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Abstract. A new type of ensemble Kalman filter is developed, which is based on replacing the sam-

ple covariance in the analysis step by its diagonal in a spectral basis. It is proved that this technique

improves the aproximation
:::::::::::
approximation

:
of the covariance when the covariance itself is diagonal in

the spectral basis, as is the case, e.g., for a second-order stationary random field and the Fourier ba-

sis. The method is extended by wavelets to the case when the state variables are random fields which5

are not spatially homogeneous. Efficient implementations by the fast Fourier transform (FFT) and

discrete wavelet transform (DWT) are presented for several types of observations, including high-

dimensional data given on a part of the domain, such as radar and satellite images. Computational

experiments confirm that the method performs well on the Lorenz 96 problem and the shallow water

equations with very small ensembles and over multiple analysis cycles.10

1 Introduction

Data assimilation consists of incorporating new data periodically into computations in progress,

which is of interest in many fields, including weather forecasting (e.g., Kalnay, 2003; Lahoz et al.,

2010). One data assimilation method is filtering (e.g., Anderson and Moore, 1979), which is a se-

quential Bayesian
:::::::
bayesian estimation of the state at a given time given the data received up to that15

time. The probability distribution of the system state is advanced in time by a computational model,

while the data is assimilated by modifying the probability distribution of the state by an application

the Bayes theorem, called analysis
:::
and

::::::::
modified

:::::
using

:::
the

:::::
Bayes

:::::::
theorem. In the methods considered

here, data is assimilated in discrete time steps, called analysis cycles, and the probability distributions

are represented by their mean and covariance(
:::::::::
distribution

::
of

:::
the

::::
state

::
is

:::::::::
represented

:::
by

::
an

:::::::::
ensemble.20

:::
The

:::::::
analysis

::
is

:::::
based

:::
on

:::
the

::::
state

:::::::::
covariance,

:
thus making a tacit assumption that they are

::
the

:::::
state
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:::::::::
probability

::::::::::
distribution

:
is
:

at least close to gaussian). When the state covariance is given externally,

bayesian estimation becomes the classical optimal statistical interpolation (OSI). The Kalman filter

(KF) uses the same computation as OSI in the analysis, but it evolves the covariance matrix of the

state in time along with the model state. Since the covariance matrix can be large, the KF is not suit-25

able for high-dimensional systems. The ensemble Kalman filter (EnKF) (Evensen, 2009) replaces

the state covariance by the sample covariance computed from an ensemble of simulations, which

represent the state probability distribution. It can be proved that the EnKF converges to the KF in the

large ensemble limit (Kwiatkowski and Mandel, 2015; Le Gland et al., 2011; Mandel et al., 2011)

in the
:::::
linear

:::
and

:
gaussian case, but an acceptable approximation may require hundreds of ensemble30

members (Evensen, 2009), because of spurious long-distance correlations in the sample covariance

due to its low rank. Localization techniques (e.g., Anderson, 2001; Furrer and Bengtsson, 2007;

Hunt et al., 2007), essentially suppress long-distance covariance terms (Sakov and Bertino, 2011),

which improves EnKF performance for small ensembles.

FFT EnKF (Mandel et al., 2010a, b) was proposed as an alternative approach to localization, based35

on replacing the sample covariance in the EnKF by its diagonal in the Fourier space. This approach

is motivated by the fact that a random field in cartesian geometry is second order stationary (that is,

the covariance between the values at two points depends only on their distance vector) if and only

if its covariance in the Fourier space is diagonal (e.g., Pannekoucke et al., 2007). On a sphere, an

isotropic random field has diagonal covariance in the basis of spherical harmonics (Boer, 1983), so40

similar algorithms can be developed there as well. However, the stationarity assumption does not

allow the covariance to vary spatially. For this reason, the FFT EnKF was extended to wavelet EnKF

(Beezley et al., 2011). The use of wavelets results in an automatic localization, which varies in space

adaptively. For wavelets, the effect of the diagonal spectral model is equivalent to a weighted spatial

averaging of local covariance functions (Pannekoucke et al., 2007). Diagonal matrices are cheap to45

manipulate computationally, but implementing the multivariate case and general observation func-

tions is not straighthforward
::::::::::::
straightforward.

Spectral diagonal covariance models and their estimation from an ensemble of realizations are

not new. Diagonal spectral modeling and, more generally, sparse spectral covariance modeling, have

been used for the background covariance in data assimilation in meteorology for some time. The50

optimal statistical interpolation system from Parrish and Derber (1992) was based on a diagonal co-

variance model in spherical harmonics, which were already used as horizontal basis functions in the

numerical weather prediction code with a change of state variables into physically balanced analy-

sis variables, and it has been used in operational weather forecasting for a long time. Estimates of

background covariance from an ensemble, called flow-dependent covariance, in combinations with55

spectral covariance models have been used in variational data assimilation (e.g., Buehner, 2005;

Buehner and Charron, 2007; Berre et al., 2007; Varella et al., 2011), leading to hybrid EnKF –

3DVAR methods. Another hybrid formulation in EnKF was proposed in Hamill and Snyder (2000,
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Eq. (4)), who proposed a linear combination of sample covariance, different in every analysis cycle,

and background spectral diagonal covariance from Parrish and Derber (1992), which does not change60

over analysis cycles. The ECMWF 3DVAR system (Courtier et al., 1998) also used diagonal covari-

ance in spherical harmonics for the background covariance. Diagonal model in the Fourier space

for homogeneous 2-D error fields, with physically balanced crosscovariances
::::
cross

::::::::::
covariances, was

proposed in Berre (2000). The Fourier diagonalization approach was extended by Pannekoucke et al.

