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Abstract. A method was applied to carry out detailed quantitative comparison of fully nonlinear

computations with the measurements of unidirectional wavegroups. Computational results on evolv-

ing wave groups were compared with previous available experiments. The local surface elevation

variation, evolution of envelope shapes, the velocity of propagation of the steepest crests in the

group and their relation to the height of the crests were obtained numerically and experimentally.5

Conditions corresponding to incipient wave breaking were investigated in greater detail. The results

shed additional light on mechanisms leading to the breakingof steep waves, as well as on the limits

of applicability of the computational results.

1 Introduction

Over the past few decades, rogue, or freak, waves have attracted considerable interest due to their de-10

structive impact on offshore structures and ships (Dysthe et al., 2008; Kharif et al., 2009). A number

of possible mechanisms for rogue wave generation have been explored. Wave-current and wave-

bathymetry interactions may result in appearance of rogue waves (Kharif et al., 2009). Extremely

steep waves in ocean are thus usually affected by the directional characteristics of the wave field.

Nevertheless, considerable effort has been invested in recent decades to study unidirectional wave15

fields. The accumulated results clearly demonstrate that investigation of both deterministic and ran-

dom unidirectional waves can lead to a better understandingof mechanisms leading to appearance of

rogue waves in the presence of directional spreading as well. Experimental studies of 2-D wave fields

in wave basins require large and expensive facilities and are subject to numerous limitations on the

wave parameters. Generation of unidirectional wave groupsin long tanks by a computer-controlled20

wavemaker offers significant advantages in terms of availability and versatility of operational con-

ditions. Extremely steep waves can be generated due to constructive interference of numerous har-

monics. While this focusing mechanism is basically linear, it is strongly affected by nonlinearity

(Shemer et al., 2007; Bateman et al., 2012). An alternative,essentially nonlinear, mechanism is re-

lated to the specific properties of the governing equations.To that end, the nonlinear Schrödinger25

(NLS) equation (Zakharov, 1968; Hasimoto and Ono, 1972), applicable for description of diverse
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nonlinear physical phenomena, is the simplest theoreticalmodel describing evolution of narrow-

banded wave groups in deep and intermediate depth water. This equation attracts special interest in

rogue waves studies since it admits analytical solutions such as the so-called Kuznetsov–Ma breath-

ing solitons (Kuznetsov, 1977; Ma, 1979). These solutions of the NLS equation present spatially30

localized patterns that oscillate in time. The closely related Akhmediev breather (Akhmediev et al.,

1987) is periodic in space. When the periodicity in time and space tends to infinity, both these

types of solution tend to a simple Peregrine Breather (PB) (Peregrine, 1983). It is localized in time

and space, breathes only once and attains a maximum crest height that exceeds that of the back-

ground wave train by a factor of three. For this reason, the Peregrine and other breather-type solu-35

tions of the NLS equation have been proposed as rogue wave prototypes (Dysthe and Trulsen, 1999;

Osborne et al., 2000; Shrira and Geogjaev, 2010; Slunyaev etal., 2013).

Shemer and Alperovich (2013) conducted a series of experiments on the evolution of the Peregrine

breather (PB) along a wave tank. They demonstrated that the experimental results diverge from the

Peregrine’s solution of the NLS equation. Notable asymmetry of the crest was observed, in agree-40

ment with many earlier studies of extremely steep waves (Babanin et al., 2007). The discrepancy

between the fully symmetric NLS solution and experiments manifests itself mainly in significant

asymmetric widening of the wave spectrum, as well as in notably slower than predicted by the PB

solution amplification of the wave height. Moreover, these experiments suggested that, contrary to

the behavior of the PB, there would be no return to the initialnearly monochromatic wave train.45

Similar conclusions based on fully nonlinear simulations of PB evolution in time were reached by

Slunyaev and Shrira (2013). Shemer and Alperovich (2013) demonstrated that the modified nonlin-

ear Schrödinger (MNLS, or Dysthe) ((Dysthe, 1979)) equation was advantageous in describing the

PB evolution along the laboratory tank as compared to the NLSequation. The improved perfor-

mance of the Dysthe model was attributed in Shemer and Alperovich (2013) to the additional 4th50

order terms in this equation that account for the finite spectral width (Kit and Shemer, 2002).

Shemer and Liberzon (2014) took advantage of the fact that the spectral widening, being an es-

sentially nonlinear process, occurs at slow spatial and temporal scales. Hence, it was found that the

wave train behavior with background steepness of about 0.1 is still described by the PB solution

of the NLS equation with reasonable accuracy, as long as the surface elevation spectrum remains55

sufficiently narrow and the maximum wave height in the train remained below approximately twice

that of the background. This observation enabled Shemer andLiberzon (2014) to utilize the avail-

able PB analytic solution to design experiments with PB in which the height of the steepest wave in

the train at a prescribed measuring location can be controlled, thus facilitating quantitative studies

of the incipient wave breaking. Their study was motivated byan earlier attempt by Shemer (2013)60

to examine the kinematics of the steep wave on the verge of breaking using the Zakharov equation

