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Abstract. We provide responses to both referees.

1 Introduction

We would like to thank the anonymous referees for their comments.

2 Anonymous referee 1

The anonymous referee 1 has 2 minor concerns and 2 minor comments, called “minor stuff”.

2.1 Minor concerns

Minor concern 1

Referee’s comment:

This manuscript is unusually clear in its presentation of methodology. The method described is

shown to be more accurate for certain types of applications. My only concern was that the particu-

lar experiments used to demonstrate the method’s capabilities seemed to be for unusual parameter

regimes, and I would like to understand better why the authors chose these cases. I also note a few mi-

nor grammatical errors. I think that the manuscript is acceptable pending these minor amendments.

Minor concerns: 1. The authors begin their results section with Lorenz96. This non-dimensional

model requires an ad hoc mapping to a dimensional time and there is a standard in the literature for

doing this. Normally, experiments assimilate at frequencies that are roughly similar to those in nu-

merical weather prediction when using the standard time definition. For instance, assimilating once
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an hour would be deemed to be high frequency while every 6 or 12 hours would be common. The

authors here in section 7.1 state that they are assimilating once every second after assigning 0.01s

for the time step. It is important that the authors clearly describe how they are defining dimensional

time and highly preferable that they use the standard definition. It still seems to me that they are

assimilating very frequently compared to most applications in the literature, and if so, this should be

motivated. Similarly, the observational error variance of 0.01 is very small compared to most pub-

lished applications for L96. This error variance is a tiny fraction of the "climatological" variance of

L96, and doesn’t look like a very reasonable analogy for the types of error variances found in real

geophysical applications. Again, the authors should clearly state why they used such a small value

and comment on the relation to the more common values in the geophysical literature.

Similarly, the assimilation frequency for the shallow water example seemed odd. Assimilating

every second is very frequent compared to the evolution of the dynamics. Some readers may be-

come suspicious that high frequency assimilation was chosen as a case for which the new method

is particularly competitive. Again, the authors should clearly state why they picked such frequent

assimilation and how they picked the observational error variance.

Author’s response:

Our description of an experiment with the Lorenz 96 model in the discussion paper incorrectly

assumed that the time unit was the second. We have assimilated into the Lorenz 96 model not every

second, but every time unit. According to Lorenz and Emanuel (1998), 0.05 time unit of Lorenz

model is equivalent to 6 hours of climatological model. Since we assimilated every 1 time unit, this

is equivalent to assimilation every 5 days.

To test our proposed method with standard parameterization we used parameter values introduced

in Lorenz and Emanuel (1998), in particular their observation error variance, with only the small

difference that the length of state vector was 256 and we used time step 0.01 for model evaluation.

In the experiments with shallow water equation model, we extended the assimilation cycle to 1

hour, compared to 1 minute used in the discussions manuscript. Since we used a very simple model,

the model and numerical methods used to solve start to degenerate after 15-20 hours.

The changes in experiment setups have no significant impact on results and our proposed method

still works much better then standard EnKF.

Changes in manuscript:

We rewrote sections 7.1 and 7.2, where the experiments are described, according to the new design

of experiments. We also prepared new figures with correct labels for the manuscript.
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Minor concern 2:

Referee’s comment:

Not required, but would be a nice addition: There is limited discussion of how the method extends

to non-identity forward operators and none about nonlinear forward operators. A paragraph in the

conclusions would be a nice addition if something simple can be said.

Author’s response:

The method described in Section 6.3 allows general linear operators, but inverse (i.e., solving a

system) in the observation space is required. This issue is well known in spectral variational methods;

techniques used in the literature include aggregating and interpolating observations to create “super-

obs” gridded arrays (Parrish and Derber, 1992).

Changes in manuscript:

We will add a paragraph like the above to the conclusion. Nonlinear observation operators remain

for future work.

2.2 Other comments

Minor stuff 1:

Referee’s comment:

p. 6, line 11: N � n. Real issue is whether N � q, where q is the rank of the covariance matrix of

the Kalman filter solution. This is an important issue because this mistake has repeatedly confused

things in the geophysical ensemble literature.

Author’s response:

This is a more or less standard introductory statement, not original research in any way. The rank of

the state covariance (which is the covariance from the KF solution) is not smaller than the dimension

unless the problem is degenerate, which is the focus neither in this paper nor in applications. Rather,

there are usually many small but positive eigenvalues. The reviewer probably means by q the number

of significant modes, i.e., the number of eigenvalues above some positive threshold, i.e., effective

rank.
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Changes in manuscript:

We will replace “N � n” by something like “N much less than the number of significant modes”

but we will not explain what modes are. We will add a standard comment that the low rank causes

spurious long-long range correlations.

Minor stuff no. 2:

Referee’s comment:

p. 6, line 15: ‘transform’ to ‘transforms’

Author’s response:

Changes in manuscript:

Replaced.

Minor stuff no. 3:

Referee’s comment:

. p. 7, line 16: ‘Eq. 5’ should be ‘Eq. 7’

Author’s response:

Changes in manuscript:

Replaced.

Minor stuff no. 4:

Referee’s comment:

p. 8, line 20: It would be better to put the equation that starts at the end of this page on its own line.

Author’s response:

Page breaks will change, the final version has regular-sized pages.

Changes in manuscript:

We will put the equation on a displayed line of its own so that it does not break between lines (and

possibly pages).
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Minor stuff no. 5:

Referee’s comment:

p. 10, line 14: mean IS known?

Author’s response:

Changes in manuscript:

Added ‘is’.

Minor stuff no. 6:

Referee’s comment:

p. 11, line 3: It might be clearer to say ‘only one gridded variable’. I’ve had previous experience with

saying ‘one variable’ and having readers interpret that as a scalar.

Author’s response:

Changes in manuscript:

We have replaced the name of the subsection as the referee suggest. We have also replaced “one

variable” by “one gridded variable” on line 4.

Minor stuff no. 7:

Referee’s comment:

P. 12, line 5: ‘is THE one by’

Author’s response:

Changes in manuscript:

Added ‘the’.

Minor stuff no. 8:

Referee’s comment:

P. 12, line 8: ‘is THE matrix’
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Author’s response:

Changes in manuscript:

Added ‘the’.

Minor stuff no. 9:

Referee’s comment:

P. 12, line 13: ‘by A call to’

Author’s response:

Changes in manuscript:

Added ‘a’.

Minor stuff no. 10:

Referee’s comment:

P. 13, line 5: ‘one for each data point’

Author’s response:

Changes in manuscript:

Replaced ‘points’ by ’point’.

Minor stuff no. 11:

Referee’s comment:

P. 13, line 15: Unclear to me why these must be contiguous. Couldn’t this work for any subset of

variables? If not, you might add a sentence to make it clear why (not even clear what ‘continguous’

means for a grid).

Author’s response:

The method goes through for any observed subset of entries of the gridded variable X1, but the

performance will vary. The performance tends to be better when the observed and unobserved entries

of X1 fill two subdomains of the physical domain with a relatively small boundary between them. A

detailed investigation, however, is planned for elsewhere.
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Changes in manuscript:

We will delete the word ‘contiguous’ and include a brief remark as above.

Minor stuff no. 12:

Referee’s comment:

P. 14, line 16: ‘state consistS’

Author’s response:

Changes in manuscript:

Replaced ‘consist’ by ‘consists’.

Minor stuff no. 13:

Referee’s comment:

P. 14, line 19: ‘minimalizes’ to ‘minimizes’

Author’s response:

Changes in manuscript:

Replaced.

Minor stuff no. 14:

Referee’s comment:

P. 15, line 20: Doesn’t the KF minimize the expected RMSE for linear Gaussian?

Author’s response:

The problem is not linear Gaussian and the paragraph refers to EnKF (which is approximate), not

the KF.

Changes in manuscript:

None.
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Minor stuff no. 15:

Referee’s comment:

P. 15, line 7: ‘timestep of THE model’

Author’s response:

Changes in manuscript:

Added ‘the’.

Minor stuff no. 16:

Referee’s comment:

P. 15, line 14: ‘but THE spectral’

Author’s response:

Changes in manuscript:

Added ‘the’.

Minor stuff no. 17:

Referee’s comment:

P. 15, line 22: decreaseS the RMS?

Author’s response:

Changes in manuscript:

Replaced ‘decrease’ by ‘decreases’.

Minor stuff no. 18:

Referee’s comment:

P. 16, line 7: Aren’t u and v normally described as velocity components, rather than momentum?

Author’s response:

Changes in manuscript:

Corrected.

8



Minor stuff no. 19:

Referee’s comment:

P. 16, line 10: ‘where’ to ‘were’

Author’s response:

Changes in manuscript:

Replaced ‘where’ by ‘were’ on line 15.

Minor stuff no. 20:

Referee’s comment:

P. 17, lines 6-14: Could part of this be coordinated with last paragraph on p. 16?

Author’s response:

Changes in manuscript:

The repetition was deleted.

Minor stuff no. 21:

Referee’s comment:

21. P. 17, line 23: ‘continuous? to ‘contiguous’?

Author’s response:

Changes in manuscript:

Deleted “continuous”.

Minor stuff no. 22:

Referee’s comment:

P. 18, line 1: error THAN the sample?

Author’s response:

Changes in manuscript:

Replaced ‘that’ by ‘than’.
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Figure 1. Error plot of 10 repetitions of assimilation of the full state to the Lorenz 96 model, 5 assimilation

cycles, F means forecast, A means analysis.

Minor stuff no. 23:

Referee’s comment:

Figures: Since you ran multiple realizations, you might want to mention what the error bars would

look like (including them seems a bit much).

Author’s response:

We include Figs. 1 and 2 with error bars here and in the recvised paper. We can see that the present

method performs much better than the standard EnKF.

Changes in manuscript:

3 Anonymous referee 2

Major comment 1

Referee’s comment:

The derivation of Theorem 1 (p. 5) is obtained through the spectral decomposition of the matrix,

but the present derivation can be obtained directly from the computation in an arbitrary basis since

Eq.(10) and Eq.(11) can be rewritten using the intrinsic operator of trace as

E[||C−CN ||2F ] =
1

N − 1
Trace(C2)+

1

N − 1
Trace(C)2
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Figure 2. Error plot of 10 repetitions of assimilation of one half of the state vector to the Lorenz 96 model, 5

assimilation cycles, F means forecast, A means analysis.

E[||C−DN ||2F ] =
1

N − 1
Trace(C2)

independent of the basis and directly related to the spectrum. Hence, the comment p6, l 164 "the

analysis in Furrer and Bengtsson (2007) is in the physical domain rather.. " can be suppressed. From

my view, this theorem is not really new, and references to Mallat and Furrer & Bengtsson should be

enough. If the authors really want to put something here (to make the manuscript self contained),

then they should mention the Wick formula that helps to compute general formulation of Gaussian

moments. I think enough the derivation when the average is assume known equal to 0.

Author’s response:

We would like to thank the referee for the elegant writing of the equalities and the Mallat (1998)

reference. We thought of writing the theorem in terms of eigenvalues and without a reference to

transformation, and then apply it in the frequency domain where the covariance is diagonal, but then

we have eventually decided to streamline the presentation and write it directly for the case we need.

Furrer and Bengtsson (2007) analyze tapering to the diagonal in the physical space, but diagonal

covariance in the physical space is never used in applications. The present method is EnKF with

diagonal approximation in the frequency domain, where it is reasonable to expect that the covari-

ance will be approximately diagonal. The underlying theorem is similar, but the novelty is in the

application. Extending the result in Furrer and Bengtsson (2007, Eqs. 12 and 16) and Mallat (1998,

Prop. 10.14 and Eq. 10.179) from zero mean to unknown mean seems also new, and, in applications,

the mean is never known. We are not aware of a process to obtain the unknown mean case mathe-
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matically from the zero-mean case, even if, in the end, it results in merely replacing N by N − 1 in

the covariance formula, as expected, and we believe that a proof is in order.

Changes in manuscript:

We will add the reference to Mallat (1998, Prop. 10.14 and Eq. 10.179). We will formulate the

estimate in general, without reference to a spectral transformation, then apply it in the frequency

domain.

