10

Manuscript prepared for Nonlin. Processes Geophys.
with version 2015/04/24 7.83 Copernicus papers of the IATEX class copernicus.cls.
Date: 28 September 2015

Letter to the Editor

Marc Bocquet!, Patrick Nima Raanes®?, and Alexis Hannart*

ICEREA, Joint laboratory Ecole des Ponts ParisTech and EDF R&D, Université Paris-Est,
Champs-sur-Marne, France

’Nansen Environmental and Remote Sensing Center, Bergen, Norway

3Mathematical Institute, University of Oxford, United-Kingdom

4“IFAECI, CNRS-CONICET-UBA, Buenos Aires, Argentina

Correspondence to: Marc Bocquet
(bocquet@cerea.enpc.fr)

Dear Editor,

Please find in this document:
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— A discussion on the numerical cost of the methods discussed in the paper,

— The computation of the ensemble spread in the numerical section and a short discussion about

its value compared to the root mean square error.
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The authors.



Response to Referee 1

M. Bocquet et al.
26 September 2015

We would like to thank the reviewer for his/her time, his/her input and valuable suggestions. Please find
below our answers to your questions and how we have handled your suggestions.

e (1)p.11, L. 17-18: Can the problem be stated in terms of new pdfs, followed by a straightforward derivation
from Bayes formula without requiring additional changes (e.g., gauge fixing, etc.) in any of the steps of
the filter/smoother?

Using state space variables, the predictive prior can be derived without the gauge fixing difficulty as
shown in Bocquet (2011). Thus, the answer to the referee’s question is ’yes’. However, the difficulty
comes from the additional elaboration of deriving the predictive prior in terms of w, which is a redundant
parameterization. Accounting for the gauge degrees of freedom in w cannot be avoided and our derivation
is the most immediate we could find. It is genuinely based on the use of the probability density function
of the predictive prior (as opposed to Bocquet (2011) where the gauge fixing is performed in the cost
function, not the pdfs, which is less convincing). In other words, what you suggest is actually what we
have done.

e (2) p. 18-19, Section 5: Could you diagnose results using the spread vs. skill tests, at least in some of
the experiments? Such results may be more revealing than the individual RMSE and standard deviation
results.

The use of the RMSE indicator is very stringent because of the cycling over very long runs. We also
occasionally use the spread of the ensemble to diagnose specific difficulties. As suggested, we have added
the plot of the spread in Fig. 4, for the two panels. The spread is quite consistent with the RMSE as long
as the nonlinearity is not too strong. When the nonlinearity is stronger, the Gaussian statistical view of
the ensemble is not valid anymore and the RMSE diverges from the spread. This corresponds to the regime
where iterative methods such as the iterative ensemble Kalman filter/smoother become significantly more
efficient than the EnKF. Thank you for the suggestion.

o (3) p.29, L.21: Eq.(57) requires the inverse of XX and square root calculations. How practical is this
formulation, given that a realistic state is of high dimensions effectively prevent such matrix operations,
while a low-dimensional system in principle does not require localization?

This was a typo. This is not the inverse but the generalized inverse or Moore-Penrose inverse . This comes
directly from Egs.(54,55). Thank you for spotting this inconsistency! This Moore-Penrose inverse can
be obtained for instance from the low-dimensional singular value decomposition of X (of rank < N —1).
The inverse square root and the second square root of this formula are the numerically costly part of
the formula, which for high-dimensional systems could only be estimated through Lanczos/Arnoldi-type
methods.

o Technical corrections:

(1) p.43: Fig.5 (also discussion on p.30, L.1-20): The azxes labels (numbers) are not visible. Could you
redraw this figure to make axes labels more visible?

We agree. Thank you for the suggestion. We have redrawn the figure with more visible labels in the
revised manuscript.

References

Bocquet, M.: Ensemble Kalman filtering without the intrinsic need for inflation, Nonlin. Processes Geophys.,
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Response to Referee 2

M. Bocquet et al.
26 September 2015

We would like to thank the reviewer for his/her time, his/her input and valuable suggestions. Please find
below our answers to your questions and how we have handled your suggestions.

In my opinion, the authors would do a service if they could supply a little bit more information about the
expected computational cost in both time and storage to apply the EnKF-N with the various hyperprior
assumptions as a function of the number of degrees of freedom in the dynamical model. A comparison to
the cost of the EnKF algorithm would be enlightening.

The additional numerical cost is usually negligible compared to the EnKF but depends on the implemen-
tation (primal or dual) and the type of estimation method (filtering or smoothing). We have added a
discussion on the matter in the numerical illustration section of the revised manuscript. Thank you for
the suggestion.

1. P. 1092, Line 26: Localization can be required even if not rank deficient for EnKFs or in presence of
non-gaussian/non-linear effects.

We are not sure about required in the rank-sufficient case. But we definitely agree that it is useful in this
case of the presence of non-Gaussian/non-linear effects even in the rank-sufficient case. We have changed
the sentence accordingly.

2. P. 1093, Line 18: Traditional methods only make assumptions about first two moments, not all moments
as implied here.

Indeed. Thanks for pointing out to this confusing statement. This has been corrected in the revised
manuscript.

3. P. 1094, line 10: I don’t know what the authors mean by doing the analysis in “ensemble” space.
This should be clarified here before the subsequent use. I am aware of terminologies like “model” and
“observation” space, but don’t know how this relates.

By ensemble space, we mean the affine space spanned by the ensemble, or to a large extend equivalently
in the vector space where the coefficient vector w is defined (i.e. RY). We are now more explicit in this
outline.

4. P. 1094, line 16: Not clear why the posterior should relaz to the prior for “quasi-linear”.

We agree that this sentence is confusing and potentially wrong out of a more precise context. Hence,
the sentence has been changed into: “...we discuss caveats of the method in regimes where the posterior
ensemble is drawn to the prior ensemble.”

5. P. 1095, line 6: Don’t see why non-linear dynamics has to be partially responsible. Could this not all
be due (at least for second moments) to a degenerate ensemble?

This is the point of section 4, where it is explained why non-linear dynamics is a sufficient cause for using
inflation, although not a necessary cause.

6. P. 1099, line 20: This assumption is only justified in the case that the ensemble is approximately
non-degenerate. Is that ever the case in any real applications you have in mind?

This assumption remains valid with high-dimensional models using local analysis. In that case the as-
sumption that x is to be found in the ensemble subspace is only local and not global.

7. P. 1106, line2: “Not as performant: : :” You should probably say a little bit more about what you
mean by this statement and what experiments you performed to explore it. In particular, it seems that the
EnKF-N corresponds to a single inflation value for the whole ensemble, while some of the other methods
allow different values for different variables. In a nonlinear model system, the latter could clearly have
advantages.



To avoid any confusion that would endow the EnKF-N more than what is meant, we have clarified the
sentence. “Nevertheless, for the experiments described in Section 5, they are not as performant with
the specific goal of accounting for sampling errors as the EnKF-N". Note that used in conjunction with
localization, the EnKF-N yields local inflation factors. Hence, it can be adaptive in time and space.

8. P. 1107, paragraph starting at line 14. This paragraph was unclear. Obviously violation of the EnKF
assumptions can come either from nonlinearity or degeneracy, and which dominates (or even exists)
depends on the application. Here, you seem to be saying that nonlinearity is somehow the generic cause.
As an aside, what happens if you apply the EnKF-N in a case where the EnKF is sufficient (linear,
Gaussian, ensemble big enough to span growing and neutral directions)?

We assume that by degeneracy you mean that the ensemble does not span the full, true, range of uncer-
tainty. That said, under the assumption that the model is perfect and that the ensemble is big enough
to span the unstable subspace, then nonlinearity is indeed the cause of sampling errors, not degeneracy
(our claim). In order to back this claim, we have mentioned the linear Gaussian case where inflation is
unnecessary. So we believe you understood this paragraph well. We have tried to make the paragraph
clearer and have insisted a bit more on the perfect model assumption, since model error would drastically
change this picture.

As for your second question, the original EnKF-N formulation leads to unsatisfying suboptimal (if not
divergent for some models) performance in the regime where the EnKF is sufficient. This issue and how to
amend the EnKF-N are the objects of Section 6. With the correction, the EnKF-N diagnoses an inflation
that goes to 1 when the nonlinearity is made insignificant.

9. P. 1109, bottom. You need to give a little bit more details about these comparison experiments,
in particular stating that the ensemble sizes were the same, and possibly commenting on the relative
computational cost.

Yes, the ensemble sizes were the same which we have written explicitly in the revised manuscript. We
have added the suggested discussion on the computational cost of the EnKF-N in this section.

10. P. 1110, line 14: Nonlinearity is the “profound cause” only because the ensemble size of 20 is larger
than the number of positive local Lyapunov exponents?

We have made this statement more precise in the revised manuscript. However, note that the (global)
EnKF-N does not correct for degeneracy assuming Jeffreys’ hyperprior is used. No inflation can do that.
Hence, we do not believe that “profound cause” is exaggerated.

11. P. 1110, line 24: You need to give a bit more information about the 2D barotropic model.

We have removed “and a 2D-barotropic model” but expanded on its description in the beginning of
the section which, moreover, refers to Bocquet and Sakov (2014). This was a standard forced 2D and
homogeneous turbulence model which is governed by the barotropic vorticity advection equation. However,
it was only fully tested with a global EnKF-N (this model may have a limited number of unstable modes
depending on the number of vortices and hence on the forcing power spectrum). Evaluation of a local
EnKF-N with this model has been performed, but only in specific regimes.

