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Abstract. A method was applied to carry out detailed quantitative carsgpn of fully nonlinear
computations with the measurements of unidirectional vgawaps. Computational results on evolv-
ing wave groups were compared with previous available éxygits. The local surface elevation
variation, evolution of envelope shapes, the velocity afpaigation of the steepest crests in the
group and their relation to the height of the crests wereinbthnumerically and experimentally.
Conditions corresponding to incipient wave breaking wavestigated in greater detail. The results
shed additional light on mechanisms leading to the breakirsgeep waves, as well as on the limits
of applicability of the computational results.

1 Introduction

Over the past few decades, rogue, or freak, waves havetattre@nsiderable interest due to their de-

structive impact on offshore structures and SAMQO_QH Kharif et AILLOLJ)Q). A number

of possible mechanisms for rogue wave generation have bgdored. Wave-current and wave-

bathymetry interactions may result in appearance of romkaMI.LE_(b9). Extremely
steep waves in ocean are thus usually affected by the diredtcharacteristics of the wave field.

Nevertheless, considerable effort has been invested entelecades to study unidirectional wave
fields. The accumulated results clearly demonstrate thiastigation of both deterministic and ran-
dom unidirectional waves can lead to a better understarafingechanisms leading to appearance of
rogue waves in the presence of directional spreading asEvgierimental studies of 2-D wave fields
in wave basins require large and expensive facilities aadsabject to numerous limitations on the
wave parameters. Generation of unidirectional wave graufing tanks by a computer-controlled
wavemaker offers significant advantages in terms of avitithabnd versatility of operational con-
ditions. Extremely steep waves can be generated due toraotigt interference of numerous har-
monics. While this focusing mechanism is basically linegrs istrongly affected by nonlinearity
dSh_e_me_Lel_eLIL_ZQ_bJLB_a.Le_ma.n_elt Ia.LJOlZ). An alternagigsentially nonlinear, mechanism is re-
lated to the specific properties of the governing equatidashat end, the nonlinear Schrédinger

(NLS) equation (ZakharJ)\L_19|6E; Hasimoto and HHQ, 119729|iezpble for description of diverse
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nonlinear physical phenomena, is the simplest theoretizalel describing evolution of narrow-
banded wave groups in deep and intermediate depth watereghnation attracts special interest in
rogue waves studies since it admits analytical solutiooh sis the so-called Kuznetsov—Ma breath-

ing solitons (Kuznelsgl)\L 19 7BAE 1§79). These solutiohte NLS equation i resent siatially

localized patterns that oscillate in time. The closelytedaAkhmediev breather (Akhmediev et al.,

) is periodic in space. When the periodicity in time andcaotends to infinity, both these

types of solution tend to a simple Peregrine Breather (PB 1533). It is localized in time
and space, breathes only once and attains a maximum crgi;lt hiedt exceeds that of the back-

ground wave train by a factor of three. For this reason, thred?me and other breather-type solu-

tions of the NLS equation have been proposed as rogue wateypes [LD_)lehe_a.nﬂlLngen._l;{?%;

lOshorne et all, 2000; Shrira and Geogjev, 2010; Slunyat, @015).
Shemer and AIpergviH: (2d13) conducted a series of expatgwa the evolution of the Peregrine

breather (PB) along a wave tank. They demonstrated thaiherienental results diverge from the

Peregrine’s solution of the NLS equation. Notable asymynetithe crest was observed, in agree-

ment with many earlier studies of extremely steep WaLLe_s_é,Bmte_t_aH 2Qd7). The discrepancy
between the fully symmetric NLS solution and experimentsifeats itself mainly in significant

asymmetric widening of the wave spectrum, as well as in nptlbwer than predicted by the PB
solution amplification of the wave height. Moreover, thespezgiments suggested that, contrary to
the behavior of the PB, there would be no return to the initdrly monochromatic wave train.
Similar conclusions based on fully nonlinear simulatioh®B evolution in time were reached by
@nma@&dr@lwmmmmvated that the modified nonlin-
ear Schrodinger (MNLS, or Dysthe@t@gm)) equatias advantageous in describing the
PB evolution along the laboratory tank as compared to the Biy$ation. The improved perfor-
mance of the Dysthe model was attributer in Shemer and ﬂ@l (JZOlJS) to the additional 4th
order terms in this equation that account for the finite spéuetidth hsll_a.n_d_s_h_e_m_L 2).

|5_h_em_e_r_a.nd_LLb_eaL||]_(2dl4) took advantage of the fact tieaspectral widening, being an es-

sentially nonlinear process, occurs at slow spatial angteai scales. Hence, it was found that the

wave train behavior with background steepness of abouts0stili described by the PB solution
of the NLS equation with reasonable accuracy, as long asutiace elevation spectrum remains
sufficiently narrow and the maximum wave height in the tr@mained below approximately twice

that of the background. This observation enallal_e_d_SLemeLibmzoJ\ k;o_1|4) to utilize the avail-

able PB analytic solution to design experiments with PB imcivithe height of the steepest wave in

the train at a prescribed measuring location can be coattolhus facilitating quantitative studies
of the incipient wave breaking. Their study was motivatedahyearlier attempt 13)
to examine the kinematics of the steep wave on the verge aklng using the Zakharov equation