Major comment 2

Referee’s comment:

As mentioned in the general comments, the method proposed here is not strictly new since in varia-

tional data assimilation, algorithms are existing that estimate the covariance of the day, introducing

the flow dependence (equivalent to the EnKF) within the cost function minimising process; with

quantification of real impact in operational NWP ! Hence, it is important to mention this point in the

manuscript (e.g. Buehner, 2005 ; Berre et al., 2007 ; Varella et al., 2011): if the strategy of resolu-

tion of the BLUE is different in the hybrid 3DVar and the EnKF, the idea to model the covariance

matrix to benefit of a noise less matrix is the same. In the major comment (6) below, I provide you

elements to precise this point in the introduction and conclusion of the work. Note also that hybrid

formulation comes from EnKF community with the work of Hamill and Snyder (2000) that also

have introduced a spectral diagonal assumption (see their Eq.(3) ) : this should be specified in the in-

troduction. Of course, with the diagonal assumption in spectral space, since only homogeneous and

isotropic correlations can be represented, there is no need to update the diagonal at each analysis step

and climatological estimation is better. This is no more true with other formulations as encountered

with the wavelets (and frame) that are able to produce heterogeneous correlation function where the

spatio-temporal evolution makes sens.

Author’s response:

Since major comments 2 to 5 are closely related, we will respond to them together below.

Major comment no. 3

Referee’s comment:

The formulation of the background error covariance model using the diagonal assumption following

a product of linear operator should mention all the work done in variational literature that intensively

relies on this trick to build covariance matrix in huge dimension (Courtier et al. , 1998; Fisher and
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Andersson 2001; Weaver and Courtier, 2001). In particular, this should be specified in line 180 where

operator transforms (FFT, DWT) are mentioned.

Major comment no. 4

Referee’s comment:

From this link with the variational community, some perspectives of the present contribution must

be precise. In particular, from the history about covariance modelling in variational algorithm, the

next steps of the work can be drawn as follows: construction of non-separable formulation (Courtier

et al., 1998; Fisher and Andersson, 2001 ; Pannekoucke, 2009), representation of balances between

variables in order to obtain a more realistic multivariate formulation (Derber and Bouttier, 1999

; Fisher, 2003 ; Weaver et al. 2005), representation of heterogeneity using a physical/spectral lo-

calised formulation (non-separable wavelet formulation for Fisher and Anderson, 2001 ; separable

formulation based on diffusion operator for Weaver and Courtier, 2001 or recursive filter for Purser

et al. 2003 ; nonseparable formulation based on hybridation diffusion/wavelets Pannekoucke, 2009)

... In particular, even if formulations as the diffusion operator or the recursive filter are not diagonal

assumptions, they lead to an approximation of the covariance matrix free of sampling noise, and

objectively parametrised from ensemble estimation (Pannekoucke and Massart, 2008 ; Michel, 2013

; Pannekoucke et al. 2014). Along this route, filtering strategies can be employed to improve the es-

timation and the design of covariance formulations using results on the estimation of variances and

length-scales (Berre et al, 2007 ; Raynaud et al. 2009 ; Raynaud and Pannekoucke 2013 ; Menetrier

et al. 2015).

Major comment no. 5

Referee’s comment:

From the above major comments, saying “The paper provide a new technology for data assimilation”

is too much and risks to appear arrogant while considering all the work that has been done for each

community. However you right that until now very few person have try to seriously consider covari-

ance model in EnKF, the main reason is that it require to build covariance matrix parameterisation,

this represents a real cost in terms of technology investment for NWP codes. You should mention

this in the introduction of the paper: “The idea of using covariance model in EnKF to benefit of

sample noise reduction effect is known (Hamill and Snyder, 2000; Buehner, 2005), but as far as we

know no reference has been published to document the real advantage of this method. In terms of

practical implementation of the BLUE, one of the reason could be the relative distance existing be-

tween the EnKF and the variational to resolve an equivalent analysis step. However, the employ of

forecast ensemble has been tested with success in the variational framework (Buehner 2005, Berre

et al. 2007, Varella et al., 2011)”. For the conclusion, I guess you can replace the sentence “The
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paper provide..” as follows: “The paper provide a preliminary test, within an academic setting, of

the employ of parametric covariance in pure EnKF strategy, while the reverse strategy is existing in

variational framework (hybrid formulation)”.

Author’s response:

Since major comments 2 to 5 above are closely related, we respond to them together.

The novel technique here is the use of spectral covariance modeling in each EnKF analysis cycle

to reduce the ensemble size required. The paper Buehner (2005), mentioned by the reviewer, is

about improving estimates of background covariance for 3DVAR rather than improving the EnKF.

Hamill and Snyder (2000) use a linear combination of sample covariance, different in every analysis

cycle, and spectral diagonal covariance from Parrish and Derber (1992), constant in time, rather than

spectral modeling in the analysis cycle.

We are aware that spectral diagonal covariance models have been used for estimation of back-

ground covariance in variational methods. We have addressed this issue and provided representative

references in the discussions paper. We would like to thank the anonymous reviewer very much

for providing a much more comprehensive and detailed survey and pointing out important histori-

cal milestones, which will contribute greatly to the improvement of the paper. Taking the liberty to

paraphrase the material kindly provided by the reviewer, we will write in the introduction and the

conclusion something like the following.

Changes in manuscript:

In the introduction: Spectral diagonal covariance models and their estimation from an ensemble of

realizations are not new. Spectral diagonal model of background covariance has been used in op-

erational weather forecasting for a long time (Parrish and Derber, 1992). Estimates of background

covariance from an ensemble, called flow-dependent covariance, in combinations with spectral co-

variance models have been used in variational data assimilation (e.g., Buehner, 2005; Buehner and

Charron, 2007; Berre et al., 2007; Varella et al., 2011), leading to hybrid EnKF – 3DVAR meth-

ods. Another hybrid formulation in EnKF was proposed by Hamill and Snyder (2000), who used

a linear combination of sample covariance, different in every analysis cycle, and spectral diagonal

covariance from Parrish and Derber (1992), constant in time.

Further developments in the history of background covariance modeling in variational algorithms

include construction of non-separable formulation (Courtier et al., 1998; Fisher and Andersson,

2001; Pannekoucke, 2009), representation of balances between variables in order to obtain a more

realistic multivariate formulation (Derber and Bouttier, 1999; Fisher, 2003; Weaver et al., 2005), rep-

resentation of heterogeneity using a physical/spectral localised formulation (non-separable wavelet

formulation (Fisher and Andersson, 2001), separable formulation based on diffusion operator (Weaver

and Courtier, 2001) or recursive filter for (Purser et al., 2003), and nonseparable formulation based
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on hybridization of diffusion and wavelets (Pannekoucke, 2009). Formulations such as the diffusion

operator or the recursive filter are related to the diagonal assumption here, they involve covariance

models with a relatively small number of parameters, thus free of sampling noise, but estimated from

an ensemble directly (Pannekoucke and Massart, 2008; Michel, 2013; Pannekoucke et al., 2014).

Similar filtering strategies can be employed to improve the estimation and the design of covariance

formulations using results on the estimation of variances and length scales (Berre et al., 2007; Ray-

naud et al., 2009; Raynaud and Pannekoucke, 2013; Ménétrier et al., 2015). The formulation of the

background error covariance model using the diagonal assumption and a product of linear operator

(such as the discrete Fourier or wavelet transform here) is widely used in variational literature to

build covariance models in high dimension (e.g., Courtier et al., 1998; Fisher and Andersson, 2001;

Weaver and Courtier, 2001).

The idea of using covariance model in conjunction with EnKF to benefit sample noise reduction

is known, but as far as we know no reference has been published to document the real advantage of

this method in improvements to the performance of the EnKF. The paper provides a preliminary test,

within an academic setting, of the techniques of employing parametric covariance in the EnKF, while

the existing literature is focused on the opposite direction, the use of EnKF to provide estimates for

the variational framework, known as “hybrid formulation”.

The use of spectral covariance modeling in each EnKF analysis cycle to reduce the ensemble size

seems to be new. We are not aware of previous attempts to seriously consider covariance modeling

in the EnKF. The main reason could be that it requires to build covariance matrix parameterisation,

which represents a real cost in terms of technology investment for NWP codes.

Major comment no. 6

Referee’s comment:

p11, l314 : "because an implementation only needs an orthogonal transformation" orthogonality is

not a necessary condition for diagonal assumption that can be considered within a frame as detailed

in Pannekoucke et al. (2007). Of course this have an influence for the representation of the observa-

tional error covariance matrix in the "spectral space" that is no more diagonal (as specfified in p7, l

179). Note that in Pannekoucke (2008, appendix D) wavelet packets are used to take advantage of

the orthogonal basis dictionary it provides ; for this, the problem is then to connect horizontal sheet

along the vertical in a 2D/3D formulation, in direct 3D formulation this could be used without the

connection issue.

Author’s response:

We state only that the present method can be implemented efficiently using the fast Fourier or wavelet

transform. We are aware of the broader issues, such diagonal approximation with frames in Pannek-
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oucke et al. (2007) as well as connecting horizontal sheets with spectral approximation in each. We

intend to study these issues in future work.

Changes in manuscript:

We will add at the end on conclusion something like the following: The present method uses orthog-

onal transformation, but orthogonality is not a necessary condition for diagonal assumption; diago-

nal approximation with frames was proposed in Pannekoucke et al. (2007). The question of further

reducing the number of parameters and thus sampling noise, as in, e.g., functions of the Laplace op-

erator, is also of interest. When spectral diagonalization is used in the horizontal planes, the question

is how to connect horizontal sheets along the vertical dimension. In Pannekoucke (2008, Appendix

D), wavelet packets are used to take advantage of the orthogonal basis dictionary they provide. These

issues will be studied elsewhere.

3.1 Minor comments

Minor comment no. 1

Referee’s comment:

p2, l54: Add references for the wavelets formulation: Fisher and Andersson, 2001; Deckmyn and

Berre, 2005.

Author’s response:

Changes in manuscript:

We will change “The Fourier diagonalization approach was extended by Pannekoucke et al. (2007)

to sparse representation of the background covariance by thresholding wavelet coefficients” to “The

Fourier diagonalization approach was extended by Pannekoucke et al. (2007) to sparse representation

of the background covariance by wavelets (Fisher and Andersson, 2001; Deckmyn and Berre, 2005;

Pannekoucke et al., 2007).”

Minor comment no. 2

Referee’s comment:

p6, before sec. 6: You should mention that the parametric formulation does not converge toward the

"true" covariance matrix as the ensemble size increases toward infinity.
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Author’s response:

Changes in manuscript:

We will add at the end of Section 5: While the spectral diagonal formulation improves the approxi-

mation for small ensembles, it should be noted that it does not converge to the covariance asN →∞,

unless the covariance is diagonal in the spectral basis.

Minor comment no. 3

Referee’s comment:

It is not direct that T defined p10, l 283 is positive, please provide a proof of it

Author’s response:

Positive definiteness could be verified by counting the eigenvalues of matrix T . Another approach

could be by writing T using Kronecker product T =K ⊗ (M ⊗M), where K is 3× 3 square ma-

trix with elements (K)i,i = 1, (K)i,j = 0.9 if i 6= j and M is 64× 64 square matrix with elements

(M)i,j = exp(|i−j|). All eigenvalues of T are of the form α.β.γ, where α is eigenvalue ofK, β and

γ are eigenvalues of M . Since the smallest eigenvalues of K and M are 0.1 and 0.41 respectively,

all eigenvalues of T are positive.

Changes in manuscript:

We will add: "Note that matrix T could be also written using Kronecker product as T =K ⊗ (M ⊗
M), where K is 3× 3 square matrix with elements (K)i,i = 1, (K)i,j = 0.9 if i 6= j and M is

64×64 square matrix with elements (M)i,j = exp(|i−j|). Since both matricesK andM are positive

definite, matrix T is also positive definite."

Minor comment no. 4

Referee’s comment:

P9, l250: ‘s’ is meaningless here since ’t’ is a pseudo-time (Lorenz’96 is not related to a physical

model but only an academic framework, nice to play with), hence replace “0.01s” by 0.01 and 1s by

1
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Author’s response:

Changes in manuscript:

We will change the design of experiments according to suggestion from anonymous referee 1, there-

fore we also change Section 7.1 and all figures captions and labels (please see also minor comment

from anonymous referee 1).

Minor comment no. 5

Referee’s comment:

p9, l 252: "The the ensemble .."→ "Then the .."

Author’s response:

We did not find the mistake, but we found mistake on p .128 l.22 and replaced "of the the standard"

by "of the standard".

Changes in manuscript:

Minor comment no. 6

Referee’s comment:

p10, l297 : “To relax the ensemble members the model .. ” must be rephrased

Author’s response:

Changes in manuscript:

The description in section 7.2 will be rewritten.

Minor comment no. 7

Referee’s comment:

p11, l 310 : “experimens”→ experiments

Author’s response:

Changes in manuscript:

Replaced.
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Minor comment no. 8

Referee’s comment:

p11, l 311 : “shown that the method that the analysis” must be rephrased

Author’s response:

Changes in manuscript:

Deleted “the method”.

