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Abstract

The ensemble Kalman filter (EnKF) is a powerful data assimilation method meant for high-
dimensional nonlinear systems. But its implementation requires somewhat ad hoc pro-
cedures such as localization and inflation. The recently developed finite-size ensemble
Kalman filter (EnKF-N) does not require multiplicative inflation meant to counteract sam-5

pling errors. Aside from the practical interest of avoiding the tuning of inflation in perfect
model data assimilation experiments, it also offers theoretical insights and a unique per-
spective on the EnKF. Here, we revisit, clarify and correct several key points of the EnKF-N
derivation. This simplifies the use of the method, and expands its validity. The EnKF is
shown to not only rely on the observations and the forecast ensemble but also on an im-10

plicit prior assumption, termed hyperprior, that fills in the gap of missing information. In the
EnKF-N framework, this assumption is made explicit through a Bayesian hierarchy. This
hyperprior has been so far chosen to be the uninformative Jeffreys’ prior. Here, this choice
is revisited to improve the performance of the EnKF-N in the regime where the analysis is
strongly dominated by the prior. Moreover, it is shown that the EnKF-N can be extended15

with a normal-inverse-Wishart informative hyperprior that introduces additional information
on error statistics. This can be identified as a hybrid EnKF-3D-Var counterpart to the EnKF-
N.

1 Introduction

The ensemble Kalman filter (EnKF) has become a popular data assimilation method for20

high-dimensional geophysical systems (Evensen, 2009, and references therein). The flow-
dependence of the forecast error used in the analysis is its main strength, compared to
schemes using static background statistics such as 3D-Var and 4D-Var.

However, to perform satisfyingly, the EnKF may require the use or inflation and/or local-
ization, depending on the data assimilation system setup. Localization is required in the25

rank-deficient regime, in which the limited size of the ensemble leads to an empirical error
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covariance matrix of too small rank, as is often the case in realistic high-dimensional sys-
tems (Houtekamer and Mitchell, 2001; Hamill et al., 2001; Ott et al., 2004). It can also be
useful in a rank-sufficient context in the presence of non-Gaussian/non-linear effects.

Inflation is a complementary technique meant to increase the variances diagnosed by
the EnKF (Pham et al., 1998; Anderson and Anderson, 1999). It is usually intended to5

compensate for an underestimation of uncertainty. This underestimation can be caused
either by sampling error, an intrinsic deficiency of the EnKF system, or model error, an
extrinsic deficiency.

A variant of the EnKF, called the finite-size ensemble Kalman filter (EnKF-N) has been
introduced in Bocquet (2011); Bocquet and Sakov (2012). It has subsequently been suc-10

cessfully applied in Bocquet and Sakov (2013, 2014) in an ensemble variational context. It
has been shown to avoid the need for multiplicative inflation usually needed to counteract
sampling errors. In particular, it avoids the costly chore of tuning this inflation.

The EnKF-N is derived by assuming that the ensemble members are drawn from the
same distribution as the truth, but makes no further assumptions on the ensemble’s accu-15

racy. In particular, the EnKF-N, unlike the traditional EnKFs, does not make the approxima-
tion that the sample first- and second-order moments coincide with the actual moments of
the prior (which would be accessible if the ensemble size N was infinite).

Through its mathematical derivation, the scheme underlines the missing information be-
sides the observations and the ensemble forecast, an issue which is ignored by traditional20

EnKFs. This missing information is explicitly compensated for in the EnKF-N using a so-
called hyperprior. In Bocquet (2011), a simple choice was made for this hyperprior, namely
the Jeffreys’ prior, which is meant to be as much non-informative as possible. While the
EnKF-N built on Jeffreys’ prior often performs very well with low-order models, it may fail
in specific dynamical regimes because a finer hyperprior is needed (Bocquet and Sakov,25

2012). Other choices were made in the derivation of the EnKF-N which remain only partly
justified or insufficiently clear.

The objective of this paper is to clarify several of those choices, to answer several ques-
tions raised in the above references, and to advocate the use of improved or new hyperpri-
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ors. This should add to the theoretical understanding of the EnKF, but also provide a useful
algorithm. Specifically, the EnKF-N allows the development of data assimilation systems
under perfect model conditions without worrying about tuning the inflation. In the whole
paper, we will restrict ourselves to perfect model conditions.

In Section 2, the key ideas and algorithms of the EnKF-N are recalled and several as-5

pects of the approach are clarified. It is shown that the redundancy in the EnKF centered
perturbations leads to a subtle but important correction to the EnKF-N when the analysis is
performed in the affine space defined by the mean state and the ensemble perturbations.
In Section 3, the ensemble update step of the EnKF-N is revisited and clarified. In Sec-
tion 4, the nonlinearity of the ensemble forecast step and its handling by the EnKF-N, and10

more generally multiplicative inflation, are discussed. The corrections to the EnKF-N are
illustrated with numerical experiments in Section 5. Sections 6 and 7 discuss of modifying
or even changing the hyperprior. In Section 6, we discuss caveats of the method in regimes
where the posterior ensemble is drawn to the prior ensemble. Simple alternatives to the
Jeffreys’ hyperprior are proposed. Finally, a class of more informative priors based on the15

normal-inverse-Wishart distribution and permitting to incorporate additional information on
error statistics is introduced and theoretically discussed in Section 7. Conclusions are given
in Section 8.

2 The finite-size ensemble Kalman filter (EnKF-N)

The key ideas of the EnKF-N are presented and clarified in this section. Additional insights20

into the scheme and why it is successful are also given.

2.1 Marginalizing over potential priors

Bocquet (2011) (later Boc11) recognized that the ensemble mean x and ensemble error
covariance matrix P used in the EnKF may be different from the unknown first- and second-
order moments of the true error distribution, xb and B, where B is a positive definite matrix.25

The mismatch is due to the finite-size of the ensemble which leads to sampling errors,
4
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partially induced by the nonlinear ensemble propagation in the forecast step (see Section 4
for a justification). Figure 1 illustrates the effect of sampling error when the prior is assumed
Gaussian and reliable, whereas the prior actually stems from an uncertain sampling using
the ensemble.

The EnKF-N prior accounts for the uncertainty in xb and B. Denote E = [x1,x2, . . . ,xN ]5

the ensemble of size N formatted as an M ×N matrix where M is the state space dimen-
sion, x = E1/N the ensemble mean where 1 = (1, · · · ,1)T, and X = E− x1T the perturba-
tion matrix. Hence, P = XXT/(N − 1) is the empirical covariance matrix of the ensemble.
Marginalizing over all potential xb and B, the prior of x reads

p(x|E) =

∫
dxbdBp(x|E,xb,B)p(xb,B|E) . (1)10

The symbol dB corresponds to the Lebesgue measure on all independent entries
∏M
i≤j d[B]ij ,

but the integration is restricted to the cone of positive definite matrices. Since p(x|E,xb,B)
is conditioned on the knowledge of the true prior statistics and assumed to be Gaussian, it
does not depend on E, so that:

p(x|E) =

∫
dxbdBp(x|xb,B)p(xb,B|E) . (2)15

Bayes’ rule can be applied to p(xb,B|E), yielding

p(x|E) =
1

p(E)

∫
dxbdBp(x|xb,B)p(E|xb,B)p(xb,B) . (3)

Assuming independence of the samples, the likelihood of the ensemble E can be written

p(E|xb,B) =
N∏
n=1

p(xn|xb,B) . (4)

The last factor, p(xb,B), is the hyperprior. This distribution represents our beliefs about the20

forecasted filter statistics, xb and B, prior to actually running any filter. This distribution is
5
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termed hyperprior because it represents a prior for the background information in the first
stage of a Bayesian hierarchy.