(Zakharov, 1968). By comparing the computational results with experimental observations reported

in Shemer et al. (2007), the conclusion was reached that wavebreaking may occur when the horizon-
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tal liquid velocity at the crest becomes sufficiently high (Shemer, 2013). These computations also

showed that the maximum negative vertical Lagrangian acceleration seems to remain significantly65

below the acceleration of gravityg, so that the Phillips dynamic breaking criterion cannot be satisfied

(Phillips, 1958). Computations of steep wave kinematics accurate up to the 3rd order in the wave

steepness demonstrated, though, that this approximation,while largely adequate for determination of

the shape of the surface elevation, was insufficient for the accurate characterization of the kinematics

of steep waves (Shemer, 2013). In order to overcome this limitation, the kinematic parameters of the70

steepest wave in the PB-like wave train were determined experimentally in Shemer and Liberzon

(2014) simultaneously with estimates of the propagation velocity of the steepest crest. To this end,

two synchronized video cameras were used to image the wave field. The maximum possible hori-

zontal Lagrangian velocities and accelerations at the surface of steep water waves were measured by

Particle Tracking Velocimetry (PTV) for gradually increasing crest heights, up to the inception of75

a spilling breaker. Actual crest and phase velocities were estimated from video recorded sequences of

the instantaneous wave shape as well as from surface elevation measurements by wave gauges. The

slow-down of the crest as it growths steeper was observed. Itwas suggested in Shemer and Liberzon

(2014) that the inception of a spilling breaker is associated with the horizontal velocity of water par-

ticles at the crest attaining that of the crest, thus confirming the kinematic criterion for the inception80

of breaking.

In the present study, we aim to extend the numerical analysisof the conditions prevailing at the

inception of breaking of the steepest crest in the PB-like wave train by carrying out fully nonlinear

simulations. The simulation were performed using conformal mapping method approach developed

by Chalikov and Sheinin (1998, 2005) (hereafter referred toas the CS model). A somewhat differ-85

ent implementation of this approach was suggested by Milewski et al. (2010). Recently, Perić et al.

(2014) reported on direct numerical simulations based on the volume of fluid method to solve the

two-phase Navier–Stokes equations. In their study Peregrine breather dynamics was investigated up

to the initial stages of wave breaking.

In Sect. 2, the difference between the spatial and temporal evolution of the wave field is dis-90

cussed. In Sect. 3, we give details about the solver that is based on the conformal mapping method

and stress that the resulting numerical solution describesthe temporal evolution starting from an

initial spatial distribution. In Sect. 4, the computational results are discussed for both the temporal

evolution problem and then for the spatial evolution case. The corresponding experimental results

are also presented and compared directly with the numericalsimulations. In Sect. 5, the numerical95

and experimental results are discussed and the conclusionsare drawn.
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2 Wave parameters: temporal vs. spatial evolution cases

The CS model enables computation of wave field evolution in time, starting from a given spatial dis-

tribution as an initial condition. In laboratory experiments, however, waves are generated by a wave-

maker usually placed at one end of the experimental facility. The experimental data are commonly100

accumulated only at preselected fixed locations within the tank where the sensors are placed. Quanti-

tative comparison of numerical computations with experimental results gained in those experiments

may thus constitute a complicated task. For a narrow-bandedwave field this problem has been con-

sidered by Shemer and Dorfman (2008). For such wave fields, the envelope equations like the NLS

and Dysthe models often provide adequate results. In the narrow-banded models the temporalt and105

the spatialx coordinates are related by the group propagation velocity,cg, thus enabling modifica-

tion of the governing temporal evolution equations to a spatial form. The spatial form of the Dysthe

model was presented by Lo and Mei (1985). Numerical computations based on the Dysthe model for

unidirectional wave groups propagating in a long wave tank indeed provided good agreement with

experiments (Shemer et al., 2002). The spatial version of the Dysthe equation was also derived from110

the spatial form of the Zakharov equation (Shemer et al., 2001, 2007) that is free of any restrictions

on the spectrum width (Kit and Shemer, 2002).

As demonstrated in Shemer and Dorfman (2008), the availability of the spatial form of the evolu-

tion model is insufficient to pose the initial conditions forthe numerical simulations that correspond

exactly to those in experiments. In the present work, the temporal evolution is computed by a fully115

nonlinear solver of the two-dimensional potential equations in finite water depth. Following ear-

lier works (Shemer and Alperovich, 2013; Shemer and Liberzon, 2014), the solution of the spatial

version of the NLS equation is used to set the initial conditions. For a narrow-banded deep-water

wave group, the spatial and temporal variations of the surface elevationz at the leading order can be

presented as120

ζ(x,t) = Re
[

a(x,t) · ei(k0x−ω0t)
]

(1)

Here the radian frequencyω0 = 2π/T0,T0 being the carrier wave period, and the wave number

k0 = 2π/λ0, λ0 being the carrier wave length, satisfy the finite water depthdispersion relationω0
2 =

gk0 tanh(k0h). In Eq. (1),a is the slowly varying complex group envelope. The wave steepness is

defined asǫ= a0k0, wherea0 is the characteristic wave amplitude. The wave train given by Eq. (1)125

propagates with the group velocitycg =

(

∂ω

∂k

)

k=k0

. Following Mei (1989) and Shemer et al. (1998),

in intermediate water depth the spatial NLS equation for thecomplex normalized envelope,Q=

a(x,t)/a0 is given by:

− iQX +αQTT +β|Q|2Q= 0 (2)
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where the scaled dimensionless temporal and spatial coordinates areT = ǫω0(x/cg − t) andX =130

ǫ2k0x respectively. The coefficients in the NLS equation have the following dimensionless form

α=−
ω0

2

2k0cg3
∂cg
∂k

(3)

β =
1

n

[

cosh(4k0h)+ 8− 2tanh2(k0h)

16sinh4(k0h)
−

1

2sinh2(2k0h)

(2cosh2(k0h)+n2)
k0h

tanh(k0h)
−n2

]

, (4)

where the parametern= cg/cp represents the ratio of group and phase velocities and is given by

n=
1

2

{

1+
2k0h

sinh(2k0h)

}

. (5)135

For the deep water case,k0h→∞ andα= β = 1. The Peregrine Breather solution of the NLS

equation for intermediate water depth (Eq. 2) is:

Q=−

√

2
α

β
e−2iαX

[

1−
4(1− 4iαX)

1+ 4T 2 +16(αX)2

]

(6)

Equations (1) and (6) provide variation of the instantaneous surface elevation in time and in space,

with focusing corresponding toT =X = 0. In Shemer and Alperovich (2013) and Shemer and Liberzon140

(2014), the wavemaker driving signal as a function of time was selected using the deep-water

version of Eq. (2) and the prescribed focusing distance fromthe wavemaker,x0, by substituting

X =X0 =−ǫ2k0x0 into Eq. (6). The relative height of the initial hump in the wave amplitude dis-

tribution at the wavemaker in Shemer and Liberzon (2014) exceeded 10% above the background.

The present study has been carried out in the 18m long, 1.2m wide and 0.9m deep wave tank145

(water depthh= 0.6m). More details about the experimental facility are given inShemer et al.

(1998). The carrier wave periodT0 = 0.8 s was selected, corresponding to the carrier wave length

λ0 = 1.0m and the dimensionless water depthk0h= 3.77. For these parameters, both coefficients in

the NLS equation (eq0b) given by Eqs. (3) and (4) in fact differ from unity:α= 1.078 andβ = 0.711.

The carrier wave amplitude ofζ0 =
√

2α
β
a0 = 0.026m was used, corresponding to the nonlinearity150

ǫ= k0a0 = 0.094.

Since the nonlinear numerical solver in the present study requires an initial condition as a given

spatial distribution at a certain instant, the following procedure to determine the appropriate initial

spatial distribution was adopted.

Using Eq. (6), a value ofx0 is specified at which the prescribed maximum crest of the PB isto155

be located. Note that in physical terms, this initial condition corresponds to a situation in which the

whole wave train is placed upstream of the wavemaker. Due to the focusing properties of the NLS

equation in sufficiently deep water (k0h > 1.36), the maximum wave height in the train increases in

the course of the evolution process. In order to obtain the amplification, at the wavemaker location,

of about 20% similar to that employed in Shemer and Liberzon (2014), the initial height of the PB160

hump has to be significantly smaller than that. The amplification corresponding to 5% was selected.

The temporal variation of the surface elevation atx= x0, ζ(x0, t), can be calculated usingT (x0, t)
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andX(x0). The maximum amplification occurs atT = 0 corresponding to the dimensional time

tmax=−x0/cg; the resultingζ(t) is symmetric with respect totmax. Note that at the instantt= tmax,

the spatial distributionζ(x,tmax) is not fully symmetric with respect tox0 due to the presence of term165

e−2iαX in Eq. (6). It should be stressed that in experiments as well as in numerical simulations, the

actual extent of the wave group is necessarily finite. In the experiments of Shemer and Alperovich

(2013) and Shemer and Liberzon (2014) the wave train with duration of 70 carrier wave periods was

generated by the wavemaker. The duration of the wave train of70T0 is long enough to eliminate

the effect of truncation to the central part of the train where the hump is located and which is of170

particular interest, and on the other hand sufficiently short to prevent contamination of the measured

surface elevation by possible reflection from the far end of the tank. In the spatial domain, this

duration of the wave train corresponds to 35λ0. The numerical method applied in the present study

assumes spatially periodic boundary conditions. Since theinitial spatial distribution is not periodic,

the periodicity was enforced by applying a linear tapering window over 2 wave lengthλ0 at the edges175

of the wave train. As a result, the effective, undisturbed bytapering, wave group extended initially

for about 32λ0. To allow evolution of the wave train unaffected by boundaries, the computational

domain was selected as[−32λ0,32λ0], with x= 0 corresponding to the location of the maximum

crest at the initial instant of the computations,t= 0. The temporal initial condition adopted in the

study is plotted in the top panel of Fig. 1. The correspondingspatial variation of the surface elevation180

with the same maximum crest height is plotted in the bottom panel of the same figure.