Minor comment no. 9

Referee’s comment:

p13, l 345 : the parenthesis are not well positioned leading to ambiguities, please write something as

E[(
∑
. . .)2], this appears at many times in the derivation of the proof.

Author’s response:

Changes in manuscript:

We changed the notation as the referee suggest, all the terms E[. . .]2 in the appendix were replaced

by E[(. . .)2]. We also changed the notation on line 141 of discussions manuscript, where it could

lead to the same ambiguity.

Minor comment no. 10

Referee’s comment:

Some work exists concerning the balance in EnKF that should be mention in the manuscript see

Kepert (2009).

Author’s response:

Changes in manuscript:

We have added in the introduction “Balanced update and localization in the EnKF using the stream

function-velocity potential representation were studied in Kepert (2009).”.

4 Conclusions

We have addressed all comments by the anonymous reviewers.
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Spectral Diagonal Ensemble Kalman Filters

Description of changes

Ivan Kasanický JanMandel MartinVejmelka

June 3, 2015

1 Introduction

We would like to thank the anonymous referees again for their comments. Response to their
comments was addressed and the anticipated changes were described in a response uploaded already,
itemized by the referees’ comments. All of the comments were reflected in the revised manuscript,
as already described in the response.

Here we desctibe the changes sequentially by the order in the document. The document with
the changes marked up is attached. Red with straight cross-through or straight underline means
deleted. Blue with wavy underline means added. The page numbers below refer to that marked up
document.

2 Description of changes

1. Page 2 and throughout: “diagonal approximation” was replaced by “diagonal covariance
model” because that’s what it is.

2. Pages 2 and 3: Added the historical summary requested by Reviewer 2 and paraphrasing the
Reviewer’s comments.

3. Page 3: Frobenius norm is called Hilbert-Schmidt norm in Mallat (1998) even in finite di-
mension, so it was a good thing to note.

4. Page 5: Added a note regarding the rank of the sample covariance in response to “minor stuff
No. 1” of Reviewer 1. Also some minor copyediting changes.

5. Pages 6-9: In response to Reviewer’s 2 Major comment 1, the analysis was restructured to
derive the comparison between the errors of sample covariance and the spectral diagonal
model without the use of spectral decomposition, following Mallat (1998). The analysis was
significantly streamlined and shortened, relying on the literature as much as possible. The
need to have the result at all was justified by the fact that the existing literature treats only
the formula for the case when the mean of the random vectors is known (and zero), which
is not so in practice, where the mean is only estimated by sample mean. An explanation of
the differences from Furrer and Bengtsson (2007) was added, they consider tapering in the
physical space only, which is never done in practice. Only combination with the invariance
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under Frobenius norm and application in the spectral space gives a useful method. We have
also added a remark with alternative formulas involving traces, as suggested by Reviewer 2.

6. Page 10: “Gridded” was added following “Minor stuff nr. 6” by Reviewer 1.

7. Page 10: Equation (19) fixed.

8. Page 11: “Contiguous” omitted following “Minor stuff nr. 11” by Reviewer 1 and Comment
21 by Reviewer 2. Explanation added that performance will vary.

9. Page 12: Copyediting. Time units and number of points in Lorenz 96 addressed.

10. Page 13: Description of Lorenz 96 redone, with the test requested by the Editor added. Based
on our experiments, we did not change the value of F between 40 and 256 points. Added the
test and sample states in new Figure 1.

11. Page 14: “momentum” replaced by “velocites” as suggested by Reviewer 1, minor suff 18.
Length of assimilation step changed as advised by Reviewer 1 Minor concern 1. Description
of experiment rewritten. A proof why the model covariance is positive definite added, as
requested by Reviewer 2 Minor comment 3.

12. Page 15, Conclusion: “new technology” replaced by “technique” in response to Reviewer 2
Major comment 5. A paragraph regarding orthogonality in response to Reviewer 2 Major
comment 6. Also, added a paragraph why the method in Sect. 6.2 works for a general
observation operator,.in response to Reviewer 1 Minor concern 2.

13. Appendix A, pages 16-19: Redone following Mallat (1998), in response to Reviewer 2. The
derivation still needs to be done because Mallat (1998) considers only the sample covariance
formula for random vectors which are known to be centered so there is not subtracting the
sample mean. We are not aware of a mathematically valid meta-technique that would allow to
simply replace N by N−1 in Mallat’s result. We have significantly shorteded the development
and made an explicit reference to Wick’s formula as requested.

14. Page 21-24: Added various references as required by the reviewers.

15. Page 25 Replaced Fig. 1 by a study showing that the Lorenz 96 model with 256 points and
all other parameters the same is chaotic, requested by the Editor.

16. Pages 25-26, Figs. 2 and 3: In relation to the requested change of the time scales, we have
updated the implementation of the Lorenz 96 model to use RK solver built into Matlab and
redone the figures.

17. Pages 26-27, Figs. 4 and 5: We have redone the shallow water equations experiments consid-
ering the time scales suggested by Referee 1 in minor concern 1.

3 Conclusion

We would like to thank the reviewers in particular for confirming that covariance modeling in EnKF
was not yet seriously considered, while it has been of course routinely used in variational methods
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for the background covariance. It appears that the only related work in the literature is Hamil and
Snyder (2003), who do not do covariance modeling during the analysis step either, rather a linear
combination of covariance model, which is static, and a dynamic sample covariance.
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Abstract. A new type of ensemble Kalman filter is developed, which is based on replacing the sam-

ple covariance in the analysis step by its diagonal in a spectral basis. It is proved that this technique

improves the aproximation of the covariance when the covariance itself is diagonal in the spectral ba-

sis, as is the case, e.g., for a second-order stationary random field and the Fourier basis. The method

is extended by wavelets to the case when the state variables are random fields which are not spatially

homogeneous. Efficient implementations by the fast Fourier transform (FFT) and discrete wavelet

transform (DWT) are presented for several types of observations, including high-dimensional data

given on a part of the domain, such as radar and satellite images. Computational experiments con-

firm that the method performs well on the Lorenz 96 problem and the shallow water equations with

very small ensembles and over multiple analysis cycles.

1 Introduction

Data assimilation consists of incorporating new data periodically into computations in progress,

which is of interest in many fields, including weather forecasting (e.g., Kalnay, 2003; Lahoz et al.,

2010). One data assimilation method is filtering (e.g., Anderson and Moore, 1979), which is a se-

quential Bayesian estimation of the state at a given time given the data received up to that time. The

probability distribution of the system state is advanced in time by a computational model, while the

data is assimilated by modifying the probability distribution of the state by an application the Bayes

theorem, called analysis. In the methods considered here, data is assimilated in discrete time steps,

called analysis cycles, and the probability distributions are represented by their mean and covariance

(thus making a tacit assumption that they are at least close to gaussian). When the state covariance

is given externally, bayesian estimation becomes the classical optimal statistical interpolation (OSI).
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The Kalman filter (KF) uses the same computation as OSI in the analysis, but it evolves the covari-

ance matrix of the state in time along with the model state. Since the covariance matrix can be large,

the KF is not suitable for high-dimensional systems. The ensemble Kalman filter (EnKF) (Evensen,

2009) replaces the state covariance by the sample covariance computed from an ensemble of simula-

tions, which represent the state probability distribution. It can be proved that the EnKF converges to

the KF in the large ensemble limit (Kwiatkowski and Mandel, 2015; Le Gland et al., 2011; Mandel

et al., 2011) in the gaussian case, but an acceptable approximation may require hundreds of ensemble

members (Evensen, 2009), because of spurious long-distance correlations in the sample covariance

due to its low rank. Localization techniques (e.g., Anderson, 2001; Furrer and Bengtsson, 2007;

Hunt et al., 2007), essentially suppress long-distance covariance terms (Sakov and Bertino, 2011),

which improves EnKF performance for small ensembles.

FFT EnKF (Mandel et al., 2010a, b) was proposed as an alternative approach to localization,

based on replacing the sample covariance in the EnKF by its diagonal in the Fourier space. This

approach is motivated by the fact that a random field in cartesian geometry is second order stationary

(that is, the covariance between the values at two points depends only on their distance vector)

if and only if its covariance in the Fourier space is diagonal (e.g., Pannekoucke et al., 2007). On

a sphere, an isotropic random field has diagonal covariance in the basis of spherical harmonics (Boer,

1983), so similar algorithms can be developed there as well. However, the stationarity assumption

does not allow the covariance to vary spatially. For this reason, the FFT EnKF was extended to

wavelet EnKF (Beezley et al., 2011). The use of wavelets results in an automatic localization, which

varies in space adaptively. For wavelets, the effect of the diagonal spectral approximation
:::::
model is

equivalent to a weighted spatial averaging of local covariance functions (Pannekoucke et al., 2007).

Diagonal matrices are cheap to manipulate computationally, but implementing the multivariate case

and general observation functions is not straighthforward.

Diagonal spectral approximation
:::::::
Spectral

::::::::
diagonal

::::::::::
covariance

:::::::
models

:::
and

:::::
their

::::::::::
estimation

::::
from

:::
an

::::::::
ensemble

::
of

::::::::::
realizations

::::
are

:::
not

::::
new.

:::::::::
Diagonal

:::::::
spectral

::::::::
modeling

:
and, more generally,

sparse spectral approximation
:::::::::
covariance

::::::::
modeling, have been used as a statistical model for the

background covariance in data assimilation in meteorology for some time. The optimal statistical

interpolation system from Parrish and Derber (1992) was based on a diagonal approximation

:::::::::
covariance

:::::
model

:
in spherical harmonics,

:::::
which

::::
were

:
already used as horizontal basis functions in

the model, and
::::::::
numerical

:::::::
weather

::::::::
prediction

:::::
code

::::
with

:
a change of state variables into physically

balanced analysis variables.
:
,
::::
and

:
it
::::

has
::::
been

:::::
used

::
in

::::::::::
operational

:::::::
weather

::::::::::
forecasting

:::
for

:
a
:::::

long

::::
time.

::::::::
Estimates

:::
of

::::::::::
background

:::::::::
covariance

::::
from

:::
an

::::::::
ensemble,

::::::
called

:::::::::::::
flow-dependent

::::::::::
covariance,

::
in

:::::::::::
combinations

::::
with

:::::::
spectral

::::::::::
covariance

:::::::
models

::::
have

:::::
been

:::::
used

::
in

::::::::::
variational

::::
data

:::::::::::
assimilation

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Buehner, 2005; Buehner and Charron, 2007; Berre et al., 2007; Varella et al., 2011),

::::::
leading

:::
to

::::::
hybrid

:::::::
EnKF

::
–
::::::::

3DVAR
:::::::::

methods.
::::::::
Another

::::::
hybrid

:::::::::::
formulation

:::
in

::::::
EnKF

:::::
was

:::::::
proposed

:::
in

:::::::::::::::::::::::::::::
Hamill and Snyder (2000, Eq. (4)),

::::
who

:::::::::
proposed

::
a

:::::
linear

:::::::::::
combination

:::
of

:::::::
sample

2



:::::::::
covariance,

::::::::
different

::
in

:::::
every

:::::::
analysis

::::::
cycle,

::::
and

::::::::::
background

:::::::
spectral

::::::::
diagonal

:::::::::
covariance

:::::
from

:::::::::::::::::::::
Parrish and Derber (1992),

::::::
which

:::::
does

:::
not

:::::::
change

::::
over

::::::::
analysis

::::::
cycles.

:
The ECMWF 3DVAR

system (Courtier et al., 1998) also used diagonal covariance in spherical harmonics . Diagonal

approximation
:::
for

:::
the

::::::::::
background

::::::::::
covariance.

::::::::
Diagonal

::::::
model in the Fourier space for homoge-

neous 2-D error fields, with physically balanced crosscovariances, was proposed in Berre (2000).

The Fourier diagonalization approach was extended by Pannekoucke et al. (2007) to sparse repre-

sentation of the background covariance by thresholding wavelet coefficients, and into a combined

spatial and spectral localization by Buehner and Charron (2007).