12. Section 6, line 1: This barely nonlinear regime is truly problematic for deterministic ensemble fil-
ters, but is known to be a problem for EnKFs in low-order models (see for instance Anderson 2010 on
nongaussian filter updates). However, the problem there generally goes away with larger models. Is that
anticipated for the issue here?

The issue was even more pathological in the original EnKF-N since it did not even behave as a deterministic
EnKF in the very weakly nonlinear regime.

We do not have any clear anticipation. A global EnKF-N with a larger model requires a larger ensemble
(we experimented with the already mentioned 2D barotropic vorticity equation but also a 2D shallow water
model), so that the pathology (N/(N — 1) — 1) indeed decreases. It is true that in those experiments,
we never encountered such problem. But, on the other hand with a local EnKF-N, we found that that
the problem could re-emerge.

18. Section 6.2, start: This notion of “relazing to prior” seemed confusing to me. The observations have
no information, so the posterior is the prior. I’'m not sure what you are “relaxing” from in this discussion.
Thank you for the suggestion.

We agree that “relaxing to prior” could be confusing. Following your remark, we have change the
terminology throughout the revised manuscript. Thank you for the suggestion.



e 14. P. 1115, line 20: I think that this use of “climatological” is misleading. The required statistics do not
come from the climate of the model as this terminology would normally imply. Instead, they are statistics
from the “climatology” of the prediction system including the assimilation. To sample them, one would
need to run a high-quality assimilation system (large ensemble, well-tuned) and sample the statistics from
that.

The term “climatological” is sometimes used in the hybrid/EnVar literature where the authors rightfully
meant a time-independent representation of the error statistics of the data assimilation system. Nonethe-
less, we do agree with you: this term can be a source of confusion. We have modified the whole manuscript
to account for your remark. Thank you for the suggestion.

o 15. P. 1124, first paragraph. The practical use of the methodology is to avoid the need to tune multiplicative
inflation for perfect model experiments. This avoids the cost of doing multiple runs to tune the inflation.
However, given that this is a major result of the paper, there needs to be a little bit more discussion of the
computational cost (time and storage) to implement the EnKF-N compared to a basic EnKF. Some of the
adaptive inflation methods already in the literature that are referenced in the paper are generally able to
produce smaller RMSE that the best tuned single inflation value for the dynamical systems examined here.
These methods have very small incremental cost compared to the base EnKF. It would also be important
to indicate the expected scaling of the computational cost for the EnKF-N versus the EnKF as the model
size grows.

We have added a discussion in Section 5 on the numerical cost of the EnKF-N (with the Jefrreys’ hyper-
prior). In all the experiments and models we tested the EnKF-N with, the numerical cost was negligible
(but they are indeed low-dimensional models).

With imperfect and/or inhomogeneous model scenarios (i.e. realistic cases) we do agree that adaptive
inflation schemes such in Anderson (2007) are potentially superior, but not necessarily in the perfect-model
and homogeneous scenarios we experimented upon. Note that the EnKF-N can sometimes outperform a
run with the best tuned single inflation value (a very significant effect with the Lorenz 63 since the EnKF-
N better diagnoses the change of lobes of the attractor). More generally, the framework of the EnKF-N
allows to discriminate inflation used to counter sampling errors and inflation used to counter model errors.
But, in its basic form, it cannot be seen as a competitive method in a realistic EnKF experiment with a
significantly imperfect model.

References

Anderson, J. L.: An adaptive covariance inflation error correction algorithm for ensemble filters, Tellus A, 59,
210224, 2007.
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Abstract

The ensemble Kalman filter (EnKF) is a powerful data assimilation method meant for high-
dimensional nonlinear systems. But its implementation requires fixes such as localization
and inflation. The recently developed finite-size ensemble Kalman filter (EnKF-N) does not
require multiplicative inflation meant to counteract sampling errors. Aside from the prac-
tical interest of avoiding the tuning of inflation in perfect model data assimilation exper-
iments, it also offers theoretical insights and a unique perspective on the EnKF. Here,
we revisit, clarify and correct several key points of the EnKF-N derivation. This simpli-
fies the use of the method, and expands its validity. The EnKF is shown to not only rely
on the observations and the forecast ensemble but also on an implicit prior assumption,
termed hyperprior, that fills in the gap of missing information. In the EnKF-N framework,
this assumption is made explicit through a Bayesian hierarchy. This hyperprior has been
so far chosen to be the uninformative Jeffreys’ prior. Here, this choice is revisited to im-
prove the performance of the EnKF-N in the regime where the analysis strongly-—relaxes
te-is_strongly dominated by the prior. Moreover, it is shown that the EnKF-N can be ex-
tended with a normal-inverse-Wishart informative hyperprior that additionally—introduces
climatotoegieat-introduces additional information on error statistics. This can be identified as
a hybrid 3B-Var/EnkFEnKF-3D-Var counterpart to the EnKF-N.

1 Introduction

The ensemble Kalman filter (EnKF) has become a popular data assimilation method for
high-dimensional geophysical systems (Evensen, |2009, and references therein). The flow-
dependence of the forecast error used in the analysis is its main strength, compared to
schemes using static background statistics such as 3D-Var and 4D-Var.

However, to perform satisfyingly, the EnKF may require the use or inflation and/or local-
ization, depending on the data assimilation system setup. Localization is required in the
rank-deficient regime, in which the limited size of the ensemble leads to an empirical error
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covariance matrix of too small rank, as is often the case in realistic high-dimensional sys-
tems (Houtekamer and Mitchell, 2001; Hamill et al., 2001} Ott et al., 2004). It can also be
useful in a rank-sufficient context in the presence of non-Gaussian/non-linear effects.

Inflation is a complementary techniqgue meant to increase the variances diagnosed by
the EnKF (Pham et al., |1998}; /Anderson and Anderson, (1999). It is usually intended to
compensate for an underestimation of uncertainty. This underestimation can be caused
either by sampling error, an intrinsic deficiency of the EnKF system, or model error, an
extrinsic deficiency.

A variant of the EnKF, called the finite-size ensemble Kalman filter (EnKF-N) has been
introduced in Bocquet (2011); |Bocquet and Sakov| (2012). It has subsequently been suc-
cessfully applied in[Bocquet and Sakov| (2013} |2014) in an ensemble variational context. It
has been shown to avoid the need for multiplicative inflation usually needed to counteract
sampling errors. In particular, it avoids the costly chore of tuning this inflation.

The EnKF-N is derived by assuming that the ensemble members are drawn from the
same distribution as the truth, but makes no further assumptions on the ensemble’s accu-
racy. In particular, the EnKF-N, unlike the traditional EnKFs, does not make the approxima-
tion that the sample first- and second-order moments coincide with the actual moments of
the prior (which would be accessible if the ensemble size N was infinite).

Through its mathematical derivation, the scheme underlines the missing information be-
sides the observations and the ensemble forecast, an issue which is ignored by traditional
EnKFs. This missing information is explicitly compensated for in the EnKF-N using a so-
called hyperprior. In Bocquet (2011), a simple choice was made for this hyperprior, namely
the Jefirey—s-Jeffreys’ prior, which is meant to be as much non-informative as possible.
While the EnKF-N built on deffreys-Jeffreys’ prior often performs very well with low-order
models, it may fail in specific dynamical regimes because a finer hyperprior is needed (Boc-
quet and Sakov, 2012). Other choices were made in the derivation of the EnKF-N which
remain only partly justified or insufficiently clear.

The objective of this paper is to clarify several of those choices, to answer several ques-
tions raised in the above references, and to advocate the use of improved or new hyperpri-
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ors. This should add to the theoretical understanding of the EnKF, but also provide a useful
algorithm. Specifically, the EnKF-N allows the development of data assimilation systems
under perfect model conditions without worrying about tuning the inflation. In the whole
paper, we will restrict ourselves to perfect model conditions.

In Section 2 the key ideas and algorithms of the EnKF-N are recalled and several as-
pects of the approach are clarified. It is shown that the redundancy in the EnKF centered
perturbations leads to a subtle but important correction to the EnKF-N when the analysis is
performed in ensemble-space-the affine space defined by the mean state and the ensemble
perturbations. In Section (3 the ensemble update step of the EnKF-N is revisited and clar-
ified. In Section |4}, the nonlinearity of the ensemble forecast step and its handling by the
EnKF-N, and more generally multiplicative inflation, are discussed. The corrections to the
EnKF-N are illustrated with numerical experiments in Section [5 Sections|[6]and[7]discuss of
modifying or even changing the hyperprior. In Section[6] we discuss caveats of the method
in regimes where the posterior ensemble shouldrelax-is drawn to the prior ensemble;-such
as-when-the-dynamies-are-quasi-tinear. Simple alternatives to the Jeffreys’ hyperprior are

proposed. Finally, a class of more informative priors based on the normal-inverse-Wishart

distribution and permitting climatelogical-informationto-be-used-to incorporate additional
information on error statistics is introduced and theoretically discussed in Section [/} Con-

clusions are given in Section

2 The finite-size ensemble Kalman filter (EnKF-N)

The key ideas of the EnKF-N are presented and clarified in this section. Additional insights
into the scheme and why it is successful are also given.

2.1 Marginalizing over potential priors

Bocquet| (2011) (later Boc11) recognized that the ensemble mean x and ensemble error

covariance matrix P used in the EnKF may be different from the unknown first- and second-

order moments of the true error distribution, x, and B, where B is a positive definite matrix.
4
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The mismatch is due to the finite-size of the ensemble which leads to sampling errors,
partially induced by the nonlinear ensemble propagation in the forecast step (see Section4).
Figure [1] illustrates the effect of sampling error when the prior is assumed Gaussian and
reliable, whereas the prior actually stems from an uncertain sampling using the ensemble.