Assuming one subscribes to this EnKF-N view on the EnKF, it shows that additional
information is actually required in the EnKF, in additional to the observations and the prior
ensemble which are potentially insufficient to make an inference.5

A simple choice was made in Boc11 for the hyperprior: the Jeffreys’ prior is an analytically
tractable and uninformative hyperprior of the form

pJ(xb,B)∝ |B|−M+1
2 , (5)

where |B| is the determinant of the background error covariance matrix B of dimension
M ×M .10

2.2 Predictive prior

With a given hyperprior, the marginalization over xb and B, Eq. (3), can in principle be car-
ried out to obtain p(x|E). We choose to call it a predictive prior to comply with the traditional
view that sees it as prior before assimilating the observations. Note, however, that statisti-
cians would rather call it a predictive posterior distribution as the outcome of a first-stage15

inference of a Bayesian hierarchy, where E is the data.
Using Jeffreys’ hyperprior, Boc11 showed that the integral can be obtained analytically

and that the predictive prior is a multivariate T-distribution:

p(x|E)∝
∣∣∣∣∣(x− x)(x− x)T

N − 1
+ εNP

∣∣∣∣∣
−N

2

, (6)

where |.| denotes the determinant and εN = 1 + 1/N . The determinant is computed in the20

space generated by the perturbations of the ensemble so that it is not singular. This distri-
bution has fat tails thus accounting for the uncertainty in B. The factor εN is a result of the
uncertainty in xb; if xb were known to coincide with the ensemble mean x, then εN would
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be 1 instead. For a Gaussian process, εNP is an unbiased estimator of the squared error
of the ensemble mean x (Sacher and Bartello, 2008), where εN stems from the uncertain
xb which does not coincide with x. In the derivation of Boc11, the εNP correction comes
from integrating out on xb. Therefore, εN can be seen as an inflation factor on the prior
covariance matrix that should actually apply to any type of EnKF.5

This non-Gaussian prior distribution can be seen as an average over Gaussian distribu-
tions weighted according to the hyperprior. It can be shown that Eq. (6) can be re-arranged:

p(x|E)∝
{

1 +
(x− x)T (εNP)† (x− x)

N − 1

}−N
2

, (7)

where P† is the Moore-Penrose inverse of P.10

In comparison, the traditional EnKF implicitly assumes that the hyperprior is δ(B−P)δ(xb−
x) where δ is a Dirac multidimensional distribution. In other words the background statistics
generated from the ensemble coincide with the true background statistics. As a result, one
obtains in this case the Gaussian prior:

p(x|E)∝ exp

{
−1

2
(x− x)T P† (x− x)

}
. (8)15

2.3 Analysis

Consider a given analysis step of the data assimilation cycle. The observation vector is
denoted y of dimension d. In a Bayesian analysis, p(x|y) = p(y|x)p(x)/p(y), the likelihood
p(y|x) is decoupled from the prior pdf p(x). In the EnKF-N framework we are interested in
p(x|y,E). Bayes’ formula then reads20

p(x|y,E) =
p(y|x,E)p(x|E)

p(y|E)
. (9)

7
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But y does not depend on E when conditioned on x: p(y|x,E) = p(y|x). As a consequence,
Bayes’ formula now simply reads within the EnKF-N framework:

p(x|y,E) =
p(y|x)p(x|E)

p(y|E)
. (10)

This is at odds with the ill-founded claim by Boc11 that the likelihood still depends on E.
This expression clarifies one of the issue raised in Boc11.5

Let us recall and further discuss the analysis step of the EnKF-N for state estimation.
For the sake of simplicity, the observational error distribution is assumed Gaussian, unbi-
ased, with covariance matrix R. The observation operator will be denoted H . Because the
predictive prior Eq. (6) is non-Gaussian, the analysis is performed through a variational op-
timization similarly to the maximum likelihood filter (Zupanski, 2005), rather than by matrix10

algebra as in traditional EnKFs. Working in ensemble space, states are parameterized by
vectors w of size N such that

x = x + Xw . (11)

There is at least one “gauge” degree of freedom in w due to the fact that x is invariant under
w 7→w +λ1, where λ is an arbitrary scalar. This is the result of the linear dependence of15

the centered perturbation vectors.
For reference, with these notations, the cost function of the ensemble transform Kalman

filter (ETKF, Bishop et al., 2001; Ott et al., 2004) based on Eq. (8) reads:

J (w) =
1

2
‖y−H(x + Xw)‖2

R +
N − 1

2
‖w‖2

Πw
(12)

where ‖z‖2
R = zTR−1z and Πw is the orthogonal projector onto the row space of X. Alge-20

braically, Πw = X†X where X† is the Moore-Penrose inverse of X. Equation (12) is the direct
result of the substitution into Eq. (8) of x by w using Eq. (11). As explained by Hunt et al.
(2007), one can add the term ‖w‖2

IN−Πw
to the cost function without altering the minimum.

8
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Denoting ‖z‖2 = zTz, this leads to:

J (w) =
1

2
‖y−H(x + Xw)‖2

R +
N − 1

2
‖w‖2 . (13)

The added term has been labelled gauge fixing term by Boc11 using standard physics
terminology. The EnKF-N cost function in Boc11 is

J (w) =
1

2
‖y−H(x + Xw)‖2

R +
N

2
ln
(
εN + ‖w‖2

)
. (14)5

It is the result of the substitution of x by w using Eq. (11) into Eq. (7), and of the addition of
the gauge fixing term albeit inside the logarithm, which was justified by extending the idea of
Hunt et al. (2007) and the monotonicity of the logarithm. The restriction of x to the ensemble
subspace is an approximation inherent in the traditional EnKFs. By virtue of the hyperprior,
it is not necessarily part of the EnKF-N. However, it is quite justified assuming the ensemble10

tracks the unstable subspace of the dynamics. When the ensemble is of limited size and
cannot span the full range of uncertain directions, such as in high-dimensional systems,
this ensemble transform representation can be made local (Hunt et al., 2007).

A cost function in state space could be rigorously derived from the prior Eq. 7 follow-
ing Boc11. The cost function J (w) was obtained from the substitution x(w) = x + Xw in15

the state space cost function, which, however, ignores the Jacobian of this transformation.
Hence, it would be preferable to directly obtain the probability density of the prior as a
function of w which requires some mathematical development compared to the immediate
substitution in the cost function.

From a probabilistic standpoint, the logarithm of the determinant of the Jacobian matrix20

should be added to the cost function since

lnpw(w) = lnpx(x(w)) + ln

∣∣∣∣∂x(w)

∂w

∣∣∣∣ . (15)

Had the transformation w 7→ x(w) been nonlinear, the cost function would have been im-
pacted (see for instance Fletcher and Zupanski, 2006). However, the standard ensemble

9
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transform is linear which should result in an irrelevant constant. Unfortunately, because of
the gauge degree(s) of freedom of the perturbations, the transformation is not injective and
therefore singular, and the determinant of the transformation is zero yielding an undefined
constant. Hence, the issue should be addressed more carefully. It will turn out in the follow-
ing section that the cost function should be amended in the non-quadratic case.5

2.4 Accounting for the gauge degrees of freedom of the ensemble transform

Let us denote Ñ ≤min(N−1,M) the rank of X. The number of gauge degrees of freedom
is then g ≡N − Ñ . The most common case encountered when applying the EnKF to high-
dimensional systems is that the rank of X is N−1�M , that is to say g = 1 because X1 =
0. A non singular ensemble transform is obtained by restricting w to N⊥ the orthogonal10

complement of the null space, N , of X. Hence, the ensemble transform:

T : N⊥ −→ T (N⊥)

w̃ 7−→ T (w̃) = Xw̃ (16)

is nonsingular. This amounts to fixing the gauge at zero. With this restriction to N⊥, the
prior of the ETKF defined over N⊥ is15

p(w̃)∝ exp

(
−N − 1

2
‖w̃‖2

)
, (17)

whereas the prior pdf of the EnKF-N is

p(w̃)∝
(
εN + ‖w̃‖2

)−N
2
. (18)

In principle, the analysis can be performed inN⊥ using reduced variables wr ∈ RÑ , looking
for an estimate of the form x = x + Xrwr, where Xr would stand for a reduced perturbation20

matrix. To do so, let us introduce the singular value decomposition of the initial perturbation
matrix: X = UΣVT, with U ∈ RM×Ñ such that UTU = IÑ , Σ is a diagonal positive matrix in

10
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RÑ2
, and V ∈ RN×Ñ is such that VTV = IÑ . The reduced perturbation matrix Xr is then

simply given by Xr = UΣ. However, the change of variable w 7→wr would prevent us from
using the elegant symmetric formalism of the ensemble transform Kalman filter because
the perturbation matrix Xr is not centered. Moreover, the new perturbations, Xr, are non-
trivial linear combinations of the initial perturbations, X. It is likely to generate imbalances5

with nonlinear dynamics. Indeed, it is unlikely that the displacement of the ensemble in
the analysis would be minimized, as opposed to what happens with the ETKF when the
transform matrix is chosen symmetric (Ott et al., 2004). We applied this change of variable
to a standard ETKF and tested it numerically with the Lorenz-95 low-order model (Lorenz
and Emanuel, 1998). We obtained much larger displacements and intermittent instabilities10

that require more inflation.
Hence, we wish to fix the gauge while keeping the initial perturbations as much as possi-

ble. To do so, the definition of the prior pdfs defined onN⊥ are extended to the full ensemble
space RN =N⊥⊕N , while maintaining their correct marginal over N⊥. For the EnKF, we
can fix the gauge by choosing15

p(w)∝ exp

(
−N − 1

2
‖w‖2

)
, (19)

as in Eq. (13) which has indeed the correct marginal since p(w) factorizes into indepen-
dent components for N and N⊥. For the EnKF-N, we can fix the gauge while keeping the
symmetry by choosing

p(w)∝
(
εN + ‖w‖2

)−N+g
2
. (20)20

It can be seen that this pdf has the correct marginal by integrating out on N , using the

change of variable w− w̃ 7→
√
εN + ‖w̃‖2(w− w̃).