3 Numerical solution methodology

The temporal evolution of the initial wave field presented inthe bottom panel of Fig. 1 is obtained

by solving potential flow equations following the fully nonlinear numerical approach developed

by Chalikov and Sheinin (1998, 2005). The CS model is known tobe stable and does not have185

limitations in terms of wave steepness. It has been extensively and successfully used for numerical

simulations of numerous problems related to evolution of nonlinear waves. The conformal mapping

method is applied to solve Laplace’s equation for the velocity potential. Surface tension effects are

neglected. The principal equations are re-written in a surface-following coordinate system (ξ and

ζ) and reduced to two time-evolutionary equations for the surface elevationz and velocity potential190

φs at the surface. The evolutionary equations representing the kinematic and dynamic boundary

conditions at the free surface are written in terms of the Fourier coefficients ofz andφs. This enables

the reduction of the evolutionary equations into a system oftime-dependent ordinary differential

equations for4M +2 Fourier coefficients ofz andφs, coupled with appropriate initial conditions.

HereM refers to the truncation number of the Fourier series.195
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The initial surface elevation is given as a function of the physical variablex. To solve the problem

in the mapped space, this initial condition has to be converted into a function of equally spacedξ.

This is done by an iteration procedure.

For time integration, a fourth order Runge–Kutta scheme wasused. We refer the reader to Cha-

likov and Sheinin (2005) for further details. In the presentcomputations, the dimensional spatial200

discretization interval wasλ0/256, so that the total number of spatial pointsN = 17,920; the trun-

cation number for the Fourier Series isM =N/9. This value ofM effectively means that waves

with wavelengths shorter than1.5 cm where capillary effects become dominant are disregarded. The

dimensional integration step in time isdt= 3.125× 10−6 s.

The CS model allows for the computation of the velocity potential as a function of two parameters:205

ξ andζ, the velocity potential for the entire domain can thus be calculated at any instant. In view

of the focus of the present study, the output parameters of the numerical integration are the surface

elevationz, velocity potential at the surfaceφs and the physical spatial coordinatex, which are all

functions ofξ andt. In order to record the data for future use, the results for surface elevation, the

coordinatesx and non-dimensional velocity potential are saved at every 3.125ms. Note also that210

spline interpolation procedure is needed to obtain values of the surface elevationz and the velocity

potentialφs at equally spaced values ofx.

Milewski et al. (2010) have also employed the conformal mapping method to investigate the un-

steady evolution of two-dimensional fully nonlinear free surface gravity-capillary solitary waves for

infinite depth. Though their numerical approach is similar to that of CS, certain differences between215

the methods exist. The numerical approach of Milewski et al.(2010) was implemented in our com-

putations as well. No significant differences with the results based on the CS model were obtained,

thus further demonstrating the robustness of the present results.

4 Numerical and experimental results

In Fig. 2, the spatial instantaneous wave surface profile is plotted for several characteristic selected220

instants. As mentioned above, the origin of the frame of referencesx= 0 corresponds to the lo-

cation of the maximum crest in the initial spatial distribution. The simulations demonstrate that

abnormally high waves appear at both edges of the wave train as a result of truncation and tapering

of the infinite wave train defined by Eqs. (1) and (6) as specified in the previous section. Simi-

lar phenomenon was observed in experiments with truncated wave trains reported in earlier works225

(Shemer and Alperovich, 2013; Shemer and Liberzon, 2014). The effect of truncation, however, ap-

parently does not extend to the central part of the wave traineven at relatively long times, as can be

seen from the upper curves in this figure. The effect of nonlinear focusing on the behavior of this

central part of the train in the vicinity of the hump is of principal interest in this study. The dashed

lines in Fig. 2 originate at the leading edge, the center and the trailing edge of the initial wave train230
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and correspond to the location of the point propagating withthe group velocitycg = 0.63m s−1. It

transpires from the figure that the leading edge of the train indeed propagates with the speed that is

close tocg, while the trailing edge seems to move somewhat faster. The propagation velocity of the

steepest crest, however, exceeds notably the group velocity cg, in agreement with the experimental

observations and the numerical simulation based on the Dysthe equation in Shemer and Alperovich235

(2013).

The spatial variation of the velocity of the fluid at the surfaceuh = ∂φs/∂x is plotted in Fig. 3 at

the same instants as in Fig. 2, but in a moving withcg frame of reference. Only the central part of

the wave train is shown. The horizontal fluid velocity at the steepest crest increases notably during

the focusing process. At the upper curve in Fig. 3, the fast increase in the horizontal velocity at the240

crest is clearly seen. Note that in earlier experiments by Shemer and Liberzon (2014) wave breaking

was indeed observed at comparable distances from the wavemaker.

The individual waves in Fig. 3 manifest variable left-rightasymmetry. Furthermore, it should be

stressed that periodic boundary conditions prescribed by the computational model imply that the

mean value of the horizontal velocityuh is zero, and the values ofuh at the boundaries of the com-245

putational domain vanish. This actually means that Stokes drift cannot be reproduced in the present

numerical simulations. Note that significant Stokes drift was indeed documented in experiments by

Shemer and Liberzon (2014).