The EnKF-N prior accounts for the uncertainty in x; and B. Denote E = [x1,x2,...,xy] the
ensemble of size N formatted as an M x N matrix where M is the state space dimension,
x = E1/N the ensemble mean where 1 = (1,---,1)T, and X = E—x1T the perturbation ma-
trix. Hence, P = XXT /(N —1) is the empirical covariance matrix of the ensemble. Marginal-
izing over all potential x; and B, the prior of x reads

p(x[E) = / dx,0B p(x|E. x5, B)p(xs, BIE). (1)

The symbol dB corresponds to the Lebesgue measure on all independent entries HK] d[B]j,
but the integration is restricted to the cone of positive definite matrices. Since p(x|E,x;, B)
is conditioned on the knowledge of the true prior statistics and assumed to be Gaussian, it
does not depend on E, so that:

p(x|E) = /dxdep(x]xb, B)p(xp, B|E). 2)

Bayes’ rule can be applied to p(x;, B|E), yielding

p(XE) = 5 [ icBa(xix,. B)o(El. Bp(x:.B). @

Assuming independence of the samples, the likelihood of the ensemble E can be written
p(E[xs,B) Hp Xn |Xy, B) (4)

The last factor, p(x,, B), is the hyperprior. The-This distribution represents our beliefs about

the forecasted filter statistics, x, and B, prior to actually running any filter. This distribution
5

TodeJ UOISSNOSI(]

TodeJ UOISSNOSI(]

TodeJ uOISSNOSI(]

TodeJ UOISSNOSI(]



20

is termed hyperprior because it represents a prior for the background information in the first
stage of a Bayesian hierarchy.

Assuming one subscribes to this EnKF-N view on the EnKF, it shows that additional
information is actually required in the EnKF, in additional to the observations and the prior
ensemble which are potentially insufficient to make an inference.

A simple choice was made in Boc11|for the hyperprior: the deffrey-s-Jeffreys’ prior is an
analytically tractable and uninformative hyperprior of the form

M+1

py(xp,B) x |B|7 2, (5)

where |B| is the determinant of the background error covariance matrix B of dimension
M x M.

2.2 Predictive prior

With a given hyperprior, the marginalization over x; and B, Eq. (3), can in principle be car-
ried out to obtain p(x|E). We choose to call it a predictive prior to comply with the traditional
view that sees it as prior before assimilating the observations. Note, however, that statisti-
cians would rather call it a predictive posterior distribution as the outcome of a first-stage
inference of a Bayesian hierarchy, where E is the data.

Using Jeffreys’ hyperprior, Boc11| showed that the integral can be obtained analytically
and that the predictive prior is a multivariate T-distribution:

(x—%)(x—%)"
N1 +enP ,

N‘Z

P(X|E) (6)

where |.| denotes the determinant and ey = 1+ 1/N. The determinant is computed in the
space generated by the perturbations of the ensemble so that it is not singular. This distri-
bution has fat tails thus accounting for the uncertainty in B. The factor e, is a result of the
uncertainty in x; if x; were known to coincide with the ensemble mean X, then x5 would
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be 1 instead. For a Gaussian process, ¢y P is an unbiased estimator of the squared error
of the ensemble mean x (Sacher and Bartello, 2008), where 5 stems from the uncertain
x; which does not coincide with x. In the derivation of |Boc11, the P correction comes
from integrating out on x;. Therefore, e can be seen as an inflation factor on the prior
covariance matrix that should actually apply to any type of EnKF.

This non-Gaussian prior distribution can be seen as an average over Gaussian distribu-
tions weighted according to the hyperprior. It can be shown that Eq. (6) can be re-arranged:

N[z

; (7)

p(x|E) {1+ (X—X)Tg\efzv_Pl)T(x—x)}

where P is the Moore-Penrose inverse of P.

In comparison, the traditional EnKF implicitly assumes that the hyperprior is §(B—P)d(x,—
X) where ¢ is a Dirac multidimensional distribution. In other words the background statistics
generated from the ensemble coincide with the true background statistics. As a result, one
obtains in this case the Gaussian prior:

p(x]E)ocexp{—;(x—x)TPT(x—x)}. (®)

2.3 Analysis

Consider a given analysis step of the data assimilation cycle. The observation vector is
denoted y of dimension d. In a Bayesian analysis, p(x|y) = p(y|x)p(x)/p(y), the likelihood
p(y|x) is decoupled from the prior pdf p(x). In the EnKF-N framework we are interested in
p(x|y, E). Bayes’ formula then reads

(y[x, E)p(x|E)

Py, B) = ©)
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But y does not depend on E when conditioned on x: p(y|x, E) = p(y|x). As a consequence,
Bayes’ formula now simply reads within the EnKF-N framework:

p(yl)p(x|E)
p(yIE) 18

This is at odds with the ill-founded claim by [Boc11|that the likelihood still depends on E.
This expression clarifies one of the issue raised in[Boc11.

Let us recall and further discuss the analysis step of the EnKF-N for state estimation. For
the sake of simplicity, the observational error distribution is assumed Gaussian, unbiased,
with covariance matrix R. The observation operator will be denoted H. The-innovation-is
deneted-6=y—FH{x)-Because the predictive prior Eq. @ is non-Gaussian, the analysis is
performed through a variational optimization similarly to the maximum likelihood filter (Zu-
panski, 2005), rather than by matrix algebra as in traditional EnKFs. Working in ensemble
space, states are parameterized by vectors w of size IV such that

p(x|y,E) =

X =X+ Xw. (11)

There is at least one “gauge” degree of freedom in w due to the fact that x is invariant under
w — w + A1, where ) is an arbitrary scalar. This is the result of the linear dependence of
the eentred-centered perturbation vectors.

For reference, with these notations, the cost function of the ensemble transform Kalman
filter (ETKF, Bishop et al., 2001};|Ott et al., [2004) based on Eq. reads:

1

—— [lwl[f, (12)

1
J(w) = EHY_H(i'i_XW)”2R+ >

where {{z{2 =261z -||z|3 = z"R !z and N,, is the orthogonal projector onto the row
space of X. Algebraically, I1,, = X'X where X is the Moore-Penrose inverse of X. Equation
(12) is the direct result of the substitution into Eq. (8) of x by w using Eq. (T1). As explained
by Hunt et al. (2007), one can add the term Hw||I _n,, to the cost function without altering
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the minimum. Denoting ||z||?> = z"z, this leads to:

1 N-1
T(w) =3 ly = H(x+Xw)|[g + —— [lw]*. (13)

2
The added term has been labelled gauge fixing term by Boc11| using standard physics
terminology. The EnKF-N cost function in|Boc11|is

1 N
T(w) =5 ly = HE+Xw) g+ S In (en + w]?) - (14)

It is the result of the substitution of x by w using Eq. into Eq. (7), and of the addition
of the gauge fixing term albeit inside the logarithm, which was justified by extending the
idea of [Hunt et al.| (2007) and the monotonicity of the logarithm. The restriction of x to the
ensemble subspace is an approximation inherent in the traditional EnKFs. By virtue of the
hyperprior, it is not necessarily part of the EnKF-N. However, it is quite justified assuming
the ensemble tracks the unstable subspace of the dynamics.

There is another caveat in the use of the ensemble transform Eq. (11). First of all, the
logarithm of the determinant of the Jacobian matrix should be added to the cost function
since

Inpw(w) = Inpx(x(w)) +In (15)

Ox(w) ‘ _
ow

Had the transformation w — x(w) been nonlinear, the cost function would have been im-
pacted (see for instance |[Fletcher and Zupanski, |2006). However, the standard ensemble
transform is linear which should result in an irrelevant constant. Unfortunately, because of
the gauge degree(s) of freedom of the perturbations, the transformation is is-not injective
and therefore singular, and the determinant of the transformation is zero yielding an unde-
fined constant. Hence, the issue should be addressed more carefully. It will turn out in the
following section that the cost function should be amended in the non-quadratic case.

9
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2.4 Accounting for the gauge degrees of freedom of the ensemble transform

Let us denote N < min(N — 1, M) the rank of X. The number of gauge degrees of freedom
istheng=N — N. The most common case encountered when applying the EnKF to high-
dimensional systems is that the rank of X is N —1 < M, that is to say g = 1 because X1 =
0. A non singular ensemble transform is obtained by restricting w to A/ the orthogonal
complement of the null space, NV, of X. Hence, the ensemble transform:

T: Nt —1WH

W T(W) = Xw (16)

is nonsingular. This amounts to fixing the gauge at zero. With this restriction to A/t the
prior of the ETKF defined over N is

_ N-1, _
o) oo (5197 (17)
whereas the prior pdf of the EnKF-N is
-4
p(W) o (= + W[7) 7. (18)

In principle, the analysis can be performed in N+ using reduced variables w,. € R, looking
for an estimate of the form x = x+ X, w,., where X,. would stand for a reduced perturbation
matrix. To do so, let us introduce the singular value decomposition of the initial perturbation
matrix: X = UZVT, with U € RM*¥ such that UTU = I, X is a diagonal positive matrix in
]RN2, and V ¢ RNV is such that VTV = I 5. The reduced perturbation matrix X, is then
simply given by X, = UX. However, the change of variable w — w, would prevent us from
using the elegant symmetric formalism of the ensemble transform Kalman filter because
the perturbation matrix X, is not centered. Moreover, the new perturbations, X,., are non-
trivial linear combinations of the initial perturbations, X. It is likely to generate imbalances
with nonlinear dynamics. Indeed, it is unlikely that the displacement of the ensemble in
10
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the analysis would be minimized, as opposed to what happens with the ETKF when the
transform matrix is chosen symmetric (Ott et al.l [2004). We applied this change of variable
to a standard ETKF and tested it numerically with the Lorenz-95 low-order model (Lorenz
and Emanuel, [{1998). We obtained much larger displacements and intermittent instabilities
that require more inflation.