(2007) to sparse representation of the background covariance by thresholding wavelet coefficients,65

and into a combined spatial and spectral localization by Buehner and Charron (2007).

Further developments in the history of background covariance modeling in variational algorithms

include construction of non-separable formulation (Courtier et al., 1998; Fisher and Andersson,

2001; Pannekoucke, 2009), representation of balances between variables in order to obtain a more

realistic multivariate formulation (Derber and Bouttier, 1999; Fisher, 2003; Weaver et al., 2005), rep-70

resentation of heterogeneity using a physical/spectral localised
:::::::
localized

:
formulation (non-separable

wavelet formulation (Deckmyn and Berre, 2005; Fisher and Andersson, 2001), separable formula-

tion based on diffusion operator (Weaver and Courtier, 2001) or recursive filters (Purser et al., 2003),

and a nonseparable
:::
non

:::::::
separable

:
formulation based on hybridization of diffusion and wavelets (Pan-

nekoucke, 2009). Formulations such as the diffusion operator or the recursive filter are related to the75

diagonal assumption here, they involve covariance models with a relatively small number of pa-

rameters, thus free of sampling noise, but estimated from an ensemble directly (Pannekoucke and

Massart, 2008; Michel, 2013; Pannekoucke et al., 2014). Similar filtering strategies can be employed

to improve the estimation and the design of covariance formulations using results on the estimation

of variances and length scales (Berre et al., 2007; Raynaud et al., 2009; Raynaud and Pannekoucke,80

2013; Ménétrier et al., 2015). The formulation of the background error covariance model using the

diagonal assumption and a product of linear operator (such as the discrete Fourier or wavelet trans-

form here) is widely used in variational literature to build covariance models in high dimension (e.g.,

Courtier et al., 1998; Fisher and Andersson, 2001; Weaver and Courtier, 2001).

The idea of using covariance model to benefit sample noise reduction is known, but as far as we85

know no reference has been published to document the real advantage of this method in improve-

ments to the performance of the EnKF. The paper provides a preliminary test, within an academic

setting, of the techniques of employing parametric covariance in the EnKF, while the existing litera-

ture is focused on the opposite direction, the use of ensembles to provide estimates for the variational

framework, known as “hybrid formulation”. Specifically, the use of spectral covariance modeling in90

each EnKF analysis cycle to reduce the ensemble size seems to be new. The main reason could be

that it requires to build covariance matrix parameterisation
:::::::::::::
parameterization, which represents a real

cost in terms of technology investment for NWP codes.

While modeling of background covariances typically uses multiple sources including historical

data, the EnKF builds the covariance in every analysis cycle from the ensemble itself. In this paper,95
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we prove that replacing the sample covariance by its spectral diagonal improves the approximation

when the covariance itself is diagonal in the spectral space, as is the case, e.g., when the state is

a second order stationary random field and a Fourier basis is used. The result, however, is general

and it applies to an arbitrary orthogonal basis, including wavelets. We also develop computationally

efficient spectral EnKF algorithms, which take advantage of the diagonal form of the covariance, in100

the multivariate case and for several important classes of observations. We demonstrate the methods

on computational examples with the Lorenz 96 system and shallow water equations, which show

that good performance can be achieved with very small ensembles.

2 Notation

Vectors in Rn or Cn are typeset as u and understood to be columns. Random vectors are typeset as105

X . The entry i ofX is denoted by (X)i or xi. Matrices (random or deterministic) are typeset as A,

and and A∗ is the transpose, or conjugate transpose in the complex case. The entry i, j of matrix A is

denoted by (A)i,j or ai,j , and A= [a1, . . . ,an] is the writing of a matrix as a collection of columns.

Nonlinear operators are typeset asM. The mean value is denoted by E [·], and Var is the variance.

N (0,1) is the normal (gaussian) distribution with zero mean and unit variance, and N (m,C) is the110

multivariate normal distribution with meanm and covariance C. The Euclidean norm of a vector is

‖u‖=
(∑n

i=1 |ui|
2
)1/2

. The Frobenius norm of a matrix, also known as Hilbert-Schmidt norm, is

‖A‖F =
(∑m

i=1

∑n
j=1 |ai,j |2

)1/2
.