Measurements in a wave tank are routinely performed using wave gauges spread along the facil-

ity. To facilitate the direct comparison between numericaland experimental results, we need to first250

determine the location of the wavemaker in our numerical simulations. Then, we examine vertical

cross-sections of the data as presented in Fig. 2 at fixed locations relative to the adopted coordinate

of the wavemaker. The location of the wavemaker is identifiedby the vertical line in the latter figure

wherex= xwm = 25.273m. The temporal variation of the surface elevation is plottedin Fig. 4 at

selected locations that cover the range of the wave gauge positions in the experiment, starting with255

that atxwm or x∗ = 0, the variablex∗ denoting the distance from the wavemaker. The disturbances

at the leading edge of the truncated wave group are disregarded here. The growth of the maximum

crest height with the distance is obvious, albeit non-monotonic. In the uppermost curve in Fig. 4 the

relative crest amplification exceeds the factor of 2, as in Shemer and Liberzon (2014) at a compa-

rable distance from the wavemaker. Here again, the broken line that corresponds to the propagation260

velocity of cg clearly shows that the steepest crests in the train propagate at velocities exceedingcg.

A closer look at the surface elevation variation with time ispresented in Fig. 5; the time here

is shifted at each position by delay that would occur if the hump in the group indeed propagated

with the group velocity. Actually, the maximum crest is invariably observed earlier. Both the vertical

(trough-crest) and the horizontal (right-left) asymmetries of steep waves are clearly visible in the265

plotted records.
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In Fig. 6, we follow after the highest crests in the instantaneous snapshots of wave trains. The

elevations of the highest crests at each instant are compared with the propagation velocity of those

crests,vcr. To enable comparison of parameters with different dimensions, crest heights are normal-

ized by the background wave amplitudeζ0, while crest propagation velocities are normalized by270

the carrier wave phase velocitycp. Note that this figure corresponds to evolution times at which

the hump’s amplification is still relatively modest. Nevertheless, the crests propagate with time-

dependent velocitiesvcr that may be notably different fromcp as would be the case for a purely

monochromatic wave train. It was demonstrated in experiments of Shemer and Liberzon (2014) that

even for waves in the train that are far away from the hump and thus seem to be essentially monochro-275

matic, the mean crest propagation velocity is somewhat higher thancp due to two main factors: the

presence of the exponential term in Eq. (6), and Stokes driftcurrent due to nonlinearity. As stressed

above, in the present computations the Stokes drift is absent as a result of the prescribed periodicity

of the boundary conditions. The instantaneous steep crest velocities in Fig. 6 differ fromcp, as well

as from the computed by Shemer and Liberzon (2014) behavior of vcr for the Peregrine breather. It280

transpires from the comparison of the two curves in Fig. 6 that the higher are the crests, the lower is

their propagation velocity. The minima in the instantaneous maximum crests heights correspond to

the local maxima in their instantaneous propagation velocities. The averaged highest crest propaga-

tion velocity in Fig. 6 is1.253m s−1, slightly abovecp.

The experiments were carried out with the goal to enable quantitative comparison of the numerical285

results with experiments. The wavemaker driving signal wasdesigned to generate surface elevation

variation in time corresponding to the lowest curve in Fig. 4. Measurements were performed by

multiple (up to four) resistance-type wave gauges placed ona bar in the center of the tank and con-

nected to a computer-controlled carriage. The spacing between adjacent gauges was 0.4m. At each

run, the position of the carriage was set by computer. Each successive run was initiated only after290

any disturbance of the water surface from the previous run had fully decayed. Measurements per-

formed in different runs at fixed locations demonstrated excellent repeatability of results. Thus, the

data collected at different locations obtained in various runs could be compared using the initiation

of the wavemaker driving signal as a common temporal reference. Multiple experimental runs with

different carriage positions provided experimental records of the temporal variation of the surface295

elevation in the wave train propagating along the whole tankwith spacing that did not exceed 0.2m;

denser measurements were carried out in the vicinity of the locations where inception of breaking

was detected in visual observations.

An example of the sequence of the experimentally recorded wave trains for6.6≤ x≤ 7.8m is

presented in Fig. 7. Modifications of the wave train shape between the adjacent locations are rela-300

tively minor. The variation along the tank of the location and height of the steepest crest in the central

part of the train can be easily followed from these records. Note that the highest crest atx= 7.6m

ceases to be such atx= 7.8m, where the following wave in the train becomes the steepest one. Such
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a transition of the highest crest in the train from one wave toanother that causes discontinuity in the

velocity of propagation of the steepest crest was already noticed in Shemer and Liberzon (2014).305

It is impractical to carry out direct comparison of the fast varying surface elevation records mea-

sured in the experiments as presented in Fig. 7, with the corresponding numerical results. In order to

compare the computed and the measured results, the corresponding envelopes were computed; the

absolute values of the measured and simulated wave train envelopes are presented in Fig. 8 for vari-

ous distances from the wavemaker. To calculate the envelopes of the wave train in both simulations310

and in experiments, the records were first band-pass filteredin the domain0.5ω0 ≤ ω ≤ 1.5ω0. This

procedure leaves only the “free” waves, while the higher order “bound” waves that cause vertical

asymmetry of the records are removed. The envelopes of the filtered signals were then computed

using the Hilbert transform. For more details, see e.g. Shemer et al. (1998).