8). By comparing the computational resuith experimental observations reported

in|S_h_Qm_QLe_t_€LIl_(ZD:b7), the conclusion was reached that braading may occur when the horizon-
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tal liquid velocity at the crest becomes sufficiently hir3). These computations also
showed that the maximum negative vertical Lagrangian acatbn seems to remain significantly
below the acceleration of gravity so that the Phillips dynamic breaking criterion cannotdtesfied
,). Computations of steep wave kinematiczueate up to the 3rd order in the wave
steepness demonstrated, though, that this approximatiole largely adequate for determination of
the shape of the surface elevation, was insufficient for ticarate characterization of the kinematics
of steep wave@l?:). In order to overcome thigdiion, the kinematic parameters of the
steepest wave in the PB-like wave train were determinedrarpatally inLSLemer_mdLib_eﬂon

) simultaneously with estimates of the propagatidooity of the steepest crest. To this end,

two synchronized video cameras were used to image the wdsle Tike maximum possible hori-
zontal Lagrangian velocities and accelerations at thesaréf steep water waves were measured by
Particle Tracking Velocimetry (PTV) for gradually incréag crest heights, up to the inception of
a spilling breaker. Actual crest and phase velocities wstienated from video recorded sequences of
the instantaneous wave shape as well as from surface elevagasurements by wave gauges. The
slow-down of the crest as it growths steeper was observegdisuggested ln_snemer_and;ib_elzon
1‘ that the inception of a spilling breaker is assodiatih the horizontal velocity of water par-

ticles at the crest attaining that of the crest, thus configntihhe kinematic criterion for the inception
of breaking.

In the present study, we aim to extend the numerical anabfdise conditions prevailing at the
inception of breaking of the steepest crest in the PB-likeentaain by carrying out fully nonlinear
simulations. The simulation were performed using confémmegpping method approach developed

bybﬁﬁkmndihﬂdirﬁl&bbjd%) (hereafter referredstthe CS model). A somewhat differ-

ent implementation of this approach was suggeStELMéﬂsaﬂ k;o;b). Recentl.

1‘ reported on direct numerical simulations based envifiume of fluid method to solve the
two-phase Navier—Stokes equations. In their study Peredpieather dynamics was investigated up
to the initial stages of wave breaking.

In Sect[2, the difference between the spatial and tempolon of the wave field is dis-
cussed. In Sedtl 3, we give details about the solver thatsischan the conformal mapping method
and stress that the resulting numerical solution desctitbesemporal evolution starting from an
initial spatial distribution. In Seckl4, the computatibresults are discussed for both the temporal
evolution problem and then for the spatial evolution case Gorresponding experimental results
are also presented and compared directly with the numesiicallations. In SeckE]5, the numerical

and experimental results are discussed and the conclusmiertsawn.
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2 Wave parameters: temporal vs. spatial evolution cases

The CS model enables computation of wave field evolutiomiretistarting from a given spatial dis-
tribution as an initial condition. In laboratory experintgrhowever, waves are generated by a wave-
maker usually placed at one end of the experimental factite experimental data are commonly
accumulated only at preselected fixed locations withindn& tvhere the sensors are placed. Quanti-
tative comparison of numerical computations with experitabresults gained in those experiments
may thus constitute a complicated task. For a narrow-bandee field this problem has been con-

sidered b)l!_Sh_em_&La.nd_D_o_Lth.n_(,ZbOS). For such wave fieldsritielope equations like the NLS

and Dysthe models often provide adequate results. In thewdranded models the tempotend

the spatial: coordinates are related by the group propagation velagitythus enabling modifica-

tion of the governing temporal evolution equations to aigpédrm. The spatial form of the Dysthe

model was presented i (1985). Numerical comjmusbased on the Dysthe model for
unidirectional wave groups propagating in a long wave tawleéd provided good agreement with
experimentsl (Shemer et MOZ). The spatial versioneoDtfsthe equation was also derived from
the spatial form of the Zakharov equati 2}.20_0_{7) that is free of any restrictions
on the spectrum widtIL (Kit and Shellnle_r_._ZbOZ).

As demonstrated ‘n Shemer and DQeran (iOOS), the avatjabfithe spatial form of the evolu-

tion model is insufficient to pose the initial conditions fbe numerical simulations that correspond

exactly to those in experiments. In the present work, theoteal evolution is computed by a fully
nonlinear solver of the two-dimensional potential equaiin finite water depth. Following ear-

lier works tShgmer and Alpeericl:, zdjls; Shemer and Lit&rlmll), the solution of the spatial

version of the NLS equation is used to set the initial condsi For a narrow-banded deep-water

wave group, the spatial and temporal variations of the sarédevatior: at the leading order can be
presented as

((z,t) =Re|a(z,?) . ¢ilkoz—wot) o

Here the radian frequenay, = 27 /Ty, Ty being the carrier wave period, and the wave number
ko = 27/ Mo, Ao being the carrier wave length, satisfy the finite water delghersion relation,? =
gkotanh(koh). In Eq. [3),a is the slowly varying complex group envelope. The wave stesp is
defined as = agkg, Whereay is the characteristic wave amplitude. The wave train giveid. (1)

propagates with the group velocity = <Z:) Followmg. 119819) anb Shemer ed é (1 b98)

k_
in intermediate water depth the spatial NLS equatlon forabmplex normalized envelopé) =

a(x,t)/ag is given by:

—iQx +aQrr + BlQIPQ =0 2



130 where the scaled dimensionless temporal and spatial cwiedi arel’ = ewy(x/cy —t) and X =

e’ kox respectively. The coefficients in the NLS equation have dfiewing dimensionless form

wo? Oc
_Qko ok )
0Cg k
5= 1| cosh(4koh) +8 — 2tanh?(koh) 3 1 (2cosh?(koh) +n?) @)
“n 16sinh? (koh) 2sinh®(2koh) ey —n? |

where the parameter= ¢, /c,, represents the ratio of group and phase velocities andés iy
1 2koh
135 n=—ql4+——"——>. 5
"9 { t b (2koh) } ®)

For the deep water caskyh — oo anda = 8 = 1. The Peregrine Breather solution of the NLS
equation for intermediate water depth (Eh. 2) is:

a 4(1 - 4iaX)
—_ [9= 2iaX 1— 6
@==y/25° [ 1+4T2+16(aX)2] ©)
Equations[{ll) and{6) provide variation of the instantasesurface elevation in time and in space,

140 with focusing corresponding f6 = X = 0. InLSh_em_eLand_ALp_eLOMil;L_LZdB) alnd_Sh_em_QLa.nd_le:eron

), the wavemaker driving signal as a function of timessalected using the deep-water

version of Eq.[(R) and the prescribed focusing distance ftoenwavemakeryq, by substituting

X = X = —€%koxy into Eq. [8). The relative height of the initial hump in thewgaamplitude dis-
tribution at the wavemaker [D_S_h_em_&La.nd_LLb_e}z_o_n_dZ014aaeded 10% above the background.

145 The present study has been carried out in thex18ng, 1.2m wide and 0.9n deep wave tank

Faemeretd

). The carrier wave peridth = 0.8 s was selected, corresponding to the carrier wave length

water depthh = 0.6 m). More details about the experimental facility are giverSine

Ao = 1.0 m and the dimensionless water deptih = 3.77. For these parameters, both coefficients in
the NLS equation (eq0b) given by EdS. (3) did (4) in fact diffem unity: o = 1.078 and3 = 0.711.

150 The carrier wave amplitude @f = \/;ao = 0.026 m was used, corresponding to the nonlinearity
€ = koag = 0.094.

Since the nonlinear numerical solver in the present stugyires an initial condition as a given
spatial distribution at a certain instant, the followingppedure to determine the appropriate initial
spatial distribution was adopted.

155 Using Eq. [6), a value af is specified at which the prescribed maximum crest of the RB is
be located. Note that in physical terms, this initial coiaditcorresponds to a situation in which the
whole wave train is placed upstream of the wavemaker. Dukeaddcusing properties of the NLS
equation in sufficiently deep watetyh > 1.36), the maximum wave height in the train increases in
the course of the evolution process. In order to obtain thglifination, at the wavemaker location,

160 of about 20% similar to that employed il:l_S_h_e_m_e_r_a.nd_le_e_lJzLJ_n_dOl4), thitgal height of the PB

hump has to be significantly smaller than that. The amplibcatorresponding to % was selected.

The temporal variation of the surface elevatiorrat x, ((xo,t), can be calculated usirf(xo,t)
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and X (z(). The maximum amplification occurs @t= 0 corresponding to the dimensional time
tmax = —Zo/cg; the resulting; (¢) is symmetric with respect ttax. Note that at the instamt= tmax,

the spatial distributiog(x, tmax) is not fully symmetric with respect te, due to the presence of term
e~2 X in Eq. [@). It should be stressed that in experiments as wetl aumerical simulations, the

actual extent of the wave group is necessarily finite. In ttpedments ok Shemer and AlperO\_/Iich

dZQl;L) amlLS_h_em&La.nd_le_e&cL_n_(Zbl4) the wave train withtitur of 70 carrier wave periods was

generated by the wavemaker. The duration of the wave tra#06f is long enough to eliminate

the effect of truncation to the central part of the train vehdre hump is located and which is of
particular interest, and on the other hand sufficiently stuoprevent contamination of the measured
surface elevation by possible reflection from the far endhef tank. In the spatial domain, this
duration of the wave train corresponds to\35The numerical method applied in the present study
assumes spatially periodic boundary conditions. Sincénitial spatial distribution is not periodic,
the periodicity was enforced by applying a linear taperimgdew over 2 wave length, at the edges
of the wave train. As a result, the effective, undisturbedapering, wave group extended initially
for about 32. To allow evolution of the wave train unaffected by boundsyithe computational
domain was selected &s32)\g,32)¢], with 2 = 0 corresponding to the location of the maximum
crest at the initial instant of the computations; 0. The temporal initial condition adopted in the
study is plotted in the top panel of FId. 1. The correspondimatial variation of the surface elevation
with the same maximum crest height is plotted in the bottonepaf the same figure.