Hence, we wish to fix the gauge while keeping the initial perturbations as much as possi-
ble. To do so, the definition of the prior pdfs defined on A/ are extended to the full ensemble
space RY = At @ A/, while maintaining their correct marginal over N'-. For the EnKF, we
can fix the gauge by choosing

N-1
plo) oo (5 ). (19)
as in Eq. which has indeed the correct marginal since p(w) factorizes into indepen-
dent components for A" and N'*-. For the EnKF-N, we can fix the gauge while keeping the
symmetry by choosing

_N+g

p(w) ox (en+[wl?)  * . (20)

It can be seen that this pdf has the correct marginal by integrating out on N, using the

change of variable w — w — /ey + [|[W||*(w — ).

The use of these extended pdfs in the analysis are justified by the fact that the Bayesian
analysis pdf p(w|y) in ensemble space has the correct marginal over N'-. Indeed, if p(y|w) =
p(y|x =X+ Xw) is the likelihood in ensemble space which does not depend on w, then
the marginal of the Bayesian analysis pdf p(wl|y) o p(y|w)p(w) is consistently given by
p(wly) x p(y|w)p(w). We conclude that it is possible to perform an analysis in terms of the
redundant w in place of w.

As opposed to the Gaussian case, the form of pdf Eq. brings in a change in the
EnKF-N when the analysis is performed in ensemble space. The appearance of g in the ex-
ponent is due to a non trivial Jacobian determinant when passing from the ungauged to the

11
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gatge-gauged variables, a minimalist example of the so-called Faddeev-Popov determinant
(Zinn-Justin|, 2002). This consideration generates a modification of the EnKF-N cost func-
tion when using Eg. as the predictive prior. Henceforth, we shall assume g = 1, which
will always be encountered in the rest of the paper. Consequently, the modified EnKF-N has
the following cost function:

N+1

T(w) =3 lly— HGx+ Xw) [+ 2 in (e + [w]?) @

which sheutd-reptace-replaces Eq. (14). This modification, g =0 — 1, as compared with
Boc11}, will be enforced in the rest of the paper. Such a change will be shown to significantly

impact the numerical experiments in Section [5]

3 Update of the ensemble

The form of the predictive prior also has important consequences on the EnKF-N theory.
First of all, the pdfs Eq. or Eq. are multivariate T-distributions, and more specifically
multivariate Cauchy distributions. They are proper, i.e. normalizable to 1, but have neither
first-order nor second-order moments.

3.1 Laplace approximation

Conditioned on B, both the prior and the posterior are Gaussian provided the observation
error distribution is Gaussian which is assumed for the sake of simplicity. Without this condi-
tioning, however, they are both a (continuous) mixture of candidate Gaussians in the EnKF-
N derivation. Therefore, the posterior p(w|y) o p(y|w)p(w) should be interpreted with cau-
tion. As was done in Boc11, its mode can in principle be safely estimated. However, its
moments do not generally exist. They exist only if the likelihood p(y|w) enables it. Even
when they do exist, they do not carry the same significance as for Gaussians.

12
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Hence, the analysis w, is safely defined using the EnKF-N Cauchy prior as the most likely
w of the posterior pdf. But, using the mean and the error covariance matrix of the posterior
is either impossible or questionable because as explained above they may not exist.

One candidate Gaussian that does not involve integrating over the hyperprior, is the
Laplace approximation of the posterior (see |Bishopl 20086, for instance), which is the Gaus-
sian approximation fitted to the pdf in the neighborhood of w,. This way, the covariance
matrix of the Laplace distribution is obtained as the Hessian of the cost function at the min-
imum w,. Refining the covariance matrix from the inverse Hessian is not an option since
the exact covariance matrix of the posterior pdf may not exist. This is a counterintuitive ar-
gument against looking for a better approximation of the posterior covariance matrix rather
than the inverse Hessian.

Once a candidate Gaussian for the posterior has been chesenobtained, the updated
ensemble of the EnKF-N is obtained from the Hessian, just as in the ETKF. The updated
ensemble is

E°=x1T+X,, x*=%X+Xw,. (22)

where x“ is the analysis in state space; w,, is the argument of the minimum of Eq. (21). The
updated ensemble of perturbations X, is given by

X, = VN —1X[H,] Y?U, (23)

where U is an arbitrary orthogonal matrix satisfying Ul =1 (Sakov and Okel [2008) and
where H,, is the Hessian of Eq. (21),

N+ wlwa) Iy — 2wawl

Ho=Y'RTY +(N+ 1)( (24)

(en + wgwa)2

with Y = HX and H the tangent linear of H. The algorithm of this so-called primal EnKF-N is

recalled by Algorithm|[i] Note that the algorithm can handle nonlinear observation operator

since it is based on a variational analysis similarly to the maximum likelihood ensemble filter
13

TodeJ UOISSNOSI(]

TodeJ UOISSNOSI(]

TodeJ uOISSNOSI(]

TodeJ UOISSNOSI(]



20

of|Zupanski| (2005). We will choose U to be the identity matrix in all numerical illustrations of
this paper, and in particular Section[5} in order to minimize the displacement in the analysis
(Ott et al., |2004).

3.2 Theoretical equivalence between the primal and the dual approaches

Boc11| showed that the functional Eq. is generally non-convex but has a global mini-
mum. Yet, the cost function is only truly non-quadratic in the direction of the radial degree
of freedom ||w|| of w, because the predictive prior is elliptical. This remark led |Bocquet and
Sakov| (2012) (later BS12|) to show, assuming H is linear or linearized, that the minimiza-
tion of Eq. can be performed simply by minimizing the following dual cost function over
10,(N+1)/en]:

1 _ -1 en( N+1 N+1 N-+1
D)==6" (R+YCIYT) 6 | - 25
(=507 (REYCIY) To+ == ——In— 5 (25)
whoese-where § =y — H(X). lts global minimum can easily be found since ¢ — D(() is a

scalar cost function. The variable ¢ is conjugate to the square radius |w]||2. It can be seen
as the number of effective degrees of freedom in the ensemble. Once the argument of the
minimum of D((), (s, is computed, the analysis for w can be obtained from the ETKF-like
cost function:

Tw) =2 lly — He+ Xw) 3+ 5 w2, @6)
with the solution:

wo = (YIRIY 4+ Cly) YRS =YT (GR+YYT) 5. (27)
Based on this effective cost function, an updated set of perturbations can be obtained:

Xo= VN _IX[H ] 2U with Ho=YTRIY +Cly. (28)
14

TodeJ UOISSNOSI(]

TodeJ UOISSNOSI(]

TodeJ uOISSNOSI(]

TodeJ UOISSNOSI(]



20

25

As a consequence, the EnKF-N with an analysis performed in ensemble space can be seen
as an ETKF with an adaptive optimal inflation factor A* applied on the prior distribution, and
related to {, by \* = /(N —1)/(,. Provided one subscribes to the EnKF-N formalism, this
tells us that sampling errors can be cured by multiplicative inflation. This is supported by
Whitaker and Hamill (2012) who experimentally showed that multiplicative inflation is well
suited to account for sampling errors whereas additive inflation is better suited to account
for model errors in a meteorological context. Other efficient adaptive inflation methods have
been proposed by, e.g.|Wang and Bishop| (2003); |Anderson| (2007); |Li et al.| (2009); |Zheng
(2009); |Brankart et al.| (2010); Miyoshi| (2011); |lLiang et al.[ (2012); [Ying and Zhang (2015)
for broader uses including extrinsic model error. Nevertheless, from-our-experimentsfor the
experiments described in Section Bl they are not as performant with the specific goal of
accounting for sampling errors as the EnKF-N.

Equation (28), on which the results of BS12|are based, is only an approximation because
it does not use the Hessian of the complete cost function Eq. (21). Only the diagonal term
of the Hessian of the background term is kept:

N+1
Hy~ — 2y, (29)
eN + |lwall
which can be simply written H;, ~ (,ln using ¢, = m shown in |[BS12 to be one of

the optimum conditions. The off-diagonal rank-one correction, —2(N +1)~1¢?w,w/, has
been neglected. This approximation is similar to that of the Gauss-Newton method which
is an approximation of the Newton method where the Hessian of the cost function to be
minimized is approximated by the product of first-order derivative terms and by neglecting
second-order derivative terms. The approximation actually consists in neglecting the co-
dependence of the errors in the radial (||w||) and angular (w/ ||w||) degrees of freedom of
W.

Since the dual EnKF-N is meant to be equivalent to the primal EnKF-N when the observation

operator is linear, the updated ensemble should actually be based on Eq. which can

15
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also be written

2 2
Xo = VN —IX[Ha] 2U with Ha:YTR1Y+§aIN—NC+“1wawZ, (30)

and compared to the approximation Eq. used in|BS12. The algorithm of this so-called
dual EnKF-N is recalled in Algorithm [2 and includes the correction. With Eq. (30), the dual
scheme is strictly equivalent to the primal scheme provided that H is linear, whereas it is
only approximately so with Eq. (28).