3 Kalman filter and ensemble Kalman filter

The state of the system at time t is described by a random vector Xt of length n. The system115

evolution between two times t1 and t2 is given by a functionM(., t1, t2), so that

X f
t2 =M(Xa

t1 , t1, t2). (1)

The goal of the Kalman filter (KF) (Kalman, 1960) is to correct the forecast state of the system X f
t

to obtain the analysis estimate Xa
t of the true stateXt, given noisy observations Y t =HtXt+ εt,

where Ht is an observation operator, i.e., a mapping from state space to a data space, and εt ∼120

N (0,Rt). When the distributions of the stateXt and the data error are gaussian, the analysis satis-

fies

Xa
t =X

f
t−Kt

::

(
Ht
::
X f
t−
::
Y t

)
, Kt =

::::
CtH

∗
t (HtCtH

∗
t +Rt)

−1
Ht

f
t−t, (2)

where Ct is the covariance of the forecastX f
t:
,
:::
and

:::
Kt::

is
:::::
called

:::
the

:::::::
Kalman

::::
gain. In the KF, the state

is represented by its mean and covariance, and the mean is transformed also by Eqs. (1) and (2). In125

the rest of the paper, we will drop the time index t and the superscript f, unless there is a danger of

confusion.
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In the EnKF, the analysis formulas (Eqs. 1 and 2) are applied to each ensemble member, with the

covariance replaced by the sample covariance from the ensemble. The resulting ensemble, however,

would underestimate the analysis covariance, which is corrected by a data perturbation by sampling130

from the data error distribution (Burgers et al., 1998). Denote byX1, . . . ,XN the forecast ensemble,

created either by a perturbation of a background state or by evolving each analysis ensemble member

from the previous time step independently by Eq. (1). Then, the analysis ensemble members are

Xa,j =Xj −CNH∗
(
HCNH∗+R

)−1 (
HXj −Y j

)
, (3)

where the sample covariance matrix is135

CN =
1

N − 1

N∑
j=1

(
Xj −X

)(
Xj −X

)∗
, X =

1

N

N∑
j=1

Xj (4)

and Y j = Y + τ j are the perturbed observations, with τ j ∼N (0,R) independent.

The advantage of the EnKF update formula (Eq. 2
::::
(Eqs.

::
3,
:::

4) is that it can be imple-

mented efficiently without having access to the whole
::::::
forming

:::
the

:
sample covariance matrix CN

::::::::
explicitly

::::::::::::::::::::::::::
(e.g. Mandel et al., 2009, Eq. 15). On the other hand, the rank of the matrix CN is at most140

N − 1, while the number of significant modes can be higher. In the usual case when N is small,

the low rank of the approximation CN of the true forecast covariance C causes spurious long-range

correlations, which are the biggest drawback of the EnKF.

4 Spectral diagonal EnKF

Let F be an orthonormal transformation matrix, which transforms each ensemble member to spec-145

tral space, and denote each transformed ensemble member by the additional subscript F, Xj
F =

FXj , j = 1, . . . ,N . Since the transformation is orthonormal, the inverse transformation is F∗, so

F∗Xj
F =Xj for each j = 1, . . . ,N. The columns of the inverse transform matrix F∗ are the spec-

tral basis elements u1, . . . ,un, i.e., F= [u1, . . . ,un]
∗. We will also denote the sample covariance of

the transformed ensemble with the additional subscript F,150

CN
F =

1

N − 1

N∑
j=1

(
Xj

F−XF

)(
Xj

F−XF

)∗
= FCNF∗, XF =

1

N

N∑
j=1

Xj
F. (5)

The idea of the spectral diagonal Kalman filter is to replace the sample covariance in the update

formula (Eq. 3) by only the diagonal elements of sample covariance in spectral space,

DN
F =CN

F ◦ I=


c1,1 0 · · · 0

0 c2,2
...

...
. . . 0

0 · · · 0 cn,n

 , ci,i =
1

N − 1

N∑
j=1

∣∣∣(Xj
F

)
i
−
(
XF

)
i

∣∣∣2 . (6)
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where ◦ stands for Schur product, i.e., element-wise multiplication. The entries ci,i are the sample155

variances, computed without forming the whole matrix CN
F . The diagonal model is transformed back

to physical space as

DN = F∗DN
FF, (7)

and the proposed analysis update is then

Xa,j =Xj −DNH
(
HDNH∗+R

)−1 (
HXj −Y j

)
. (8)160

5 Error analysis

We will now compare the expected errors of the sample covariance and its spectral diagonal model

(Eq. 7). The analysis extends results for a sample covariance formula with known zero mean (Furrer

and Bengtsson, 2007; Mallat, 1998) by taking into account the sample mean in Eq. (4). This ex-

tension is important because the mean of the ensemble members is not known in practice, and an165

estimate must be used instead.

Assume that the ensemble membersXi ∼N (µ,C) are i.i.d. (In the EnKF, the ensemble members

after the first analysis cycle are not independent, because the sample covariance in the analysis step

ties them together, but they converge to independent random vectors as the ensemble size N →∞
(Le Gland et al., 2011; Mandel et al., 2011).)170

Using Lemma 1 from the Appendix and the fact that the Frobenius norm is invariant to orthogonal

transformations, we have in any case,

E
[
‖C−CN‖2F

]
= E

[∥∥CF−CN
F

∥∥2
F

]
=

1

N − 1

n∑
i,j=1

(∣∣∣(CF)i,j

∣∣∣2 +(CF)i,i (CF)j,j

)

=
2

N − 1

n∑
i,j=1

∣∣∣(CF)i,j

∣∣∣2 + 1

N − 1

n∑
i,j=1
i6=j

(CF)i,i (CF)j,j . (9)