3 Numerical solution methodology

The temporal evolution of the initial wave field presentedhe bottom panel of Fidl1 is obtained
by solving potential flow equations following the fully namkar numerical approach developed
by i i iA_(_’LQ_bJLZdOS). The CS model is knowihdcstable and does not have
limitations in terms of wave steepness. It has been extelysand successfully used for numerical

simulations of numerous problems related to evolution aflinear waves. The conformal mapping
method is applied to solve Laplace’s equation for the vigjgobtential. Surface tension effects are
neglected. The principal equations are re-written in aamefollowing coordinate systeng énd

¢) and reduced to two time-evolutionary equations for théeserelevation: and velocity potential
¢° at the surface. The evolutionary equations representiagitiematic and dynamic boundary
conditions at the free surface are written in terms of therleogoefficients ot and¢®. This enables
the reduction of the evolutionary equations into a systertinoé-dependent ordinary differential
equations fortM + 2 Fourier coefficients ot and¢®, coupled with appropriate initial conditions.
Here M refers to the truncation number of the Fourier series.
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The initial surface elevation is given as a function of thggtal variabler. To solve the problem
in the mapped space, this initial condition has to be coadeirito a function of equally spacé&d
This is done by an iteration procedure.

For time integration, a fourth order Runge—Kutta scheme wgasl. We refer the reader to Cha-
likov and Sheinin 5) for further details. In the preseomputations, the dimensional spatial
discretization interval wad, /256, so that the total number of spatial poid¥s= 17,920; the trun-
cation number for the Fourier Seriesfi$¢ = N/9. This value ofM effectively means that waves
with wavelengths shorter than5 cm where capillary effects become dominant are disregardaeel. T
dimensional integration step in timeds = 3.125 x 1076 s.

The CS model allows for the computation of the velocity pttias a function of two parameters:
& and(, the velocity potential for the entire domain can thus bewated at any instant. In view
of the focus of the present study, the output parameterseafitimerical integration are the surface
elevationz, velocity potential at the surfacg’ and the physical spatial coordinatewhich are all
functions of¢ andt. In order to record the data for future use, the results fdiasa elevation, the
coordinatesr and non-dimensional velocity potential are saved at evel3ns. Note also that
spline interpolation procedure is needed to obtain valfiéseosurface elevation and the velocity

potential¢® at equally spaced values of
i ) have also employed the conformal niagpnethod to investigate the un-
steady evolution of two-dimensional fully nonlinear fregface gravity-capillary solitary waves for

infinite depth. Though their numerical approach is simitethtat of CS, certain differences between

the methods exist. The numerical approac i i ) was implemented in our com-
putations as well. No significant differences with the reshbhsed on the CS model were obtained,
thus further demonstrating the robustness of the pressultse

4 Numerical and experimental results

In Fig.[2, the spatial instantaneous wave surface profiléoiseal for several characteristic selected
instants. As mentioned above, the origin of the frame ofresfeesx = 0 corresponds to the lo-
cation of the maximum crest in the initial spatial distribnt The simulations demonstrate that
abnormally high waves appear at both edges of the wave tsarr@sult of truncation and tapering
of the infinite wave train defined by Eqél (1) ad (6) as spetifiethe previous section. Simi-
lar phenomenon was observed in experiments with truncaée@ wains reported in earlier works

wmwrw%meﬁect of truncation, however, ap-

parently does not extend to the central part of the wave &a@m at relatively long times, as can be

seen from the upper curves in this figure. The effect of nealirfocusing on the behavior of this
central part of the train in the vicinity of the hump is of pripal interest in this study. The dashed
lines in Fig[2 originate at the leading edge, the center hadrailing edge of the initial wave train
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and correspond to the location of the point propagating thiehgroup velocity, = 0.63ms~!. It
transpires from the figure that the leading edge of the tradeed propagates with the speed that is
close toc,, while the trailing edge seems to move somewhat faster. Toygagation velocity of the
steepest crest, however, exceeds notably the group wetQciin agreement with the experimental

observations and the numerical simulation based on thehBysjuation iJJ Shemer and AIperoJich
(2013)
The spatial variation of the velocity of the fluid at the seda;, = 9¢°/0x is plotted in Fig[B at

the same instants as in Fig. 2, but in a moving witiframe of reference. Only the central part of
the wave train is shown. The horizontal fluid velocity at theepest crest increases notably during
the focusing process. At the upper curve in Eig. 3, the fageimse in the horizontal velocity at the

crestis clearly seen. Note that in earlier experimen{s_mmaad;ib_eﬂr*_@h) wave breaking

was indeed observed at comparable distances from the wieema

The individual waves in Fid.]3 manifest variable left-rigtsymmetry. Furthermore, it should be
stressed that periodic boundary conditions prescribechbycomputational model imply that the
mean value of the horizontal velocity, is zero, and the values af, at the boundaries of the com-
putational domain vanish. This actually means that Stokiéscdnnot be reproduced in the present
numerical simulations. Note that significant Stokes driisvindeed documented in experiments by

LShﬁmgLaad_le_erzLL_(sz).

Measurements in a wave tank are routinely performed using wauges spread along the facil-

ity. To facilitate the direct comparison between numerarad experimental results, we need to first
determine the location of the wavemaker in our numericabifations. Then, we examine vertical
cross-sections of the data as presented in[Fig. 2 at fixetidosaelative to the adopted coordinate
of the wavemaker. The location of the wavemaker is identligthe vertical line in the latter figure
wherez = rym = 25.273 m. The temporal variation of the surface elevation is plotte€ig.[4 at
selected locations that cover the range of the wave gauggonssin the experiment, starting with
that atz,m or . = 0, the variabler, denoting the distance from the wavemaker. The disturbances
at the leading edge of the truncated wave group are disreddrere. The growth of the maximum

crest height with the distance is obvious, albeit non-moniat In the uppermost curve in F[g. 4 the

relative crest amplification exceeds the factor of 2, i i 4) at a compa-
rable distance from the wavemaker. Here again, the brokerthiat corresponds to the propagation
velocity of ¢, clearly shows that the steepest crests in the train propagatlocities exceeding.

