgt, m

X, =9.67m AAAMMM/\MMN\AN\/\N\M’V\MMNV\N\A
A'A
X, =879 m A .
15 ‘uv“v“N\AAMMAMAMAAMAMA/\AMMMA/V\AP
X, =7.91m I A
X, =7.03m ’
1.2 MMM
X, =6.15m ﬂ /
X,=527m
£ 0.9—-~AAAMMAMAAMMAMN\AAMAAMAAM/WV\AMAMAAN\7
= X, =4.39m N A
x,=3.52m ;
0.6 = AAMAAMAAMMAMAAAANNAANAMMANAANA
X, =2.64m l/
X, =176 m ’
0.3 A MMMV AN
X, =0.879 m 7 N
X, =0m ’
0O—————————~ AWM ANMMANAMANAANANM
0 10 20 30 40 50 60 70
uT,

Figure 4. Surface elevation variation at fixed valuesaofvs. timet. The group velocity ig, = 0.63ms™",

x, refers to the wave gauge distance from wavemaker. at 0.
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The locations where breaking was observed in the experiments aredanark
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Figure 12. Wavenumber spectra at selected times.
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