The co-dependence of the radial and angular degrees of freedom exposed by the dual
cost function are-is further explored in Appendix

4 Cycling of the EnKF-N and impact of model nonlinearity

We have discussed and amended the analysis step of the EnKF-N. To complete the data
assimilation cycle, the ensemble must be forecasted between analyses. The cycling of the
EnKF-N can be summarized by the following diagram:

Yk Yk+1

[ ] [ ]
ti ti ter1 predictive tht1 (7]
@ ———————————————————— 0 > 0 [ ] [ ]
E£ analysis  Ej  forecast E£+1 prior analysis  Ef

In accounting for sampling error, the EnKF-N framework differs quite significantly from that

of|lvan Leeuwen| (1999); [Furrer and Bengtsson| (2007); \Sacher and Bartello| (2008). Focus-

ing on the bias of the EnKF gain and precision matrix, these studies are geared towards

single-cycle corrections. By contrast, the EnKF-N enables the likelihood to influence the

estimation of the posterior covariance matrix. This can be seen by writing and recognizing

the posterior as a non-uniform mixture of Gaussians, as for the prior. The inclusion of the
16

TodeJ UOISSNOSI(]

TodeJ UOISSNOSI(]

TodeJ uOISSNOSI(]

TodeJ UOISSNOSI(]



20

25

likelihood is what makes the EnKF-N equipped to handle the effects of model nonlinearity
and the sequentiality of data assimilation.

Whith-tinearperfeet-Assuming linear evolution and observation models that are taken as
perfect, and provided the ensemble is big enough to span the unstable and neutral sub-
space, and even though it remains degenerate, inflation or localization are unnecessary in
the ensemble square root Kalman filter (Sakov and Oke, 2008 (Gurumoorthy et al., [2015).
Sampling errors, if present, can be ignored in this case. Therefore, it is tikety-inferred from
this result that inflation is actually compensating for the misestimation of errors generated
by model nonlinearity. Following this line of thought, Boc11| hypothesized that the finite-
size scheme actually accounts for the error generated in the nonlinear deformation of the
ensemble in the forecast step of the EnKF.

A recent study by [Palatella and Trevisan (2015) confirms and clarifies this suggestion.
The authors show that the nonlinear evolution of the error in the extended Kalman filter
generates additional errors unaccounted for by the extended Kalman filter linear propaga-
tion of the error. In a specific example, they are able to avoid the need for inflation with the
40-variable Lorenz-95 model using a total of 24 perturbations (14 for the unstable and neu-
tral subspace and 10 for the main nonlinear corrections). We checked that the same root
mean square errors as shown in table Il of Palatella and Trevisan|(2015) can be achieved by
the EnKF-N and the optimally tuned EnKF with an ensemble of size N = 24. This reinforces
the idea that the EnKF-N accounts, albeit within ensemble space, for the error generated
by nonlinear corrections inside and outside the ensemble subspace. Additionally, note that
the EnKF-N does not show any sign of divergence in the regime studied by [Palatella and
Trevisan| (2015) even for much stronger model nonlinearity.

To picture the impact of inflation on the fully cycled EnKF, let us consider the simplest pos-
sible, one-variable, perfect, linear model x; 1 = azy, with k the time index. If ﬂ%m
the model is unstable, and stable if =<*a? < 1. In terms of uncertainty quantification,
multiplicative inflation is meant to increase the errors covariances so as to account for mis-
estimated errors. Here, we apply the inflation on the prior at each analysis step since the
EnKF-N implicitly does it. Let us denote by, the forecast/prior error variance, r the static ob-
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servation error variance and ay, the error analysis variance. ¢ plays the same role as in the

. . . . _1 . T . .
EnKF-N scheme, so that a uniform inflation is (2. Sequential data assimilation implies the
following recursions for the variances:

apt=Cht+rt and b1 =dlay, (31)

whose asymptotic solution (a = a) is
ifa?<C:a=0 and fa?>(¢:a=(1-¢/a)r. (32)

Now, consider a multivariate model which is the collection of several independent one-
variable models with as many growth factors «. In the absence of inflation, { = 1, the stable
modes, a—<1ta? < 1, converge to a perfect analysis (a = 0) whereas the unstable modes,
a=>1a? > 1, converge to a finite error (a > 0) that grows with the instability of the modes,
as expected. When inflation is used, ¢ < 1, the picture changes but mostly affect the modes
close to neutral (see Fig.[2). The threshold is displaced and the modes with finite asymptotic
errors now include a fraction of the stable modes. The strongly unstable modes are much
less impacted.

In spite of its simplicity and its linearity, this model enables-te-make-makes the link be-
tween the EnKF-N, multiplicative inflation and the dynamics. Ng et al.[(2011); Palatella and
Trevisan| (2015) have argued that, in the absence of model error, systematic error of the
EnKF comes from the error transported from the unstable subspace to the stable subspace
by the effect of nonlinearity. Unaccounted error would accumulate on the stable modes
close to neutrality. As seen above, the use of the EnKF-N, or multiplicative inflation on the
prior, precisely acts on these modes by increasing their error statistics without affecting the
most unstable modes that mainly drive the performance of the EnKF.

5 Numerical experiments

Twin experiments using a perfect model and the EnKF-N have been carried out on sev-
eral low-order models in previous studies. In many cases the EnKF-N, or its variant with
18
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localization (using domain localization), were reported to perform on the Lorenz-63 and
Lorenz-95 models as well as the ETKF but with optimally tuned uniform inflation. With
a two-dimensional system-based-on—abaretropie-forced turbulence model, driven by the
barotropic vorticity advection equation, it was found to perform almost as well as the ETKF
with optimally tuned uniform inflation (Bocquet and Sakov, 2014), although the local EnKF-N

The choice of £y has remained a puzzle in these experiments. It has been reported that
the Lorenz-63 model required ey = 1+ 1/N, whereas the Lorenz-95 model required ey =
1, seemingly owning to the larger ensemble size. It was also previously reported that domain
localization of the EnKF-N with both models required ey = 1+1/N. In the present study, we
have revisited those experiments using the correction g = 0 — 1 of Section &sticking
with the theoretical value e =14 1/N, and the same ensemble sizes. This essentially
reproduced the results of the best choice for € in each case. For these low-order models,
this solved a puzzle: there is no need to adjust ey =1+ 1/N. Hence, the EnKF-N in the
subsequent experiments uses the correctiong=0—1landey =1+1/N.

Figure [3) summarizes the corrections of Sections [2 and |3 It also illustrates the equiva-
lence between the primal and the dual EnKF-N. It additionally shows the performance of
the dual EnKF-N with the approximate Hessian used in BS12, and the performance of the
ensemble square root Kalman filter with optimally tuned uniform inflation. The Lorenz-95
low-order model is chosen for this illustration (Lorenz and Emanuel, [1998). Details about
the model can be found in their article. A twin experiment is performed, with a fully observed
system (H = l;, where d = M = 40), an observation error variance matrix R = 1; which is
also used to generate synthetic observations from the truth. The ensemble size is N = 20.
The time interval between observation updates At is varied which changes the nonlinearity
strength. Varying model nonlinear is highly relevant because, as explained in Section
model nonlinearity is the profound cause of the need for inflation, in this rank-sufficient
context (/V = 20). We plot the mean analysis root mean square error (RMSE) between the
analysis state and the truth state. To obtain a satisfying convergence of the statistics, the
RMSEs are averaged over 10° cycles, after a spin-up of 5 x 103 cycles.
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The performances of the primal and the dual EnKF-N are indistinguishable for the full
At range. The dual EnKF-N with approximate Hessian hardly differs from the EnKF-N, i.e.
using Eq. in place of Eq. (30). However, it is slightly suboptimal for At = 0.05 by about
5%.

Similar experiments have been conducted with the Lorenz-63 model 11963), the
Lorenz-05I1 model model, the Kuramato-Shivashinski model
Tsuzuki, [1975]; [Sivashinskyl, [1977);-and-a2DB-baretrepic-model. These experiments have

yielded the same conclusions.

The additional numerical cost of using the finite-size formalism based on Jeffreys’ hyperprior

is now compared to the analysis step of an ensemble Kalman filter or of an ensemble
Kalman smoother based on the ensemble-transform formulation. The computational cost
depends on the type of methods. Let us first discuss non-iterative methods, such as the

ETKF or a smoother based on the ETKF. If the singular value decomposition (SVD) of R_2 Y
EnKF-N, or EnKS-N, is due to the minimization of the dual cost function Eq. which is
in order to compute the inverse in the state update Eq. (27) or the inverse square root in the
perturbations update Eqg. (30) or Eq. (24). If the data assimilation is iterative (for significantl
nonlinear models) such as the maximum likelihood ensemble filter (Zupanski, [2005) or the
iterative ensemble Kalman smoother (Bocquet and Sakov, 2014) , then the primal approach
of the finite-size scheme can be made to _coincide with the iterative scheme. Examples
of such integrated schemes are given in[Bocquet and Sakov| (2012} [2014) . The additional
cost is often negligible except if the number of expected iterations is small which is the case

Moreover, it is important to notice that the perturbations update as given by Eq. can

induce a significant extra numerical cost as compared to the update of an ETKF. Indeed the
SVD used to compute Eq. used to compute Eq. (30) which might

require another SVD. Howevr using the approximate scheme which consists in neglectin
20
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the off-diagonal term does not make that requirement. Even if the off-diagonal term is
included in the Hessian, the inverse square root of the Hessian could be computed from
the original SDV through a Sherman-Morisson update because the off-diagonal term is of
rank one.

Let us finally mention that no significant additional storage cost is required by the scheme.

6 Performance in the prior-driven regime

The EnKF-N based on the Jeffreys’ hyperprior was found to fail in the limit where the system
is almost linear but remains nonlinear (BS12). This regime is rarely explored with low-order
models but it is likely to be encountered in less homogeneous, more realistic applications.
Figure [ illustrates this failure. It extrapolates the results of Fig. [3|to very small time inter-
vals between updates where the dynamics are quasi-linear. As At decreases the RMSE of
the optimal inflation EnKF decreases as one would expect, while the RMSE of the EnKF-N
based on the Jeffreys’ prior increases.