::::::
Further

::::::::::::::
developments

::::
in
::::::

the
::::::::

history
:::::

of
:::::::::::::

background
:::::::::::

covariance
:::::::::::

modeling

::
in

:::::::::::
variational

::::::::::::
algorithms

:::::::::
include

::::::::::::::
construction

::::
of

:::::::::::::::
non-separable

:::::::::::::
formulation

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Courtier et al., 1998; Fisher and Andersson, 2001; Pannekoucke, 2009),

::::::::::::::::
representation

::::::
of

:::::::
balances

::::::::
between

:::::::::
variables

:::
in

:::::
order

:::
to
:::::::

obtain
::

a
::::::

more
::::::::

realistic
:::::::::::

multivariate
:::::::::::

formulation

::::::::::::::::::::::::::::::::::::::::::::::::::
(Derber and Bouttier, 1999; Fisher, 2003; Weaver et al., 2005),

:::::::::::::
representation

::::
of

:::::::::::::
heterogeneity

::::
using

::::
a

::::::::::::::::
physical/spectral

:::::::::
localised

::::::::::::
formulation

::::::::::::::
(non-separable

:::::::::
wavelet

::::::::::::
formulation

::::::::::::::::::::::::::::::::::::::::::::::
(Deckmyn and Berre, 2005; Fisher and Andersson, 2001),

::::::::::
separable

::::::::::::
formulation

:::::::
based

:::::
on

:::::::
diffusion

:::::::::
operator

::::::::::::::::::::::::::::
(Weaver and Courtier, 2001) or

::::::::::
recursive

:::::::
filters

:::::::::::::::::::
(Purser et al., 2003),

:::
and

:::
a
::::::::::::

nonseparable
::::::::::::

formulation
::::::

based
::::

on
:::::::::::::

hybridization
::::

of
:::::::::

diffusion
:::::

and
:::::::::

wavelets

:::::::::::::::::
(Pannekoucke, 2009).

:::::::::::::
Formulations

:::::
such

:::
as

::::
the

::::::::
diffusion

:::::::::
operator

:::
or

::::
the

::::::::
recursive

::::::
filter

::
are

::::::::
related

:::
to

::::
the

::::::::
diagonal

:::::::::::
assumption

::::::
here,

:::::
they

:::::::
involve

:::::::::::
covariance

:::::::
models

:::::
with

:::
a

:::::::
relatively

::::::
small

:::::::
number

:::
of

::::::::::
parameters,

:::::
thus

::::
free

:::
of

::::::::
sampling

::::::
noise,

::::
but

:::::::::
estimated

:::::
from

:::
an

::::::::
ensemble

::::::::
directly

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Pannekoucke and Massart, 2008; Michel, 2013; Pannekoucke et al., 2014).

::::::
Similar

::::::::
filtering

:::::::::
strategies

::::
can

:::
be

::::::::::
employed

:::
to

::::::::
improve

::::
the

::::::::::
estimation

::::
and

::::
the

:::::::
design

::
of

::::::::::
covariance

:::::::::::
formulations

::::::
using

::::::
results

:::
on

::::
the

::::::::::
estimation

::
of
:::::::::

variances
::::

and
:::::::

length
::::::
scales

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Berre et al., 2007; Raynaud et al., 2009; Raynaud and Pannekoucke, 2013; Ménétrier et al., 2015).

:::
The

:::::::::::
formulation

:::
of

:::
the

:::::::::::
background

:::::
error

::::::::::
covariance

::::::
model

::::::
using

:::
the

::::::::
diagonal

:::::::::::
assumption

:::
and

::
a
:::::::

product
:::

of
::::::

linear
::::::::

operator
:::::
(such

:::
as

::::
the

:::::::
discrete

:::::::
Fourier

:::
or

:::::::
wavelet

:::::::::
transform

::::::
here)

:
is
:::::::

widely
::::::

used
:::

in
::::::::::

variational
::::::::

literature
::::

to
:::::

build
::::::::::

covariance
::::::::

models
:::

in
:::::

high
::::::::::

dimension

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Courtier et al., 1998; Fisher and Andersson, 2001; Weaver and Courtier, 2001).

:::
The

::::
idea

:::
of

:::::
using

::::::::::
covariance

::::::
model

::
to

::::::
benefit

:::::::
sample

:::::
noise

:::::::::
reduction

::
is

:::::::
known,

:::
but

:::
as

:::
far

::
as

:::
we

:::::
know

:::
no

::::::::
reference

:::
has

:::::
been

:::::::::
published

::
to

:::::::::
document

:::
the

::::
real

::::::::
advantage

:::
of

::::
this

::::::
method

:::
in

:::::::::::
improvements

:::
to

:::
the

:::::::::::
performance

::
of

:::
the

::::::
EnKF.

::::
The

:::::
paper

::::::::
provides

:
a
::::::::::
preliminary

::::
test,

::::::
within

:::
an

::::::::
academic

::::::
setting,

:::
of

:::
the

:::::::::
techniques

:::
of

:::::::::
employing

:::::::::
parametric

::::::::::
covariance

::
in

:::
the

::::::
EnKF,

:::::
while

::::
the

::::::
existing

::::::::
literature

::
is
:::::::
focused

:::
on

:::
the

:::::::
opposite

:::::::::
direction,

:::
the

:::
use

:::
of

:::::::::
ensembles

::
to

:::::::
provide

::::::::
estimates

::
for

::::
the

:::::::::
variational

::::::::::
framework,

::::::
known

:::
as

:::::::
“hybrid

::::::::::::
formulation”.

::::::::::
Specifically,

::::
the

:::
use

:::
of

:::::::
spectral

:::::::::
covariance

::::::::
modeling

::
in

::::
each

:::::
EnKF

:::::::
analysis

:::::
cycle

::
to

::::::
reduce

::
the

:::::::::
ensemble

:::
size

::::::
seems

::
to

::
be

::::
new.

::::
The

::::
main

::::::
reason

:::::
could

::
be

::::
that

:
it
:::::::

requires
:::

to
::::
build

:::::::::
covariance

::::::
matrix

:::::::::::::::
parameterisation,

:::::
which

:::::::::
represents

:
a
:::
real

::::
cost

::
in

:::::
terms

::
of

::::::::::
technology

:::::::::
investment

:::
for

:::::
NWP

:::::
codes.

:
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While modeling of background covariances typically uses multiple sources including historical

data, the EnKF builds the covariance in every analysis cycle from the ensemble itself. In this paper,

we prove that replacing the sample covariance by its spectral diagonal improves the approximation

when the covariance itself is diagonal in the spectral space, as is the case, e.g., when the state is

a second order stationary random field and a Fourier basis is used. The result, however, is general

and it applies to an arbitrary orthogonal basis, including wavelets. We also develop computationally

efficient spectral EnKF algorithms, which take advantage of the diagonal form of the covariance, in

the multivariate case and for several important classes of observations. We demonstrate the methods

on computational examples with the Lorenz 96 system and shallow water equations, which show

that good performance can be achieved with very small ensembles.

2 Notation

Vectors in Rn or Cn are typeset as u and understood to be columns. Random vectors are typeset as

X . The entry i ofX is denoted by (X)i ::
or

::
xi. Matrices (random or deterministic) are typeset as A,

and and A∗ is the transpose, or conjugate transpose in the complex case. The entry i, j of matrix A is

denoted by (A)i,j or ai,j , and A= [a1, . . . ,an] is the writing of a matrix as a collection of columns.

Nonlinear operators are typeset asM. The mean value is denoted by E [·], and Var is the variance.

N (0,1) is the normal (gaussian) distribution with zero mean and unit variance, and N (m,C) is the

multivariate normal distribution with meanm and covariance C. The Euclidean norm of a vector is

‖u‖=
(∑n

i=1 |ui|
2
)1/2

. The Frobenius norm of a matrix
:
,
::::
also

::::::
known

::
as

::::::::::::::
Hilbert-Schmidt

:::::
norm, is

‖A‖F =
(∑m

i=1

∑n
j=1 |ai,j |2

)1/2
.

3 Kalman filter and ensemble Kalman filter

The state of the system at time t is described by a random vector Xt of length n. The system

evolution between two times t1 and t2 is given by a functionM(., t1, t2), so that

X f
t2 =M(Xa

t1 , t1, t2). (1)

The goal of the Kalman filter (KF) (Kalman, 1960) is to correct the forecast state of the system X f
t

to obtain the analysis estimate Xa
t of the true stateXt, given noisy observations Y t =HtXt+ εt,

where Ht is an observation operator, i.e., a mapping from state space to a data space, and εt ∼
N (0,Rt). When the distributions of the stateXt and the data error are gaussian, the analysis satis-

fies

Xa
t =X

f
t−CtH

∗
t (HtCtH

∗
t +Rt)

−1 (
HtX

f
t−Y t

)
, (2)
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where Ct is the covariance of the forecast X f
t. In the KF, the state is represented by its mean and

covariance, and the mean is transformed also by Eqs. (1) and (2). In the rest of the paper, we will

drop the time index t and the superscript f, unless there is a danger of confusion.

In the EnKF, the analysis formulas (Eqs. 1 and 2) are applied to each ensemble member, with the

covariance replaced by the sample covariance from the ensemble. The resulting ensemble, however,

would underestimate the analysis covariance, which is corrected by a data perturbation by sampling

from the data error distribution (Burgers et al., 1998). Denote byX1, . . . ,XN the forecast ensemble,

created either by a perturbation of a background state or by evolving each analysis ensemble member

from the previous time step independently by Eq. (1). Then, the analysis ensemble members are

Xa,j =Xj −CNH∗
(
HCNH∗+R

)−1 (
HXj −Y j

)
, (3)

where the sample covariance matrix is

CN =
1

N − 1

N∑
j=1

(
Xj −X

)(
Xj −X

)∗
, X =

1

N

N∑
j=1

Xj (4)

and Y j = Y + τ j are the perturbed observations, with τ j ∼N (0,R)
:::::::::::
τ j ∼N (0,R)

:
independent.

The advantage of the EnKF update formula (Eq. 2) is that it can be implemented efficiently without

having acces
:::::
access to the whole sample covariance matrix CN . On the other hand, the rank of

:::
the

matrix CN is at most N − 1, and, in the
::::
while

:::
the

:::::::
number

::
of

:::::::::
significant

::::::
modes

::::
can

::
be

::::::
higher.

:::
In

::
the

:
usual case when N � n

::
N

:
is
:::::
small, the low rank of the approximation CN of the true forecast

covariance C is
:::::
causes

::::::::
spurious

:::::::::
long-range

:::::::::::
correlations,

:::::
which

::::
are the biggest drawback of the

EnKF.

4 Spectral diagonal EnKF

Let F be an orthonormal transformation matrix, which transform
:::::::::
transforms

:
each ensemble mem-

ber to spectral space, and denote each transformed ensemble member by the additional subscript F,

Xj
F = FXj , j = 1, . . . ,N . Since the transformation is orthonormal, the inverse transformation is

F∗, so F∗Xj
F =Xj for each j = 1, . . . ,N. The columns of the inverse transform matrix F∗ are the

spectral basis elements u1, . . . ,un, i.e., F= [u1, . . . ,un]
∗. We will also denote the sample covari-

ance of the transformed ensemble with the additional subscript F,

CN
F =

1

N − 1

N∑
j=1

(
Xj

F−XF

)(
Xj

F−XF

)∗
= FCNF∗, XF =

1

N

N∑
j=1

Xj
F. (5)
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The idea of the spectral diagonal Kalman filter is to replace the sample covariance in the update

formula (Eq. 3) by only the diagonal elements of sample covariance in spectral space,

DN
F =CN

F ◦ I=


c1,1 0 · · · 0

0 c2,2
...

...
. . . 0

0 · · · 0 cn,n

 , ci,i =
1

N − 1

N∑
j=1

∣∣∣(Xj
F

)
i
−
(
XF

)
i

∣∣∣2 . (6)

where ◦ stands for Schur product, i.e., element-wise multiplication. The entries ci,i are the sample

variances, computed without forming the whole matrix CN
F . The diagonal approximation

:::::
model is

transformed back to physical space as

DN = F∗DN
FF, (7)

and the proposed analysis update is then

Xa,j =Xj −DNH
(
HDNH∗+R

)−1 (
HXj −Y j

)
. (8)

5 Error analysis

We will now compare the expected errors of the sample covariance and its spectral diagonal

approximation
:::::
model (Eq. 5). Assume that the ensemble membersXi ∼N

(
X,C

)
are independent,

and the columns of the inverse spectral transformation F∗ are eigenvectors ui of the covariance C

with the corresponding eigenvalues λi,

F= [u1, . . . ,un]
∗
,Cui = λiui,FF

∗ = I.

Equivalently, in the basis {u1, . . . ,un}, the covariance FCF∗ of FXi is diagonal, with the diagonal

elements λi. This is the situation, e.g., whenXi are sampled from a second-order stationary random

field on a rectangular mesh, and ui is the Fourier basis.
:::
7).

::::
The

:::::::
analysis

:::::::
extends

::::::
results

:::
for

::
a

::::::
sample

:::::::::
covariance

:::::::
formula

::::
with

::::::
known

:::::
zero

:::::
mean

::::::::::::::::::::::::::::::::::::::
(Furrer and Bengtsson, 2007; Mallat, 1998) by

:::::
taking

::::
into

::::::
account

:::
the

::::::
sample

:::::
mean

::
in

:::
Eq.