A closer look at the surface elevation variation with timepiesented in Fid.]5; the time here
is shifted at each position by delay that would occur if thenpun the group indeed propagated
with the group velocity. Actually, the maximum crest is inably observed earlier. Both the vertical
(trough-crest) and the horizontal (right-left) asymmestrof steep waves are clearly visible in the
plotted records.
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In Fig.[d, we follow after the highest crests in the instartaus snapshots of wave trains. The
elevations of the highest crests at each instant are conhpatie the propagation velocity of those
crestsyer. To enable comparison of parameters with different din@rssicrest heights are normal-
ized by the background wave amplitugg while crest propagation velocities are normalized by
the carrier wave phase velocity. Note that this figure corresponds to evolution times at Wwhic
the hump’s amplification is still relatively modest. Nevegless, the crests propagate with time-
dependent velocities, that may be notably different fromy, as would be the case for a purely

monochromatic wave train. It was demonstrated in experiHMIﬁﬂemr_MmIOlj (2614) that

even for waves in the train that are far away from the hump lansiseem to be essentially monochro-

matic, the mean crest propagation velocity is somewhatehititanc,, due to two main factors: the
presence of the exponential term in Hd. (6), and Stokesdalrifent due to nonlinearity. As stressed
above, in the present computations the Stokes drift is dlasesm result of the prescribed periodicity
of the boundary conditions. The instantaneous steep ce@stities in Fig[® differ fron,,, as well

as from the computed dgLS_h_em_er_a.nd_L'Lb_el’iQn_dZ014) behaf/iqy; tor the Peregrine breather. It

transpires from the comparison of the two curves in[Hig. 6tthehigher are the crests, the lower is

their propagation velocity. The minima in the instantarssmaximum crests heights correspond to
the local maxima in their instantaneous propagation veésciThe averaged highest crest propaga-
tion velocity in Fig[® is1.253 ms~!, slightly abovec,,.

The experiments were carried out with the goal to enabletiative comparison of the numerical
results with experiments. The wavemaker driving signal designed to generate surface elevation
variation in time corresponding to the lowest curve in EigMeasurements were performed by
multiple (up to four) resistance-type wave gauges placed bar in the center of the tank and con-
nected to a computer-controlled carriage. The spacingdstvadjacent gauges was th4At each
run, the position of the carriage was set by computer. Eacbessive run was initiated only after
any disturbance of the water surface from the previous rehflilly decayed. Measurements per-
formed in different runs at fixed locations demonstrateceb&nt repeatability of results. Thus, the
data collected at different locations obtained in variaussrcould be compared using the initiation
of the wavemaker driving signal as a common temporal retereMultiple experimental runs with
different carriage positions provided experimental rdsasf the temporal variation of the surface
elevation in the wave train propagating along the whole taitk spacing that did not exceed G2
denser measurements were carried out in the vicinity ofdbations where inception of breaking
was detected in visual observations.

An example of the sequence of the experimentally recordec wains for6.6 < x <7.8m is
presented in Fid.]7. Modifications of the wave train shapaéeh the adjacent locations are rela-
tively minor. The variation along the tank of the locatiomd®ight of the steepest crest in the central
part of the train can be easily followed from these recordsieNhat the highest crest at= 7.6 m
ceases to be suchat= 7.8 m, where the following wave in the train becomes the steepest®uch
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a transition of the highest crest in the train from one wavanother that causes discontinuity in the
velocity of propagation of the steepest crest was alreadyed)inLS_hﬂm_eLa.nd_le_etzL)Lj_(ZCL14).

It is impractical to carry out direct comparison of the faatying surface elevation records mea-

sured in the experiments as presented in[Hig. 7, with thesponding numerical results. In order to
compare the computed and the measured results, the candésgenvelopes were computed; the
absolute values of the measured and simulated wave tra@ogas are presented in Hig. 8 for vari-
ous distances from the wavemaker. To calculate the envelofithe wave train in both simulations
and in experiments, the records were first band-pass filterbe domair).5wy < w < 1.5wq. This
procedure leaves only the “free” waves, while the higheeofthound” waves that cause vertical
asymmetry of the records are removed. The envelopes of theefil signals were then computed

using the Hilbert transform. For more details, See|_e_.g._m@m|. [(L&SJS).

Figure[8 demonstrates that essential similarity existesden the shapes of the measured wave

trains at different distances from the wavemaker and thb&ereed in the numerical simulations. The
propagation velocities of the leading edge of the wave tasrwell as of the steepest crest, are also
quite close in simulations and in experiments. The agreélmetween the numerical solution and
the experimental results is, however, not perfect; therfices cannot be attributed to experimental
errors only.

Important parameters of the wave train in the course of ipagation along the tank obtained
in the simulations are plotted in Fids. 9 dnd 10. In Eig. 9,tdmaporal variation of the computed
velocities of the highest crests at each instagt,and of the fluid velocity at those crestg)* are
presented at late stages of the evolution, up the the apdameakdown of computations atT; ~
74. However, the maximum crest height amplification excee@imgas observed ayT, ~ 62. The
maximum crest elevations are also plotted in this figure éanparison. To enable comparison, all
data are rendered dimensionless by normalizing them by dperopriate characteristic values. The
fluid velocities increase with crest heights, while the tpgspagation velocities decrease. At final
stages the fluid velocity at the crest seems to exceed thewalegity. The corresponding spatial
variations are plotted in Fif._1L0. In this figure, whenevaailable, the related experimental results
are plotted as well.