The use of these extended pdfs in the analysis are justified by the fact that the Bayesian
analysis pdf p(w|y) in ensemble space has the correct marginal overN⊥. Indeed, if p(y|w) =
p(y|x = x + Xw) is the likelihood in ensemble space which does not depend on w̃, then25

11
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the marginal of the Bayesian analysis pdf p(w|y)∝ p(y|w)p(w) is consistently given by
p(w̃|y)∝ p(y|w̃)p(w̃). We conclude that it is possible to perform an analysis in terms of the
redundant w in place of w̃.

As opposed to the Gaussian case, the form of pdf Eq. (20) brings in a change in the
EnKF-N when the analysis is performed in ensemble space. The appearance of g in the5

exponent is due to a non trivial Jacobian determinant when passing from the ungauged
to the gauged variables, a minimalist example of the so-called Faddeev-Popov determinant
(Zinn-Justin, 2002). This consideration generates a modification of the EnKF-N cost function
when using Eq. (20) as the predictive prior. Henceforth, we shall assume g = 1, which will
always be encountered in the rest of the paper. Consequently, the modified EnKF-N has the10

following cost function:

J (w) =
1

2
‖y−H(x + Xw)‖2

R +
N + 1

2
ln
(
εN + ‖w‖2

)
, (21)

which replaces Eq. (14). This modification, g = 0→ 1, as compared with Boc11, will be
enforced in the rest of the paper. Such a change will be shown to significantly impact the
numerical experiments in Section 5.15

3 Update of the ensemble

The form of the predictive prior also has important consequences on the EnKF-N theory.
First of all, the pdfs Eq. (18) or Eq. (20) are multivariate T-distributions, and more specifically
multivariate Cauchy distributions. They are proper, i.e. normalizable to 1, but have neither
first-order nor second-order moments.20

3.1 Laplace approximation

Conditioned on B, both the prior and the posterior are Gaussian provided the observation
error distribution is Gaussian which is assumed for the sake of simplicity. Without this condi-
tioning, however, they are both a (continuous) mixture of candidate Gaussians in the EnKF-

12
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N derivation. Therefore, the posterior p(w|y)∝ p(y|w)p(w) should be interpreted with cau-
tion. As was done in Boc11, its mode can in principle be safely estimated. However, its
moments do not generally exist. They exist only if the likelihood p(y|w) enables it. Even
when they do exist, they do not carry the same significance as for Gaussians.

Hence, the analysis wa is safely defined using the EnKF-N Cauchy prior as the most likely5

w of the posterior pdf. But, using the mean and the error covariance matrix of the posterior
is either impossible or questionable because as explained above they may not exist.

One candidate Gaussian that does not involve integrating over the hyperprior, is the
Laplace approximation of the posterior (see Bishop, 2006, for instance), which is the Gaus-
sian approximation fitted to the pdf in the neighborhood of wa. This way, the covariance10

matrix of the Laplace distribution is obtained as the Hessian of the cost function at the min-
imum wa. Refining the covariance matrix from the inverse Hessian is not an option since
the exact covariance matrix of the posterior pdf may not exist. This is a counterintuitive ar-
gument against looking for a better approximation of the posterior covariance matrix rather
than the inverse Hessian.15

Once a candidate Gaussian for the posterior has been obtained, the updated ensemble
of the EnKF-N is obtained from the Hessian, just as in the ETKF. The updated ensemble is

Ea = xa1T + Xa , xa = x + Xwa . (22)

where xa is the analysis in state space; wa is the argument of the minimum of Eq. (21). The
updated ensemble of perturbations Xa is given by20

Xa =
√
N − 1X [Ha]−1/2 U , (23)

where U is an arbitrary orthogonal matrix satisfying U1 = 1 (Sakov and Oke, 2008) and
where Ha is the Hessian of Eq. (21),

Ha = YTR−1Y + (N + 1)

(
εN + wT

awa

)
IN − 2wawT

a

(εN + wT
awa)2

(24)

13
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with Y = HX and H the tangent linear ofH . The algorithm of this so-called primal EnKF-N is
recalled by Algorithm 1. Note that the algorithm can handle nonlinear observation operator
since it is based on a variational analysis similarly to the maximum likelihood ensemble filter
of Zupanski (2005). We will choose U to be the identity matrix in all numerical illustrations of
this paper, and in particular Section 5, in order to minimize the displacement in the analysis5

(Ott et al., 2004).

3.2 Theoretical equivalence between the primal and the dual approaches

Boc11 showed that the functional Eq. (21) is generally non-convex but has a global mini-
mum. Yet, the cost function is only truly non-quadratic in the direction of the radial degree
of freedom ‖w‖ of w, because the predictive prior is elliptical. This remark led Bocquet and10

Sakov (2012) (later BS12 ) to show, assuming H is linear or linearized, that the minimiza-
tion of Eq. (21) can be performed simply by minimizing the following dual cost function over
]0,(N + 1)/εN ]:

D(ζ) =
1

2
δT (R + Yζ−1YT)−1

δ +
εNζ

2
+
N + 1

2
ln
N + 1

ζ
− N + 1

2
, (25)

where δ = y−H(x). Its global minimum can easily be found since ζ 7→ D(ζ) is a scalar15

cost function. The variable ζ is conjugate to the square radius ‖w‖2. It can be seen as
the number of effective degrees of freedom in the ensemble. Once the argument of the
minimum of D(ζ), ζa, is computed, the analysis for w can be obtained from the ETKF-like
cost function:

J (w) =
1

2
‖y−H(x + Xw)‖2

R +
ζa
2
‖w‖2 , (26)20

with the solution:

wa =
(
YTR−1Y + ζaIN

)−1
YTR−1δ = YT (ζaR + YYT)−1

δ . (27)

14
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Based on this effective cost function, an updated set of perturbations can be obtained:

Xa =
√
N − 1X [Ha]−

1
2 U with Ha = YTR−1Y + ζaIN . (28)

As a consequence, the EnKF-N with an analysis performed in ensemble space can be seen
as an ETKF with an adaptive optimal inflation factor λa applied on the prior distribution, and
related to ζa by λa =

√
(N − 1)/ζa. Provided one subscribes to the EnKF-N formalism, this5

tells us that sampling errors can be cured by multiplicative inflation. This is supported by
Whitaker and Hamill (2012) who experimentally showed that multiplicative inflation is well
suited to account for sampling errors whereas additive inflation is better suited to account
for model errors in a meteorological context. Other efficient adaptive inflation methods have
been proposed by, e.g. Wang and Bishop (2003); Anderson (2007); Li et al. (2009); Zheng10

(2009); Brankart et al. (2010); Miyoshi (2011); Liang et al. (2012); Ying and Zhang (2015) for
broader uses including extrinsic model error. Nevertheless, for the experiments described
in Section 5, they are not as performant with the specific goal of accounting for sampling
errors as the EnKF-N.

Equation (28), on which the results of BS12 are based, is only an approximation because15

it does not use the Hessian of the complete cost function Eq. (21). Only the diagonal term
of the Hessian of the background term is kept:

Hb '
N + 1

εN + ‖wa‖2
IN , (29)

which can be simply written Hb ' ζaIN using ζa = N+1
εN+‖wa‖2 shown in BS12 to be one of

the optimum conditions. The off-diagonal rank-one correction, −2(N + 1)−1ζ2
awawT

a, has20

been neglected. This approximation is similar to that of the Gauss-Newton method which
is an approximation of the Newton method where the Hessian of the cost function to be
minimized is approximated by the product of first-order derivative terms and by neglecting
second-order derivative terms. The approximation actually consists in neglecting the co-
dependence of the errors in the radial (‖w‖) and angular (w/‖w‖) degrees of freedom of25

w.
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Since the dual EnKF-N is meant to be equivalent to the primal EnKF-N when the obser-
vation operator is linear, the updated ensemble should actually be based on Eq. (24) which
can also be written

Xa =
√
N − 1X [Ha]−

1
2 U with Ha = YTR−1Y + ζaIN −

2ζ2
a

N + 1
wawT

a , (30)

and compared to the approximation Eq. (28) used in BS12. The algorithm of this so-called5

dual EnKF-N is recalled in Algorithm 2 and includes the correction. With Eq. (30), the dual
scheme is strictly equivalent to the primal scheme provided that H is linear, whereas it is
only approximately so with Eq. (28).