In this regime, the EnKF-N has great confidence in the prior as any filter would do.
Therefore, the innovation-driven term becomes less imrtant than the prior term Dy(() =

l

% + ML |n L VL in the dual cost function Eq. (25), so that its mode ¢, tends to the
mode of Dy(¢) which is {, = (N +1)/eny = N. Note that an inflation of 1 corresponds to
¢ = N — 1. Hence, in this regime, even for moderately-sized innovations, there is deflation.
The failure of the EnKF-N was empirically fixed in|BS12/by capping ¢, to prevent deflation.

More generally, we believe the problem is to be encountered whenever the prior largely
dominates the analysis (prior-driven regime). This is bound to happen when the observa-
tions are too few, too sparsely distributed, which could occur when using domain localiza-
tion, and whenever they are unreliable compared to the prior. Quasi-linear dynamics also fit
this description, the ratio of the observation precision to the prior precision becoming small
after a few iterations.
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This failure may not be due to the EnKF-N framework. It may be due to an inappropri-
ate choice of candidate Gaussian posterior as described in Sec. (3| Or it may be due to an
inappropriate choice of hyperprior in this regime. Although it seems difficult to devise a hy-
perprior that performs optimally in all regimes, we can suggest two adjustments to Jeffreys’
hyperprior in this prior-driven regime.

6.1 Capping of the inflation

TodeJ UOISSNOSI(]

Here, deflation is avoided by capping (. Firstly, we build the desired dual cost function. ©
Instead of minimizing D(¢) over 0, (N +1)/en], it is minimized over ]0,¢], with 0 << =
(N +41)/en, which defines the dual cost function. ( is a tunable bound which is meanttobe ~ “.
fixed over a wide range of regimes. Following a similar derivation to Appendix A of BS12, ij
one can show that the background term of the primal cost function corresponding to this =
dual cost function is 2
1w =)o )+ X ()
it w2 > Ngl L Ty(w) = N2 in (=n +IIw]) - @3) .
5

The dual and primal cost functions can both be shown to be convex. There is no duality =
gap, which means, with our definitions of these functions, that the minimum of the dual
cost function is equal to the minimum of the primal cost function. By construction, in the —
small innovation range, i.e. |w|? < (N +1)/C —en, the EnKF-N, endowed with this new -
hyperprior, corresponds to the ETKF (Hunt et al., 2007) with an inflation of the priorby (N — &
1)/¢ > 1. Since the hyperprior assumed in the regime of small ||w|| is p(xy,B) = §(B—CP), 7
this could be called the Dirac-Jeffreys hyperprior. ;
Even with the Dirac-Jeffreys hyperprior, it is still necessary to introduce a tiny amount 3
of inflation through ¢ in the quasi-linear regime. This might prove barely relevant in a high- E

dimensional realistic system as it was for the sensitive low-order models that we tested
22
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the scheme with. Even with Lorenz-95, an instability develops over very long experimental
runs withoutin the absence of this residual inflation. Still this remains a theoretical concern.
Moreover, we could not find a rigorous argument to support avoiding deflation in all regimes,
and hence the capping. That is why we propose an alternative solution in the following.

6.2 Smoother relaxation-to-schemes in the priorprior-driven regime

In the limit of R getting very large, the observations cannot carry information, and the en-
semble should not be updated at all, i.e. it should be refaxed-close to the prior ensemble,
with an inflation of 1 ({ = IV —1). Outside of this regime, we do not see any fundamental
reason to constrain ¢ to be smaller than N — 1. A criterion to characterize this regime would
be

1
N-1

= T (Y'RYY), (34)
which computes the ratio of the prior variances to the observation error variances. When
1 tends to zero, the analysis should retax—te-be dominated by the prior and ¢ should
tend to NV — 1. When ¢ drifts away from zero, we do not want to alter the hyperprior and
the EnKF-N scheme, even if it implies deflation. We found several schemes that satisfy
these constraints. Two of them, denoted #—and—->R1 and R2, consist in modifying ¢
into ¢’y and yield a well-behaved mode of the background part of the dual cost function

G = arg?in[Db(C)]i

Ri: ey = 5{Ve_¢ — G=N-e?
- N
o o NAL( N T oo N (Nt o (35)
TN T TN V-1 b= N

The point of these formulae is to make ¢, tend to N — 1 (no inflation) when the criterion v
tends to zero{no-inflation). On the other hand, when v gets bigger (; tends to IV, i.e. to the
23
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original dual cost function’s behavior dictated by Jeffreys’ hyperprior. The implementation
of these schemes is straightforward for any of the Algorithms [{]or[2] since only £ needs to
be modified either in the dual or the primal cost functions.

6.3 Numerical illustrations

The performance of the Dirac-Jeffreys EnKF-N where we choose /(N —1)/¢ = 1.005, and
of the EnKF-N with the smoeothretaxation-te-the-prior-hyperprior corrections (R1) and (R2),
are illustrated with a twin experiment on the Lorenz-95 model in the quasi-linear regime.
Also included are the EnKF-N with Jeffreys’ prior and the ensemble square root Kalman
filter with optimally tuned inflation;-. The RMSEs are plotted as a function of At in [0.01,0.5]
in Fig. [4a.

Another way to make a data assimilation system based on the Lorenz-95 more linear,
rather than decreasing At, is to decrease the forcing parameter to render the model more
linear. Figure illustrates this when F' is varied from 4 (linear) to 12 (strongly nonlin-
ear), with At =0.05, and the same set-up as in Section [5| As anticipated, the EnKF-N
based on deffrey—s-Jeffreys’ hyperprior fails for F' < 7.5. However, the EnKF-N based on
the Dirae-deffrey—s-Dirac-Jeffreys’ hyperprior and the EnKF-N with the retaxation-schemes
R1 and R2 show performances equivalent to the EnKF with optimally tuned inflation. We
remark a slight underperformance of the EnKF-N in the very strongly chaotic regimes com-
pared to the optimally tuned EnKF. We have also check that these good performances also
apply to the Lorenz-63 model.

The spread of the ensemble for the Dirac-Jeffreys EnKF-N has also been plotted in
Fig.4a and Fig.Mb. The value of the spread is consistent with the RMSE except in significantly
nonlinear regimes such as when At > 0.15 and ' = 8, or to a lesser extent when Az = 0.05
error statistics approximation is invalidated so that the RMSE could differ significantly from
the ensemble spread.
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7 Informative hyperprior, covariance localization and hybridization

So far, the EnKF-N has relied on a noninformative hyperprior. In this section we examine,
mostly at a formal level, the possibility to account for etimatotogicat-information-additional,

ossibly independent, information on the error statistics, like an hybrid 3B-Var/ErkFEnKFE-3D-Vat

is meant to (Hamill and Snyder, [2000; Wang et al., |2007a). A single numerical illustration
is intended since extended results would involve much more developments and would be
very model-dependent.

In a perfect model context, we observed that uncertainty on the variances usually ad-
dressed by inflation could be taken care of by the EnKF-N based on Jeffreys’ hyperprior.
However, it does not take care of the correlation (as opposed to variance) and rank-deficiency
issues, which are usually addressed by localization. Localization has to be superimposed
to the finite-size scheme to build a local EnKF-N without the intrinsic need for inflation (Boc-
quet, 2011). Nonetheless, by marginalizing over limited-range covariance matrices (Sec-
tion 5 of Boc11)), we also argued that the use of an informative hyperprior would produce
covariance localization within the EnKF-N framework. A minimal example where the hy-
perprior is defined over B matrices that are positive diagonal, hence very short-ranged,
was given and supported by a numerical experiment. Hence, it is likely that the inclusion of
informative prior is a way to elegantly impose localization within the EnKF-N framework.

An informative hyperprior is the normal-inverse-Wishart (NIW) pdf:

M+2+v

_ K 1 _
Paw(Xp,B) o< |B| 2 exp _EHXb_xcH2B_§Tr(B 1C> : (36)

It is convenient because, with this hyperprior, Eq. remains analytically integrable. The
location state x., the scale matrix C, which is assumed to be full-rank, x and v are hyper-
parameters of the distribution from which the true error moments x; and B are drawn. The
pdf puw is proper only if v > M — 1, but this is not an imperative requirement provided that
the integral in Eq. is proper.
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The resulting predictive prior can be deduced from |Gelman et al.| (2014) Section 3.6:
—N(N+14v)
b (37)

p(x[E) o {1 + N+ﬁ+1 [Ix — X”zl';%(xc—i)(xc—i)uxch
where x = (kx. + NX) /(NN + k). From these expressions, x. could be interpreted as some
climatological state and C would be proportional to some elimatelogical-error covariance
matrix—Henee;they-, which could be estimated from elimatotogicat-statistiesa prior, long
and well-tuned EnKF run. They could also be parameterized by tunable scalars that could
be estimated by a maximum likelihood principle (Hannart and Naveaul, [2014).

A subclass of hyperpriors is obtained when the degree of freedom x. is taken out, leading
to the inverse Wishart (IW) distribution:

v

Pw(Xp, B) oc\B\fM+21 exp[—fTr(B_1C)}7 (38)

and to the predictive prior

—L(N+v
P(E) o {14 2 I~ Kloerac) (@9)
Jeffreys’ hyperprior is recovered from the IW hyperprior in the limit where v — 0 and C — 0,
well within the region v < M — 1 where the IW pdf is improper. Note that the use of an IW
distribution was advocated owing to its natural conjugacy in a remarkable paper by Myrseth
and Omre| (2010) where a hierarchical stochastic EnKF was first proposed and developed.
Because the scale matrix C is assumed full-rank, updating in state space is preferred to
an analysis in ensemble space. Based on the marginals Eq. and Eq. (39), the J;, term

of the analysis cost function is of the form:

To(x) = —In [5N+ Ix—%|?| with F=XX"+C. (40)
In the case of the NIW hyperprior, one has: c

-~ HN _ T
YENFLILY, e =1HY(Ntr),  CCh g (e = %) (xe = X) (41)
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In the case of the IW hyperprior, one has: 4=

1=N+v, en=1+1N, %=x, C=C. (42)

We observe that the 7, term is formally similar to that of the EnKF-N with Jdeffrey-s-Jeffreys’
hyperprior which is directly obtained in state space from Eq. (7). Hence the sequential data
assimilation schemes built from the NIW and IW hyperpriors formally follow that of the
EnKF-N. But, to do so, the analysis must be written in state space, whereas it has been
expressed in ensemble space so far.