::::
(4).

::::
This

::::::::
extension

::
is

::::::::
important

:::::::
because

:::
the

:::::
mean

::
of

:::
the

::::::::
ensemble

:::::::
members

::
is
:::
not

::::::
known

::
in

::::::::
practice,

:::
and

::
an

:::::::
estimate

:::::
must

::
be

::::
used

:::::::
instead.

:

::::::
Assume

::::
that

:::
the

::::::::
ensemble

:::::::
members

:::::::::::::
Xi ∼N (µ,C)

:::
are

::::
i.i.d.

:
(In the EnKF, the ensemble members

after the first analysis cycle are not independent, because the sample covariance in the analysis step

ties them together, but they converge to independent random vectors as the ensemble size N →∞
(Le Gland et al., 2011; Mandel et al., 2011).The following theorem shows that the spectral diagonal

approximation has smaller expected error than the sample covariance, in Frobenius norm.
:::::::
N →∞

::::::::::::::::::::::::::::::::::::
(Le Gland et al., 2011; Mandel et al., 2011).)
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Theorem I (Error of the spectral diagonal approximation)

LetXk ∼N
(
X,C

)
, k = 1, . . . ,N , be independent, and the transformation F satisfy (Eq. 9). Then,

the expected squared errors in the Frobenius norm of the sample covariance CN (Eq. 4) and its

spectral diagonal approximation DN (Eq. 7) are
:::::
Using

:::::::
Lemma

:
1
:::::

from
:::
the

:::::::::
Appendix

:::
and

:::
the

::::
fact

:::
that

:::
the

::::::::
Frobenius

:::::
norm

::
is

:::::::
invariant

:::
to

:::::::::
orthogonal

:::::::::::::
transformations,

:::
we

::::
have

::
in

::::
any

::::
case,

:

E
[
‖C−CN‖2F

]
=

2

N − 1

n∑
i=1

λ2i +
1

N − 1

n∑
i,j=1
i 6=j

λiλj ,=: E

[∥∥∥∥CF
:
−DCF

::

N

∥∥∥∥2
F

]
=

1

N − 1

n∑
i,j=1

:::::::::

(∣∣∣∣(CF
::

)
i,j
:

∣∣∣∣2+::

(
CF
::

)
i,i
:

(
CF
::

)
j,j
:

)

=
:

2

N − 1

∑
i=1i,j=1

:::

nλi

∣∣∣∣(CF
::

)
i,j
:

∣∣∣∣2+ 1

N − 1

n∑
i,j=1
i 6=j

:::::::::::

(
CF
::

)
i,i
:

(
CF
::

)
j,j
:
.

(9)

Proof. Without loss of generality, assume that X = 0. The Frobenius norm of

a square matrix A= [a1, . . . ,an] is unitarily invariant, ‖FAF∗‖2F = ‖A‖2F, because

‖FA‖2F =

n∑
i=1

‖Fai‖2 =
n∑
i=1

‖ai‖2 = ‖A‖2F = ‖A∗‖2F. Thus,

E
[
‖C−CN‖2F

]
= E

[
‖CF−CN

F ‖2F
]
=
∑n
i,j=1 E

[∣∣(CF)i,j − (CN
F )i,j

∣∣2]=∑n
i,j=1 Var

[(
CN

F

)
i,j

]
,

because the sample covariance is unbiased, E
[(
CN

F

)
i,j

]
= (CF)i,j .Lemma 4 in the Appendix now

gives Eq. (??). To prove Eq. (??), we consider the diagonal entries in the spectral domain,

E
[
‖C−DN‖2F

]
= E

[∥∥CF−DN
F

∥∥2
F

]
=
∑N
i=1 E

[∣∣∣(CF)i,i−
(
CN

F

)
i,i

∣∣∣2]=∑n
i=1 Var

[
(CN

F )i,i
]
,

and use Lemma 4 again.�

Since the eigenvalues of covariance are always nonnegative, we have λiλj ≥ 0, therefore the

spectral diagonal covariance decreases the expected squared error of sample covariance:
:::
The

:::::::
purpose

::
of

:::
the

:::::::
spectral

::::::::::::
transformation

::
is
:::

to
:::::
bring

:::
the

:::::::::
covariance

:::
to

:
a
::::::::
diagonal

::::
form

::::::::::::
CF= FCF∗,

::::::
where

:
F
:::

is
:::::::::
orthogonal

:::::::::::::
transformation.

:::::::::::
Specifically,

:::
the

:::::
rows

::
of

::::
the

:::::::
spectral

::::::::::::
transformation

::::::
matrix

::::
F∗

::
are

:::::::::::
orthonormal

:::::::::::
eigenvectors

::
of

:::
the

::::::::::
covariance

::
C.

:::::
This

::
is

:::
the

::::::::
situation,

::::
e.g.,

:::::
when

:::
the

:::::::::
ensemble

:::::::
members

::::
Xi

:::
are

:::::::
sampled

::::
from

::
a
:::::::::::
second-order

::::::::
stationary

:::::::
random

::::
field

:::
on

:
a
::::::::::
rectangular

:::::
mesh,

::::
and

::
the

:::::::
Fourier

:::::
basis

::
is

::::
used.

::::::
Then,

:::::
using

::::::::::
(CF)i,j = 0

:::
for

:::::
i 6= j,

:::
we

:::
get

::::
that

:::
the

::::::::
expected

::::
error

:::
of

:::
the

::::::
spectral

::::::::
diagonal

:::::
model

:::::::
consists

::
of

:::
the

:::::::
diagonal

:::::
terms

::
in
:::
the

:::::::::
frequency

::::::
domain

:::::
only,

E
[
‖C−DN‖2F

]
≤=

:
E

[∥∥∥∥CF
:
−CF

:

N◦I
:

∥∥∥∥2
F

]
,=

n∑
i=1

::::

(∣∣∣∣(CF
::

)
i,i
:

∣∣∣∣2+::

(
CF
::

)
i,i
:

(
CF
::

)
i,i
:

)

=
2

N − 1

n∑
i=1

::::::::::

∣∣∣∣(CF
::

)
i,i
:

∣∣∣∣2.: (10)
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:::::::::::
Consequently,

E
[
‖C−DN‖2F

]
≤ E

[
‖C−CN‖2F

]
.

::::::::::::::::::::::::::::::
(11)

with equality only if all λiλj = 0,
:::::::::::::::::
(CF)i,i (CF)j,j = 0,

:::
for

::
all

:
i 6= j, that is, only in the degenerate

case when the exact covariance
::::::::
covariance

::::
CF:::

and
::::
thus

:
C has

::::
have

:
rank at most one. To compare

the error terms further, note that (
∑n
i=1λi)

2
=
∑n
i,j=1λiλj =

∑n
i,j=1,i6=j λiλj +

∑n
i=1λ

2
i ,

::
To

::::::
assess

::::
the

::::::::::::
improvement

::::::
gained

::::
by

:::
the

::::::::
spectral

::::::::
diagonal

::::::
model

:::
in

::::
Eq.

:::::
(11),

:::::::
denote

::
the

:::::::::::
eigenvalues

:::
of

:::
C

::::
by

::::::::::::::::
λi = (CF)i,i = λi,:::::

and
:::::::
without

:::::
loss

:::
of

:::::::::
generality

:::::::
assume

:::::
that

::::::::::::::::::::
0≤ λ1 ≤ λ2 ≤ ·· · ≤ λn.

:::
The

:::::
error

::::::::
estimates

::::
(Eqs.

::
9
:::
and

:::
10)

::::
can

::
be

::::
now

::::::
written

::
as

E
[
‖C−CN‖2F

]
=

2

N − 1

n∑
i=1

λ2i +
1

N − 1

n∑
i,j=1
i 6=j

λiλj .

:::::::::::::::::::::::::::::::::::::::::::

(12)

:::
and

E
[
‖C−DN‖2F

]
=

2

N − 1

n∑
i=1

λ2i .

:::::::::::::::::::::::::::

(13)

::::
Note

:::
that

:(
n∑
i=1

λi

)2

=

n∑
i,j=1

λiλj =

n∑
i,j=1,i6=j

λiλj +

n∑
i=1

λ2i ≥
n∑
i=1

λ2i ,

::::::::::::::::::::::::::::::::::::::::::::::::

(14)

which shows that the error of the sample covariance depends on the `1 norm of the eigenvalues

sequence,

E
[
‖C−CN‖2F

]
= 1

N−1

(∑n
k=1λ

2
k +(

∑n
k=1λk)

2
)
= 1

N−1

(
‖{λk}nk=1‖

2

`2 + ‖{λk}
n
k=1‖

2

`1

)
,

E
[
‖C−CN‖2F

]
=

1

N − 1

 n∑
k=1

λ2k +

(
n∑
k=1

λk

)2
=

1

N − 1

(
‖{λk}nk=1‖

2

`2
+ ‖{λk}nk=1‖

2

`1

)
,

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

while the error of the spectral diagonal approximation
:::::
model depends only on the `2 norm,

E
[
‖C−DN‖2F

]
=

2

N − 1
‖{λk}nk=1‖

2

`2
,

E
[
‖C−DN‖2F

]
=

2

N − 1
‖{λk}nk=1‖

2

`2
,

:::::::::::::::::::::::::::::::::

which is weaker
:::
than

:::
the

::̀

1
:::::
norm

:
as the state

:::::
space dimension n→∞. The improvement depends

on the rate of decay of the eigenvalues as the index k→∞
::::::
k→∞. Note that the eigenvalues of the

covariance (if it exists) of a random element in an infinitely dimensional Hilbert space must satisfy

the trace condition
∑∞
k=1λk <∞, (e.g., Da Prato, 2006). The eigenvalues of the covariance in many
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physical systems obey a power law, λk ≈ k−α with α > 1, (e.g., Gaspari and Cohn, 1999). Suppose

that λk = ck−α
:::::::::
λk = ck−α and n→∞. Then,

‖{λk}nk=1‖
2

`2
→
∞∑
k=1

k−2α≈
∞∫
1

≈
∞∫
1

::::

x−2αdx=
1

2α− 1
,

‖{λk}nk=1‖
2

`1
→
∞∑
k=1

k−α≈
∞∫
1

≈
∞∫
1

::::

x−αdx=
1

α− 1
,

which gives the error ratio E
[
‖C−DN‖2F

]
/E
[
‖C−CN‖2F

]
→ 0 as

α→ 1+ :::::::::::::::::::::::::::::::
E
[
‖C−DN‖2F

]
/E
[
‖C−CN‖2F

]
→ 0

:::
as

::::::::
α→ 1+,

::::
that

::
is,

::::::
when

:::
the

::::::::::
eigenvalues

::::::
decay

:::::
slowly. Other considerations of similar ratios can be found in Furrer and Bengtsson (2007).

Theorem 1 is related to but different from the estimate in Furrer and Bengtsson (2007, Eq. 12),

which applies to the case when the mean known exactly rather than the sample covariance here.

Also, the analysis in Furrer and Bengtsson (2007) is in the physical domain rather than in the

spectral domain.

::::::
Several

::::::::::
concluding

:::::::
remarks

:::
are

::
in

::::::
order.

:::::::::::::::::::::::::::::::
Furrer and Bengtsson (2007) consider

:::::::
tapering

::
to
::::

the

:::::::
diagonal

::
in

::::
the

:::::::
physical

::::::
space,

:::
but

::::::::
diagonal

::::::::::
covariance

::
in

:::
the

::::::::
physical

:::::
space

::
is
::::::

never
::::
used

:::
in

::::::::::
applications.

::::
The

::::::
present

:::::::
method

::
is
::::::
EnKF

::::
with

::::::::
diagonal

:::::
model

:::
in

:
a
:::::::
spectral

:::::::
domain,

::::::
where

::
it

::
is

:::::::::
reasonable

::
to

:::::
expect

::::
that

:::
the

:::::::::
covariance

:::
will

:::
be

::::::::::::
approximately

::::::::
diagonal.

:::::
While

:::
the

:::::::
spectral

::::::::
diagonal

::::::::::
formulation

::::::::
improves

:::
the

:::::::::::::
approximation

:::
for

:::::
small

:::::::::
ensembles,

::::
the

::::::
spectral

::::::::
diagonal

::::
does

:::
not

::::::::
converge

::
to

:::
the

:::::::::
covariance

::
as

::::::::
N →∞,

:::::
unless

:::
the

:::::::::
covariance

::
is
::::::::
diagonal

::
in

:::
the

:::::::
spectral

:::::
basis.