The co-dependence of the radial and angular degrees of freedom exposed by the dual
cost function is further explored in Appendix A.10

4 Cycling of the EnKF-N and impact of model nonlinearity

We have discussed and amended the analysis step of the EnKF-N. To complete the data
assimilation cycle, the ensemble must be forecasted between analyses. The cycling of the
EnKF-N can be summarized by the following diagram:

yk yk+1

• •
tk tk tk+1 predictive tk+1 tk+1

• • // • • •
Ef
k analysis Ea

k forecast Ef
k+1 prior analysis Ea

k+1

15

In accounting for sampling error, the EnKF-N framework differs quite significantly from that
of van Leeuwen (1999); Furrer and Bengtsson (2007); Sacher and Bartello (2008). Focus-
ing on the bias of the EnKF gain and precision matrix, these studies are geared towards
single-cycle corrections. By contrast, the EnKF-N enables the likelihood to influence the
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estimation of the posterior covariance matrix. This can be seen by writing and recognizing
the posterior as a non-uniform mixture of Gaussians, as for the prior. The inclusion of the
likelihood is what makes the EnKF-N equipped to handle the effects of model nonlinearity
and the sequentiality of data assimilation.

Assume that an ensemble square root Kalman filter is applied to linear forecast and ob-5

servation models, and further assume that the ensemble is big enough to span the unstable
and neutral subspace. In this case, it was shown that inflation or localization are unneces-
sary to regularize the error covariance matrix (Sakov and Oke, 2008; Gurumoorthy et al.,
2015). Sampling errors, if present, can be ignored in this case. Therefore, it is inferred from
this result that inflation is actually compensating for the misestimation of errors generated10

by model nonlinearity. Following this line of thought, Boc11 hypothesized that the finite-size
scheme actually accounts for the error generated in the nonlinear deformation of the en-
semble in the forecast step of the EnKF. What happens to the EnKF-N when the model gets
more linear is addressed in Section 6.

A recent study by Palatella and Trevisan (2015) confirms and clarifies this suggestion.15

The authors show that the nonlinear evolution of the error in the extended Kalman filter
generates additional errors unaccounted for by the extended Kalman filter linear propaga-
tion of the error. In a specific example, they are able to avoid the need for inflation with the
40-variable Lorenz-95 model using a total of 24 perturbations (14 for the unstable and neu-
tral subspace and 10 for the main nonlinear corrections). We checked that the same root20

mean square errors as shown in table II of Palatella and Trevisan (2015) can be achieved by
the EnKF-N and the optimally tuned EnKF with an ensemble of sizeN = 24. This reinforces
the idea that the EnKF-N accounts, albeit within ensemble space, for the error generated
by nonlinear corrections inside and outside the ensemble subspace. Additionally, note that
the EnKF-N does not show any sign of divergence in the regime studied by Palatella and25

Trevisan (2015) even for much stronger model nonlinearity.
To picture the impact of inflation on the fully cycled EnKF, let us consider the simplest

possible, one-variable, perfect, linear model xk+1 = αxk, with k the time index. If α2 > 1, the
model is unstable, and stable if α2 < 1. In terms of uncertainty quantification, multiplicative
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inflation is meant to increase the errors covariances so as to account for misestimated
errors. Here, we apply the inflation on the prior at each analysis step since the EnKF-N
implicitly does it. Let us denote bk the forecast/prior error variance, r the static observation
error variance and ak the error analysis variance. ζ plays the same role as in the EnKF-N
scheme, so that a uniform inflation is ζ−

1
2 . Sequential data assimilation implies the following5

recursions for the variances:

a−1
k = ζb−1

k + r−1 and bk+1 = α2ak , (31)

whose asymptotic solution (a≡ a∞) is

if α2 < ζ : a= 0 and if α2 ≥ ζ : a= (1− ζ/α2)r . (32)

Now, consider a multivariate model which is the collection of several independent one-10

variable models with as many growth factors α. In the absence of inflation, ζ = 1, the stable
modes, α2 < 1, converge to a perfect analysis (a= 0) whereas the unstable modes, α2 > 1,
converge to a finite error (a > 0) that grows with the instability of the modes, as expected.
When inflation is used, ζ < 1, the picture changes but mostly affect the modes close to
neutral (see Fig. 2). The threshold is displaced and the modes with finite asymptotic errors15

now include a fraction of the stable modes. The strongly unstable modes are much less
impacted.

In spite of its simplicity and its linearity, this model makes the link between the EnKF-N,
multiplicative inflation and the dynamics. Ng et al. (2011); Palatella and Trevisan (2015)
have argued that, in the absence of model error, systematic error of the EnKF comes from20

the error transported from the unstable subspace to the stable subspace by the effect of
nonlinearity. Unaccounted error would accumulate on the stable modes close to neutrality.
As seen above, the use of the EnKF-N, or multiplicative inflation on the prior, precisely
acts on these modes by increasing their error statistics without affecting the most unstable
modes that mainly drive the performance of the EnKF.25
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5 Numerical experiments

Twin experiments using a perfect model and the EnKF-N have been carried out on sev-
eral low-order models in previous studies. In many cases the EnKF-N, or its variant with
localization (using domain localization), were reported to perform on the Lorenz-63 and
Lorenz-95 models as well as the ETKF but with optimally tuned uniform inflation. With a5

two-dimensional forced turbulence model, driven by the barotropic vorticity advection equa-
tion, it was found to perform almost as well as the ETKF with optimally tuned uniform in-
flation (Bocquet and Sakov, 2014), although the local EnKF-N has not yet been thoroughly
tested with this model.

The choice of εN has remained a puzzle in these experiments. It has been reported that10

the Lorenz-63 model required εN = 1 + 1/N , whereas the Lorenz-95 model required εN =
1, seemingly owning to the larger ensemble size. It was also previously reported that domain
localization of the EnKF-N with both models required εN = 1 + 1/N . In the present study,
we have revisited those experiments using the correction g = 0→ 1 of Section 2.4, sticking
with the theoretical value εN = 1 + 1/N , and the same ensemble sizes. This essentially15

reproduced the results of the best choice for εN in each case. For these low-order models,
this solved a puzzle: there is no need to adjust εN = 1 + 1/N . Hence, the EnKF-N in the
subsequent experiments uses the correction g = 0→ 1 and εN = 1 + 1/N .

Figure 3 summarizes the corrections of Sections 2 and 3. It also illustrates the equiva-
lence between the primal and the dual EnKF-N. It additionally shows the performance of20

the dual EnKF-N with the approximate Hessian used in BS12, and the performance of the
ensemble square root Kalman filter with optimally tuned uniform inflation. The Lorenz-95
low-order model is chosen for this illustration (Lorenz and Emanuel, 1998). Details about
the model can be found in their article. A twin experiment is performed, with a fully observed
system (H = Id, where d=M = 40), an observation error variance matrix R = Id which is25

also used to generate synthetic observations from the truth. The ensemble size is N = 20.
The time interval between observation updates ∆t is varied which changes the nonlinear-
ity strength. Varying the magnitude of model’s nonlinearity is highly relevant because, as
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explained in Section 4, model nonlinearity is the profound cause of the need for inflation,
in this rank-sufficient context (N = 20). We plot the mean analysis root mean square error
(RMSE) between the analysis state and the truth state. To obtain a satisfying convergence
of the statistics, the RMSEs are averaged over 105 cycles, after a spin-up of 5×103 cycles.

The performances of the primal and the dual EnKF-N are indistinguishable for the full5

∆t range. The dual EnKF-N with approximate Hessian hardly differs from the EnKF-N, i.e.
using Eq. (28) in place of Eq. (30). However, it is slightly suboptimal for ∆t= 0.05 by about
5%.