Figure 8 demonstrates that essential similarity exists between the shapes of the measured wave315

trains at different distances from the wavemaker and those obtained in the numerical simulations. The

propagation velocities of the leading edge of the wave train, as well as of the steepest crest, are also

quite close in simulations and in experiments. The agreement between the numerical solution and

the experimental results is, however, not perfect; the differences cannot be attributed to experimental

errors only.320

Important parameters of the wave train in the course of its propagation along the tank obtained

in the simulations are plotted in Figs. 9 and 10. In Fig. 9, thetemporal variation of the computed

velocities of the highest crests at each instant,vcr, and of the fluid velocity at those crests,umax
h are

presented at late stages of the evolution, up the the apparent breakdown of computations att/T0 ≈

74. However, the maximum crest height amplification exceeding3 was observed att/T0 ≈ 62. The325

maximum crest elevations are also plotted in this figure for comparison. To enable comparison, all

data are rendered dimensionless by normalizing them by their appropriate characteristic values. The

fluid velocities increase with crest heights, while the crest propagation velocities decrease. At final

stages the fluid velocity at the crest seems to exceed the crest velocity. The corresponding spatial

variations are plotted in Fig. 10. In this figure, whenever available, the related experimental results330

are plotted as well.

The evolution of the steepest crest heights along the tank, as plotted in Fig. 10, in simulations

and in experiments exhibit qualitative and to some extent quantitative similarity. The steepest crest

heights have a tendency to grow along the tank; this growth isessentially non-monotonic in com-

putations as well as in measurements. At distances from the wavemaker beyond 7m the measured335

steepest crest heights may exceed the background by a factorof 2.5; the amplification factor in sim-

ulations is somewhat higher than that. The propagation velocity of the steepest crest,vcr, varies to

a certain extent in experiments and in computations, remaining close to the phase velocity of the car-

rier wave,cp. The discontinuity in the steepest crest propagation velocity obtained in the experiments

is related to the transition of the steepest crest in the train from one wave to another, as discussed340

10



with relation to Fig. 7. The spatial resolution of the determination of vcr is obviously much better

in the numerical simulations than in the experiments. For that reason, oscillations of the measured

steepest crest velocity are less pronounced in the experimental results. As discussed with respect to

the temporal variation ofccr in Fig. 6, the crest propagation velocity decreases when crests become

higher. This feature is more visible in the results of simulations as compared to the measurements345

due to their better resolution.

The bottom curve in Fig. 10 represents the variation along the tank of the instantaneous water

particle velocity at the steepest crest, computed asumax
h = ∂φs/∂x at the crest. This velocity varies

in accordance with the variation of the crest height; as the crest becomes higher, the values ofumax
h

grow and may exceed notably the group velocitycg. Nevertheless, for the whole domain of com-350

putations the horizontal liquid velocity at the crest remains lower than the computedvcr. Note that

the computed temporal variations ofvcr andumax
h plotted in Fig. 9 demonstrate that the values ofvcr

may decrease below the local maximum ofumax
h , however, this does not occurs simultaneously. No

measurements ofumax
h were carried out in this study, however, detailed results onthe Lagrangian

kinematics at the wave crest approaching breaking obtainedusing Particle Tracking Velocimetry355

(PTV) were presented for the identical carrier wave parameters and somewhat different wavemaker

driving signal in Shemer and Liberzon (2014).

At distances exceeding about 7m from the wavemaker, the pattern of variation of the steepest

crests height and of their propagation velocityvcr plotted in Fig. 10 becomes less organized. In

experiments, inception of spilling breaker was observed atthose distances, see the video in the360

Supplement. In order to obtain more accurate estimates ofvcr in this region, measurements of the

surface elevation were performed each 0.1m. The resulting steepest crest propagation velocities are

plotted in Fig. 10 using different symbols. These results demonstrate that at the locations where the

spilling breakers were observed, the measuredvcr may indeed fall below the computed water surface

velocity at the crest,umax
h .365

It was suggested in Shemer and Liberzon (2014) that spillingbreaker appear when the the hori-

zontal water particle velocity at the steep crestumax
h attains instantaneous crest propagation velocity

vcr. While spilling breakers were clearly seen in the experiments at distances of about 7.5–8 and

8.5–9m from the wavemaker, as can be observed in the video in the Supplement, in computations

the values ofumax
h , while increasing at steep crests, remain consistently lower by about 10% than the370

computedvcr, although extremely low steepest crest propagation velocities were occasionally ob-

tained numerically, see Fig. 9. The experimentally determined values of crest propagation velocity

may indeed fall below the computed water particle velocityumax
h .

In this respect it should be stressed that the velocitiesumax
h andvcr obtained in the present fully

nonlinear numerical simulations, while apparently being close to their actual values as demonstrated375

in Fig. 10, cannot be seen as the exact ones. One obvious reason for that inaccuracy is the lack of the

Stokes drift in the computational results due to the imposedperiodicity of the boundary conditions.
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The Stokes drift is an experimental reality and constitutesabout 3% of cp; accounting for the Stokes

drift velocity can thus immediately shrink the gap betweenumax
h andvcr at the steepest crests in the

numerical simulations. The experimental determination ofvcr as performed in the present study is380

inaccurate mainly due to the presence of unavoidable low-level noise in the surface elevation records

that limit the precision of defining the instant when the maximum surface elevation is attained. The

PTV-derived results onumax
h presented in Fig. 7 of Shemer and Liberzon (2014) show that horizontal

surface velocities as high as 0.8cp, notably higher than the maximum values ofumax
h in Fig. 10, were

indeed measured at the breaking location. It thus can be concluded that the differences between385

umax
h andvcr obtained numerically as presented in 10 stem from less than perfect accuracy of the

model. The total body of numerical and experimental resultsthus provides further support to the

validity of the kinematic breaking criterion according to which the spilling breaker emerges when

the instantaneous liquid velocity at the crest,umax
h , attains that of the crest,vcr.