The evolution of the steepest crest heights along the tamp)aited in Fig[ID, in simulations
and in experiments exhibit qualitative and to some exteantjtative similarity. The steepest crest
heights have a tendency to grow along the tank; this growdssentially non-monotonic in com-
putations as well as in measurements. At distances from dvemaker beyond m the measured
steepest crest heights may exceed the background by a fd@&dr; the amplification factor in sim-
ulations is somewhat higher than that. The propagationcitglof the steepest crest,, varies to
a certain extent in experiments and in computations, remgiose to the phase velocity of the car-
rier wave c,,. The discontinuity in the steepest crest propagation tglobtained in the experiments
is related to the transition of the steepest crest in the fram one wave to another, as discussed

10
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with relation to Fig[¥. The spatial resolution of the deteration of v, is obviously much better

in the numerical simulations than in the experiments. Fat thason, oscillations of the measured
steepest crest velocity are less pronounced in the expatahmesults. As discussed with respect to
the temporal variation of;, in Fig.[8, the crest propagation velocity decreases whestchecome
higher. This feature is more visible in the results of sirtiolas as compared to the measurements
due to their better resolution.

The bottom curve in Fid._10 represents the variation aloregtamk of the instantaneous water
particle velocity at the steepest crest, computedi&S = 0¢°®/0x at the crest. This velocity varies
in accordance with the variation of the crest height; as testdecomes higher, the valuesuff*™
grow and may exceed notably the group velocity Nevertheless, for the whole domain of com-
putations the horizontal liquid velocity at the crest remsdiower than the computed,. Note that
the computed temporal variations@f andu"® plotted in Fig[9 demonstrate that the values of
may decrease below the local maximumu@f®*, however, this does not occurs simultaneously. No
measurements af}'®* were carried out in this study, however, detailed resultshenLagrangian
kinematics at the wave crest approaching breaking obtaised) Particle Tracking Velocimetry
(PTV) were presented for the identical carrier wave paranseind somewhat different wavemaker

driving signal iA_S_h_&m_e_La.nd_L'Lb_edcln_(Zbl4).

At distances exceeding aboutn/from the wavemaker, the pattern of variation of the steepest

crests height and of their propagation velocity plotted in Fig.[ID becomes less organized. In
experiments, inception of spilling breaker was observethase distances, see the video in the
Supplement. In order to obtain more accurate estimates; af this region, measurements of the
surface elevation were performed eachi@.1IThe resulting steepest crest propagation velocities are
plotted in Fig[ID using different symbols. These resultaadlastrate that at the locations where the
spilling breakers were observed, the measutethay indeed fall below the computed water surface
velocity at the crest,".

It was suggested in_S_h_em_e_r_a.nd_L'Lbﬁ}zIQ_n_dZ014) that spibiregker appear when the the hori-

zontal water particle velocity at the steep crel8t* attains instantaneous crest propagation velocity

ver. While spilling breakers were clearly seen in the experimextdistances of about 7.5-8 and
8.5-9m from the wavemaker, as can be observed in the video in thelSuppt, in computations
the values of.]"®, while increasing at steep crests, remain consistentlgidy about 105 than the
computedug,, although extremely low steepest crest propagation uidscivere occasionally ob-
tained numerically, see Fifil 9. The experimentally deteedivalues of crest propagation velocity
may indeed fall below the computed water particle velogff§*.

In this respect it should be stressed that the velocitf® and v., obtained in the present fully
nonlinear numerical simulations, while apparently beiloge to their actual values as demonstrated
in Fig.[10, cannot be seen as the exact ones. One obviousfesgbat inaccuracy is the lack of the
Stokes drift in the computational results due to the impgaeribdicity of the boundary conditions.

11
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The Stokes drift is an experimental reality and constitatesut 3% of ¢,,; accounting for the Stokes

drift velocity can thus immediately shrink the gap betwe£#* andv,, at the steepest crests in the
numerical simulations. The experimental determinationphs performed in the present study is
inaccurate mainly due to the presence of unavoidable loetleise in the surface elevation records
that limit the precision of defining the instant when the maxin surface elevation is attained. The

PTV-derived results on]"® presented in Fig. 7 JJ_f_S_hﬁm_er_a.nd_le_erIQn_dOl4) show thatdratal

surface velocities as high as 8,8notably higher than the maximum values*in Fig.[10, were

indeed measured at the breaking location. It thus can belumeat that the differences between
u" and v obtained numerically as presentedin 10 stem from less tkdieqi accuracy of the
model. The total body of numerical and experimental reshiis provides further support to the
validity of the kinematic breaking criterion according tdieh the spilling breaker emerges when
the instantaneous liquid velocity at the cregt?, attains that of the cresty,.