The purpose of the spectral transformation is to bring the covariance to a diagonal form175

CF= FCF∗, where F is orthogonal transformation. Specifically, the rows of the spectral transfor-

mation matrix F∗ are orthonormal eigenvectors of the covariance C. This is the situation, e.g., when

the ensemble membersXi are sampled from a second-order stationary random field on a rectangular

mesh, and the Fourier basis is used. Then, using (CF)i,j = 0 for i 6= j, we get that the expected error

of the spectral diagonal model consists of the diagonal terms in the frequency domain only,180

E
[
‖C−DN‖2F

]
= E

[∥∥CF−CN
F ◦ I

∥∥2
F

]
=

n∑
i=1

(∣∣∣(CF)i,i

∣∣∣2 +(CF)i,i (CF)i,i

)

=
2

N − 1

n∑
i=1

∣∣∣(CF)i,i

∣∣∣2 . (10)
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Consequently,

E
[
‖C−DN‖2F

]
≤ E

[
‖C−CN‖2F

]
. (11)

with equality only if (CF)i,i (CF)j,j = 0, for all i 6= j, that is, only in the degenerate case when the185

covariance CF and thus C have rank at most one.

To assess the improvement gained by the spectral diagonal model in Eq. (11), denote the eigenval-

ues of C by λi = (CF)i,i = λi, and without loss of generality assume that 0≤ λ1 ≤ λ2 ≤ ·· · ≤ λn.

The error estimates (Eqs. 9 and 10) can be now written as

E
[
‖C−CN‖2F

]
=

2

N − 1

n∑
i=1

λ2i +
1

N − 1

n∑
i,j=1
i 6=j

λiλj . (12)190

and

E
[
‖C−DN‖2F

]
=

2

N − 1

n∑
i=1

λ2i . (13)

Note that(
n∑
i=1

λi

)2

=

n∑
i,j=1

λiλj =

n∑
i,j=1,i6=j

λiλj +

n∑
i=1

λ2i ≥
n∑
i=1

λ2i , (14)

which shows that the error of the sample covariance depends on the `1 norm of the eigenvalues195

sequence,

E
[
‖C−CN‖2F

]
=

1

N − 1

 n∑
k=1

λ2k +

(
n∑
k=1

λk

)2
=

1

N − 1

(
‖{λk}nk=1‖

2

`2
+ ‖{λk}nk=1‖

2

`1

)
,

while the error of the spectral diagonal model depends only on the `2 norm,

E
[
‖C−DN‖2F

]
=

2

N − 1
‖{λk}nk=1‖

2

`2
,

which is weaker than the `1 norm as the state space dimension n→∞. The improvement depends on200

the rate of decay of the eigenvalues as the index k→∞. Note that the eigenvalues of the covariance

(if it exists) of a random element in an infinitely dimensional Hilbert space must satisfy the trace

condition
∑∞
k=1λk <∞, (e.g., Da Prato, 2006). The eigenvalues of the covariance in many physical

systems obey a power law, λk ≈ k−α with α > 1, (e.g., Gaspari and Cohn, 1999). Suppose that

λk = ck−α and n→∞. Then,205

‖{λk}nk=1‖
2

`2
→
∞∑
k=1

k−2α ≈
∞∫
1

x−2αdx=
1

2α− 1
,

‖{λk}nk=1‖
2

`1 →
∞∑
k=1

k−α ≈
∞∫
1

x−αdx=
1

α− 1
,
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which gives the error ratio E
[
‖C−DN‖2F

]
/E
[
‖C−CN‖2F

]
→ 0 as α→ 1+, that is, when the

eigenvalues decay slowly. Other considerations of similar ratios can be found in Furrer and Bengts-

son (2007).210

Several concluding remarks are in order. Furrer and Bengtsson (2007) consider tapering to the

diagonal in the physical space, but diagonal covariance in the physical space is never used in applica-

tions. The present method is EnKF with diagonal model in a spectral domain, where it is reasonable

to expect that the covariance will be approximately diagonal.

While the spectral diagonal formulation improves the approximation for small ensembles, the215

spectral diagonal does not converge to the covariance as N →∞, unless the covariance is diagonal

in the spectral basis.

Equations (9) and (10), respectively (12) and (13), can be written in the form, proposed by an

anonymous reviewer,

E[||C−CN ||2F] =
1

N − 1
Tr(C2)+

1

N − 1
(Tr(C))

2 (15)220

E[||C−DN ||2F] =
2

N − 1
Tr(C2), (16)

using the fact that the trace of a matrix is invariant to similarity transformation. The comparison

(Eq. 11) also follows from Eqs. (15) and (16) by noting that Tr(C2)≤ (Tr(C))
2 for all positive

semidefinite C, which can be seen, e.g., from Eq. (14).

6 Spectral EnKF algorithms225

We will show that the analysis step can be implemented very efficiently in cases of practical interest.

We drop the ensemble members index in all update formulas to make them more readable. Note that

when using all the following formulas, it is necessary to perturb the observations.