The amplitude spectra of the wave train are plotted in Figs. 11 and 12. In Fig. 11 the numerically-390

derived frequency spectra ofη(t) are compared at selected values ofx∗ with the corresponding

experimental results. At the wave maker (x∗ = 0), the spectrum in linear-logarithmic coordinates still

retains resemblance to triangular shape characteristic for Peregrine Breather. Nevertheless, a weak

asymmetry around the dominant frequencyω0 can already be noticed at this location. Note that at

x∗ = 0 the wave train already evolved over significant duration from its initial PB shape in Fig. 1. The395

non-negligible contribution of low frequency as well as 2ndand 3rd bound wave harmonics is also

evident. The spectral asymmetry gets stronger and the spectrum widens with the distance from the

wave maker. Reasonable agreement is obtained between the experimental and the numerical results.

The wavenumber spectrum for the computed variation ofη(x) plotted in Fig. 12 at selected instants

t cannot be compared with experiment. This is due to the fact that the spatial extent of the wave400

train exceeds significantly the length of the tank, see Fig. 2. Note that even for significantly shorter

wave trains, the experimental procedure that enables extracting wavenumber spectra (as opposed to

frequency spectra) is extremely tedious, see Shemer and Dorfman (2008). The temporal evolution of

wavenumber spectra in Fig. 12 is qualitatively similar to that discussed with respect to Fig. 11. An

initial nearly symmetric around the dominant wavenumber spectrum becomes more asymmetric and405

the spectrum widens as time increases towards breaking.

5 Discussion and conclusions

In the present study, fully nonlinear numerical simulations of evolution of a unidirectional nonlin-

ear wave train with an initial shape of a Peregrine Breather were qualitatively and quantitatively

compared with the experimental results. The simulations were carried out using a conformal map-410

ping approach as detailed in Chalikov and Sheinin (2005). Tovalidate the accuracy of the code, the

computational results were reproduced using an alternative numerical approach of Milewski et al.
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(2010). These and some other numerical methods that are often applied to solve wave propagation

problems require complete information on the wave field overthe entire computational range at

a certain instant. These initial conditions are unavailable in any controlled wave experiment in a lab-415

oratory facility. The unidirectional wave field in a tank is in fact prescribed by the wavemaker that is

usually located at one end of the facility and driven by a computer generated signal.

The initial condition in experiments thus corresponds to surface elevation variation with time at

a prescribed wavemaker location. To reconcile between the initial spatial distribution of wave field

parameters required for the numerical solution, and the temporal variation of the surface elevation at420

the wavemaker prescribed as the initial condition in the experiments, the approach originally applied

in Shemer and Dorfman (2008) was generalized here to a fully nonlinear wave field with an arbitrary

spectral width. This generalization makes it possible to carry out consistent quantitative comparison

of the results of numerical simulations and of measurements.

In the present simulations, the initial spatial distribution of the surface elevation is based on the425

PB analytical solution. In order to determine in the numerical solution the measurable temporal

variation of the surface elevation at any given location along the tank, the initial spatial distribution

in the present study was centered upstream of the wavemaker,see Fig. 2. The appropriate location of

the wavemaker was determined then by comparing the surface elevation variation in time with that

measured in the experiment. The wavemaker driving signal generates surface elevation variation in430

time that corresponds to the bottom curve in Fig. 4. This dependence that is very different from the

analytical solution given by PB is obtained as a result of evolution of the wave train with an initial

shape given in the bottom panel of Fig. 1. It enables detailedand quantitative comparison of the

simulations with experiment.

Several important points regarding PB were highlighted in this study. The solution (6) of the spa-435

tial form of the nonlinear Schrödinger equation (2) is aperiodic in space due to the presence of an ex-

ponential term. Similarly, the temporal form of the NLS equation (Lo and Mei, 1985; Shemer and Dorfman,

2008) yields PB that has an asymmetry in time. Moreover, the solution (6) extends to infinity in time

and space whereas in experiments as well as in numerical simulations the extent of the wave train is

finite in bothx andt. The exact shape of the analytical solution (6) thus can be reproduced neither440

in the experiments nor in computations. Note that in the present study, the actual initial condition

for the simulations and the wavemaker driving signal have been modified and are fundamentally

different from PB. The presented results on steep crests in the wave train are therefore of generic

nature and applicable beyond the 2D PB wave packets.