7.1 Primal analysis and dual analysis

The primal analysis in state space is obtained from x, = argmin, 7 (x), where

T = Tol) + T = 5y~ HOIE + 2 [en + x—%I3] (43)

For the dual analysis, we further assume that the observation operator H is linear (for the
primal/dual correspondence to be exact). The derivation of the dual cost function follows
that of [BS12. The following Lagrangian is introduced to separate the radial and angular
degrees of freedom of x:

£060,0) = Tof) + 5 [Ix— %12~ o] + Tn(en +9). (44)

where ( is a Lagrange multiplier. The saddle-point equations of this Lagrangian are:

p= xa—Rl7, (45)

pto= Ley, (46)
Ca

x, = %+THT(GR+HITHT) '8 with §=y—Hx. (47)
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Xq, p%, and ¢, are the saddle-point values of the variables. Using these saddle-point equa-
tions, it can be shown that the minimization of Eq. is equivalent to the minimization of
the following scalar dual cost function over |0, /e n]

1
D) = £ (xarp.6) = 5387 (R ¢ THIHT) 15 558 4 Tn )
a mild generalization of Eq. (25). As in[BS12, ( is interpreted as an effective size of the
ensemble as seen by the analysis. Note that, in this context, it could easily be larger than

N —1if the elimatologicat-information-toad-added information content of the informative
hyperprior is significant.

7.2 State space update of the ensemble perturbations

~y

Recall that the square root ensemble update corresponding to Eq. and Jeffrey—s
Jeffreys’ hyperprior is

2 2
X, = VN —1X [YTRlY +Coly — S wow!| U, (49)

N

N+1

Note that covariance localization cannot be implemented in ensemble space using Eq. (49).
To make the covariance matrix explicit, we wish to write this in state space. Firstly, from
Eq. , w, can be written w, = Y7z, where z = ((,R+ YY) ~15. Then, by the matrix shift
lemma which asserts that A f(BA) = f(AB)A for any two matrices A and B of compatible
sizes and f an analytic functiorﬂ we can turn this right-transform into a Ieft—transfomﬂ:

N|=

2¢2 -
X, =vN=1 [CQIM +XYT <R—1 - N%KZT) H} XU. (50)
"Assuming  f(z) =Y ;o arz®, one has Af(BA)=3}",arA(BA)* =37 ai(AB)*B =
f(AB)A.
2Let A be a diagonalizable, non necessarily symmetric, matrix A = QAQ ! with A diagonal. If
A > 0, then the square root matrix A is defined by QA QL
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When (, = N —1 and z = 0, one recovers the ensemble square root Kalman update for-

_1
mula written in state space: X, = [I,s + PHTR™'H] 2 X (Sakov and Bertino, 2011). Note

that we could absorb —]\276;211 zz" into R using the Sherman-Morrison formula, leading to an

effective observation error covariance matrix R, which is bigger than R (using the order
of the positive symmetric matrices). To superimpose localization on this deffrey-s-Jeffreys’
hyperprior EnKF-N, a Schur product can easily be applied to XY in Eq. , while the
transformation still applies to the initial perturbations X without any explicit truncation.

Here, however, we wish to obtain a similar left-transform but for the NIW EnKF-N. The
Hessian of the primal cost function Eq. is:

r-t o Tix—g)(x—x)'rt

H=H'RH + — >
en +lx x| [€N+\|X—f<llﬂ

; (51)

yielding at the minimum:
2

Ho=HRTIH (M1 - pSap-1 (X — %) (xa —RX) TP =HRH+ (M, (52)
¥

where the correction term has been absorbed into an effective symmetric positive definite
matrix I.. Henoefortﬁ, I will stand for I, and any correction term is assumed to have
been absorbed into C in I'. Decomposing ¢, T, which is the effective background error
covariance matrix, into as many modes as required ¢; I = ZZ" and applying Eq. (50), it is
not difficult to obtain a square root matrix of the analysis error covariance matrix P,:

1 _1
PZ = [Cula +THTR™IH] 2 rs. (53)

1
However, this does not constitute a limited-size ensemble of perturbations since P? is full-
rank as C was assumed full-rank. To obtain an ensemble update of N perturbations, the
scale matrix C in I = XXT 4+ C can be projected onto the ensemble space generated by the
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initial perturbations. Then, I'Ixél'lx replaces é, where [lx is the orthogonal projector on the
columns of X, My = XX'. Following |Raanes et al. (2015), we can form an effective set of
perturbations X, that satisfy

X.XT = XXT 4+ MxClix = [lN +XfE (xT)T] xT (54)
by using

1
Xo =X Iy + Xt (X)) (55)

or alternatively a left-transform equivalent formula which is obtained from the matrix shift
lemma

1 N 1
Xe= [l +XXT€ (XXT)"]* X = [ty + Mx€rix (xx7)']* x. (56)

Substituting this X, to rzin Eq. , we finally obtain an update of the perturbations X as
a new set of perturbations of the same size N:

_1 ~ 3
Xa = VN =1 [l + THTR7IH] 72 [y + XXTE (xxT)']* xu. (57)
7.3 Covariance localization and 3D-Vat/EnKF-EnKF-3D-Var hybridization

The state space formulation of the analysis enables covariance localization which was not
possible in ensemble space. To regularize P = XXT /(N —1) by covariance localization, one
can apply a Schur product with a short-range correlation matrix ©. In that case, Eq. “43)
is unchanged but with ' = C+0Oo (XXT) with o the Schur product symbol. Note that this
type of covariance localization is not induced by the hyperprior, but superimposed to the
EnKF-N whatever its hyperprior. The state update is obtained from Eq. (47) and Eq. (48) by
letting HFTH™ — @0 (YYT) + HCH™, or THT — @0 (XYT) + CH™.
30
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An alternative is to use the ¢ control variables (Lorenc,A2003; Buehner, [2005). A mathe-
matically equivalent cost function to Eq. but with I = C+® o (XXT) is

N N
T (0x,{an}) = Ty <x +0x+ Y ano{x, _x}> + % In <5N 10X+ ||an||g) . (58)

n=1 n=1

The {a,},_; v are N ancillary control vectors of size M related to the dynamical errors,
whereas dx is a control vector of size M related to the elimatologicat-background errors.
The control vector x is related to {«,,} and dx by identifying x with the argument of 7,
in the cost function. This expression of the cost function is obtained by first passing from
Eq. to Eq. (44), then along the lines of {Wangetal2607b){Wang et al| (20070) . It
can be seen from the cost function that the EnKF-N based on the NIW hyperprior yields
a generalization of the 3B-Var/EnkFEnKF-3D-Var hybrid data assimilation method to the
EnKF-N framework.

Moreover, the above derivation suggests the following perturbation update needed to
complete the NIW EnKF-N scheme:

N

Xa:vN—lkJM+{aHr+@o“YU}R1Hy_PM+E@o@XU]j2XU.6%

7.4 Numerical illustration

Here we wish to illustrate the use of the EnKF-N based on the IW hyperprior. We consider
again the same numerical setup as in Section [5| with the Lorenz-95 model. The v hyperpa-
rameter and the C scale matrix are chosen to be:

o B

C=-—""1y (60)

—14N
=N 1-3

with « and 3 two real parameters in the interval [0, 1[. Synthetic experiments are performed
for a wide range of («a,3) couples for two sizes of the ensemble: N = 20, which is big-

ger than the dimension of the unstable subspace{t3and neutral subspace (14) which, for
31
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traditional EnKFs, would not require localization but inflation, and N = 10 which, for tradi-
tional EnKFs, would require both localization and inflation. We do not use inflation since it
is meant to be accounted for by the finite-size scheme. We do not superimpose domain or
covariance localization. Analysis RMSEs are computed for each run and reported in Fig.

This is a preliminary experiment. In particular we do not perform any optimization of «
and 3 based for instance on empirical Bayesian estimation. For N = 20, we barely remark
any improvement in term of RMSEs due to the use of the NIW hyperprior as compared to
the EnKF-N based on Jeffreys’ hyperprior, i.e. («, ) = (0,0). However, we observe that for
N =10 localization is naturally enforced via the hyperprior due to a mechanism known in
statistics as shrinkage. Although there is no dynamical tuning of o and 3, and even though
the choice for C is gross, good RMSEs can be obtained. A RMSE of 0.33 is achieved for
(o, 8) = (0.50,057) as compared to a typical analysis RMSE of 0.20 for the EnKF-N with
optimally tuned, superimposed localization. Interestingly, the average optimal effective size
in this case is (, = 15, above the unstable subspace dimension, validating its potential use
as a diagnostic.