:

::::::::
Equations

:::
(9)

::::
and

::::
(10),

::::::::::
respectively

::::
(12)

::::
and

:::::
(13),

:::
can

:::
be

::::::
written

::
in

:::
the

:::::
form,

::::::::
proposed

:::
by

:::
an

:::::::::
anonymous

::::::::
reviewer,

:

E[||C−CN ||2F]
::::::::::::

=
1

N − 1
Tr(C2)+

1

N − 1
(Tr(C))

2

:::::::::::::::::::::::::::::

(15)

E[||C−DN ||2F]
::::::::::::

=
2

N − 1
Tr(C2),

::::::::::::::

(16)

::::
using

:::
the

::::
fact

::::
that

:::
the

:::::
trace

::
of

::
a

:::::
matrix

:::
is

:::::::
invariant

::
to
:::::::::

similarity
:::::::::::::
transformation.

::::
The

::::::::::
comparison

:::
(Eq.

::::
11)

::::
also

::::::
follows

:::::
from

::::
Eqs.

::::
(15)

::::
and

::::
(16)

::
by

::::::
noting

::::
that

:::::::::::::::::
Tr(C2)≤ (Tr(C))

2
:::
for

:::
all

:::::::
positive

::::::::::
semidefinite

::
C,

::::::
which

:::
can

::
be

:::::
seen,

::::
e.g.,

::::
from

::::
Eq.

::::
(14).

6 Spectral EnKF algorithms

We will show that the analysis step can be implemented very efficiently in cases of practical interest.

We drop the ensemble members index in all update formulas to make them more readable. Note that

when using all the following formulas, it is necessary to perturb the observations.

9



6.1 State consisting of only one
:::::::
gridded variable, completely observed

Assume that the state consists of one
::::::
gridded

:
variable, e.g., X ∈ Rn, and that we can observe the

whole system state, i.e., the observation function is the identity, H= I, and observations areY ∈ Rn.

Assume also that the observation noise covariance matrix is cI, where c > 0 is a constant. In this

special case, we can do the whole update in the spectral space, since it is possible to transform the

innovation to the spectral space, and the analysis step (Eq. 8) becomes

Xa =X −F∗DN
F

(
DN

F + cI
)−1

F(X −Y ) .

Note that the matrices DN
F and DN

F + cI are diagonal, so any operation with them, such as inver-

sion or multiplication, is very cheap. The matrix F is never formed explicitly. Rather, the multipli-

cations of F and F∗ times a vector are implemented by the fast Fourier transform (FFT) or discrete

wavelet transform (DWT). This is the base case of the FFT EnKF (Mandel et al., 2010a, b) and the

wavelet EnKF (Beezley et al., 2011), respectively.

6.2 Multiple variables on the same grid, one variable completely observed

In a typical model, such as numerical weather prediction, the state consist usually of more than one

variable. Assume the state consist of m different variables all based on the same grid of length n.

Then each variable can be transformed to the spectral space independently, and we have the state

vectorX ∈ Rn·m and the transformation matrix in the block form

X =


X1

X2

...

Xm

 , F=


F̃ 0 · · · 0

0 F̃
...

...
. . . 0

0 · · · 0 F̃

 , (17)

where each blockX1 is a vector of length n and F̃ is n by n transformation matrix.

Assume also that the whole state of the first variable X1 is observed, and again the covariance

of observation error is cI. In this case, the observation operator is
::
the

:
one by m block matrix of the

form H= [I 0 · · · 0]. In the proposed method, we approximate the crosscovariancess between the

variables also by the diagonal of the sample covariance in spectral space, DN
F =

[
DN
i,j

]m
i,j=1

, where

Di,j is
:::
the matrix containing only diagonal elements from the sample covariance matrix between

transformed variables F̃Xi and F̃Xj . With this notation, the analysis step (Eq. 8) becomes

Xa =


Xa

1

...

Xa
m

=


X1

...

Xm

−

F̃∗DN

1,1

...

F̃∗DN
m,1

(DN
1,1 + cI

)−1
F̃(X1−Y ) . (18)

Note that again the matrix to be inverted is diagonal and full-rank, and the transformation F̃ is

implemented by
:
a
:
call to FFT or DWT, so the operations are computationally very efficient. A related

10



method using interpolation and projection was proposed for the case when the model variables are

defined on non-matching grids (Beezley et al., 2011).

6.3 Multiple variables on the same grid, one variable observed at a small number of points

This situation occurs, e.g., when assimilated observations are from discrete stations. In this case,

the observation matrix is H= [H1 0 · · · 0], where H1 has a small number of rows, one for each

data points
::::
point, and X and F are the same as in Eq. (17). We substitute the diagonal spectral

approximation into the analysis step (Eq. 8) directly, and Eq. (18) becomes

Xa =


X1

...

Xm

−

F̃∗DN

1,1

...

F̃∗DN
m,1

 F̃(H1F̃
∗DN

1,1F̃H
∗
1 +R

)−1(
H1
::
X1−Y

)
. (19)

The solution of a system of linear equations with the matrix H1F̃
∗DN

1,1F̃H
∗
1+R in Eq. (19) does

not present a problem, because its dimension is small by assumption, and F̃H∗1 is easy to compute

explicitly by the action of FFT on the columns of H∗1. Note that in this case, the data noise covariance

R may be arbitrary.

6.4 State consisting of more variables, one partly observed

Consider the situation when the number of observation points is too large for the method of Sect. 6.3

to be feasible, but only one variable on a contiguous part of the mesh is observed. The typical exam-

ple of this type may be radar images, which cover typically only a part of domain of the numerical

weather prediction model.

:::
The

:::::::
method

::::
will

::
go

:::::::
through

:::
for

::::
any

:::::::
observed

::::::
subset

::
of

::::::
entries

:::
of

:::
the

:::::::
gridded

:::::::
variable

:::
X1,

::::
but

::
the

:::::::::::
performance

::::
will

::::
vary.

::::
The

:::::::::::
performance

:::::
tends

::
to

::
be

::::::
better

::::
when

::::
the

:::::::
observed

::::
and

::::::::::
unobserved

:::::
entries

:::
of

:::
X1 ::

fill
::::

two
::::::::::
subdomains

::
of

:::
the

:::::::
physical

:::::::
domain

::::
with

:
a
:::::::::

relatively
::::
small

::::::::
boundary

::::::::
between

:::::
them.

::
A
:::::::
detailed

:::::::::::
investigation,

::::::::
however,

::
is

:::::::
planned

:::
for

:::::::::
elsewhere.

Suppose that observations (Y )j of the values of the first variable (X1)j are available only for

a subset of indices j ∈M ⊂ {1, . . . ,n}. Augment the forecast state by an additional variable X0.

For j = 1, . . . ,n, set (X0)j = (X1)j if j ∈M , (X0)j = (Y )j = 0 if j /∈M . We can now use the

analysis update (Eq. 18) with the augmented state X̃ = (X0,X1, . . . ,Xm) and observation Ỹ =

(Y ,0, . . . ,0), to get the augmented analysis X̃
a
= (Xa

0,X
a
1, . . . ,X

a
m), and dropXa

0.

Note that the innovations to the original variables are propagated through the spectral diagonal ap-

proximation of cross covariance between the original and augmented variables. Since this covariance

is not spatially homogeneous, a Fourier basis will not be appropriate, and computational experiments

in Sect. 7 confirm that wavelets indeed perform better.
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7 Computational experiments

In all experiments, we use the usual twin experiment approach. A run of the model from one set

of initial conditions is used to generate a sequence of states, which plays the role of
:::
the truth. Data

values were obtained by applying the observation operator to the truth; the data perturbation was

done only for ensemble members within the assimilation algorithm. A second set of initial conditions

is used for data assimilation and for a free run, with no data assimilation, for comparison. The error

of the free run should be an upper bound on the error of a reasonable data assimilation method.

We evaluate the filter by the root mean square error, RMSE =

(
1
n

∑n
i=1

∣∣∣(X)i−
(
X

a
)
i

∣∣∣2)1/2

,

whereX
a

is the analysis

RMSE =

(
1

n

n∑
i=1

∣∣(X)i−
(
X
)
i

∣∣2)1/2

,

::::::::::::::::::::::::::::::::

:::::
where

::
X

::
is
:::
the

:
ensemble mean,

:::::::
forecast

::
or

:::::::
analysis,

:
X is the true state, and n is the number of the

grid points xi. In the case when the state consist
::::::
consists

:
of more than one variable, such as in the

shallow water equations, we evaluate the error of each variable independently. While the purpose of

a single analysis step is to balance the uncertainties of the state and the data rather than minimalize

:::::::
minimise

:
the RMSE, the RMSE values over multiple time steps are used to evaluate how well the

data assimilation fulfills its overall purpose to track the truth.

We evaluate the RMSE of the the standard EnKF, marked as EnKF in the legend of the figures,

and the spectral diagonal EnKF with the discrete sine transform, discrete cosine transform, and

the Coiflet 2,4 discrete wavelet transform (Daubechies, 1992), marked as DST, DCT, and DWT,

respectively.

7.1 Lorenz 96

In the Lorenz 96 model (Lorenz, 2006), the state consists of one variable Xt ∈ RK , Xt =

(x1, . . . ,xK), governed by the differential equations

dxj
dt

= xj−1xj+1−xj−1xj−2−xj +F, j = 1, . . . ,K,

where the values of xj−K and xj+K are defined to be equal to xj for each j = 1, . . . ,K, and F is

a parameter.

:::
Our

:::::::::::
experiments’

:::::
setup

::::::
follows

:::
the

:::
one

::::
used

::
in

::::::::::::::::::::::::
Lorenz and Emanuel (1998). We set the parameter

F = 8, which causes the system
:::::
model to be strongly chaotic. The timestep of

::::
time

:::
step

::
of

:::
the

:
model

was set to 0.01s and the analysis cycle was 1s
::::
0.01

::::
time

:::
unit

::::
with

:::::::::::
assimilation

::::
every

::::
0.05

:::::
time

::::
unit,

:::::
which

::
is

:::::::::
equivalent

::
to

::::::::::
assimilation

::::
into

:
a
::::::::::::
climatological

::::::
model

:::::
every

:
6
:::::
hours. The data covariance

was diagonal, with diagonal entries equal to 0.04
:::
and

:::
the

:::::::
standard

::::::::
deviation

::
of

::::::::::
observation

::::
error

::::
was

::
set

::
to

:::::
F/40. The ensemble and the initial conditions for the truth were generated by sampling from
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N(0.0005,0.01). The ensemble
::::::::::::
N(F/4,F 2/4),

::::
and

:::
spin

:::
up

::
for

:::
18

::::
time

::::
units

::::::::::
(equivalent

:
to
:::
90

:::::
days)

:::
was

:::::::::
performed.

::::::::::::
Additionally,

:::::
while

:::
the

:::
true

::::
state

::::
was

::::::::
advanced

:::::
using

:::
the

::::
true

:::::
values

:::
of

::::::
F = 8,

:::
the

::::::::
ensemble

:::::::
members

:::::
were

::::::::
advanced

:::::
using

:::
the

::::
value

::::::
0.95F

::
in

:::
the

::::::
Lorenz

::::::
model.

:

:::
The

::::
only

:::::::::
difference

::::
from

:::
the

:::::::::
experiment

::
in
:::::::::::::::::::::::::::
Lorenz and Emanuel (1998) was

:::
the

:::::::::
dimension

::
of

:::
the

::::::
model,

::::::
where

:::
we

::::
used

::::
256

:::::::
instead

::
of

:::
40.

:::
We

::::::
chose

:::
256

:::::::
because

:::::::
dyadic

:::::
length

:::
of

::::
state

::::::
vector

::
is

:::::::
required

:::::
when

:::::
using

:::::::
wavelet

:::::::::::::
transformation,

:::::::
because

:::
we

::::::
wanted

::
to
::::

test
:::
the

::::::::
proposed

::::::::::
augmented

::::::::
algorithm

::::
with

::
a

:::::::::
significant

::::::
number

:::
of

::::::::::
observations

::::
and

:::::::
because

:::
we

::::::
wanted

:::
to

::::
have

::
a

:::::::::
significant

::::::::
difference

:::::::
between

::::::::
ensemble

::::
size

::::
and

::::
state

:::::::::
dimension.

:::
To

:::
test

:::
the

:::::::
chaotic

::::::::
properties

:::
of

:::
this

::::::
model

::
we

:::::::::
performed

::::
two

:::::::::::
independend

::::::::::
simulations

:::::
with

::::
very

:::::
close

:::::
initial

:::::::::
conditions

::::
and

::::::::
measured

::::
the

::::::::
difference

::
in
:::::

each
::::
time

::::
step

:::::::
between

::::
the

:::::
states

:::::
using

:::::::::
maximum

:::::
norm.

::::::
Initial

::::::
values

:::
for

:::
the

::::
first

::::::::
simulation

:::::
were

::::::::
generated

::
as

::::
i.i.d.