Similar experiments have been conducted with the Lorenz-63 model (Lorenz, 1963), the
Lorenz-05II model (Lorenz, 2005) model, the Kuramato-Shivashinski model (Kuramato and10

Tsuzuki, 1975; Sivashinsky, 1977). These experiments have yielded the same conclusions.
The additional numerical cost of using the finite-size formalism based on Jeffreys’ hyper-

prior is now compared to the analysis step of an ensemble Kalman filter or of an ensemble
Kalman smoother based on the ensemble-transform formulation. The computational cost
depends on the type of methods. Let us first discuss non-iterative methods, such as the15

ETKF or a smoother based on the ETKF. If the singular value decomposition (SVD) of
R−

1
2 Y has already been obtained, the dual approach can be used and the additional cost

of the EnKF-N, or EnKS-N, is due to the minimization of the dual cost function Eq. (25),
which is negligible. This is indeed the case in all our experiments where the SVD has been
obtained in order to compute the inverse in the state update Eq. (27) or the inverse square20

root in the perturbations update Eq. (30) or Eq. (24). If the data assimilation is iterative (for
significantly nonlinear models) such as the maximum likelihood ensemble filter (Zupanski,
2005) or the iterative ensemble Kalman smoother (Bocquet and Sakov, 2014), then the pri-
mal approach of the finite-size scheme can be made to coincide with the iterative scheme.
Examples of such integrated schemes are given in Bocquet and Sakov (2012, 2014). The25

additional cost is often negligible except if the number of expected iterations is small which
is the case if the models are weakly nonlinear. However, in this case, the finite-size correc-
tion is also expected to be small with an effective inflation value close to 1.
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Moreover, it is important to notice that the perturbations update as given by Eq. (30) can
induce a significant extra numerical cost as compared to the update of an ETKF. Indeed the
SVD used to compute Eq. (27) cannot be directly used to compute Eq. (30) which might
require another SVD. However, using the approximate scheme which consists in neglecting
the off-diagonal term does not make that requirement. Even if the off-diagonal term is in-5

cluded in the Hessian, the inverse square root of the Hessian could be computed from the
original SDV through a Sherman-Morisson update because the off-diagonal term is of rank
one.

Let us finally mention that no significant additional storage cost is required by the scheme.

6 Performance in the prior-driven regime10

The EnKF-N based on the Jeffreys’ hyperprior was found to fail in the limit where the system
is almost linear but remains nonlinear (BS12). This regime is rarely explored with low-order
models but it is likely to be encountered in less homogeneous, more realistic applications.
Figure 4a illustrates this failure. It extrapolates the results of Fig. 3 to very small time inter-
vals between updates where the dynamics are quasi-linear. As ∆t decreases the RMSE of15

the optimal inflation EnKF decreases as one would expect, while the RMSE of the EnKF-N
based on the Jeffreys’ prior increases.

In this regime, the EnKF-N has great confidence in the prior as any filter would do.
Therefore, the innovation-driven term becomes less important than the prior term Db(ζ) =
εN ζ

2 + N+1
2 ln N+1

ζ − N+1
2 in the dual cost function Eq. (25), so that its mode ζa tends to the20

mode of Db(ζ) which is ζa = (N + 1)/εN =N . Note that an inflation of 1 corresponds to
ζ =N − 1. Hence, in this regime, even for moderately-sized innovations, there is deflation.
The failure of the EnKF-N was empirically fixed in BS12 by capping ζa to prevent deflation.

More generally, we believe the problem is to be encountered whenever the prior largely
dominates the analysis (prior-driven regime). This is bound to happen when the observa-25

tions are too few, too sparsely distributed, which could occur when using domain localiza-
tion, and whenever they are unreliable compared to the prior. Quasi-linear dynamics also fit
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this description, the ratio of the observation precision to the prior precision becoming small
after a few iterations.

This failure may not be due to the EnKF-N framework. It may be due to an inappropri-
ate choice of candidate Gaussian posterior as described in Sec. 3. Or it may be due to an
inappropriate choice of hyperprior in this regime. Although it seems difficult to devise a hy-5

perprior that performs optimally in all regimes, we can suggest two adjustments to Jeffreys’
hyperprior in this prior-driven regime.

6.1 Capping of the inflation

Here, deflation is avoided by capping ζ. Firstly, we build the desired dual cost function.
Instead of minimizing D(ζ) over ]0,(N + 1)/εN ], it is minimized over ]0, ζ], with 0≤ ζ ≤10

(N+1)/εN , which defines the dual cost function. ζ is a tunable bound which is meant to be
fixed over a wide range of regimes. Following a similar derivation to Appendix A of BS12,
one can show that the background term of the primal cost function corresponding to this
dual cost function is

if ‖w‖2 ≤ N + 1

ζ
− εN : Jb(w) =

ζ

2

(
εN + ‖w‖2

)
+
N + 1

2
ln

(
N + 1

ζ

)
− N + 1

2
15

if ‖w‖2 >
N + 1

ζ
− εN : Jb(w) =

N + 1

2
ln
(
εN + ‖w‖2

)
. (33)

The dual and primal cost functions can both be shown to be convex. There is no duality
gap, which means, with our definitions of these functions, that the minimum of the dual
cost function is equal to the minimum of the primal cost function. By construction, in the
small innovation range, i.e. ‖w‖2 ≤ (N + 1)/ζ − εN , the EnKF-N, endowed with this new20

hyperprior, corresponds to the ETKF (Hunt et al., 2007) with an inflation of the prior by (N−
1)/ζ ≥ 1. Since the hyperprior assumed in the regime of small ‖w‖ is p(xb,B) = δ(B−ζP),
this could be called the Dirac-Jeffreys hyperprior.

Even with the Dirac-Jeffreys hyperprior, it is still necessary to introduce a tiny amount
of inflation through ζ in the quasi-linear regime. This might prove barely relevant in a high-25
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dimensional realistic system as it was for the sensitive low-order models that we tested the
scheme with. Even with Lorenz-95, an instability develops over very long experimental runs
in the absence of this residual inflation. Still this remains a theoretical concern. Moreover,
we could not find a rigorous argument to support avoiding deflation in all regimes, and
hence the capping. That is why we propose an alternative solution in the following.5

6.2 Smoother schemes in the prior-driven regime

In the limit of R getting very large, the observations cannot carry information, and the en-
semble should not be updated at all, i.e. it should be close to the prior ensemble, with an
inflation of 1 (ζ =N − 1). Outside of this regime, we do not see any fundamental reason to
constrain ζ to be smaller than N − 1. A criterion to characterize this regime would be10

ψ =
1

N − 1
Tr
(
YTR−1Y

)
, (34)

which computes the ratio of the prior variances to the observation error variances. When ψ
tends to zero, the analysis should be dominated by the prior and ζ should tend to N − 1.
When ψ drifts away from zero, we do not want to alter the hyperprior and the EnKF-N
scheme, even if it implies deflation. We found several schemes that satisfy these con-15

straints. Two of them, denoted R1 and R2, consist in modifying εN into ε′N and yield a
well-behaved mode of the background part of the dual cost function ζb = argmin

ζ
[Db(ζ)]:

R1: ε′N =
εN

1− 1
N e
−ψ =⇒ ζb =N − e−ψ

R2: ε′N =
N + 1

N

(
N

N − 1

) 1
1+ψ

=⇒ ζb =N

(
N − 1

N

) 1
1+ψ

(35)

The point of these formulae is to make ζb tend to N − 1 (no inflation) when the criterion
ψ tends to zero. On the other hand, when ψ gets bigger ζb tends to N , i.e. to the original20

dual cost function’s behavior dictated by Jeffreys’ hyperprior. The implementation of these
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schemes is straightforward for any of the Algorithms 1 or 2, since only εN needs to be
modified either in the dual or the primal cost functions.

6.3 Numerical illustrations

The performance of the Dirac-Jeffreys EnKF-N where we choose
√

(N − 1)/ζ = 1.005,
and of the EnKF-N with the hyperprior corrections (R1) and (R2), are illustrated with a5

twin experiment on the Lorenz-95 model in the quasi-linear regime. Also included are the
EnKF-N with Jeffreys’ prior and the ensemble square root Kalman filter with optimally tuned
inflation. The RMSEs are plotted as a function of ∆t in [0.01,0.5] in Fig. 4a.

Another way to make a data assimilation system based on the Lorenz-95 more linear,
rather than decreasing ∆t, is to decrease the forcing parameter to render the model more10

linear. Figure 4b illustrates this when F is varied from 4 (linear) to 12 (strongly nonlinear),
with ∆t= 0.05, and the same set-up as in Section 5. As anticipated, the EnKF-N based
on Jeffreys’ hyperprior fails for F < 7.5. However, the EnKF-N based on the Dirac-Jeffreys’
hyperprior and the EnKF-N with the schemes R1 and R2 show performances equivalent to
the EnKF with optimally tuned inflation. We remark a slight underperformance of the EnKF-15

N in the very strongly chaotic regimes compared to the optimally tuned EnKF. We have also
check that these good performances also apply to the Lorenz-63 model.