6.1 State consisting of only one gridded variable, completely observed

Assume that the state consists of one gridded variable, e.g., X ∈ Rn, and that we can observe the230

whole system state, i.e., the observation function is the identity, H= I, and observations areY ∈ Rn.

Assume also that the observation noise covariance matrix is cI, where c > 0 is a constant. In this

special case, we can do the whole update in the spectral space, since it is possible to transform the

innovation to the spectral space, and the analysis step (Eq. 8) becomes

Xa =X −F∗DN
F

(
DN

F + cI
)−1

F(X −Y ) .235

Note that the matrices DN
F and DN

F + cI are diagonal, so any operation with them, such as inver-

sion or multiplication, is very cheap. The matrix F is never formed explicitly. Rather, the multipli-

cations of F and F∗ times a vector are implemented by the fast Fourier transform (FFT) or discrete

wavelet transform (DWT). This is the base case of the FFT EnKF (Mandel et al., 2010a, b) and the

wavelet EnKF (Beezley et al., 2011), respectively.240
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6.2 Multiple variables on the same grid, one variable completely observed

In a typical model, such as numerical weather prediction, the state consist usually of more than one

variable. Assume the state consist of m different variables all based on the same grid of length n.

Then each variable can be transformed to the spectral space independently, and we have the state

vectorX ∈ Rn·m and the transformation matrix in the block form245

X =


X1

X2

...

Xm

 , F=


F̃ 0 · · · 0

0 F̃
...

...
. . . 0

0 · · · 0 F̃

 , (17)

where each blockX1 is a vector of length n and F̃ is n by n transformation matrix.

Assume also that the whole state of the first variable X1 is observed, and again the covariance

of observation error is cI. In this case, the observation operator is the one by m block matrix of

the form H= [I 0 · · · 0]. In the proposed method, we approximate the crosscovariancess
::::
cross250

::::::::::
covariancess

:
between the variables also by the diagonal of the sample covariance in spectral space,

DN
F =

[
DN
i,j

]m
i,j=1

, where Di,j is the matrix containing only diagonal elements from the sample

covariance matrix between transformed variables F̃Xi and F̃Xj . With this notation, the analysis

step (Eq. 8) becomes

Xa =


Xa

1

...

Xa
m

=


X1

...

Xm

−

F̃∗DN

1,1

...

F̃∗DN
m,1

(DN
1,1 + cI

)−1
F̃(X1−Y ) . (18)255

Note that again the matrix to be inverted is diagonal and full-rank, and the transformation F̃ is

implemented by a call to FFT or DWT, so the operations are computationally very efficient. A related

method using interpolation and projection was proposed for the case when the model variables are

defined on non-matching grids (Beezley et al., 2011).

6.3 Multiple variables on the same grid, one variable observed at a small number of points260

This situation occurs, e.g., when assimilated observations are from discrete stations. In this case, the

observation matrix is H= [H1 0 · · · 0], where H1 has a small number of rows, one for each data

point, and X and F are the same as in Eq. (17). We substitute the diagonal spectral approximation

into the analysis step (Eq. 8) directly, and Eq. (18) becomes

Xa =


X1

...

Xm

−

F̃∗DN

1,1

...

F̃∗DN
m,1

 F̃(H1F̃
∗DN

1,1F̃H
∗
1 +R

)−1
(H1X1−Y ) . (19)265
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The solution of a system of linear equations with the matrix H1F̃
∗DN

1,1F̃H
∗
1+R in Eq. (19) does

not present a problem, because its dimension is small by assumption, and F̃H∗1 is easy to compute

explicitly by the action of FFT on the columns of H∗1. Note that in this case, the data noise covariance

R may be arbitrary.

6.4 State consisting of more variables, one partly observed270

Consider the situation when the number of observation points is too large for the method of Sect. 6.3

to be feasible, but only one variable on a part of the mesh is observed. The typical example of this

type may be radar images, which cover typically only a part of domain of the numerical weather

prediction model.

The method will go through for any observed subset of entries of the gridded variable X1, but275

the performance will vary. The performance tends to be better when the observed and unobserved

entries of X1 fill two subdomains of the physical domain with a relatively small boundary between

them. A detailed investigation, however, is planned for elsewhere.

Suppose that observations (Y )j of the values of the first variable (X1)j are available only for

a subset of indices j ∈M ⊂ {1, . . . ,n}. Augment the forecast state by an additional variable X0.280

For j = 1, . . . ,n, set (X0)j = (X1)j if j ∈M , (X0)j = (Y )j = 0 if j /∈M . We can now use the

analysis update (Eq. 18) with the augmented state X̃ = (X0,X1, . . . ,Xm) and observation Ỹ =

(Y ,0, . . . ,0), to get the augmented analysis X̃
a
= (Xa

0,X
a
1, . . . ,X

a
m), and dropXa

0.

Note that the innovations to the original variables are propagated through the spectral diagonal ap-

proximation of cross covariance between the original and augmented variables. Since this covariance285

is not spatially homogeneous, a Fourier basis will not be appropriate, and computational experiments

in Sect. 7 confirm that wavelets indeed perform better.