:::::::
random

::::::::
variables

::::
from

::::::::::::::
N
(
F/4,F 2/4

)
,
:::
and

:::
the

:::::
initial

::::::
values

:::
for

::
the

:::::::
second

:::::::::
simulation

::::
were

::::::
created

:::
by

:::::::::
perturbing

:::
the

:::
the

::::
first

:::
set

::
of

:::::
initial

::::::
values

::::
with

:::::
white

:::::
noise

::::
with

:::::::
variance

:::::
equal

::
to
:::::::
0.0001.

::::
We

:::::::::
performed

:::
this

::::::::::
experiment

:::
for

::::
both

:::::
state

::::::::::
dimensions,

:::
40

:
and

the truth were moved forward for 10 s, then the assimilation starts.
::::
256.

::::
The

:::::
results

:::::
(Fig.

:::
1a)

:::::
show

:::
that

:::
the

::::::
change

:::
of

:::
the

::::
state

:::::::::
dimension

::::
does

::::
not

:::::
affect

:::
the

:::
rate

:::
of

:::::::::
divergence

::
of

::::
two

:::::::
initially

:::::
close

::::::::
solutions.

::::
Fig.

::
1b

::::
and

:::
Fig.

:::
1c

:::::
show

:::
one

:::::::
solution

:::
of

::::::
Lorenz

::
96

::::::
model

::::
with

:::::
state

:::::::::
dimension

::
40

::::
and

:::
256

::::::::::
respectively

::::
after

:::
50

::::
time

::::
units

:::
for

:::::::::
illustration

::
of

:::
the

:::::::
chaotic

:::::::
character

:::
of

:::
the

::::
state.

:

In the case when the whole state is observed, spectral filters with ensemble size N = 4 (Fig. 2a)

already decrease the error significantly compared to a run with no assimilation, while the standard

EnKF actually increases the error. For all filters, the error eventually decreases with the ensemble

size at the standard rate N−1/2, but
::
the

:
spectral EnKF shows the error decrease from the start, while

the EnKF lags until the ensemble size is comparable to the state dimension, and even then its RMSE

is significantly higher (Fig. 2b).

Next, consider the case when only the first m points of a grid are observed. In the legend, DCT-S

and DWT-S are the method with the discrete cosine transform, and the Coiflet 2,4 discrete wavelet

transform, respectively, with the standard analysis update (Eq. 8), while DCT-A and DWT- A use the

augmented state method from Sect. 6.4. Figure 3 shows that the spectral diagonal method decrease

::::::::
decreases the RMSE, while the standard EnKF is unstable. This observation is consistent with the

result of Kelly et al. (2014), which shows that, for a class of dynamical systems, the EnKF remains

within a bounded distance of truth if sufficiently large covariance inflation is used and if the whole

state is observed. The augmented state method DWT-A with wavelet transformation gave almost the

same analysis error as DCT-S, which is using the spectral diagonal filter with the exact observation

matrix, while the cosine basis, which implies a homogenenous random field, resulted in a much

larger error (method DCT-A). A similar behavior was seen with a smaller number of observed points

as well, but the error reduction in spectral diagonal EnKF was smaller (not shown).
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7.2 Shallow water equations

The shallow water equations can serve as a simplified model of atmospheric flow. The state

Y = (h,u,v) consists of water level height h and momentum
::::::::
velocities

:
u,v in x and y directions,

governed by the differential equations of conservation of mass and momentum,

∂h

∂t
+
∂(uh)

∂x
+
∂(vh)

∂y

∂(vh)

∂y
:::::

= 0,

∂(hu)

∂t

∂(hu)

∂t
:::::

+
∂

∂x

∂

∂x
::

(
hu2 +

1

2
gh2
)
+
∂(huv)

∂y

∂(huv)

∂y
::::::

= 0,

∂(hv)

∂t

∂(hv)

∂t
:::::

+
∂(huv)

∂x
+

∂

∂y

∂

∂y
::

(
hv2 +

1

2
gh2
)
= 0,

where g is gravity acceleration, with reflective boundary conditions, and without Coriolis force or

viscosity. The equations were discretized
:::::::::
discretised on a rectangular grid size 64×64 with horizon-

tal distance between grid points 150km and advanced by the Lax–Wendroff method with the time

step 1s. The initial values where
::::
were

:
water level h= 10km, plus Gaussian water raise of height

1km, width 32 nodes, in the center of the domain, and u= v = 0. See Moler (2011, Chapter 18) for

details.

We have used two independent initial conditions, one used for the truth and another for the en-

semble and the free run. The only difference was the location of the initial wave. Both states were

moved forward for 4
:
3 h. Then the ensemble was created by adding random noise (with prescribed

background covariance). Then, all states were moved forward for another hour
:
3
:::::
hours, and assim-

ilation starts 5h
::
6h

:
after the model initialization

::::::::::
initialisation. All assimilation methods start with

the same forecast in the first assimilation cycle.
:::
2-D

:::::
tensor

:::::::
product

::::
FFT

:::
and

:::::
DWT

::::
were

:::::
used

::
in

:::
the

:::::::
diagonal

:::::::
spectral

:::::
EnKF.

::::
The

:::::::::
observation

:::::
error

:::
was

:::::::
assumed

::
to

::::
have

::::
zero

:::::
mean

:::
and

:::::::
variance

::::::::
1000m2

::
in

:
h
::::
and

::::::::::::
1000kgm s−1

::
in

:
u
::::
and

::
v.

The background covariance for initial ensemble perturbation was estimated using samples taken

every second from time tstart = 4h
::::::
minute

::::
from

::::
time

:::::::::
tstart = 3h

:
to time tend = 6h, and modified by

tapering the sample covariance matrix CN as B=CN ◦T, where the tapering matrix T had the

block structure

T=


A 0 0

0 A 0

0 0 A

+0.9


0 A A

A 0 A

A A 0

 ,
where the entry between nodes (ia, ja) and (ib, jb) is (A)a,b = exp(−|ia− ib|)exp(−|ja− jb|).
2-D tensor product FFT and DWT were used in the diagonal spectral EnKF. The observation

error was taken with zero mean and variance 1000m2 in h
::::
Note

::::
that

::::::
matrix

:::
T

::::::
could

:::
be

:::
also

::::::::
rewritten

:::::
using

:::::::::
Kronecker

:::::::
product

:::
as

:::::::::::::::::
T=K⊗ (M⊗M),

::::::
where

:::
K

::
is

:::::
3× 3

::::::
square

::::::
matrix

::::
with

:::::::
elements

::::::::::
(K)i,i = 1,

:::::::::::
(K)i,j = 0.9

::
if
:::::
i 6= j

::::
and

:::
M

::
is
:::::::
64× 64

::::::
square

::::::
matrix

:::::
with

::::::::
elements
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::::::::::::::::::
(M)i,j = exp(|i− j|).

:::::
Since

::::
both

:::::::
matrices

:::
K and 1000kgm s−1 in u and v. The forecast ensemble

was created by adding random noise with the covariance B 4h after the model initialization. To

relax the ensemble members, the model was run for another hour before the assimilation started.

So the first assimilation was performed 5 h after the model initialization. After the first assimilation,

another 4 assimilation cycles were performed every 60s.
::
M

:::
are

:::::::
positive

:::::::
definite,

::::::
matrix

::
T

::
is

::::
also

::::::
positive

:::::::
definite.

:

When the full state is observed, the spectral diagonal method decreased the RMSE in all variables

dramatically (Fig. 4), unlike the standard EnKF. When only the water level is observed, the RMSE

in spectral diagonal EnKF decreases less, but still much more that in the standard EnKF (Fig. 5).

8 Conclusions

A version of the ensemble Kalman filter was presented, based on replacing the sample covariance

by its diagonal in the spectral space, which provides a simple, efficient, and automatic localization.

We have demonstrated efficient implementations for several classes of observation operators and

data important in applications, including high-dimensional data defined on a continuous part of the

domain, such as radar or satellite images. The spectral diagonal was proved rigorously to give a lower

mean square error that
:::
than

:
the sample covariance. Computational experiments with the Lorenz 96

problem and the shallow water equations have shown that the analysis error drops very fast for

small ensembles, and the method is stable over multiple analysis cycles. The paper provides a new

technology
::::::::
technique

:
for data assimilation , which can work with minimal computational resources,

because an implementation needs only an orthogonal transformation, such as the fast Fourier or

discrete wavelet transform, and manipulation of vectors and diagonal matrices. Therefore, it should

be of interest in applications.

:::
The

::::::
present

:::::::
method

::::
uses

:::::::::
orthogonal

::::::::::::
transformation,

:::
but

:::::::::::
orthogonality

::
is
:::
not

::
a

::::::::
necessary

::::::::
condition

::
for

::
a
::::::::

diagonal
::::::::::

assumption
:::

in
::::::::

general;
::::::::
diagonal

::::::::::::
approximation

:::::
with

::::::
frames

:::::
was

::::::::
proposed

:::
in

:::::::::::::::::::::
Pannekoucke et al. (2007).

::::
The

::::::::
question

::
of

:::::::
further

:::::::
reducing

::::
the

:::::::
number

::
of

::::::::::
parameters

::::
and

::::
thus

:::::::
sampling

::::::
noise,

::
as

:::
in,

::::
e.g.,

:::::::::
functions

::
of

:::
the

:::::::
Laplace

::::::::
operator,

::
is
::::

also
:::

of
:::::::
interest.

::::::
When

:::::::
spectral

::::::::::::
diagonalization

::
is
:::::

used
::
in

:::
the

:::::::::
horizontal

::::::
planes,

:::
the

::::::::
question

::
is

::::
how

::
to

:::::::
connect

:::::::::
horizontal

::::::
sheets

::::
along

:::
the

:::::::
vertical

:::::::::
dimension.

::
In

:::::::::::::::::::::::::::::
Pannekoucke (2008, Appendix D),

::::::
wavelet

:::::::
packets

:::
are

::::
used

::
to

::::
take

::::::::
advantage

::
of

:::
the

:::::::::
orthogonal

:::::
basis

::::::::
dictionary

::::
they

:::::::
provide.

::::::
These

:::::
issues

::::
will

::
be

::::::
studied

:::::::::
elsewhere.

:

9 Properties of sample covariance matrix

:::
The

:::::::
method

::::::::
described

::
in
:::::

Sect.
:::
6.2

::
is
:::::::

general
::::
and

:
it
::::::

allows
::::::::
arbitrary

:::::
linear

::::::::::
observation

:::::::::
operators,

:::
but

::
an

::::::
inverse

::::
(i.e.,

:::::::
solving

:
a
:::::::

system)
::
in
:::

the
::::::::::

observation
:::::
space

::
is
::::::::
required.

::::
The

::::::::::::
computational

::::
cost

:::
then

::::::
grows

::
as

:::
the

::::
cube

::
of

::::
data

::::::::::
dimension.

::::
This

::::
issue

::
is

::::
well

::::::
known

::
in

:::::::
spectral

:::::::::
variational

::::::::
methods;
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:::::::::
techniques

::::
used

::
in

:::
the

::::::::
literature

::::::
include

::::::::::
aggregating

:::
and

:::::::::::
interpolating

:::::::::::
observations

::
to

:::::
create

::::::
“super

:::::::::::
observations”

::
as

:::::::
gridded

:::::
arrays

:::::::::::::::::::::::
(Parrish and Derber, 1992).

Let Uk ∼N (0,C) be independent random vectors in Rn or Cn. For each Uk, we have the

Karhunen–Loève decomposition

Uk =
∑n
j=1λ

1/2
j θj,kuj ,θj,k ∼N(0,1) independent,

where λj ≥ 0 are the eigenvalues and uj orthonormal eigenvectors of the covariance matrix C. Let

F= [u1, . . . ,un]
∗
. By a direct computation, we have in the basis of the eigenvectors:

Lemma 2The random vectorUk
F = FUk ∼N (0,CF), where CF = FCF∗ is a diagonal matrix

with λ1, . . . ,λn on the diagonal.

Appendix A:
:::::
Error

:::::::
estimate

:::
of

::::::
sample

::::::::::
covariance

::::::
matrix

Next, we use Eq. (20) to compute an expansion of the sample covariance entries
:::
We

:::::
prove

:::
an

::::::::
extension

::
of

:::::::::::::::::::::::::
(Mallat, 1998, Prop. 10.14) to

::::::
sample

:::::::::
covariance

:::
of

::
a

::::::
random

::::::
vector

:::::
with

::::::::
unknown

::::
mean.