The spread of the ensemble for the Dirac-Jeffreys EnKF-N has also been plotted in
Fig. 4a and Fig. 4b. The value of the spread is consistent with the RMSE except in sig-
nificantly nonlinear regimes such as when ∆t > 0.15 and F = 8, or to a lesser extent when20

∆t= 0.05 and F > 8. In those nonlinear regimes and with such non-iterative EnKFs, the
Gaussian error statistics approximation is invalidated so that the RMSE could differ signifi-
cantly from the ensemble spread.
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7 Informative hyperprior, covariance localization and hybridization

So far, the EnKF-N has relied on a noninformative hyperprior. In this section we examine,
mostly at a formal level, the possibility to account for additional, possibly independent, infor-
mation on the error statistics, like an hybrid EnKF-3D-Var is meant to (Hamill and Snyder,
2000; Wang et al., 2007a). A single numerical illustration is intended since extended results5

would involve much more developments and would be very model-dependent.
In a perfect model context, we observed that uncertainty on the variances usually ad-

dressed by inflation could be taken care of by the EnKF-N based on Jeffreys’ hyperprior.
However, it does not take care of the correlation (as opposed to variance) and rank-deficiency
issues, which are usually addressed by localization. Localization has to be superimposed10

to the finite-size scheme to build a local EnKF-N without the intrinsic need for inflation (Boc-
quet, 2011). Nonetheless, by marginalizing over limited-range covariance matrices (Sec-
tion 5 of Boc11), we also argued that the use of an informative hyperprior would produce
covariance localization within the EnKF-N framework. A minimal example where the hy-
perprior is defined over B matrices that are positive diagonal, hence very short-ranged,15

was given and supported by a numerical experiment. Hence, it is likely that the inclusion of
informative prior is a way to elegantly impose localization within the EnKF-N framework.

An informative hyperprior is the normal-inverse-Wishart (NIW) pdf:

pNIW(xb,B)∝ |B|−M+2+ν
2 exp

[
−κ

2
‖xb− xc‖2

B−
1

2
Tr
(
B−1C

)]
. (36)

It is convenient because, with this hyperprior, Eq. (3) remains analytically integrable. The20

location state xc, the scale matrix C, which is assumed to be full-rank, κ and ν are hyper-
parameters of the distribution from which the true error moments xb and B are drawn. The
pdf pNIW is proper only if ν >M − 1, but this is not an imperative requirement provided that
the integral in Eq. (3) is proper.

The resulting predictive prior can be deduced from Gelman et al. (2014) Section 3.6:25

p(x|E)∝
{

1 + N+κ
N+κ+1 ‖x− x̂‖2

κN
N+κ

(xc−x)(xc−x)T+XXT+C

}− 1
2

(N+1+ν)
(37)
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where x̂ = (κxc +Nx)/(N +κ). From these expressions, xc could be interpreted as some
climatological state and C would be proportional to some static error covariance matrix,
which could be estimated from a prior, long and well-tuned EnKF run. They could also be
parameterized by tunable scalars that could be estimated by a maximum likelihood principle
(Hannart and Naveau, 2014).5

A subclass of hyperpriors is obtained when the degree of freedom xc is taken out, leading
to the inverse Wishart (IW) distribution:

pIW(xb,B) ∝ |B|−M+1+ν
2 exp

[
−1

2Tr
(
B−1C

)]
, (38)

and to the predictive prior

p(x|E)∝
{

1 + N
N+1 ‖x− x‖2

XXT+C

}− 1
2

(N+ν)
. (39)10

Jeffreys’ hyperprior is recovered from the IW hyperprior in the limit where ν→ 0 and C→ 0,
well within the region ν ≤M − 1 where the IW pdf is improper. Note that the use of an IW
distribution was advocated owing to its natural conjugacy in a remarkable paper by Myrseth
and Omre (2010) where a hierarchical stochastic EnKF was first proposed and developed.

Because the scale matrix C is assumed full-rank, updating in state space is preferred to15

an analysis in ensemble space. Based on the marginals Eq. (37) and Eq. (39), the Jb term
of the analysis cost function is of the form:

Jb(x) =
γ

2
ln
[
εN + ‖x− x̂‖2

Γ

]
with Γ = XXT + Ĉ . (40)

In the case of the NIW hyperprior, one has:

γ =N + 1 + ν , εN = 1 + 1/(N +κ) , Ĉ = C +
κN

N +κ
(xc− x)(xc− x)T . (41)20

In the case of the IW hyperprior, one has:

γ =N + ν , εN = 1 + 1/N , x̂ = x , Ĉ = C . (42)
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We observe that the Jb term is formally similar to that of the EnKF-N with Jeffreys’ hy-
perprior which is directly obtained in state space from Eq. (7). Hence the sequential data
assimilation schemes built from the NIW and IW hyperpriors formally follow that of the
EnKF-N. But, to do so, the analysis must be written in state space, whereas it has been
expressed in ensemble space so far.5

7.1 Primal analysis and dual analysis

The primal analysis in state space is obtained from xa = argminxJ (x), where

J (x) = Jo(x) +Jb(x) =
1

2
‖y−H(x)‖2

R +
γ

2
ln
[
εN + ‖x− x̂‖2

Γ

]
. (43)

For the dual analysis, we further assume that the observation operator H is linear (for the
primal/dual correspondence to be exact). The derivation of the dual cost function follows10

that of BS12. The following Lagrangian is introduced to separate the radial and angular
degrees of freedom of x:

L(x,ρ,ζ) = Jo(x) +
ζ

2

[
‖x− x̂‖2

Γ− ρ
]

+
γ

2
ln(εN + ρ) . (44)

where ζ is a Lagrange multiplier. The saddle-point equations of this Lagrangian are:

ρa = ‖xa− x̂‖2
Γ , (45)15

ρa =
γ

ζa
− εN , (46)

xa = x̂ + ΓHT (ζaR + HΓHT)−1
δ̂ with δ̂ = y−Hx̂ . (47)

xa, ρa, and ζa are the saddle-point values of the variables. Using these saddle-point equa-
tions, it can be shown that the minimization of Eq. (43) is equivalent to the minimization of
the following scalar dual cost function over ]0,γ/εN ]20

D(ζ) = L(xa,ρ
a, ζ) =

1

2
δ̂T (R + ζ−1HΓHT)−1

δ̂ +
εNζ

2
+
γ

2
ln
γ

ζ
− γ

2
, (48)
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a mild generalization of Eq. (25). As in BS12, ζ is interpreted as an effective size of the
ensemble as seen by the analysis. Note that, in this context, it could easily be larger than
N − 1 if the added information content of the informative hyperprior is significant.

7.2 State space update of the ensemble perturbations

Recall that the square root ensemble update corresponding to Eq. (30) and Jeffreys’ hyper-5

prior is

Xa =
√
N − 1X

[
YTR−1Y + ζaIN −

2ζ2
a

N + 1
wawT

a

]− 1
2

U . (49)

Note that covariance localization cannot be implemented in ensemble space using Eq. (49).
To make the covariance matrix explicit, we wish to write this in state space. Firstly, from
Eq. (27), wa can be written wa = YTz, where z =

(
ζaR + YYT

)−1
δ. Then, by the matrix shift10

lemma which asserts that Af(BA) = f(AB)A for any two matrices A and B of compatible
sizes and f an analytic function1, we can turn this right-transform into a left-transform2:

Xa =
√
N − 1

[
ζaIM + XYT

(
R−1− 2ζ2

a

N + 1
zzT
)

H

]− 1
2

XU . (50)

When ζa =N − 1 and z = 0, one recovers the ensemble square root Kalman update for-

mula written in state space: Xa =
[
IM + PHTR−1H

]− 1
2 X (Sakov and Bertino, 2011). Note15

that we could absorb − 2ζ2
a

N+1zzT into R using the Sherman-Morrison formula, leading to an
effective observation error covariance matrix Re which is bigger than R (using the order of
the positive symmetric matrices). To superimpose localization on this Jeffreys’ hyperprior

1Assuming f(x) =
∑∞

k=0 akx
k, one has Af(BA) =

∑∞
k=0 akA(BA)k =

∑∞
k=0 ak(AB)kB =

f(AB)A.
2Let A be a diagonalizable, non necessarily symmetric, matrix A = ΩΛΩ−1 with Λ diagonal. If

Λ≥ 0, then the square root matrix A
1
2 is defined by ΩΛ

1
2 Ω−1.

28



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

EnKF-N, a Schur product can easily be applied to XYT in Eq. (50), while the transformation
still applies to the initial perturbations X without any explicit truncation.