7 Computational experiments

In all experiments, we use the usual twin experiment approach. A run of the model from one set

of initial conditions is used to generate a sequence of states, which plays the role of the truth. Data290

values were obtained by applying the observation operator to the truth; the data perturbation was

done only for ensemble members within the assimilation algorithm. A second set of initial conditions

is used for data assimilation and for a free run, with no data assimilation, for comparison. The error

of the free run should be an upper bound on the error of a reasonable data assimilation method.

We evaluate the filter by the root mean square error
::::
Root

:::::
Mean

::::::
Square

:::::
Error,

RMSE =

(
1

n

n∑
i=1

∣∣(X)i−
(
X
)
i

∣∣2)1/2

,

where X is the ensemble mean, forecast or analysis, X is the true state, and n is the number of the295

grid points xi. In the case when the state consists of more than one variable, such as in the shallow
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water equations, we evaluate the error of each variable independently. While the purpose of a single

analysis step is to balance the uncertainties of the state and the data rather than minimise the RMSE

, the RMSE values over multiple time steps are used

:::::
When

:::
the

:::
true

:::::
state

:::
and

:::
the

::::::
model

::
in

:::
the

:::
KF

::::::
evolve

::::::::
following

:::
the

:::::
same

:::::::
mapping

::::
(Eq.

::
1)

::::
and

:::
the300

:::::::
mapping

::
is

:::::
linear,

::::
then

:::
the

:::::::
estimate

::::::::
provided

::
by

:::
the

:::
KF

::
is

:::::::
unbiased

::::
and

:
it
:::::::::
minimizes

:::
the

::::::
RMSE

::::
over

::
all

:::::::
possible

::::
gain

::::::::
matrices

:::
Kt::

in
:::
Eq.

::::
(2).

::::
This

::::::::
statistical

:::::::::
optimality

::
of

:::
the

:::::::
RMSE

::::::::
motivates

::
its

::::
use

to evaluate how well the data assimilation fulfills its overall purpose to track the truth
:
in

:::
the

:::::::
general

:::
case

:::::
when

:::
the

::::::
model

::
is

::::::::
nonlinear

:::
and

:::
the

:::
KF

::
is

:::::::
replaced

:::
by

:::
the

:::::
EnKF,

::::
with

:::
the

:::::::::
covariance

::::::::
replaced

::
by

::
an

:::::::::::::
approximation

::::
from

::
an

::::::::
ensemble.305

We evaluate the RMSE of the standard EnKF, marked as EnKF in the legend of the figures, and the

spectral diagonal EnKF with the discrete sine transform, discrete cosine transform, and the Coiflet

2,4 discrete wavelet transform (Daubechies, 1992), marked as DST, DCT, and DWT, respectively.

7.1 Lorenz 96

In the Lorenz 96 model (Lorenz, 2006), the state consists of one variable Xt ∈ RK , Xt =310

(x1, . . . ,xK), governed by the differential equations

dxj
dt

= xj−1xj+1−xj−1xj−2−xj +F, j = 1, . . . ,K,

where the values of xj−K and xj+K are defined to be equal to xj for each j = 1, . . . ,K, and F is

a parameter.

Our experiments’ setup follows the one used in Lorenz and Emanuel (1998). We set the param-315

eter F = 8, which causes the model to be strongly chaotic. The time step of the model was set to

0.01 time unit with assimilation every 0.05 time unit, which is equivalent to assimilation into a

climatological model every 6 hours. The data covariance was diagonal, and the standard deviation

of observation error was set to F/40. The ensemble and the initial conditions for the truth were

generated by sampling from N(F/4,F 2/4), and spin up for 18 time units (equivalent to 90 days)320

was performed. Additionally, while the true state was advanced using the true values of F = 8, the

ensemble members were advanced using the value 0.95F in the Lorenz model.

The only difference from the experiment in Lorenz and Emanuel (1998) was the dimension of

the model, where we used 256 instead of 40. We chose 256 because dyadic length of state vector

is required when using wavelet transformation, because we wanted to test the proposed augmented325

algorithm with a significant number of observations and because we wanted to have a significant

difference between ensemble size and state dimension. To test the chaotic properties of this model we

performed two independend
::::::::::
independent simulations with very close initial conditions and measured

the difference in each time step between the states using maximum norm. Initial values for the first

simulation were generated as i.i.d. random variables from N
(
F/4,F 2/4

)
, and the initial values for330

the second simulation were created by perturbing the the first set of initial values with white noise
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with variance equal to 0.0001. We performed this experiment for both state dimensions, 40 and 256.

The results (Fig. 1a) show that the change of the state dimension does not affect the rate of divergence

of two initially close solutions. Fig. 1b and Fig. 1c show one solution of Lorenz 96 model with state

dimension 40 and 256 respectively after 50 time units for illustration of the chaotic character of the335

state.

In the case when the whole state is observed, spectral filters with ensemble size N = 4 (Fig. 2a)

already decrease the error significantly compared to a run with no assimilation, while the standard

EnKF actually increases the error. For all filters, the error eventually decreases with the ensemble

size at the standard rate N−1/2, but the spectral EnKF shows the error decrease from the start, while340

the EnKF lags until the ensemble size is comparable to the state dimension, and even then its RMSE

is significantly higher (Fig. 2b).