8 Conclusions

In this article, we have revisited the finite-size ensemble Kalman filter, or EnKF-N. The
scheme offers a Bayesian hierarchical framework to account for the uncertainty in the fore-
cast error covariance matrix of the EnKF which is inferred from a limited-size ensemble. We
have discussed, introduced additional arguments for, and sometimes improved several of
the key steps of the EnKF-N derivation. Our main findings are:

1. A proper account of the gauge degrees of freedom in the redundant ensemble of
perturbations and the resulting analysis led to a small but important modification of
the ensemble transform-based EnKF-N analysis cost function (g =0 — 1, as seen in

Eq. (1))
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. Consequently, the marginal posterior distribution of the system state is a Cauchy dis-

tribution, which is proper but does not have first and second-order moments. Hence,
only the maximum a posteriori estimator is unambiguously defined. Moreover, this
suggests that the Laplace approximation should be used to estimate the full posterior.

. The modification g =0 — 1 frees us from the inconvenient tweaking of ey to 1 or to

1+ &:now, only ey = 1+ & is required.

. The connection to dynamics has been clarified. It had already been assumed that the

EnKF-N compensates for the nonlinear deformation of the ensemble in the forecast
step. This conjecture was here substantiated by arguing that the effect of the nonlin-
earities is similar to sampling error, thus explaining why multiplicative inflation, and the
EnKF-N in particular, can compensate for it.

. The ensemble update of the dual EnKF-N was amended to offer a perfect equivalence

with the primal EnKF-N. It was shown that the additional term in the posterior error
covariance matrix accounts for the error co-dependence between the angular and
the radial degrees of freedom. However, this correction barely affected the numerical
experiments we tested it with.

. The EnKF-N based on Jeffreys’ hyperprior led to unsatisfying performance in the limit

where the analysis strongly-refaxes-te-is largely driven by the prior, especially in the
regime where the model is almost (but not) linear. We proposed two new types of

schemes which rectify the hyperprior. These schemes have been successfully tested
on low-order models, meaning that the performance of the EnKF-N becomes as good
as the ensemble square root Kalman filter with optimally tuned inflation in all the tested
dynamical regimes.

. As originally mentioned in [Boc11, the EnKF-N offers a broad framework to craft vari-

ants of the EnKF with alternative hyperpriors. Inflation was shown to be addressed

by a noninformative hyperprior whereas a localization seems to require an informative

hyperprior. Here, we showed that choosing the informative normal-inverse-Wishart
33
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distribution as a hyperprior for x;,B leads to a formally similar EnKF-N, albeit ex-
pressed in state space rather than ensemble space. The EnKF-N based on this in-
formative hyperprior is a finite-size variant of the hybrid 3B-Var/ErKFENKF-3D-Var.
It has a potential for tuning the balance between elimatological-static and dynamical
errors. Moreover, we showed on a preliminary numerical experiment that localization
can be naturally carried out through shrinkage induced by the scale matrix of the
normal-inverse-Wishart hyperprior.

With the corrections and new interpretations on the EnKF-N based on Jeffrey-s-Jeffreys’
hyperprior, we have obtained a practical and robust tool that can be used in perfect model
EnKF experiments in a wide range of conditions without the burden of tuning the multiplica-
tive inflation. This has saved us a lot of computational time in recent published methodolog-
ical studies.

An EnKF-N based on an informative hyperprior, the normal-inverse-Wishart distribution,
has been described and its equations derived. We plan to evaluate it thoroughly on exten-
sive numerical experiments. Several optional uses of the method are contemplated. Hyper-
parameters x., C, v and « could be diagnosed from climatetogical-statistiesthe statistics
of a prior well-tuned data assimilation run. Empirical Bayesian approaches could then be
used to objectively balance the ¢limatotogical-static errors and the dynamical errors. Alter-
natively, the hyperparameters could be estimated online in the course of the EnKF, rather
than being obtained from prior elimatological-statistics, using a more systematic empirical
Bayesian approach.

Acknowledgements. This study is a contribution to the INSU/LEFE project DAVE.

Appendix A: Coupling of the radial and angular degrees of freedom

Section[3.2 separately identified angular and radial degrees of freedom in the EnKF-N cost
function. This led to the dual cost function, and an alternative interpretation of the EnKF-N
as an adaptive inflation scheme that accounts for sampling errors.
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Here we wish to interpret the contributions in the Hessian Eq. that come from the
angular and from the radial degrees of freedom. To do so, we study the evidence p(y), i.e.
the likelihood of the observation vector, as estimated from the EnKF-N. This evidence is
usually computed by marginalizing over all possible model states, which reads in our case:

ply) = / dw p(y|w)p(w) = Ay / dw e~ 2 1Y~ H Xl 552 In(en +wl*) (A1)
RN RN

N1

= N Nil
ey’ 2277 724/|R|
partition function of the system in statistical physics since it sums up the contributions of all
possible states to the evidence. To untangle the angular and radial degrees of freedom, we

apply the following identity for any o > 0 and 3 > 0 to the prior:

is a normalization constant. This integral is also called the

5__1 [ o —actisn
a _F(B)_/dte At (A2)

Additionally assuming here that the observation operator is linear, we obtain:

ply) = By / it e~ H18-YwlR—LelwlP—eten+ 553t -
RN+1
Ny
where By = @AN. The main contribution to the evidence can be estimated by using
2

the Laplace method to estimate this integral. Let us denote £(w,t¢) minus the argument of
the exponential in the integrant. If the saddle-point of £(w,t) is (wy,%4), and if its Hessian
at the saddle-point is Hw (W, t+), then an estimate of the evidence is (Bishop, 2006):

(2m)N+1 — L (Wit

~B e EWeite) A4

p(y) N |/Hw7t(w*at*)’ (A4)
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The normalization by the Hessian represents a correction due to Gaussian fluctuations of
the variables (w,t) around the saddle-point. The saddle-point conditions are
N+1

w=(YRIY+ely) YRS,  of=—"— (A5)
en + ||

which are equivalent to the dual EnKF-N saddle-point equations (BS12). The Hessian is

Tp-1 ty [
Hualwo, ) = | YRl (A
€W 5
Hence, the integral is dominated by the saddle-point solution found in the dual EnKF-N
derivation. It corresponds to a standard ETKF analysis with a prior correction by the e!* fac-
tor. Moreover, the fluctuations are due to the standard ETKF fluctuations YTR™1Y + e+l ,
with additional corrections due to the radial degree of freedom. When computing a precision
matrix H,, for the variables w from the Hessian Eq. using the Schur complement, i.e.
the precision on the w variables conditioned on the knowledge of ¢,, we find

2 X
Hu(Wy,t,) = YTRTIY 4el 1y — N 1e2t wow) (A7)
which coincides with Eq. (24). This tells that the correction —2(N +1)~1¢?w,w] in Eq.
is due to the fluctuation of ((= e') and its coupling to the angular degrees of freedom.
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Algorithm 1 Algorithm of the primal EnKF-N

Require: The forecast ensemble {x},_; . the observations y, the observation error

1:
2:

covariance matrix R, and U an orthogonal matrix satisfying U1 = 1.

Compute the mean x and the perturbations X from {x;},_; y, Y =HXd=y—Hx

Find the argument of the minimum: w;—= i — 2R EN 2
w

w,, = argmin | |ly — H (X + Xw)||z + (N 4 1)In (e +|jw]?

w

Compute: H, = YTRTYY + (N +1) (

en+wal? )1y —2waw],

(en+lwal?)?
Compute x? =X + Xw,, W? = N — 1[H,] 2 U
Compute xj-=x*+XWix; = x" + X[W?],

Algorithm 2 Algorithm of the dual EnKF-N

Require: The forecast ensemble {x},_; . the observations y, the observation error

1:
2:

covariance matrix R, and U an orthogonal matrix satisfying U1 = 1.

Compute the mean x and the perturbations X from {x;},_; , Y =HX, =y —Hx

Find the argument of the minimum:

(.= argmin [aT (RHYCIY) o4 enC+(N+1)In M — (N +1)
C€J0,(N+1)/en]

Compute w, = (YTR™Y + CaIN)leTR—lé

Compute Ho = YTRLY 4+ (,ly — %wawg

Compute x® =X+ Xw,, W¢ =+/N —1 [Ha]_% U
Compute xf-=x"+XWi-x? = x* 4 X[W];_
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Figure 1. Schematic of the traditional standpoint on the analysis of the EnKF (top row), what it
actually does using a Gaussian prior sampled from 3 particles (middle row), and using a predictive
prior accounting for the uncertainty due to sampling (bottom row). The full green line represent
the Gaussian observation error prior pdfs, the dashed blue lines represent the Gaussian/predictive
priors if known, or estimated from an ensemble, or obtained from a marginalization over multiple
potential errors statistics. The dotted red curves are the resulting analysis pdfs.
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Figure 3. Average analysis RMSE for the primal EnKF-N, the dual EnKF-N, the approximate EnKF-

N, and the EnKF with uniform optimally tuned inflation, applied to the Lorenz-95 model, as a function
of the time step between updates. The finite-size EnKFs are based on Jeffreys’ hyperprior.
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Figure 4. Average analysis RMSE for the EnKF-N with Jeffreys’ hyperprior, with the EnKF-N based
on the Dirac-Jeffreys’ hyperprior, with the EnKF-N based on the Jeffreys’ hyperprior but enforcing
the relaxation-schemes R1 or R2, and the EnKF with uniform optimally tuned inflation, applied to
the Lorenz-95 model, as a function of the time step between update (fefitop), and as a function of

the forcing F' of the Lorenz-95 model (rightbottom). The analysis ensemble spread of the EnKF-N
sed on the Dirac-Jeffreys’ hyperprior is also shown.
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Figure 5. Average analysis RMSE as a function of («, 3) for the EnKF-N based on the IW hyperprior,
without inflation nor enforced localization, for ensemble sizes of N = 20 (left) and of IV = 10 (right).
The RMSEs above 1, i.e. worse than an analysis by-pure-based only on observations, are in white.
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