Lemma 3
::
1. Let CN

F be the sample covariance of U1
F, . . . ,U

N
F , cf., (Eq. 5). Then,(

CN
F

)
i,j

=
(λiλj)

1/2

N−1

(∑N
k=1 θi,kθj,k −

1
N

∑N
l=1 θi,l

∑N
m=1 θj,m

)
.

::
Let

::::::::::::::
Uk ∼N (µ,C),

:::::::::::
k = 1, . . . ,N ,

:::
be

::::
i.i.d.

::::::
vectors

::
in

:::
Rn

::
or

::::
Cn,

:::
and

:

(CN )i,j =
1

N − 1

(
N∑
k=1

((
Uk
)
i
− 1

N

N∑
l=1

(
Uk
)
i

)((
Uk
)
j
− 1

N

N∑
l=1

(
U l
)
j

)∗)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(A1)

::::
their

::::::
sample

:::::::::
covariance.

::::::
Then,

E
[∣∣∣(CN

)
i,j
− (C)i,j

∣∣∣2]= 1

N − 1

(∣∣∣(C)i,j

∣∣∣2 +(C)i,i (C)j,j

)
.

:::::::::::::::::::::::::::::::::::::::::::::::::::

Proof. From the definition
::::
The

::::
proof

:::::::
follows

:::
that

::
of

:::::::::::::::::::::::::::
(Mallat, 1998, Prop. 10.14) with

::::::::::
adjustments

::
for

:::
the

::::::::
presence of the sample covariance,(

CN
F

)
i.j

= 1
N−1

∑N
k=1

(
Uk

F−UF

)
i

(
Uk

F−UF

)∗
j

= 1
N−1

∑N
k=1

(
Uk

F− 1
N

∑N
l=1U

l
F

)
i

(
Uk

F− 1
N

∑N
m=1U

m
F

)∗
j

= 1
N−1

(∑N
k=1

(
Uk

F

)
i

(
Uk∗

F

)
j
− 1

N

∑N
l=1

(
Uk

F

)
l

∑N
m=1

(
U l

F

)
m

)
=

(λiλj)
1/2

N−1

(∑N
k=1 θi,kθj,k −

1
N

∑N
l=1 θi,l

∑N
m=1 θj,m

)
. �
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Finally, we use the expansion (
::::
mean

:::
in Eq. A1)to derive the variance

::::
(A1).

::::
Each

:::::::
element

:
of the

sample covariance entries.

Lemma 4 The variance of each entry of CN
F is

Var
[(
CN

F

)
i,j

]
=


2λ2

i

N−1 if i= j,

λiλj

N−1 if i 6= j.

Proof. The sample covariance
::::::::::::
cNi,j =

(
CN

)
i,j:

is unbiased estimate of the true covariance
:::::::::
covariance

:::::::::::
ci,j = (C)i,j ,::

so
:

E
[∣∣cNi,j − ci,j∣∣2]= E

[∣∣cNi,j∣∣2]− |ci,j |2 .
:::::::::::::::::::::::::::::::

::::::
Without

::::
loss

::
of

:::::::::
generality,

:::::::
assume

::::::
µ= 0,

:::::::::
subtracting

:::
the

:::::::
constant

::
µ

::
if

::::::::
necessary,

::::
and

:::::::
compute

:

E
[∣∣cNi,j∣∣2]

::::::::

= E

∣∣∣∣∣ 1

N − 1

(
N∑
k=1

uki
(
ukj
)∗− 1

N

N∑
l=1

uli

N∑
m=1

(
umj
)∗)∣∣∣∣∣

2


::::::::::::::::::::::::::::::::::::::::::::::

=
1

(N − 1)
2 E

∣∣∣∣∣
N∑
k=1

uki
(
ukj
)∗∣∣∣∣∣

2
− 1

N (N − 1)
2 E

 N∑
k,l,m=1

uki
(
ukj
)∗ (

uli
)∗
umj


:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

− 1

N (N − 1)
2 E

 N∑
k,l,m=1

(
uki
)∗
ukju

l
i

(
umj
)∗

:::::::::::::::::::::::::::::::::::::

+
1

N2 (N − 1)
2 E


∣∣∣∣∣∣

N∑
l,m=1

uli
(
umj
)∗∣∣∣∣∣∣

2
 .

:::::::::::::::::::::::::::::::::

(A2)

::::
Now

:::
we

:::::::
utilize

:::
the

:::::::
Isserlis

::::::::
theorem,

:::::
also

::::::
known

:::
as

:::::::
Wick’s

::::::::
formula,

::::::
which

::::::
states

::::
that

:::
if

::::::::::::
A1,A2,A3,A4::::

have
::::
joint

:::::::
centred

:::::::
gaussian

::::::::::
distribution,

::::
then

:

E [A1A2A3A4] = E [A1A2]E [A3A4] +E [A1A3]E [A2A4] +E [A1A4]E [A2A3] ,
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

::
cf., so from Lemma 3,

Var
[(
CN

F

)
i,i

]
= E

[∣∣∣(CN
F

)
i,i
−E

[(
CN

F

)
i,i

]∣∣∣2]= E
[∣∣∣(CN

F

)
i,i
− (CF)i,i

∣∣∣2]

= E
[(

(λiλi)
1/2

N−1

(∑N
k=1 θ

2
i,k − 1

N

∑N
k,l=1 (θi,kθi,l)

)
−λi

)2]

=
λ2
i

(N−1)2 E
[(∑N

k=1 θ
2
i,k

)2]
− 2λ2

i

N(N−1)2 E
[∑N

k,l,m=1 θ
2
i,kθi,lθi,m

]
+

λ2
i

N2(N−1)2 E
[(∑N

k,l=1 θi,kθi,l

)2]
− 2λ2

i

(N−1)E
[∑N

k=1 θ
2
i,k

]
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+
2λ2

i

N(N−1)E
[∑N

k,l=1 θi,kθi,l

]
+λ2i .

The random variables θi,k are i.i.d., so it follows that

E [θi,kθi,lθi,mθi,n] =



3 if k = l =m= n,

1 if k = l,m= n,k 6=m,

1 if k =m,l = n,k 6= l,

1 if k = n, l =m,k 6= l,

0 otherwise,

and we can compute all the expected values in Eq. (A3),

E

( N∑
k=1

θ2i,k

)2
 =

∑N
k=1 E

[
θ4i,k

]
+
∑N
k=1

∑N
l=1,l 6=kE

[
θ2i,lθ

2
i,k

]
= 3N +N(N − 1) =N(N +2),

E

 N∑
k,l,m=1

θ2i,kθi,lθi,m

 =
∑N
k=1 E

[
θ4i,k

]
+
∑N
k,l=1,l 6=kE

[
θ2i,kθ

2
i,l

]
= 3N +N(N − 1) =N(N +2),

E


 N∑
k,l=1

θi,kθi,l

2
 =

∑N
k,l,m,n=1 E [θi,kθi,lθi,mθi,n]

=
∑N
k=1 E

[
θ4i,k

]
+3
∑N
k,l=1,l 6=kE

[
θ2i,kθ

2
i,l

]
= 3N2,

E
[∑N

k=1 θ
2
i,k

]
=
∑N
k=1 E

[
θ2i,k

]
=N,

E
[∑N

k,l=1 θi,kθi,l

]
=
∑N
k=1 E

[
θ2i,k

]
=N.

Together, we get

Var
[(
CN

F

)
i,i

]
= λ2i

(
N(N +2)

(N − 1)2
− 2(N +2)

(N − 1)2
+

3

(N − 1)2
− 2N

N − 1
+

2

N − 1
+1

)
=

2λ2i
N − 1

.

The variance of the off-diagonal entry
(
CN

F

)
i,j

, i 6= j, is

Var
[(
CN

F

)
i,j

]
= E

[∣∣∣(CN
F

)
i,j
−E

[(
CN

F

)
i,j

]∣∣∣2]= E
[∣∣∣(CN

F

)
i,j
− (CF)i,j

∣∣∣2]

= E
[(

(λiλj)
1/2

N−1

(∑N
k=1 θi,kθj,k −

1
N

∑N
k,l=1 (θi,kθj,l)

)
− 0
)2]

=
λiλj

(N−1)2 E
[(∑N

k=1 θi,kθj,k

)2]
− 2λiλj

N(N−1)2 E
[∑N

k,l,m=1 θi,kθj,kθi,lθj,m

]
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+
λiλj

N2(N−1)2 E
[(∑N

k,l=1 θi,kθj,l

)2]
.

The integrals
::::::::::::
Isserlis (1918).

:::::
Since

:::
our

:::::::
samples

:::
are

::::::::::
independent

::::
and

:::::::::
E
[
uki
]
= 0,

:::
we

:::::
know

::::
that

E
[
uki
(
ukj
)∗]

= cij , E
[
uki u

l
j

]
= 0 if k 6= l,

:::::::::::::::::::::::::::::::::::

:::
and

:::
we

:::
get

E
[
uki
(
ulj
)∗

(umi )
∗
unj

]
=

::::::::::::::::::::

|ci,j |21{k=l,m=n}+ ci,icj,j1{k=m,l=n}
:::::::::::::::::::::::::::::::

+E [uiuj ]E
[
(uj)

∗
(ui)

∗]
1{k=n,l=m}.

::::::::::::::::::::::::::::::

::::::::
Applying

:::
this

:::::::
equation

:
in Eq. (A3)are

E

( N∑
k=1

θi,kθj,k

)2
 =

∑N
k,l=1 E [θi,kθj,kθi,lθj,l] =

∑N
k,l=1 E [θi,kθi,l]E [θj,kθj,l]

=
∑N
k=1 E [θi,kθi,k]E [θj,kθj,l] =N,

E

 N∑
k,l,m=1

θi,kθj,kθi,lθj,m

 =
∑N
k,l,m=1 E [θi,kθi,l]E [θj,kθj,m]

=
∑N
k=1 E [θi,kθi,k]E [θj,kθj,k] =N,

E


 N∑
k,l=1

θi,kθj,l

2
 = E

[(∑N
k=1 θi,k

∑N
k,l=1 θj,l

)2]

= E
[(∑N

k=1 θi,k

)2]
E
[(∑N

l=1 θj,l

)2]
=N2.

So, the variance of an off-diagonal element is

Var
[(
CN

F

)
i,j

]
=

λiλj
(N − 1)2

(N − 2+1) =
λiλj
N − 1

. �

:
,
::
we

:::
get

:

E
[∣∣cNi,j∣∣2]= 1

N − 1

(
ci,icj,j +N |ci,j |2

)
:::::::::::::::::::::::::::::::::

:::
and

:::
the

::::
final

:::::
result

:::::::
follows,

E
[∣∣cNi,j − ci,j∣∣2]= 1

N − 1

(
ci,icj,j +N |ci,j |2

)
− |ci,j |2 =

1

N − 1

(
ci,icj,j + |ci,j |2

)
. �

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
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Figure 1.
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(a)
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Growth

::
of

:::
the

:::::::
difference

::
in

:::
the

:::::::
maximum

:::::
norm

:::::
‖ · ‖∞ ::

of
:::
two

::::::
initially

::::
close

::::::
solution

::
of

:::::
Lorenz

:::
96

:::::
model.

:::
The

:::::
initial

::::
states

:::::
differ

::
by

::::
white

::::
noise

::::
with

::::::
variance

:::::
10−4.

:::
The

::::::
growth

::
of

::
the

::::::::
difference

::
is

:::::
shown

::
for

:::
the

:::
state

:::::::::
dimensions

::
of

::
40

:::
and

:::
for

::
the

::::
state

::::::::
dimension

:::
256.
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(b)
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A
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solution
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of
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Lorenz
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96
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model
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with
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state
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dimension
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40

::::
after
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50
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time
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units.
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A
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solution
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of
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Lorenz
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96
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model
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with
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state
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dimension
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after
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50
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time
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units.
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Figure 2. Mean RMSE from 10 realizations for Lorenz 96 problem, the whole state observed, (a) increasing

analysis cycles with ensemble size 4, state dimension 256, (b) increasing ensemble size, analysis cycle 1, state

dimension 64.
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Figure 3. Mean RMSE from 10 realizations for the Lorenz 96 problem, ensemble size 16, state dimension 256.

(a) first 128 points observed, (b) first 64 points observed.
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Figure 4. RMSE of ensemble mean of one realization of three assimilation cycles. Full state was observed. The

length of assimilation cycle 60 s
::::::
minutes, ensemble size 20. (a) water height (b) momentum

:::::
velocity

:
in the x

direction (c) momentum
::::::
velocity in the y direction.
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Figure 5. Mean RMSE of ensemble mean from 5 independent repetitions. Ensemble size 20, only water height

observed. (a) water height (b) momentum
:::::
velocity

:
in the x direction (c) momentum
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velocity
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in the y direction.
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