Here, however, we wish to obtain a similar left-transform but for the NIW EnKF-N. The
Hessian of the primal cost function Eq. (43) is:

H= HTRH + γ
Γ−1

εN + ‖x− x̂‖2
Γ

− 2γ
Γ−1 (x− x̂)(x− x̂)T Γ−1[

εN + ‖x− x̂‖2
Γ

]2
, (51)5

yielding at the minimum:

Ha = HTR−1H + ζaΓ−1− 2
ζ2
a

γ
Γ−1 (xa− x̂)(xa− x̂)T Γ−1 ≡HTR−1H + ζaΓ−1

e , (52)

where the correction term has been absorbed into an effective symmetric positive definite
matrix Γe. Henceforth, Γ will stand for Γe, and any correction term is assumed to have
been absorbed into Ĉ in Γ. Decomposing ζ−1

a Γ, which is the effective background error10

covariance matrix, into as many modes as required ζ−1
a Γ = ZZT and applying Eq. (50), it is

not difficult to obtain a square root matrix of the analysis error covariance matrix Pa:

P
1
2
a =

[
ζaIM + ΓHTR−1H

]− 1
2 Γ

1
2 . (53)

However, this does not constitute a limited-size ensemble of perturbations since P
1
2
a is full-

rank as C was assumed full-rank. To obtain an ensemble update of N perturbations, the15

scale matrix Ĉ in Γ = XXT + Ĉ can be projected onto the ensemble space generated by the
initial perturbations. Then, ΠXĈΠX replaces Ĉ, where ΠX is the orthogonal projector on the
columns of X, ΠX = XX†. Following Raanes et al. (2015), we can form an effective set of
perturbations Xc that satisfy

XcX
T
c = XXT + ΠXĈΠX = X

[
IN + X†Ĉ

(
XT)†]XT (54)20

29



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

by using

Xc = X
[
IN + X†Ĉ

(
XT)†] 1

2 (55)

or alternatively a left-transform equivalent formula which is obtained from the matrix shift
lemma

Xc =
[
IM + XX†Ĉ

(
XXT)†] 1

2
X =

[
IM + ΠXĈΠX

(
XXT)†] 1

2
X . (56)5

Substituting this Xc to Γ
1
2 in Eq. (53), we finally obtain an update of the perturbations X as

a new set of perturbations of the same size N :

Xa =
√
N − 1

[
ζaIM + ΓHTR−1H

]− 1
2

[
IM + XX†Ĉ

(
XXT)†] 1

2
XU . (57)

7.3 Covariance localization and EnKF-3D-Var hybridization

The state space formulation of the analysis enables covariance localization which was not10

possible in ensemble space. To regularize P = XXT/(N−1) by covariance localization, one
can apply a Schur product with a short-range correlation matrix Θ. In that case, Eq. (43)
is unchanged but with Γ = Ĉ + Θ ◦

(
XXT

)
, with ◦ the Schur product symbol. Note that this

type of covariance localization is not induced by the hyperprior, but superimposed to the
EnKF-N whatever its hyperprior. The state update is obtained from Eq. (47) and Eq. (48) by15

letting HΓHT −→Θ ◦
(
YYT

)
+ HĈHT, or ΓHT −→Θ ◦

(
XYT

)
+ ĈHT.

An alternative is to use the α control variables (Lorenc, 2003; Buehner, 2005). A mathe-
matically equivalent cost function to Eq. (43) but with Γ = Ĉ + Θ ◦

(
XXT

)
is

J (δx,{αn}) = Jo
(

x̂ + δx +
N∑
n=1

αn ◦ {xn− x}
)

+
γ

2
ln

(
εN + ‖δx‖2

Ĉ
+

N∑
n=1

‖αn‖2
Θ

)
. (58)
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The {αn}n=1,...,N are N ancillary control vectors of size M related to the dynamical errors,
whereas δx is a control vector of sizeM related to the background errors. The control vector
x is related to {αn} and δx by identifying x with the argument of Jo in the cost function.
This expression of the cost function is obtained by first passing from Eq. (43) to Eq. (44),
then along the lines of Wang et al. (2007b). It can be seen from the cost function that the5

EnKF-N based on the NIW hyperprior yields a generalization of the EnKF-3D-Var hybrid
data assimilation method to the EnKF-N framework.

Moreover, the above derivation suggests the following perturbation update needed to
complete the NIW EnKF-N scheme:

Xa =
√
N − 1

[
ζaIM +

{
ĈHT + Θ ◦

(
XYT)}R−1H

]− 1
2
[
IM + ĈΘ ◦

(
XXT)†] 1

2
XU . (59)10

7.4 Numerical illustration

Here we wish to illustrate the use of the EnKF-N based on the IW hyperprior. We consider
again the same numerical setup as in Section 5 with the Lorenz-95 model. The ν hyperpa-
rameter and the C scale matrix are chosen to be:

ν = 1 +N
α

1−α , C =
β

1−β IM (60)15

with α and β two real parameters in the interval [0,1[. Synthetic experiments are performed
for a wide range of (α,β) couples for two sizes of the ensemble: N = 20, which is big-
ger than the dimension of the unstable and neutral subspace (14) which, for traditional
EnKFs, would not require localization but inflation, and N = 10 which, for traditional EnKFs,
would require both localization and inflation. We do not use inflation since it is meant to20

be accounted for by the finite-size scheme. We do not superimpose domain or covariance
localization. Analysis RMSEs are computed for each run and reported in Fig. 5.

This is a preliminary experiment. In particular we do not perform any optimization of α
and β based for instance on empirical Bayesian estimation. For N = 20, we barely remark
any improvement in term of RMSEs due to the use of the NIW hyperprior as compared to25
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the EnKF-N based on Jeffreys’ hyperprior, i.e. (α,β) = (0,0). However, we observe that for
N = 10 localization is naturally enforced via the hyperprior due to a mechanism known in
statistics as shrinkage. Although there is no dynamical tuning of α and β, and even though
the choice for C is gross, good RMSEs can be obtained. A RMSE of 0.33 is achieved for
(α,β) = (0.50,057) as compared to a typical analysis RMSE of 0.20 for the EnKF-N with5

optimally tuned, superimposed localization. Interestingly, the average optimal effective size
in this case is ζa = 15, above the unstable subspace dimension, validating its potential use
as a diagnostic.

8 Conclusions

In this article, we have revisited the finite-size ensemble Kalman filter, or EnKF-N. The10

scheme offers a Bayesian hierarchical framework to account for the uncertainty in the fore-
cast error covariance matrix of the EnKF which is inferred from a limited-size ensemble. We
have discussed, introduced additional arguments for, and sometimes improved several of
the key steps of the EnKF-N derivation. Our main findings are:

1. A proper account of the gauge degrees of freedom in the redundant ensemble of15

perturbations and the resulting analysis led to a small but important modification of
the ensemble transform-based EnKF-N analysis cost function (g = 0→ 1, as seen in
Eq. (21)).

2. Consequently, the marginal posterior distribution of the system state is a Cauchy dis-
tribution, which is proper but does not have first and second-order moments. Hence,20

only the maximum a posteriori estimator is unambiguously defined. Moreover, this
suggests that the Laplace approximation should be used to estimate the full posterior.

3. The modification g = 0→ 1 frees us from the inconvenient tweaking of εN to 1 or to
1 + 1

N : now, only εN = 1 + 1
N is required.
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4. The connection to dynamics has been clarified. It had already been assumed that the
EnKF-N compensates for the nonlinear deformation of the ensemble in the forecast
step. This conjecture was here substantiated by arguing that the effect of the nonlin-
earities is similar to sampling error, thus explaining why multiplicative inflation, and the
EnKF-N in particular, can compensate for it.5

5. The ensemble update of the dual EnKF-N was amended to offer a perfect equivalence
with the primal EnKF-N. It was shown that the additional term in the posterior error
covariance matrix accounts for the error co-dependence between the angular and
the radial degrees of freedom. However, this correction barely affected the numerical
experiments we tested it with.10

6. The EnKF-N based on Jeffreys’ hyperprior led to unsatisfying performance in the limit
where the analysis is largely driven by the prior, especially in the regime where the
model is almost (but not) linear. We proposed two new types of schemes which rec-
tify the hyperprior. These schemes have been successfully tested on low-order mod-
els, meaning that the performance of the EnKF-N becomes as good as the ensem-15

ble square root Kalman filter with optimally tuned inflation in all the tested dynamical
regimes.