Next, consider the case when only the first m points of a grid are observed. In the legend, DCT-S

and DWT-S are the method with the discrete cosine transform, and the Coiflet 2,4 discrete wavelet

transform, respectively, with the standard analysis update (Eq. 8), while DCT-A and DWT- A use the345

augmented state method from Sect. 6.4. Figure 3 shows that the spectral diagonal method decreases

the RMSE, while the standard EnKF is unstable. This observation is consistent with the result of

Kelly et al. (2014), which shows that, for a class of dynamical systems, the EnKF remains within

a bounded distance of truth if sufficiently large covariance inflation is used and if the whole state is

observed. The augmented state method DWT-A with wavelet transformation gave almost the same350

analysis error as DCT-S, which is using the spectral diagonal filter with the exact observation ma-

trix, while the cosine basis, which implies a homogenenous
:::::::::::
homogeneous

:
random field, resulted

in a much larger error (method DCT-A). A similar behavior was seen with a smaller number of

observed points as well, but the error reduction in spectral diagonal EnKF was smaller (not shown).

7.2 Shallow water equations355

The shallow water equations can serve as a simplified model of atmospheric flow. The state Y =

(h,u,v) consists of water level height h and velocities u,v in x and y directions, governed by the

differential equations of conservation of mass and momentum,

∂h

∂t
+
∂(uh)

∂x
+
∂(vh)

∂y
= 0,

∂(hu)

∂t
+

∂

∂x

(
hu2 +

1

2
gh2
)
+
∂(huv)

∂y
= 0,360

∂(hv)

∂t
+
∂(huv)

∂x
+

∂

∂y

(
hv2 +

1

2
gh2
)
= 0,

where g is gravity acceleration, with reflective boundary conditions, and without Coriolis force or

viscosity. The equations were discretised
:::::::::
discretized on a rectangular grid size 64×64 with horizon-

tal distance between grid points 150km and advanced by the Lax–Wendroff method with the time

step 1s. The initial values were water level h= 10km, plus Gaussian
:::::::
gaussian water raise of height365
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1km, width 32 nodes, in the center of the domain, and u= v = 0. See Moler (2011, Chapter 18) for

details.

We have used two independent initial conditions, one used for the truth and another for the en-

semble and the free run. The only difference was the location of the initial wave. Both states were

moved forward for 3 h. Then the ensemble was created by adding random noise (with prescribed370

background covariance). Then, all states were moved forward for another 3 hours, and assimilation

starts 6h after the model initialisation
::::::::::
initialization. All assimilation methods start with the same

forecast in the first assimilation cycle. 2-D tensor product FFT and DWT were used in the diagonal

spectral EnKF. The observation error was assumed to have zero mean and variance 1000m2 in h and

1000kgm s−1 in u and v.375

The background covariance for initial ensemble perturbation was estimated using samples taken

every minute from time tstart = 3h to time tend = 6h, and modified by tapering the sample covariance

matrix CN as B=CN ◦T, where the tapering matrix T had the block structure

T=


A 0 0

0 A 0

0 0 A

+0.9


0 A A

A 0 A

A A 0

 ,
where the entry between nodes (ia, ja) and (ib, jb) is (A)a,b = exp(−|ia−ib|)exp(−|ja−jb|). Note380

that matrix T could be also rewritten using Kronecker product as T=K⊗ (M⊗M), where K is

3×3 square matrix with elements (K)i,i = 1, (K)i,j = 0.9 if i 6= j and M is 64×64 square matrix

with elements (M)i,j = exp(|i− j|). Since both matrices K and M are positive definite, matrix T

is also positive definite.

When the full state is observed, the spectral diagonal method decreased the RMSE in all variables385

dramatically (Fig. 4), unlike the standard EnKF. When only the water level is observed, the RMSE

in spectral diagonal EnKF decreases less, but still much more that in the standard EnKF (Fig. 5).

8 Conclusions

A version of the ensemble Kalman filter was presented, based on replacing the sample covariance by

its diagonal in the spectral space, which provides a simple, efficient, and automatic localization. We390

have demonstrated efficient implementations for several classes of observation operators and data

important in applications, including high-dimensional data defined on a part of the domain, such as

radar or satellite images. The spectral diagonal was proved rigorously to give a lower mean square

error than the sample covariance. Computational experiments with the Lorenz 96 problem and the

shallow water equations have shown that the analysis error drops very fast for small ensembles,395

and the method is stable over multiple analysis cycles. The paper provides a technique for data

assimilation which can work with minimal computational resources, because an implementation
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needs only an orthogonal transformation, such as the fast Fourier or discrete wavelet transform, and

manipulation of vectors and diagonal matrices. Therefore, it should be of interest in applications.

The present method uses orthogonal transformation, but orthogonality is not a necessary condition400

for a diagonal assumption in general; diagonal approximation with frames was proposed in Pannek-

oucke et al. (2007). The question of further reducing the number of parameters and thus sampling

noise, as in, e.g., functions of the Laplace operator, is also of interest. When spectral diagonalization

is used in the horizontal planes, the question is how to connect horizontal sheets along the vertical

dimension. In Pannekoucke (2008, Appendix D), wavelet packets are used to take advantage of the405

orthogonal basis dictionary they provide. These issues will be studied elsewhere.