The amplitude spectra of the wave train are plotted in Eifj@rid12. In Fig1l1 the numerically-
derived frequency spectra gft) are compared at selected valueszofwith the corresponding
experimental results. At the wave makeg & 0), the spectrum in linear-logarithmic coordinates still
retains resemblance to triangular shape characteristiedoegrine Breather. Nevertheless, a weak
asymmetry around the dominant frequengycan already be noticed at this location. Note that at
x, = 0 the wave train already evolved over significant duratiomfits initial PB shape in Figll1. The
non-negligible contribution of low frequency as well as Zmtl 3rd bound wave harmonics is also
evident. The spectral asymmetry gets stronger and therspegtidens with the distance from the
wave maker. Reasonable agreement is obtained betweengbieregntal and the numerical results.
The wavenumber spectrum for the computed variation(ej plotted in Fig[IP at selected instants
t cannot be compared with experiment. This is due to the fatttie spatial extent of the wave
train exceeds significantly the length of the tank, see[Rifjldte that even for significantly shorter
wave trains, the experimental procedure that enablesotixigavavenumber spectra (as opposed to

frequency spectra) is extremely tedious,Lsgg_SJJﬂmgLattdlﬁzlb&ZD_Qb). The temporal evolution of

wavenumber spectra in Fig.]12 is qualitatively similar tattbiscussed with respect to Fig] 11. An

initial nearly symmetric around the dominant wavenumbeicspm becomes more asymmetric and

the spectrum widens as time increases towards breaking.

5 Discussion and conclusions

In the present study, fully nonlinear numerical simulasiaf evolution of a unidirectional nonlin-
ear wave train with an initial shape of a Peregrine Breatherevgualitatively and quantitatively
compared with the experimental results. The simulationewarried out using a conformal map-
ping approach as detailedhn_QhaﬂkmLa.ud_S_hJeihjn_&OOS)zaTtdate the accuracE of the code, the

computational results were reproduced using an altematimerical approach

al.
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). These and some other numerical methods that are afigied to solve wave propagation
problems require complete information on the wave field dherentire computational range at
a certain instant. These initial conditions are unavadalany controlled wave experiment in a lab-
oratory facility. The unidirectional wave field in a tank isfect prescribed by the wavemaker that is
usually located at one end of the facility and driven by a cotepgenerated signal.

The initial condition in experiments thus corresponds tdege elevation variation with time at
a prescribed wavemaker location. To reconcile betweemilkialispatial distribution of wave field
parameters required for the numerical solution, and th@oeat variation of the surface elevation at
the wavemaker prescribed as the initial condition in theeeixpents, the approach originally applied

in |5_h_emﬁr_a.nd_llQr_th]_(2d08) was generalized here to a faljimear wave field with an arbitrary

spectral width. This generalization makes it possible toyoaut consistent quantitative comparison

of the results of numerical simulations and of measurements

In the present simulations, the initial spatial distribatiof the surface elevation is based on the
PB analytical solution. In order to determine in the numargolution the measurable temporal
variation of the surface elevation at any given locatiomglthe tank, the initial spatial distribution
in the present study was centered upstream of the wavensalesFig[ 2. The appropriate location of
the wavemaker was determined then by comparing the surfecatien variation in time with that
measured in the experiment. The wavemaker driving signadigeées surface elevation variation in
time that corresponds to the bottom curve in Elg. 4. This ddprce that is very different from the
analytical solution given by PB is obtained as a result ofian of the wave train with an initial
shape given in the bottom panel of Fig. 1. It enables detailed quantitative comparison of the
simulations with experiment.

Several important points regarding PB were highlightedhia $tudy. The solutior {6) of the spa-
tial form of the nonlinear Schrodinger equatibh (2) is apéic in space due to the presence of an ex-

ponential term. Similarly, the temporal form of the NLS email_o_and_MAilJS_éEl;Sh&mﬂLand_D_Qtﬁan,

) yields PB that has an asymmetry in time. Moreover, dhaisn (8) extends to infinity in time

and space whereas in experiments as well as in numericalagions the extent of the wave train is
finite in bothz andt. The exact shape of the analytical solutibh (6) thus can pedeiced neither
in the experiments nor in computations. Note that in thegarestudy, the actual initial condition
for the simulations and the wavemaker driving signal havenbmodified and are fundamentally
different from PB. The presented results on steep crestseimvave train are therefore of generic
nature and applicable beyond the 2D PB wave packets.

Two different approaches were suggested to deal with thelgmos outlined in the previous para-
graph. In numerical simulations, the truncated wave trath the spatial extension that contains an

integer number of carrier wave lengths is often used as ftialinondition lSIunyagv and Shrlra,

3). However, imposing a non-zero periodic boundary itimmdon an essentially aperiodic func-
tion may affect significantly the nature of the solution. #sxthus decided in the present study to fol-

13



450 low the experimental approach|of Shemer and AIperMichi}i@ho‘ Shemer and LiberA(Jn_(&bM).