7. As originally mentioned in Boc11, the EnKF-N offers a broad framework to craft vari-
ants of the EnKF with alternative hyperpriors. Inflation was shown to be addressed by
a noninformative hyperprior whereas a localization seems to require an informative hy-20

perprior. Here, we showed that choosing the informative normal-inverse-Wishart dis-
tribution as a hyperprior for xb,B leads to a formally similar EnKF-N, albeit expressed
in state space rather than ensemble space. The EnKF-N based on this informative hy-
perprior is a finite-size variant of the hybrid EnKF-3D-Var. It has a potential for tuning
the balance between static and dynamical errors. Moreover, we showed on a pre-25

liminary numerical experiment that localization can be naturally carried out through
shrinkage induced by the scale matrix of the normal-inverse-Wishart hyperprior.
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With the corrections and new interpretations on the EnKF-N based on Jeffreys’ hyper-
prior, we have obtained a practical and robust tool that can be used in perfect model EnKF
experiments in a wide range of conditions without the burden of tuning the multiplicative
inflation. This has saved us a lot of computational time in recent published methodological
studies.5

An EnKF-N based on an informative hyperprior, the normal-inverse-Wishart distribution,
has been described and its equations derived. We plan to evaluate it thoroughly on exten-
sive numerical experiments. Several optional uses of the method are contemplated. Hyper-
parameters xc, C, ν and κ could be diagnosed from the statistics of a prior well-tuned data
assimilation run. Empirical Bayesian approaches could then be used to objectively balance10

the static errors and the dynamical errors. Alternatively, the hyperparameters could be es-
timated online in the course of the EnKF, rather than being obtained from prior statistics,
using a more systematic empirical Bayesian approach.

The EnKF-N is not designed to handle model error, which is critical for realistic appli-
cations. Other adaptive inflation techniques currently in operation would be more robust in15

such context. We are working on a consistent merging of the finite-size approach that ac-
counts for sampling errors and of a multiplicative inflation scheme designed to account for
model error.

Acknowledgements. We are grateful to the Editor, Zoltan Toth, and two anonymous reviewers for
their valuable and helpful suggestions to improve this paper. This study is a contribution to the20

INSU/LEFE project DAVE.

Appendix A: Coupling of the radial and angular degrees of freedom

Section 3.2 separately identified angular and radial degrees of freedom in the EnKF-N cost
function. This led to the dual cost function, and an alternative interpretation of the EnKF-N
as an adaptive inflation scheme that accounts for sampling errors.25

Here we wish to interpret the contributions in the Hessian Eq. (24) that come from the
angular and from the radial degrees of freedom. To do so, we study the evidence p(y), i.e.
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the likelihood of the observation vector, as estimated from the EnKF-N. This evidence is
usually computed by marginalizing over all possible model states, which reads in our case:

p(y) =

∫
RN

dwp(y|w)p(w) =AN
∫
RN

dwe−
1
2
‖y−H(x+Xw)‖2

R−
N+1

2
ln(εN+‖w‖2) , (A1)

where AN =
Γ(N+1

2 )

ε
N−1

2
N 2

N
2 πN+ 1

2
√
|R|

is a normalization constant. This integral is also called the

partition function of the system in statistical physics since it sums up the contributions of all5

possible states to the evidence. To untangle the angular and radial degrees of freedom, we
apply the following identity for any α > 0 and β > 0 to the prior:

α−β =
1

Γ(β)

∞∫
−∞

dte−αe
t+βt . (A2)

Additionally assuming here that the observation operator is linear, we obtain:

p(y) = BN
∫

RN+1

dwdte−
1
2
‖δ−Yw‖2

R−
1
2
et‖w‖2− 1

2
etεN+N+1

2
t , (A3)10

where BN = 2
N+1

2

Γ(N+1
2 )
AN . The main contribution to the evidence can be estimated by using

the Laplace method to estimate this integral. Let us denote L(w, t) minus the argument of
the exponential in the integrant. If the saddle-point of L(w, t) is (w?, t?), and if its Hessian
at the saddle-point is Hw,t(w?, t?), then an estimate of the evidence is (Bishop, 2006):

p(y)' BN
√

(2π)N+1

|Hw,t(w?, t?)|e
−L(w?,t?) . (A4)15

The normalization by the Hessian represents a correction due to Gaussian fluctuations of
the variables (w, t) around the saddle-point. The saddle-point conditions are

w =
(
YTR−1Y + etIN

)−1
YTR−1δ , et =

N + 1

εN + ‖w‖2
. (A5)
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which are equivalent to the dual EnKF-N saddle-point equations (BS12). The Hessian is

Hw,t(w?, t?) =

[
YTR−1Y + et?IN et?w?

et?w? N+1
2

]
. (A6)

Hence, the integral is dominated by the saddle-point solution found in the dual EnKF-N
derivation. It corresponds to a standard ETKF analysis with a prior correction by the et? fac-
tor. Moreover, the fluctuations are due to the standard ETKF fluctuations YTR−1Y + et?IN ,5

with additional corrections due to the radial degree of freedom. When computing a precision
matrix Hw for the variables w from the Hessian Eq. (A6) using the Schur complement, i.e.
the precision on the w variables conditioned on the knowledge of t?, we find

Hw(w?, t?) = YTR−1Y + et?IN −
2

N + 1
e2t?w?w

T
? , (A7)

which coincides with Eq. (24). This tells that the correction −2(N +1)−1ζ2wawT
a in Eq. (24)10

is due to the fluctuation of ζ(= et) and its coupling to the angular degrees of freedom.
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Algorithm 1 Algorithm of the primal EnKF-N

Require: The forecast ensemble {xk}k=1,...,N , the observations y, the observation error
covariance matrix R, and U an orthogonal matrix satisfying U1 = 1.

1: Compute the mean x and the perturbations X from {xk}k=1,...,N , Y = HX
2: Find the argument of the minimum:

wa = argmin
w

[
‖y−H(x + Xw)‖2

R + (N + 1)ln
(
εN + ‖w‖2

)]
3: Compute: Ha = YTR−1Y + (N + 1)

(εN+‖wa‖2)IN−2wawT
a

(εN+‖wa‖2)
2

4: Compute xa = x + Xwa, Wa =
√
N − 1[Ha]−

1
2 U

5: Compute xak = xa + X [Wa]k
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Algorithm 2 Algorithm of the dual EnKF-N

Require: The forecast ensemble {xk}k=1,...,N , the observations y, the observation error
covariance matrix R, and U an orthogonal matrix satisfying U1 = 1.

1: Compute the mean x and the perturbations X from {xk}k=1,...,N , Y = HX, δ = y−Hx
2: Find the argument of the minimum:
ζa = argmin

ζ∈]0,(N+1)/εN ]

[
δT
(
R + Yζ−1YT

)−1
δ + εNζ + (N + 1)ln N+1

ζ − (N + 1)
]

3: Compute wa =
(
YTR−1Y + ζaIN

)−1
YTR−1δ

4: Compute Ha = YTR−1Y + ζaIN − 2ζ2
a

N+1wawT
a

5: Compute xa = x + Xwa, Wa =
√
N − 1[Ha]−

1
2 U

6: Compute xak = xa + X[Wa]k
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Analysis with a reliable Gaussian prior p(x|xb,B)

Analysis with a Gausian prior
from a first sample p(x|x,P)

Analysis with a Gaussian prior
from a second sample p(x|x,P)

Analysis with the predictive Cauchy prior p(x|E)

Figure 1. Schematic of the traditional standpoint on the analysis of the EnKF (top row), what it
actually does using a Gaussian prior sampled from 3 particles (middle row), and using a predictive
prior accounting for the uncertainty due to sampling (bottom row). The full green line represent
the Gaussian observation error prior pdfs, the dashed blue lines represent the Gaussian/predictive
priors if known, or estimated from an ensemble, or obtained from a marginalization over multiple
potential errors statistics. The dotted red curves are the resulting analysis pdfs.
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Figure 2. Analysis error variance when applying sequential data assimilation to xk+1 = αxk with
(ζ = 0.75, dashed line) or without (ζ = 1, full line) multiplicative inflation on the prior, as a function of
the model growth α. We chose r = 1.
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Figure 3. Average analysis RMSE for the primal EnKF-N, the dual EnKF-N, the approximate EnKF-
N, and the EnKF with uniform optimally tuned inflation, applied to the Lorenz-95 model, as a function
of the time step between updates. The finite-size EnKFs are based on Jeffreys’ hyperprior.
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Figure 4. Average analysis RMSE for the EnKF-N with Jeffreys’ hyperprior, with the EnKF-N based
on the Dirac-Jeffreys’ hyperprior, with the EnKF-N based on the Jeffreys’ hyperprior but enforcing
the schemes R1 or R2, and the EnKF with uniform optimally tuned inflation, applied to the Lorenz-
95 model, as a function of the time step between update (top), and as a function of the forcing
F of the Lorenz-95 model (bottom). The analysis ensemble spread of the EnKF-N based on the
Dirac-Jeffreys’ hyperprior is also shown.
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Figure 5. Average analysis RMSE as a function of (α,β) for the EnKF-N based on the IW hyperprior,
without inflation nor enforced localization, for ensemble sizes of N = 20 (left) and of N = 10 (right).
The RMSEs above 1, i.e. worse than an analysis based only on observations, are in white.
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