The method described in Sect. 6.2 is general and it allows arbitrary linear observation operators,

but an inverse (i.e., solving a system) in the observation space is required. The computational cost

then grows as the cube of data dimension. This issue is well known in spectral variational methods;

techniques used in the literature include aggregating and interpolating observations to create “super410

observations” as gridded arrays (Parrish and Derber, 1992).

Appendix A: Error estimate of sample covariance matrix

We prove an extension of (Mallat, 1998, Prop. 10.14) to sample covariance of a random vector with

unknown mean.

Lemma 1. Let Uk ∼N (µ,C), k = 1, . . . ,N , be i.i.d. vectors in Rn or Cn, and415

(CN )i,j =
1

N − 1

(
N∑
k=1

((
Uk
)
i
− 1

N

N∑
l=1

(
Uk
)
i

)((
Uk
)
j
− 1

N

N∑
l=1

(
U l
)
j

)∗)
(A1)

their sample covariance. Then,

E
[∣∣∣(CN

)
i,j
− (C)i,j

∣∣∣2]= 1

N − 1

(∣∣∣(C)i,j

∣∣∣2 +(C)i,i (C)j,j

)
.

Proof. The proof follows that of (Mallat, 1998, Prop. 10.14) with adjustments for the presence

of the sample mean in Eq. (A1). Each element of the sample covariance cNi,j =
(
CN

)
i,j

is unbiased420

estimate of the covariance ci,j = (C)i,j , so

E
[∣∣cNi,j − ci,j∣∣2]= E

[∣∣cNi,j∣∣2]− |ci,j |2 .
Without loss of generality, assume µ= 0, subtracting the constant µ if necessary, and compute

E
[∣∣cNi,j∣∣2]= E

∣∣∣∣∣ 1

N − 1

(
N∑
k=1

uki
(
ukj
)∗− 1

N

N∑
l=1

uli

N∑
m=1

(
umj
)∗)∣∣∣∣∣

2


=
1

(N − 1)
2 E

∣∣∣∣∣
N∑
k=1

uki
(
ukj
)∗∣∣∣∣∣

2
− 1

N (N − 1)
2 E

 N∑
k,l,m=1

uki
(
ukj
)∗ (

uli
)∗
umj

425
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− 1

N (N − 1)
2 E

 N∑
k,l,m=1

(
uki
)∗
ukju

l
i

(
umj
)∗

+
1

N2 (N − 1)
2 E


∣∣∣∣∣∣

N∑
l,m=1

uli
(
umj
)∗∣∣∣∣∣∣

2
 . (A2)

Now we utilize the Isserlis theorem, also known as Wick’s formula, which states that if

A1,A2,A3,A4 have joint centred
:::::::
centered gaussian distribution, then

E [A1A2A3A4] = E [A1A2]E [A3A4] +E [A1A3]E [A2A4] +E [A1A4]E [A2A3] ,430

cf., Isserlis (1918). Since our samples are independent and E
[
uki
]
= 0, we know that

E
[
uki
(
ukj
)∗]

= cij , E
[
uki u

l
j

]
= 0 if k 6= l,

and we get

E
[
uki
(
ulj
)∗

(umi )
∗
unj

]
= |ci,j |21{k=l,m=n}+ ci,icj,j1{k=m,l=n}

+E [uiuj ]E
[
(uj)

∗
(ui)

∗]
1{k=n,l=m}.435

Applying this equation in Eq. (A2), we get

E
[∣∣cNi,j∣∣2]= 1

N − 1

(
ci,icj,j +N |ci,j |2

)
and the final result follows,

E
[∣∣cNi,j − ci,j∣∣2]= 1

N − 1

(
ci,icj,j +N |ci,j |2

)
− |ci,j |2 =

1

N − 1

(
ci,icj,j + |ci,j |2

)
. �
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Figure 1. (a) Growth of the difference in the maximum norm ‖ ·‖∞ of two initially close solution of Lorenz 96

model. The initial states differ by white noise with variance 10−4. The growth of the difference is shown for the

state dimensions of 40 and for the state dimension 256. (b) A solution of Lorenz 96 model with state dimension

40 after 50 time units. (c) A solution of Lorenz 96 model with state dimension 256 after 50 time units.
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Figure 2. Mean RMSE from 10 realizations for Lorenz 96 problem, the whole state observed, (a) increasing

analysis cycles with ensemble size 4, state dimension 256, (b) increasing ensemble size, analysis cycle 1, state

dimension 64.
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Figure 3. Mean RMSE from 10 realizations for the Lorenz 96 problem, ensemble size 16, state dimension 256.

(a) first 128 points observed, (b) first 64 points observed.
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Figure 4. RMSE of ensemble mean of one realization of three assimilation cycles. Full state was observed. The

length of assimilation cycle 60 minutes, ensemble size 20. (a) water height (b) velocity in the x direction (c)

velocity in the y direction.
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Figure 5. Mean RMSE of ensemble mean from 5 independent repetitions. Ensemble size 20, only water height

observed. (a) water height (b) velocity in the x direction (c) velocity in the y direction.
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