Two different approaches were suggested to deal with the problems outlined in the previous para-445

graph. In numerical simulations, the truncated wave train with the spatial extension that contains an

integer number of carrier wave lengths is often used as the initial condition (Slunyaev and Shrira,

2013). However, imposing a non-zero periodic boundary condition on an essentially aperiodic func-

tion may affect significantly the nature of the solution. It was thus decided in the present study to fol-
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low the experimental approach of Shemer and Alperovich (2013) and Shemer and Liberzon (2014).450

The theoretical solution given by Eq. (6) was truncated and tapered before being used to determine

the initial condition at the wavemaker. In order to mitigatethe effect of truncation on the central part

of the wave train, a sufficiently large number of wave periods(about 70) was used in those exper-

iments. A similar approach was adopted in the present study.As can be seen in both experimental

and numerical results (Figs. 1, 4 and 9), truncation and tapering, while indeed satisfying periodic455

boundary conditions in the computational domain, cause appearance of abnormally high waves at

the leading and trailing edges of the wave train. The effect of truncation is apparently limited to the

edges of the train, and does not affect the behavior of the central part of PB-like wave train with

the gradually amplified, albeit non-monotonically, hump inthe envelope. These high waves do not

characterize the wave train proper and therefore were disregarded in the present study.460

The computational results indeed are in a good qualitative and to a large extent quantitative agree-

ment with the current experiments, as well as with those of Shemer and Liberzon (2014). This in-

cludes the behavior of the truncated train edges, the amplification of the hump along the tank, the

asymmetric spectral widening, as well as the variation of the envelope shape along the tank. Crest

slowdown was noted by Johannssen and Swan in fully-nonlinear calculations (Johannessen and Swan ,465

2001) and experiments (Johannessen and Swan , 2003). The slowdown of crests in PB-like wave

train as they grow in height was first observed by Shemer and Liberzon (2014) in experiments and

NLS solutions and is of particular interest More recently, this effect was also stressed in the con-

text of focusing of 2D and 3D nonlinear deep water wave packets by Banner et al. (2014), for 2D

nonlinear wave packets byKurnia and Groesen (2014) as well as by Fedele (2014), thus providing470

additional evidence to the generic nature of the phenomenon. It was noticed in Shemer and Liberzon

(2014) that the increase in the maximum crest height along the tank is not monotonic. As the maxi-

mum crest height increases, the water particles at the crestaccelerate to higher maximum velocities

umax
h , while the crest propagation speedvcr decreases. The equalityumax

h = vcr was thus suggested

as the kinematic criterion for wave breaking. A slightly different version of this criterion was of-475

fered by Kurnia and Groesen (2014); they maintain that the maximum liquid particle velocityumax
h

exceeds about0.8vcr at breaking. If only the simulations are considered, it seems that this somewhat

weaker version of the kinematic breaking criterion is confirmed. However, the present experimental

as well as numerical results, combined with those obtained experimentally by alternative methods in

Shemer and Liberzon (2014), provide a strong, albeit not fully conclusive, support to the conjecture480

that indeed the particle velocities at the inception of breaking attain and exceed the crest propagation

velocities and thus to the kinematic breaking criterion in the formulation suggested in that study. This

conjecture is further corroborated by visual evidence as seen in video clips presented in Supplements

to Shemer and Liberzon (2014) and to the present study.

This combined numerical and experimental study of nonlinear wave trains also clarifies the lim-485

itations of the adopted fully nonlinear solution method. The procedure of truncation and tapering
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of the initial condition applied here does not solve all the problems associated with imposing the

periodic boundary conditions in the numerical solution. The prescribed spatial periodicity of the ve-

locity potential effectively eliminates appearance of the2nd order Stokes drift current, thus resulting

in an inaccurate horizontal velocity at the liquid surface.As demonstrated by Shemer and Liberzon490

(2014), the Stokes drift is actually observed in laboratoryexperiments. In this respect it should be

stressed that, while the periodicity in the time domain is possible for propagating unidirectional

waves, they are, strictly speaking, aperiodic in space. This point adds an additional aspect to es-

sential differences that exist between the spatial and temporal formulations of the wave evolution

problem, as discussed above. All nonlinear solutions that are based on spatially periodic boundary495

conditions, as in the method adopted here, as well as in a variety of alternative methods that employ

spatial discrete Fourier decomposition, therefore contain intrinsic inaccuracy already at the 2nd or-

der in the nonlinearity parameterǫ. These numerical solutions thus can only provide approximate

results and require careful experiments to verify their validity. The present study shows that the fully

nonlinear solution, although flawed, yields better agreement with experiments than the application of500

the limited to the 3rd order spatial version of the modified nonlinear Schrödinger (Dysthe) equation

that does not require spatial periodicity (Shemer and Alperovich (2013).
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Figure 1. The prescribed initial variation of the surface elevationη in the temporal (top) and spatial (bottom)

domains for the carrier wave periodT0 = 0.8 s and background carrier amplitudeζ0 = 0.026m; calculated for

X =−2.613 (x0 = 31m.) in Eq. (6).
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Figure 2. The temporal evolution of the surface elevationη in a fixed reference frame; wave parameters as in

Fig. 1. Vertical line marks the location of the wavemaker atx= xwm = 25.273m, broken lines correspond to

propagation with the group velocitycg.

18



−10 −8 −6 −4 −2 0 2 4 6 8 10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

t/T
0
 = 0

t/T
0
 = 6.2

t/T
0
 = 12.4

t/T
0
 = 18.6

t/T
0
 = 24.8

t/T
0
 = 31

t/T
0
 = 37.2

t/T
0
 = 43.4

t/T
0
 = 49.6

t/T
0
 = 55.8

x − c
g
t, m

u h, m
/s
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