The theoretical solution given by Edl (6) was truncated apeited before being used to determine
the initial condition at the wavemaker. In order to mitigtite effect of truncation on the central part
of the wave train, a sufficiently large number of wave periasout 70) was used in those exper-
iments. A similar approach was adopted in the present sglgan be seen in both experimental
455 and numerical results (Figsl [, 4 dad 9), truncation andritagewhile indeed satisfying periodic
boundary conditions in the computational domain, causeamce of abnormally high waves at
the leading and trailing edges of the wave train. The efféttumcation is apparently limited to the
edges of the train, and does not affect the behavior of thealgrart of PB-like wave train with
the gradually amplified, albeit non-monotonically, humghe envelope. These high waves do not
460 characterize the wave train proper and therefore weregdisled in the present study.
The computational results indeed are in a good qualitatidet@ a large extent quantitative agree-

ment with the current experiments, as well as with tho ' r_(zo}14). This in-
cludes the behavior of the truncated train edges, the aggilfin of the hump along the tank, the
asymmetric spectral widening, as well as the variation efeahvelope shape along the tank. Crest

465 slowdown was noted by Johannssen and Swan in fully-nonlsedeulations{(Johannessen and SlNal’l ,

) and experimentls_(;lQhﬁ.an_emn_a.ndjo‘JMa.n_l 2003). Wheosla of crests in PB-like wave

train as they grow in height was first observe q [(2Q1|4) in experiments and
NLS solutions and is of particular interest More recenthys teffect was also stressed in the con-

text of focusing of 2D and 3D nonlinear deep water wave pach tBanner et Jlll (20114), for 2D
470 nonlinear wave packets [b;LKum'La_a.n_d_G_L&i_e_n_(IZOM) as wdyééaél

additional evidence to the generic nature of the phenomédhaas noticed i on

e 4), thus providing

1‘ that the increase in the maximum crest height aloagatk is not monotonic. As the maxi-

mum crest height increases, the water particles at the acesterate to higher maximum velocities

up'®, while the crest propagation speeg decreases. The equality® = v, was thus suggested
475 as the kinematic criterion for wave breaking. A slightlyfeient version of this criterion was of-

fered b)J Kurnia and Qrgeéeln_(ﬂ)m); they maintain that theirmam liquid particle velocityu"™®*
exceeds abouit8uv. at breaking. If only the simulations are considered, it se#mat this somewhat
weaker version of the kinematic breaking criterion is conéid. However, the present experimental
as well as numerical results, combined with those obtairpdrémentally by alternative methods in

480 EMELMEQLMM), provide a strong, albeit ndy fidnclusive, support to the conjecture

that indeed the particle velocities at the inception of kirgattain and exceed the crest propagation

velocities and thus to the kinematic breaking criteriorhimformulation suggested in that study. This
conjecture is further corroborated by visual evidence ar sevideo clips presented in Supplements

to/Shemer and Libgrzuj (2d14) and to the present study.

485 This combined numerical and experimental study of nontingsve trains also clarifies the lim-

itations of the adopted fully nonlinear solution methodeTgrocedure of truncation and tapering

14



490

495

500

of the initial condition applied here does not solve all thelgfems associated with imposing the
periodic boundary conditions in the numerical solutione Pinescribed spatial periodicity of the ve-
locity potential effectively eliminates appearance of2nel order Stokes drift current, thus resulting

in an inaccurate horizontal velocity at the liquid surfage.demonstrated dy Shemer and Libe}zon
), the Stokes drift is actually observed in laboraxgeriments. In this respect it should be

stressed that, while the periodicity in the time domain issilale for propagating unidirectional

waves, they are, strictly speaking, aperiodic in spaces Ppbint adds an additional aspect to es-
sential differences that exist between the spatial and eeahfiormulations of the wave evolution

problem, as discussed above. All nonlinear solutions treabased on spatially periodic boundary
conditions, as in the method adopted here, as well as in aetyaf alternative methods that employ
spatial discrete Fourier decomposition, therefore caritarinsic inaccuracy already at the 2nd or-
der in the nonlinearity parameter These numerical solutions thus can only provide approtdma
results and require careful experiments to verify theirdigl. The present study shows that the fully
nonlinear solution, although flawed, yields better agregméth experiments than the application of
the limited to the 3rd order spatial version of the modifiedlirear Schrédinger (Dysthe) equation

that does not require spatial periodiciQL(SLemer_Mwﬂ_ell 129113).
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Figure 1. The prescribed initial variation of the surface elevatipim the temporal (top) and spatial (bottom)
domains for the carrier wave peridd = 0.8 s and background carrier amplitude = 0.026 m; calculated for
X = —2.613 (z0 = 31 m.) in Eq. [8).
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Figure 2. The temporal evolution of the surface elevatipin a fixed reference frame; wave parameters as in
Fig.[. Vertical line marks the location of the wavemaker at xwm = 25.273 m, broken lines correspond to
propagation with the group velocity.
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Figure 3. The temporal evolution of the horizontal fluid velocity in a moving refeesiname; wave parameters

asin Fig[d.
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Figure 4. Surface elevation variation at fixed valuesaofvs. timet. The group velocity ig, = 0.63ms™",

x, refers to the wave gauge distance from wavemaker. at 0.
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Figure 5. The computed temporal variation of the surface elevation at variousdosaelative to the wave-

maker in a moving witle, reference frame.
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Figure 6. The computed variation with time of the normalized maximum crest elevatlativeeto the back-

ground wave amplitudé, and the velocity of the highest crest propagation) (relative to the phase velocity

cp=1248ms™".
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Figure 7. Measured surface elevatigrat various locations.
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Figure 10. Variation along the tank of the maximum crest heights, propagation velotcttyechighest crests
and the water particle velocity at those crests. Red lines denote numesoébkr blue symbols-experiments.

The locations where breaking was observed in the experiments aredanark

22



0.01

0.001
0.0001

"= 0.00001

Amplitude [mm/bin
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Figure 12. Wavenumber spectra at selected times.
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